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INTRODUCTION

Burning municipal solid waste, results in 

a few by-products, the most common of 

which is bottom ash. It was not uncommon 

to dump this in landfills. However, due to 

European Union restrictions imposed in 

2004 on landfill sites, alternative usage has 

become necessary. One such alternative is 

using bottom ash waste in asphalt for roads. 

Its properties have been studied mechanical-

ly, physically and environmentally (Hassan & 

Khalid 2010a). These properties have linked 

bottom ash to lightweight aggregates. 

Numerous successful trials have been 

conducted worldwide to study its usage 

as a road construction material. However, 

a better understanding of its usage and 

behaviour is still  required. It was found 

that substitution of virgin aggregate with 

up to 80% incinerator bottom ash aggregate 

(IBAA) waste resulted in mixtures with a 

higher binder content of up to 1.2%, lower 

resilient modulus values and satisfactory use 

in binder course and base layers on major 

roads (Hassan & Khalid 2010a&b; Ogunro et 

al 2004; Vassiliadou & Amirkhanian 1999). 

An IBAA content of up to 80% was found 

to improve the leaching properties and 

rutting resistance of bituminous mixtures 

(Hassan & Khalid 2010a). With regard to 

the crack resistance properties of mixtures 

containing bottom ash waste, there are 

very few previous studies (Hassan & Khalid 

2010b) that have explored this area. In the 

latter study, it was shown that elasto-plastic 

material properties can be derived from 

elastic parameters using a correspondence 

visco-elastic principle and creep compliance 

of mixtures. This work examines the rela-

tionship between the Paris Law constant, n, 

and the creep compliance time exponent, m, 

for mixtures containing different bottom ash 

waste quantities.

MATERIALS 

Two aggregates were used in this study – 

limestone to produce control bituminous 

mixtures, and bottom ash waste to replace 

limestone. The binder used was 100/150 Pen 

bitumen sourced from Venezuelan crude. 

These materials were utilised to produce hot 

bituminous mixtures containing 0%, 30%, 

60% and 80% (named as OA, AA, BA and CA 

in sequence) bottom ash waste by weight. 

The composition and volumetric parameters 

of each mixture and details of the mix design 

procedure were published elsewhere (Hassan 

& Khalid 2007).

SAMPLING AND TESTING

Cylindrical cores of nominal 150 mm dia-

meter and 65 mm thickness were cored from 

300 mm square asphalt slabs compacted in 

the laboratory using a roller segment. Each 

cylinder was then cut in half to obtain semi-

circular samples. These were then sharply 

notched at mid-point in the direction of the 

load using a diamond-tip tile cutter. The 
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notch length was 15 mm to produce a notch 

to a radius ratio of 0.2. Samples were then 

stored in an incubator at 5°C until test com-

mencement. Cyclic semi-circular bending 

(SCB) tests were conducted in which the 

mixtures were tested under a cyclic load of 

1.5 kN under a haversine load frequency of 

1 Hz and a temperature of 5°C. For all tests, 

triplicate samples were used. Figure 1 shows 

the SCB test schematically.

Alternatively, cylindrical asphalt mixture 

samples of 67 mm diameter and 134 mm 

height were manufactured. Firstly, a labora-

tory roller compactor was used to produce 

305 mm x 305 mm asphaltic slabs of 100 mm 

height. The slabs were compacted at four 

different pressures, namely 175 kPa, 275 kPa, 

345 kPa and 495 kPa. Each pressure was 

applied for 10 passes over each slab. The 

slabs were then cut into two halves. Each half 

was turned on its side and cored to produce 

cylinders of 67 mm diameter and 150 mm 

height. Each cylinder was then trimmed 

from both ends to 134 mm height. Three 

samples were used for each creep test.

Figure 2 shows the equipment arrange-

ment for the creep tests, comprising a 

temperature controlled cabinet (–20°C to 

50°C) mounted on a loading frame, an axially 

mounted 10 tonne load cell, the specimen 

and its instrumentation, and a linear variable 

deferential transducer (LVDT) with its con-

ditioning box connected to a data logger.

Specimens were tested at 5°C. To ensure 

uniformity of temperature, samples were 

conditioned in a temperature control 

cabinet, at the testing temperature, for at 

least 12 hours preceding the test. Specimens 

were then placed between two steel plates, 

smeared with silicon grease to reduce 

friction, and a small pre-load was applied 

to take out any relaxation in the system. 

Specimens were then allowed to deform 

under a uniaxial compression stress. The 

cross-head was allowed to apply a constant 

load over samples for 1 800 seconds. This 

time was found to be adequate for mixtures 

to reach steady state conditions. In each 

test, the axial and radial strains over time 

were recorded.

For each applied stress, the stress-strain 

relationship was captured and recorded by 

a computer. The axial deformation of the 

specimens was measured by recording the 

cross-head movement.

