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Abstract

Fabric defect detection methods have been broadly classified into three 
categories; statistical methods, spectral methods and model-based methods. 
The performance of each method relies on the discriminative ability of texture 
features it uses. Each of the three categories has its own advantages and 
disadvantages and some researchers have recommended their combination 
for improved performance.

In this paper, we compare the performance of three fabric defect detection 
methods, one from each of the three categories.  The three methods are 
based on the grey-level co-occurrence matrices (GLCM), the undecimated 
discrete wavelet transform (UDWT) and the Gaussian Markov Random field 
models (GMRF) respectively from the statistical, spectral and model-based 
categories. The tests were done using the textile images from the TILDA 
dataset. To ensure classifier independence on the outcome of the 
comparison, the Euclidean distance and feedforward neural network 
classifiers were used for defect detection using the features obtained from 
each of the three methods. The results show that GLCM features allowed 
better defect detection than wavelet features and that wavelet features 
allowed better detection than GMRF features.

Keywords: Grey-level co-occurrence matrix, wavelet transform, Markov 
random field, Euclidean distance classifier, neural networks

1. INTRODUCTION

Quality inspection of textile products is an important issue for fabric 
manufacturers. Manual fabric quality inspection by human inspectors has 
many drawbacks - including fatigue, boredom, inconsistency and low 
detection rate. Many attempts to automate this task have been made and 
various defect detection methods have been proposed in the literature. Kumar 
(2008) and Ngan et al. (  provided recent reviews of research in this field. 
Most of the methods view the problem of fabric defect detection as a texture 
classification problem and rely on the discriminative ability of texture features 
for their performance. 
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Weszka et al. (1976) and Conners et al. (1980) undertook comparative studies 
of the performance of four texture algorithms as well as their respective 
features. While the former was performed experimentally on terrain sample 
images, the latter was theoretical. The four methods were Grey-Level Co-
occurrence Matrix (GLCM), Grey-Level Run-Length Method (GLRLM), Grey-
Level Difference Method (GLDM) and Power Spectrum method (PSM). Both 
studies concluded that GLCM was more powerful than the other three 
considered methods while GLDM was more powerful than PSM. Bodnarova 
et al. (2000) compared the performance of four methods of detection of 
weaving defects, namely grey-level co-occurrence, normalized cross-
correlation, texture blob detection and spectral methods, in terms of detection 
accuracy and computational efficiency. They claim that cross-correlation was 
the most promising method for textile fabrics.
 
The purpose of this paper is to compare the performance of three fabric defect 
detection methods. The three methods are based on the grey-level co-
occurrence matrices (GLCM), the undecimated discrete wavelet transform 
(UDWT) and the Gaussian Markov Random field models (GMRF). The 
comparison provides a platform for their combination for increased 
performance. The remaining part of this paper is organized as follows. In 
Section 2, we describe the feature extraction methods used, namely GLCM, 
UDWT and GMRF. In Section 3, we briefly describe the Euclidean distance 
and the feedforward neural network classifiers that we used as defect 
detectors. Section 4 provides an overview of the dataset and the experiments 
while Section 5 presents the results as well as their interpretation. Our 
conclusions are reached in Section 6.

2. FEATURE EXTRACTION METHODS

2.1 The Grey-Level Co-occurrence Matrices

The grey-level co-occurrence matrix (GLCM) analysis was introduced by 
Haralick et al. (1973). It is a second order statistics method of texture analysis 
in the sense that it is based on the computation of statistics of pairs of 
neighbouring pixels in an image, separated by a given distance d in a given 
direction .

A co-occurrence matrix is a square matrix whose elements are the number of 
occurrence of pairs of grey levels separated by the distance d in the direction 

. For an image with G grey levels, the grey-level co-occurrence matrix P is a 
GxG matrix and its element P (p,q) can be expressed by (1).d,  

Ɵ

Ɵ

Ɵ
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In general, four such matrices are used to describe different orientations in an 
image. More specifically, one co-occurrence matrix describes pixels that are 

0adjacent to one another horizontally, P . There are also co-occurrence 
90 45matrices for the vertical direction and both diagonal directions called P , P  

135and P  respectively.

0Figure 1 shows how the co-occurrence matrix P  is computed for d=1.

