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LABVIEW APPLICATION WITH EMBEDDED LUA 
SCRIPTING FOR A LASER BASED MEASURING MACHINE

A. COETZEE AND T.I. VAN NIEKERK 

ABSTRACT

This paper presents the work on the development of software for an industrial 
laser based measuring machine. The goal being not only for a working 
application, but also to optimise the development process and ease future 
maintenance of the software. LabVIEW with its graphical method of 
programming allows engineers to easily create large software applications to 
control industrial processes and machines. This software if not properly 
designed can lead to stability and maintenance problems. The experience 
gained from developing, maintaining and improving a LabVIEW application 
for a laser measuring machine, results in the integration of the Lua scripting 
language into LabVIEW. It is shown how the embedded Lua allows the 
LabVIEW software application for the machine to be structured for simpler 
development and maintenance.
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1. INTRODUCTION

Computers are well suited to solve complex or repetitive problems. This is 
especially true in the industrial domain where computers have become the 
standard in control and automation. These industrial computers come in many 
shapes and sizes, from PLCs (Programmable Logic Controllers) to ARM® 
micro-controllers. Modern industrial control applications are often large and 
complex, which require a great deal of custom software to be written. This puts 
additional strain on the programming knowledge of the engineers responsible 
for the software. Many engineers are not computer programmers by 
profession, though they can find themselves in the awkward position of 
managing a large industrial software project. Many tools have been created to 
simplify programming for engineers. Such tools include programming 
environments like MathWorks' MATLAB and National Instrument's LabVIEW. 
The former uses a dynamic scripting language to simplify numerical 
computing, while LabVIEW provides an easy-to-learn graphical programming 
alternative. These tools go a long way to empower engineers to create ever 
more complex and robust software. Even these sophisticated tools cannot 
provide the complete solution to the engineer. Many lines of code still need to 
be written for the software application. As the size increases, so does the need 
to structure it correctly to assure correct operation. The structure of the 
software becomes even more important at later stages of the project where 
requirements might change or be added. A software framework can be used to 
add structure to an application. 
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There are frameworks, designed for complex robotic applications, which can 
be applied to industrial control projects. OpenRDK and Miro are two examples 
of such frameworks. The frameworks can execute on the Linux operating 
system, which can, unlike the Windows operating system be configured to 
provide deterministic response to external events. 

These robotic frameworks are, however, not perfectly suited to industrial use 
and they require substantial programming knowledge to set up and use 
effectively. They provide structure to industrial applications, but lack the ease 
of use required by engineers from different disciplines. Another problem faced 
by engineers is making changes to software while it is executing. Currently the 
norm is to make software changes, recompile the software and then replace 
the existing software with the newly built version. This process can lead to lost 
production time. A small programming error may stop production for a 
prolonged period. This can largely be avoided by enabling the application to 
accept certain code changes while executing. An interpreted programming 
language embedded into the software application allows the engineer to 
modify machine behaviour without recompiling and replacing current software 
with a new version. An embedded interpreter also allows the software to be 
structured for simpler development and maintenance. 

This paper shows how the graphical programming language, LabVIEW, can 
be used to create software to control complex industrial machinery. It also 
discusses the importance of structuring the LabVIEW code correctly to better 
accommodate future modifications and additions. Different approaches to 
structuring LabVIEW applications are shown. This results in the embedding of 
a scripting language into LabVIEW. The scripting language is chosen based 
on requirements of LabVIEW and industrial software development. An 
example application of the developed LabVIEW framework is also shown. 

2. LabVIEW for Machine Automation

The programming language LabVIEW was chosen for this research effort 
because it was designed to be used by engineers and scientist. It offers a 
unique graphical form of programming that is easily understood by non-
programmers. Coupling this with extensive support for hardware, makes 
LabVIEW a powerful tool for quickly creating large industrial and scientific 
software applications. The first version of LabVIEW was released in 1988 and 
was only available for the Macintosh computer []. Recent versions of LabVIEW 
support multiple operating systems and computing platforms.

LabVIEW is a domain specific programming language, meaning that it was 
designed for specific use cases. Although originally intended for the scientific 
and measurement fields, LabVIEW has also evolved over the years to focus 
on automation. This makes LabVIEW a good programming language for 
engineers that need to focus on the problem domain rather than learning to 
become programming experts. 