RESULTS AND DISCUSSION

SCB results

Figure 3 shows the measured crack lengths 

against the number of cycles, for the four 

tested mixtures, in which it is shown that 

each mixture had a stable crack growth 

phase. It is evident that adding bottom ash 

waste up to a certain amount has led to an 

increase in the number of cycles to failure.

These results were obtained based on the 

average of triplicate samples with R2 values 

of 0.112, 0.235, 0.135 and 0.256 for mixes 

OA, AA, BA and CA respectively.

LEFM analysis has been used to char-

acterise crack growth rate by means of the 

well-known Paris Law (Paris & Erdogan 

1963) in which the rate of crack propagation 

is a function of the stress intensity factor. 

This law is given by the following expression:

da

dN
 = A(ΔK1)n (1)

where: 
da

dN
 is the crack growth rate; ΔK1 is

mode I stress intensity factor range (Kmax 

−Kmin); A and n are constants that depend 

on the material and test conditions; a is the 

crack length; and N is the number of load 

cycle applications.

As asphalt is a visco-elastic material. Its 

fracture behaviour can be characterised by 

means of the J-Integral parameter. Thus, the 

Paris Law can be expressed in terms of the 

J-integral as follows (Rice 1986):

da

dN
 = Aj(ΔJ)nj (2)

To calculate J, Schapery (1984) integrated a 

non-linear visco-elastic constitutive equation 

and presented the result in Equation 3.

J = ∫i(wjdy – Tj
δu

δx
ds) (3)

where: wj is the strain energy density; Tj is 

the stress vector acting on the contour; u is 

the displacement vector; ds is the increment 

along contour i ; and x and y are coordinates 

normal to the crack front.

For linear elastic conditions, J represents the 

energy made available at the crack tip, whereas 

for visco-elastic conditions, J no longer repre-

sents the available energy because of its dis-

sipation. However, the corresponding principle 

of visco-elasticity, demonstrated by Schapery 

(1984), makes it possible to define a generalised 

time-dependent J-Integral by forming a Je, 

which is a pseudo-elastic J-Integral, with the 

linear elastic case as shown in Equation 3 (Kuai 

et al 2009). It has been shown (Kuai et al 2009) 

that the visco-elastic problem can be converted 

to an elastic problem with the pseudo stress 

and strain parameters. Then the generalised 

J-Integral is given as follows:

Je = ∫i(w
edy – Tj

δue

δx
ds) (4)

J = ER∫t
t0

(D(t – τ)
δJe

δτ
dτ)

= ∫t
t0

(D(t – τ)
δK1

2

δτ
dτ) (5)

where: We is the pseudo strain energy 

 density; ue is the pseudo displacement vector; 
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ER is a reference modulus; τ is the retarda-

tion time for the ith element; and D(t) is the 

creep compliance.

Parameters were determined to be used in 

Equation 5 (Hassan & Khalid 2010b) and 

the results were presented as in Figure 4, 

from which new Paris Law constants, AJ 

and nJ, were determined and presented as 

in Table 1.

Creep results

For all mixtures, axial and radial strains 

were recorded over time. Figure 5 shows 

creep compliance curves obtained at 5°C and 

stress of 1 000 kPa. The creep compliance, 

D(t), in Equation 5 is typically described in a 

power law form as follows:

D(t) = Do + D1tm (6)

where Do is the material’s glassy compliance; 

D1 is the compliance coefficient of time; m 

is the compliance exponent; and t is loading 

time. The m values for the four mixtures 

can be seen from the power law equations 

in Figure 5 to be 0.3757, 0.3972, 0.3336 

and 0.2850 for mixtures OA, AA, BA and 

CA respectively. Schapery (1981) derived a 

relationship between the exponent nJ from 

Equation 2 and m from Equation 6 under 

different scenarios.

Schapery (1981) found that, if the tensile 

strength of the material and bond energy of 

fracture surface were constant during the 

fracture process, then nJ = 1 + 1/m. From 

regression analysis (Figure 6) the two para-

meters are related as in Equation 7.

nJ = 3.4762 m + 0.7042 (7)

The nature of the relationship differs from 

that reported by Schapery and its shape does 

not change when any outliers are deleted 

from the regression analysis, demonstrating 

that the relationship in Equation 7 is repre-

sentative between the two parameters for the 

bottom ash waste mixtures.

CONCLUSIONS

From the work conducted in this study, it can 

be concluded that:

 ■ Paris Law was found suitable to 

characterise crack growth properties of 

bottom ash waste bituminous mixtures 

using the J-Integral. The J-integral was 

evaluated from elastic fracture analysis 

using Schapery’s correspondence 

principle.

 ■ Adding up to 60% bottom ash waste led 

to a significant increase in the number of 

cycles to failure in the cyclic SCB test.

 ■ The Paris Law constant, nJ, has been 

related to the creep compliance 

exponent of time, m, through a linear 

regression equation that differs from 

that reported by Schapery for constant 

tensile strength and bond energy of the 

fracture surface.
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Figure 3  Crack length against number of cycles
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Figure 5  Creep compliance curves for the four mixtures
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Figure 6  Regression analysis of parameters nj and m
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