0Figure 1: Construction of the co-occurrence matrix P  for d=1 (Miyamoto et 
al., 2005) The original image (a) begins by having each of its neighbouring 
pairs examined. (b) shows the incremental stage that occurs when the 
outlined neighbouring pixels in (a) are examined. Part (c) shows the final result 
of the horizontal co-occurrence matrix for d=1 (Miyamoto et al., 2005).

After compiling the co-occurrence matrix, some features are calculated from 
it. We will consider all fourteen features as proposed by Haralick et al. (1973).

2.2 The Gaussian Markov Random Field models

The model used is as described by Cohen et al. (1991). Let g (m,n) be the 0

intensity at pixel r = (m,n) and let g(m,n)= g (m,n)-µ where  µ=E{g (m,n)}. The 0 0

GMRF is a noncausal 2-D autoregressive process described by the difference 
equation (2)
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where p is the order of the process and Np is the maximum square of distance 
from r to v. n(r) is a Gaussian noise sequence with zero mean and 
autocorrelation function given by equation (4).
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The GMRF is parameterised by a parameter set γ = (µ,σ, β) with β = (β  β  β10, 01, 1,-

 ), where the number of β parameters is determined by the order p of the 1, …

model.

In the experiments, we used neighbourhoods of sizes 3x3 (p=2) and 5x5 (p=5) 
resulting in four and twelve β-parameters respectively. The parameter set γ is 
used as texture features in our experiments, the total number of features used 
is therefore 6 and 14 for the 3x3 and 5x5 neighbourhoods respectively.

2.3  The Undecimated Discrete Wavelet Transform (UDWT)

Figure 3 shows the filter bank implementation of a 3-level 2-D undecimated 
wavelet transform (Yang et al., 2002). H(z) and G(z) denote the z-transform of 
the low-pass filter h[n] and the high-pass filter g[n] respectively. I(x,y) denotes 
an image and (x,y) the spatial indices. 

Figure 3: Filter bank implementation of 2-D undecimated wavelet 
decomposition (Yang et al. 2001) 

(4)
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1 2 3{W (x,y), W (x,y), W (x,y)} denotes the wavelet coefficients at scale r (detail r r r

subimages) with diagonal, horizontal and vertical orientation respectively. 
{R (x,y)} represents the residue signal at scale r (approximation subimage). r

Compared to the critically sampled wavelet transform, the undecimated 
wavelet transform achieves translation invariance, a desirable feature for 
pattern recognition applications such as fabric defect detection.

In our experiment, the fabric image was divided into non-overlapping windows 
of size 32x32 pixels and each window is classified as defective or defect-free. 
The features used to characterise each window are the channel variances at 
the output of the wavelet decomposition as described by the equation (5).

We used 3 levels of wavelet decomposition, and therefore the feature vector to 
characterise each window comprised 9 features, as shown by equation (6).

Yang et al. (2002) report that channel variances are able to provide efficient 
discriminations among different types of textures.

We used 2 types of wavelet described by the corresponding filters H and G. 
The first wavelet is the standard Haar wavelet, whereas the second wavelet is 
a custom wavelet whose filters are designed using a procedure which 
performs a cascade-form factorization for [H(z), G(z)] as reported by Yang et 
al. (2001) This is done using equation (7).

Structurally, this design satisfies the power complementary constraints on 
filter H(z) and G(z) as given by equation (9).

Another constraint on those wavelet filters is given by equations (10)
.Yang (2003)

(5)

(6)
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This constraint is met when the cascade-form factorization parameters 
         comply with the equations (11) or (12).
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where m is the order of the wavelet filter H(z).

3. CLASSIFIERS

The experiments were performed  using three different classifiers

• The Euclidean distance classifier with maximum likelihood (ML) 
training
The Euclidean distance with minimum classification error (MCE) 
training
The feedforward neural network classifier

3.1  Euclidean distance classifiers

For an Euclidean distance classifier, each pattern class ω is characterised by j

a vector m that is the mean vector of the features of the patterns of that class j 

that are members of the training set as described by equation (13).

•

•

where N is the number of training pattern vectors for class ω and the j j 

summation is taken over these vectors.

Determining the class membership of an unknown pattern with feature vector 
x requires computing the distance measures given by equation (14)

where W is the number of classes and assigning x to the class ω  if Di is the i

smallest distance.

