
42

LABVIEW APPLICATION WITH EMBEDDED LUA
SCRIPTING FOR A LASER BASED MEASURING MACHINE

A. COETZEE AND T.I. VAN NIEKERK

ABSTRACT

This paper presents the work on the development of software for an industrial
laser based measuring machine. The goal being not only for a working
application, but also to optimise the development process and ease future
maintenance of the software. LabVIEW with its graphical method of
programming allows engineers to easily create large software applications to
control industrial processes and machines. This software if not properly
designed can lead to stability and maintenance problems. The experience
gained from developing, maintaining and improving a LabVIEW application
for a laser measuring machine, results in the integration of the Lua scripting
language into LabVIEW. It is shown how the embedded Lua allows the
LabVIEW software application for the machine to be structured for simpler
development and maintenance.

Keywords: LabVIEW, Industrial software, Embedded, Lua, Scripting

1. INTRODUCTION

Computers are well suited to solve complex or repetitive problems. This is
especially true in the industrial domain where computers have become the
standard in control and automation. These industrial computers come in many
shapes and sizes, from PLCs (Programmable Logic Controllers) to ARM®
micro-controllers. Modern industrial control applications are often large and
complex, which require a great deal of custom software to be written. This puts
additional strain on the programming knowledge of the engineers responsible
for the software. Many engineers are not computer programmers by
profession, though they can find themselves in the awkward position of
managing a large industrial software project. Many tools have been created to
simplify programming for engineers. Such tools include programming
environments like MathWorks' MATLAB and National Instrument's LabVIEW.
The former uses a dynamic scripting language to simplify numerical
computing, while LabVIEW provides an easy-to-learn graphical programming
alternative. These tools go a long way to empower engineers to create ever
more complex and robust software. Even these sophisticated tools cannot
provide the complete solution to the engineer. Many lines of code still need to
be written for the software application. As the size increases, so does the need
to structure it correctly to assure correct operation. The structure of the
software becomes even more important at later stages of the project where
requirements might change or be added. A software framework can be used to
add structure to an application.

Journal for New Generation Sciences: Volume 11 Number 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Central University Of Technology Free State -...

https://core.ac.uk/display/222966806?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

43

There are frameworks, designed for complex robotic applications, which can
be applied to industrial control projects. OpenRDK and Miro are two examples
of such frameworks. The frameworks can execute on the Linux operating
system, which can, unlike the Windows operating system be configured to
provide deterministic response to external events.

These robotic frameworks are, however, not perfectly suited to industrial use
and they require substantial programming knowledge to set up and use
effectively. They provide structure to industrial applications, but lack the ease
of use required by engineers from different disciplines. Another problem faced
by engineers is making changes to software while it is executing. Currently the
norm is to make software changes, recompile the software and then replace
the existing software with the newly built version. This process can lead to lost
production time. A small programming error may stop production for a
prolonged period. This can largely be avoided by enabling the application to
accept certain code changes while executing. An interpreted programming
language embedded into the software application allows the engineer to
modify machine behaviour without recompiling and replacing current software
with a new version. An embedded interpreter also allows the software to be
structured for simpler development and maintenance.

This paper shows how the graphical programming language, LabVIEW, can
be used to create software to control complex industrial machinery. It also
discusses the importance of structuring the LabVIEW code correctly to better
accommodate future modifications and additions. Different approaches to
structuring LabVIEW applications are shown. This results in the embedding of
a scripting language into LabVIEW. The scripting language is chosen based
on requirements of LabVIEW and industrial software development. An
example application of the developed LabVIEW framework is also shown.

2. LabVIEW for Machine Automation

The programming language LabVIEW was chosen for this research effort
because it was designed to be used by engineers and scientist. It offers a
unique graphical form of programming that is easily understood by non-
programmers. Coupling this with extensive support for hardware, makes
LabVIEW a powerful tool for quickly creating large industrial and scientific
software applications. The first version of LabVIEW was released in 1988 and
was only available for the Macintosh computer []. Recent versions of LabVIEW
support multiple operating systems and computing platforms.

LabVIEW is a domain specific programming language, meaning that it was
designed for specific use cases. Although originally intended for the scientific
and measurement fields, LabVIEW has also evolved over the years to focus
on automation. This makes LabVIEW a good programming language for
engineers that need to focus on the problem domain rather than learning to
become programming experts.

Some areas of application for LabVIEW include those shown in Figure 1,
ranging from mobile robotics to industrial machine development. LabVIEW,
having support for a large range of hardware in the form of drivers and
example

Figure 1: LabVIEW Applications: (a) mobile robotics; (b) machine vision;
(c) industrial machines.

applications, allow LabVIEW developers to quickly prototype and try different
solutions to engineering and scientific problems.