Some areas of application for LabVIEW include those shown in Figure 1, 
ranging from mobile robotics to industrial machine development. LabVIEW, 
having support for a large range of hardware in the form of drivers and 
example 

Figure 1: LabVIEW Applications: (a) mobile robotics; (b) machine vision; 
(c) industrial machines.

applications, allow LabVIEW developers to quickly prototype and try different 
solutions to engineering and scientific problems.

2.1 Advantages of Graphical Programming

LabVIEW provides a visual form of programming with the flow of data being 
represented by wires that connect different functions, as shown in Figure 2a. 
Simulink (Figure 2b) is also an example of a visual programming language and 
is displayed alongside the LabVIEW diagram for comparison. 

44

a. b. c.

a. b.

Figure 2: Visual Programming: (a) LabVIEW; (b) Simulink

Visual programming languages are becoming more important for 
programming tasks that are generally performed by non-programmers. This is 
especially true for industrial projects where engineers need to automate 
complicated machines. Diagrams and icons are often more easily understood 
by the end users than a conventional C program, as it allows them to 
participate in the creation of the program. 

Journal for New Generation Sciences: Volume 11  Number 1



45

For engineers who are accustomed to modelling complex relationships, using 
graphical methods, programming in a visual form comes naturally. Other 
advantages of graphical programming are the ability to quickly see the 
connections between software components, and visualizing operations that 
can happen in parallel. In LabVIEW the sequence of operations are controlled 
by how the data flows between the functions.

2.2 Software Requirements and Flexibility

During the initial planning phase of a software application, the scope of the 
project needs to be determined. It is an important first step in the development 
process to establish all the requirements for a particular project. It aims to 
define all the functionality of the software application before any programming 
is done. Setting the structure and framework of the application can then be 
done. Figure 3 shows the identification of requirements as a complex process. 
The four steps of requirements gathering are connected with complex loops 
and must be continually performed throughout the project's life cycle. This is 
further complicated when requirements change during the development stage 
of the software. As the application nears completion, these changes can be 
costly in both time and resources to integrate. A software application that has 
been poorly designed, can suffer from changing requirements, with 
compromises being taken to implement or change functionality. These 
compromises can lead to software bugs being introduced into the application, 
mitigating the effort that has been put in during the planning stages.

 

Figure 3: Software Requirements Identification Process

The same happens with software for engineering applications. The problem 
domain may include multiple contractors from different backgrounds working 
together. It often becomes very difficult to determine and pin down the exact 
requirements under time and budget constraints. That may lead to a more 
reactive development process during the commissioning phases of the 
project. The engineer may have to change the software application to cater for 
unexpected differences from the initially defined requirements.
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2.3 Laser Measuring Machine

A previous project that contributed to the development of LabVIEW-based 
software that can better handle changing requirements is the LMM (Laser 
Measuring Machine). The LMM measures the circumference of a part to an 
accuracy of ±40µm over a 100mm span in an industrial environment. The 
machine rotates the part in front of a highly accurate distance laser sensor and 
reconstructs the data to form a two dimensional cross-section of the 
measured part. The design view and finished machine can be seen in Figure 4. 
More than one machine was built. With each machine the structure of the 
LabVIEW software application was improved. Two software design patterns 
were employed to provide structure and make the application more 
reconfigurable. These are the FSM (Finite-State Machine) and the producer-
consumer design patterns.

Start

State 1 State 2

State n

Transition 1

Transition 4

Transition 2

Transition 3

a. b.

Figure 4: Laser Measuring Machine: (a) design; (b) finished machine.

2.3.1 Finite-State Machine

At first the software made use of a FSM design pattern. It is described as 
having several parts, consisting of states and rules for going from one state to 
another. A graphical example of a FSM is shown in Figure 5. It shows how 
software can be divided into sections (or states) that can be activated by 
certain conditions. 

Figure 5: Finite-State Machine
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This allows the software to group functionality and simplify the flow of control. 
The problem encountered with this particular design pattern was an increase 
in complexity with additions and changes to the software. After several 
modifications to the machine and its associated software, a decision was 
made to rewrite the software, using a design pattern that could better handle 
small modifications without compromising the rest of the application.