The above described procedure of training the Euclidean distance classifier, 
whereby for each pattern class a characteristic feature vector is the mean 
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vector of the corresponding feature vectors in the training set, is called 
“maximum likelihood training” or ML training (Yang, 2003).

The “Minimum Classification Error” (MCE) training of the classifier provides a 
better way of obtaining the classifier characteristic feature vectors of different 
pattern classes . The algorithm starts with the characteristic 
feature vectors obtained by the ML method and then adjusts them adaptively 
in order to achieve the highest classification rate of the feature vectors in the 
training set.

3.2 Feedforward neural network classifier

Figure 4 shows the architecture of a feedforward neural network classifier with 
one hidden layer. 

(Yang, 2003)

Figure 4: Feedforward neural network with R inputs, M neurons in the hidden 
layer and N outputs (Beale et al., 2011) 

The output of each neuron is computed taking the sum of the weighted inputs 
and the biases and passing it through the transfer function. The transfer 
function is typically a sigmoid function.

Among the algorithms used for supervised training, the backpropagation has 
emerged as the most widely used and successful for image processing (Chi, 
2004). During the training phase, the feature vectors of the training set are 
presented at the inputs of the network and the resulting outputs are compared 
to the desired outputs. 



142

Then, using a gradient descent optimization algorithm, the weights and the 
biases of the network are adjusted to minimise the mean square error 
between the network outputs and the desired outputs.

Once trained, the network can be used to give reasonable answers when 
presented with inputs that the network has never seen.

4. EXPERIMENTS

We performed the experiments using fabric images from the TILDA dataset . 
This dataset contains images of four different classes of fabrics: 

• Class 1: Very fine fabrics with or without visible internal structure.
Class 2: Fabrics with a low variance stochastic structure. The surface 
of this class contains no imprints.
Class 3: Fabrics with a clearly visible periodic structure.
Class 4: Printed materials with no apparent periodicity.

Figure 5 shows samples of the four fabric classes contained in the dataset.

•

•
•
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Figure 5: Samples of the 4 fabric classes contained in the TILDA dataset. 
From left to right class 1, class 2, class 3 and class 4.

We considered fabric images with four types of defects; holes and cuts; oil 
stains and colour fading; thread errors; and finally foreign body on the fabric. 
Figure 6 shows examples of these defect types in the fabric of class 2.

Figure 6: Examples of the 4 types of defects considered in this paper. From 
left to right hole or cut, oil stain, thread error and foreign body.
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The experimental samples were made up of image patches extracted from the 
fabric images as follows. Each fabric image was divided into non-overlapping 
windows of size 32x32 pixels. All the 37546 defective windows contained in 
the dataset were used in our experiments. Then 37546 defect-free windows 
were chosen randomly to complete the experimental dataset. From each 
fabric image, the same number of defect-free windows as defective windows 
was chosen. Half of the defective samples and half of defect-free samples 
were used as training set while the remaining samples were used as testing 
set.

From each window, five sets of features were extracted and then used 
separately in different experiments:

Set 1: 28 GLCM features computed as follows. Four co-occurrence matrices 
o owere computed for the inter-pixel distance d=1 pixel and for angles θ=0 , 45 , 

o o90  and 135 . Then the 14 Haralick features (Haralick et al., 1973) were 
extracted from each co-occurrence matrix and finally the 14 averages and the 
14 ranges of those features from the 4 matrices were used to make up the 
feature set.

Set 2 and Set 3: Features extracted according to the Gaussian Markov 
Random Field (GMRF) model. They were the model parameters of the texture 
in the window of interest of the fabric image. They were calculated using the 
least square error estimation (Al-Kadi, 2008). Set 2 comprised 6 features 
obtained using a model on a 3x3 neighbourhood while Set 3 comprised 14 
features obtained using a model on a 5x5 neighbourhood.

Set 4 and Set 5: Wavelet features extracted as follows. A three-level 
undecimated wavelet transform was performed on the whole image fabric 
containing the window of interest. Then the means of squares of wavelet 
coefficients of the corresponding 32x32 windows of the detail sub-images 
were calculated. As a 3-level wavelet transform produces nine detail sub-
images, nine features were obtained. Set 4 was obtained by using the 
standard Haar wavelet, while Set 5 was obtained using a custom wavelet.