2.1 Advantages of Graphical Programming

LabVIEW provides a visual form of programming with the flow of data being
represented by wires that connect different functions, as shown in Figure 2a.
Simulink (Figure 2b) is also an example of a visual programming language and
is displayed alongside the LabVIEW diagram for comparison.

44

a. b. c.

a. b.

Figure 2: Visual Programming: (a) LabVIEW; (b) Simulink

Visual programming languages are becoming more important for
programming tasks that are generally performed by non-programmers. This is
especially true for industrial projects where engineers need to automate
complicated machines. Diagrams and icons are often more easily understood
by the end users than a conventional C program, as it allows them to
participate in the creation of the program.

Journal for New Generation Sciences: Volume 11 Number 1

45

For engineers who are accustomed to modelling complex relationships, using
graphical methods, programming in a visual form comes naturally. Other
advantages of graphical programming are the ability to quickly see the
connections between software components, and visualizing operations that
can happen in parallel. In LabVIEW the sequence of operations are controlled
by how the data flows between the functions.

2.2 Software Requirements and Flexibility

During the initial planning phase of a software application, the scope of the
project needs to be determined. It is an important first step in the development
process to establish all the requirements for a particular project. It aims to
define all the functionality of the software application before any programming
is done. Setting the structure and framework of the application can then be
done. Figure 3 shows the identification of requirements as a complex process.
The four steps of requirements gathering are connected with complex loops
and must be continually performed throughout the project's life cycle. This is
further complicated when requirements change during the development stage
of the software. As the application nears completion, these changes can be
costly in both time and resources to integrate. A software application that has
been poorly designed, can suffer from changing requirements, with
compromises being taken to implement or change functionality. These
compromises can lead to software bugs being introduced into the application,
mitigating the effort that has been put in during the planning stages.

Figure 3: Software Requirements Identification Process

The same happens with software for engineering applications. The problem
domain may include multiple contractors from different backgrounds working
together. It often becomes very difficult to determine and pin down the exact
requirements under time and budget constraints. That may lead to a more
reactive development process during the commissioning phases of the
project. The engineer may have to change the software application to cater for
unexpected differences from the initially defined requirements.

46

2.3 Laser Measuring Machine

A previous project that contributed to the development of LabVIEW-based
software that can better handle changing requirements is the LMM (Laser
Measuring Machine). The LMM measures the circumference of a part to an
accuracy of ±40µm over a 100mm span in an industrial environment. The
machine rotates the part in front of a highly accurate distance laser sensor and
reconstructs the data to form a two dimensional cross-section of the
measured part. The design view and finished machine can be seen in Figure 4.
More than one machine was built. With each machine the structure of the
LabVIEW software application was improved. Two software design patterns
were employed to provide structure and make the application more
reconfigurable. These are the FSM (Finite-State Machine) and the producer-
consumer design patterns.

Start

State 1 State 2

State n

Transition 1

Transition 4

Transition 2

Transition 3

a. b.

Figure 4: Laser Measuring Machine: (a) design; (b) finished machine.

2.3.1 Finite-State Machine

At first the software made use of a FSM design pattern. It is described as
having several parts, consisting of states and rules for going from one state to
another. A graphical example of a FSM is shown in Figure 5. It shows how
software can be divided into sections (or states) that can be activated by
certain conditions.

Figure 5: Finite-State Machine

Journal for New Generation Sciences: Volume 11 Number 1

47

This allows the software to group functionality and simplify the flow of control.
The problem encountered with this particular design pattern was an increase
in complexity with additions and changes to the software. After several
modifications to the machine and its associated software, a decision was
made to rewrite the software, using a design pattern that could better handle
small modifications without compromising the rest of the application.

2.3.2 Producer-Consumer

In order for the software to respond better to changes, it was decided to switch
to a producer-consumer pattern. A part of the software sends a list of
instructions to a receiving function, which then executes them in order as
shown in Figure 6. These instructions can also take the form of states, creating
a queued-state-machine. Separating the logic that queues the states from the
states themselves makes it easier to add or change states without affecting
the others.

Figure 6: Producer-Consumer Design Pattern

By using the producer-consumer design pattern, the LabVIEW application
became more flexible and robust. The method of changing the software on the
machine remained replacing the old with a modified version. Adding these
modifications to the software involved compiling the LabVIEW source code
into an executable on a separate development computer.

3. SCRIPTING LABVIEW

The LMM was in continuous development. With every new machine built, new
features were added and old ones improved. The software for the new
machines also had to be more flexible. Measurement results had to be
communicated to many different SCADA (Supervisory Control and Data
Acquisition) systems. The producer-consumer pattern that the LabVIEW
software was based on could not adequately handle this increased
complexity. To simplify future development and debugging of the software the
decision was made to structure the LabVIEW application around an
embedded scripting language. Figure 7 illustrates the difference between
programming a menu in LabVIEW and the scripting language Lua. The
LabVIEW code will become more cumbersome and harder to maintain with
additional menu entries. LabVIEW being a compiled language also makes it
more difficult to alter the menu after the application has been deployed. The
corresponding text based script in Figure 7b is better suited to future
alterations and maintenance.

ProducerConsumer CBA

FIFO Queue

48

Although it can be changed after the application is deployed, scripted code
does execute slower than compiled code such as LabVIEW.

a.

b.

Figure 7: Code Comparison: (a) LabVIEW (b) Lua

By writing the performance critical code in LabVIEW and combining it with a
more flexible scripting language allows for rapid development and easier
maintenance of the LMM software.

3.1 Script Language Evaluation

Instead of using LabVIEW natively to provide some kind of scripting support,
an existing scripting language can be embedded into LabVIEW. This method
overcomes the complexities of writing and debugging the scripting language
itself. This leads to a new problem - how to interface between the graphical
nature of LabVIEW and the more conventional text based programming of
scripting languages. The embedded scripting language must also add as little
complexity as possible and at the same time not affect reliability negatively.
The ultimate decision to embed Lua into LabVIEW results from a study of
several popular scripting languages that are freely available. The unique
graphical syntax and parallel nature of LabVIEW imposes certain
requirements and limitations that have to be addressed by the chosen
scripting language. The requirements are as follows:

Journal for New Generation Sciences: Volume 11 Number 1

49

• Well known: In order to gain the full benefit of an embedded scripting
language in an industrial environment, it must be easy for engineers
and technicians to find information on how to program and use it.

• Mature: Software that runs on industrial machines must be reliable. It
is assumed that a scripting language that has been in active
development for several years has had time to address software bugs
and instabilities.

• Support multiple threads: The scripting language must be callable
from multiple threads simultaneously. This characteristic is necessary
to support the inherent parallel nature of LabVIEW. The embedded
scripting component must ensure safe parallel execution if it is to
extend LabVIEW.

• Cross platform: LabVIEW programs can execute on a variety of
computing platforms and operating systems. The embedded scripting
language must be able to deploy to these environments as well.

• Efficient: Performance critical code can be created by using
LabVIEW. An efficient scripting language embedded in LabVIEW
would allow more features to be implemented by using it and
ultimately make the application more flexible.

• Small size: The language size adds to the cross platform
requirement of the scripting language. If it is to be used on embedded
platforms with limited resources, the size that the scripting language
itself adds to the application becomes important.

• Easy to embed: The scripting languages must provide enough
features to make it easy to embed into LabVIEW.

The scripting languages that were evaluated include: JavaScript, Python,
Ruby and Lua. Table 1 shows the requirements that each of these scripting
languages support. JavaScript fulfils most of the requirements, but it is mostly
used in web-browsers and it also has a large memory requirement. Python is a
general purpose scripting language and is easily embedded into software
applications. However, it has a large memory requirement and is not very
efficient.

Table 1: Scripting Language Evaluation

Requirement JavaScript Python Ruby Lua

Well known X

Mature

Support multiple threads

Cross platform

Efficient

Small size

Easy to embed

X X X

X X X X

X X X

X X X X

X X

X

X X

50

Ruby, like Python, is a general purpose scripting language. It is used more in
web-server scripting applications and is not easily embedded into other
software. Lua was designed to be embedded into other software applications.
It also supports execution in multiple threads and has a small memory
requirement. Lua is ANSI-C compliant and therefore supports all the platforms
which LabVIEW can execute on.

3.1 LabVIEW Binding

LabVIEW, by being graphical in nature creates some unique challenges for
embedding a scripting language. Two things are needed to integrate Lua into
LabVIEW: the ability to call the embedded interpreter, and the ability to pass
information and retrieve results. The Lua source code is written in the C
programming language and exposes a stack-based interface for passing
data. LabVIEW provides the 'Call Library Function Node' to interface to
externally compiled C code. This provides a means of passing data between
the two programming languages, but does not solve the problem of
synchronising the function calls between LabVIEW and Lua. Two methods
were explored to synchronise LabVIEW and Lua execution:

• Using events
• Using cooperative multi-threading

3.2 Using Events

The first method employed to embed Lua used the Windows and LabVIEW
event API to synchronize access to shared memory. The shared memory
functioned as the communication channel between the two programming
languages. This method was implemented and abandoned in favour of the
coroutine based multi-threading approached described in Section 3.4. Figure
8 shows the structure for an event-based embedding of Lua into LabVIEW.