All the features were normalized to fit into the range [0, 1] for the samples of 
the training set. The features of the samples of the testing set were also 
normalized using the same scaling parameters as used for the training set 
before being used for classification purpose.

For each feature set, three different classifiers were used; the Euclidean 
distance classifier trained using the maximum likelihood (ML) method, the 
Euclidean distance classifier trained using the Minimum Classification Error 
(MCE) method and the feedforward neural network trained using the 
backpropagation algorithm to minimize the minimum square error (MSE).
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5. RESULTS AND INTERPRETATION

The chart in Figure 7 shows the average detection performance of the three 
detection methods when the three different classifiers were used. Such 
performance was obtained for all the samples in the dataset. It can be seen 
that GLCM feature-based method performed much better than the wavelet 
feature-based method (using both the standard Haar wavelet and the custom 
wavelet) and the MRF feature-based methods. The difference in the detection 
rates is significant. It can be seen from the results that when the MCE-trained 
Euclidean distance classifier is used, the difference between the detection 
rate yielded from the GLCM feature-based method and the best wavelet 
feature-based method is 7.9%. The difference is 2.0% when the ML-trained 
Euclidean distance classifier is used and 12.1% when the neural network 
classifier is used. The trends of detection performance among the three 
detection methods we used seem to be classifier-independent as these are 
consistently seen among the three classifiers used in our experiments.
 
The chart in Figure 7 also shows that the wavelet feature-based method 
performed better than the MRF feature-based method. However, the 
difference of defect detection performance of wavelet feature-based method 
with respect to the MRF feature-based method is much smaller than the one 
displayed by GLCM feature-based method compared to the two other 
methods. For example, when the MCE-trained Euclidean distance classifier 
was used, the GLCM feature-based methods yielded a detection rate of 7.9% 
higher than the detection rate obtained by the best wavelet-based features, 
while the best wavelet-based method yielded merely a detection rate of only 
2.6% higher than the best MRF feature-based method.
 
From the observations above, we can conclude that GLCM features 
discriminate fabric texture more than channel variances of sub-images of the 
undecimated wavelet transform. Likewise, we can conclude that channel 
variances of the sub-images of the undecimated wavelet transform are more 
discriminative than GMRF model parameters of the same fabric texture.
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Figure 7: Average detection rate with different types of features and different 
classifiers

Looking at the defect detection performance for different types of fabrics as 
shown in the charts of Figure 8, one can see that the general trend observed in 
previous paragraphs was generally maintained for individual fabric types. The 
exception to the general trend is observed for printed materials with no 
apparent periodicity (Class 4) and partly for fabrics with a clearly visible 
periodic structure (Class 3). It is observed that for printed materials with no 
apparent periodicity (Class 4), MRF features - especially on a 3x3 
neighbourhood - performed better than wavelet features.

In all cases, the Euclidean distance classifier with MCE training performed 
better than the other classifiers considered. Also, all the detection methods 
performed better on very fine fabrics (Class 1) and performed worst on printed 
materials with no apparent periodicity (Class 4). This happens because the 
texture on very fine fabrics is more uniform than on the others types of fabrics 
considered. In contrast, the texture on printed material with no apparent 
periodicity seems less uniform than on the other types of fabrics.
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Figure  8: Defect detection performance for different types of fabrics

6. CONCLUSIONS

Table 1: Average detection performance for different detection methods and 
different classifiers.
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In this paper, we compared the performance of three methods of fabric defect 
detection. As summarised in Table 1, we have found that, generally, the GLCM 
feature-based method performed better defect detection than wavelet 
feature-based methods, while the wavelet feature-based methods generally 
allowed better detection than MRF feature-based methods. 
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This general trend does not seem to apply to fabrics with no apparent 
periodicity where the MRF feature-based method performs better than the 
wavelet feature-based method. 

We have also found that the considered methods performed better on fabrics 
with uniform texture than on fabrics where texture has less uniformity. Finally, 
we have found that the Euclidean distance classifier with minimum 
classification error (MCE) training performed better than both the Euclidean 
distance classifier with maximum likelihood (ML) training and the feedforward 
neural network classifier with back-propagation training.
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