Figure 8: Embedding Lua Using Events & Shared Memory

The process is as follows:
1. LabVIEW calls Lua and starts an event listener thread.
2. Lua puts arguments for a function call in shared memory. It notifies

LabVIEW by using a LabVIEW event and then waits on a Windows
event.

Journal for New Generation Sciences: Volume 11 Number 1

51

3. LabVIEW receives the event and retrieves arguments from the
shared memory. It then continues with the function call, after which it
places return values into the shared memory and by using a Windows
event, notifies Lua to continue execution.

4. Lua retrieves return values from the shared memory and continues
with execution.

Embedding by using events has several disadvantages, which are:

• Windows Events: This ties the application to the Microsoft Windows
operating system, which limits the real-time deployment of the
software.

• Complexity: The synchronization mechanisms used to communicate
between the LabVIEW thread and the Lua thread are difficult to
debug.

• Performance: Using events and two separate threads cause the
processor to switch between them frequently. This results in high
context switching overhead.

3.4 Using Cooperative Multi-Threading

The previous section showed an event-based binding between LabVIEW and
Lua. This method was abandoned in favour of using a cooperative multi-
threaded approach. The valuable experience gained from the event-based
binding approach contributed to the final structure of the code. Many of the
low-level data translation routines could be reused, and without implementing
the event based approach, the concept of using co-routines would not have
been realized. Co-routines were introduced in the early 1960's and represent
one of the oldest proposals of a general control abstraction.

Co-routines are similar to functions, but include persistent data and the ability
to suspend/resume execution. The flowchart for the co-routine based method
of embedding is displayed in Figure 9. The ability to suspend execution in Lua
and call-back into LabVIEW is shown by the branch in the flowchart. The call-
back is completed by resuming the Lua interpreter, with the return values from
LabVIEW on the stack. This is all done within a single thread which means the
processor does not incur the context switching overhead. Another advantage
of this approach is the ease of debugging as a direct result of the single
threaded approach.

52

Figure 9: Embedding Lua Using Co-routines

4. LASER MEASURING MACHINE

The previously discussed scripting facility for LabVIEW was implemented into
a new version of the LMM software application. The improved LMM is shown
in Figure 10, where the machine and controller have been separated allowing
it to be integrated into an automated production line. The two parts are
connected by an umbilical cord that contains all power and control signals. An
Ethernet cable connects the control panel with the SCADA system.

Invoke Lua
Co-routine

LabVIEW
Arguments

Return

Pop Results
from Stack

Exit

LabVIEW
Returns

Pop
Arguments
From Stack

Yield

Call LabVIEW
Function

Push
LabVIEW
Returns

LabVIEW Application

Continue Execution

Control &
Measurement

Signals

Measurement Machine Control Panel

PLC
Communication

Figure 10: Measurement System

Journal for New Generation Sciences: Volume 11 Number 1

53

4.1 Software Framework

The control panel in Figure 10 contains the computer that controls the
machine's operations. The structure of the software is shown in Figure 11. It
displays the various LabVIEW functions that make the machine operational.
Central to the software structure is the embedded Lua interpreter. The
interpreter executes scripts that synchronise the various LabVIEW functions.

Application

Networking

RMI

PLC
Communication

Scripting

Interpreter

Utility

Status

Program Log

GUI

Analysis

Process Data

Calibration

Motion

Manager

Data Acquisition

DAQ Driver

Trial Run

Laser Actuator

Table Actuator

Figure 11: Software Layout

The embedded Lua interpreter simplifies the creation and debugging of the
LabVIEW software application. The individual LabVIEW functions can be
developed and tested separately and then combined into the final application.

4.2 Measurement & Analysis

The primary purpose of the software running on the LMM machine is to take
the analogue signal from the laser position sensor and convert it into usable
information. This involves setting up the data acquisition hardware to capture
the input signal from the laser correctly and then to process the values. To
simplify the design of the software, the data acquisition and analysis functions
were exposed to the Lua interpreter.

Figure 12 shows graphically how the Lua interpreter executes the code.

Data
Acquisition

Interpreter
1

Data
Analysis

2 3

4

Figure 12: LabVIEW Scripting Example

54

This piece of Lua code is executed within the LMM LabVIEW software and can
be modified after the application is compiled and deployed to the controller.
The sequence of operations is:

1. Call the data acquisition function to request data.
2. The raw data is then returned to the interpreter.
3. After the data has been collected the interpreter calls the data

analysis function to process it.
4. When the data has been processed the analysis function returns with

the results.

The corresponding Lua code as executed on the LMM:

The previous script can then be modified by the engineer whilst the machine is
in operation to:

Lines 8 and 9 are added, which program the machine to send the results using
the LabVIEW network component to a remote location. By programming the
actions of the machine using Lua scripts, the engineer can modify and
optimise the machine without recompiling the main LabVIEW application. This
translates into shorter cycle-times and reduces costly down-time.

5. CONCLUSION

Engineers are often put in the position of writing or maintaining software.
These software applications can be large and complex, requiring in-depth
computer programming knowledge to create and edit correctly. In this study,
the continued improvement of the software for the laser measuring machine
resulted in the embedding of a scripting language into LabVIEW. Well known
scripting languages were evaluated with Lua being chosen.

Journal for New Generation Sciences: Volume 11 Number 1

55

First an event-based method was developed. This was replaced by an
approach using cooperative multi-threading. Lua coroutines provide a
simplified method for embedding Lua into LabVIEW, whilst also making the
resulting solution as portable as LabVIEW. The Lua scripting facility allows
LabVIEW software to better respond to changing requirements. It also makes
structuring and debugging the software simpler. This was demonstrated in a
new version of the software for a LMM used in an automated production line.
The resulting LabVIEW application is more modular, easier to maintain and
can accept small modifications online with minimal impact on production. It is
therefore concluded that by embedding the Lua scripting language into
LabVIEW, that the development and maintenance of industrial LabVIEW
software is simplified.

5. REFERENCES

J. Vernon. (2011, October) Programmable Logic Control. [Online].
http://www.control-systems-principles.co.uk/ whitepapers/programmable-
logic-control.pdf

Jon Conway and Steve Watts, Software Engineering with LabVIEW.: Pearson
Education, 2003.

Roy Miller, Managing Software for Growth: Without Fear, Control, and the
Manufacturing Mindset.: Addison-Wesley Longman Publishing Co., Inc.,
2003.

Daniele Calisi, Andrea Censi, Luca Iocchi, and Daniele Nardi, "OpenRDK: a
framework for rapid and concurrent software prototyping," in Proceedings of
the International Workshop on System and Concurrent Engineering for Space
Applications (SECESA), Prague, 2008.

H Utz, S Sablatnog, S Enderle, and G Kraetzschmar, "Miro - middleware for
mobile robot applications," Robotics and Automation, IEEE Transactions on,
vol. 18, pp. 493--497, December 2002.

Wang Zi-niu, Li Song, and Wang Yan, "Researching of Real-Time Versions
and Testing Its Performance of CNC System Based on RT-Linux," in
Proceedings of the 2009 International Conference on Networking and Digital
Society - Volume 02, Washington, DC, USA, 2009, pp. 174--177.

Brian Powel. (2007, June) LabVIEW Performance, The Early Years. [Online].
http://openmeas.blogspot.com/ 2007/06/labview-performance-early-
years.html

Lorrie Cranor and Ajay Apte, "Programs worth one thousand words: visual
languages bring programming to the masses," Crossroads, vol. 1, no. 2, pp.
16--18, December 1994.

56

Paul Biggar, Edsko de Vries, and David Gregg, "A practical solution for
scripting language compilers," in SAC '09: Proceedings of the 2009 ACM
symposium on Applied Computing, New York, NY, USA, 2009, pp. 1916--
1923.

Hemant Jain, Padmal Vitharana, and Fatemah M Zahedi, "An assessment
model for requirements identification in component-based software
development," SIGMIS Database, vol. 34, no. 4, pp. 48--63, November 2003.
Michael Sipser, Introduction to the Theory of Computation.: Course
Technology, 2005.

David Flanagan, JavaScript: The Definitive Guide.: OReilly Media, Inc., 2006.
Hans P Langtangen, A Primer on Scientific Programming with Python.:
Springer Publishing Company, Incorporated, 2009.

Dave Thomas, Chad Fowler, and Andy Hunt, Programming Ruby 1.9: The
Pragmatic Programmers Guide.: Pragmatic Bookshelf, 2009.

Roberto Ierusalimschy, Luiz H de Figueiredo, and Waldemar Celes, "Passing
a Language through the Eye of a Needle," Queue, vol. 9, no. 5, pp. 20:20--
20:29, May 2011.

Ana L Moura and Roberto Ierusalimschy, "Revisiting coroutines," ACM Trans.
Program. Lang. Syst., vol. 31, no. 2, pp. 6:1--6:31, February 2009.

Journal for New Generation Sciences: Volume 11 Number 1