2.3.2 Producer-Consumer

In order for the software to respond better to changes, it was decided to switch 
to a producer-consumer pattern. A part of the software sends a list of 
instructions to a receiving function, which then executes them in order as 
shown in Figure 6. These instructions can also take the form of states, creating 
a queued-state-machine. Separating the logic that queues the states from the 
states themselves makes it easier to add or change states without affecting 
the others.

Figure 6: Producer-Consumer Design Pattern

By using the producer-consumer design pattern, the LabVIEW application 
became more flexible and robust. The method of changing the software on the 
machine remained replacing the old with a modified version. Adding these 
modifications to the software involved compiling the LabVIEW source code 
into an executable on a separate development computer.

3. SCRIPTING LABVIEW

The LMM was in continuous development. With every new machine built, new 
features were added and old ones improved. The software for the new 
machines also had to be more flexible. Measurement results had to be 
communicated to many different SCADA (Supervisory Control and Data 
Acquisition) systems. The producer-consumer pattern that the LabVIEW 
software was based on could not adequately handle this increased 
complexity. To simplify future development and debugging of the software the 
decision was made to structure the LabVIEW application around an 
embedded scripting language. Figure 7 illustrates the difference between 
programming a menu in LabVIEW and the scripting language Lua. The 
LabVIEW code will become more cumbersome and harder to maintain with 
additional menu entries. LabVIEW being a compiled language also makes it 
more difficult to alter the menu after the application has been deployed. The 
corresponding text based script in Figure 7b is better suited to future 
alterations and maintenance. 

ProducerConsumer CBA

FIFO Queue
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Although it can be changed after the application is deployed, scripted code 
does execute slower than compiled code such as LabVIEW. 

a.

b.

Figure 7: Code Comparison: (a) LabVIEW (b) Lua

By writing the performance critical code in LabVIEW and combining it with a 
more flexible scripting language allows for rapid development and easier 
maintenance of the LMM software. 

3.1 Script Language Evaluation

Instead of using LabVIEW natively to provide some kind of scripting support, 
an existing scripting language can be embedded into LabVIEW. This method 
overcomes the complexities of writing and debugging the scripting language 
itself. This leads to a new problem - how to interface between the graphical 
nature of LabVIEW and the more conventional text based programming of 
scripting languages. The embedded scripting language must also add as little 
complexity as possible and at the same time not affect reliability negatively. 
The ultimate decision to embed Lua into LabVIEW results from a study of 
several popular scripting languages that are freely available. The unique 
graphical syntax and parallel nature of LabVIEW imposes certain 
requirements and limitations that have to be addressed by the chosen 
scripting language. The requirements are as follows:

Journal for New Generation Sciences: Volume 11  Number 1



49

• Well known: In order to gain the full benefit of an embedded scripting 
language in an industrial environment, it must be easy for engineers 
and technicians to find information on how to program and use it.

• Mature: Software that runs on industrial machines must be reliable. It 
is assumed that a scripting language that has been in active 
development for several years has had time to address software bugs 
and instabilities.

• Support multiple threads: The scripting language must be callable 
from multiple threads simultaneously. This characteristic is necessary 
to support the inherent parallel nature of LabVIEW. The embedded 
scripting component must ensure safe parallel execution if it is to 
extend LabVIEW.

• Cross platform: LabVIEW programs can execute on a variety of 
computing platforms and operating systems. The embedded scripting 
language must be able to deploy to these environments as well.

• Efficient: Performance critical code can be created by using 
LabVIEW. An efficient scripting language embedded in LabVIEW 
would allow more features to be implemented by using it and 
ultimately make the application more flexible.

• Small size: The language size adds to the cross platform 
requirement of the scripting language. If it is to be used on embedded 
platforms with limited resources, the size that the scripting language 
itself adds to the application becomes important.

• Easy to embed: The scripting languages must provide enough 
features to make it easy to embed into LabVIEW.

The scripting languages that were evaluated include: JavaScript, Python, 
Ruby and Lua. Table 1 shows the requirements that each of these scripting 
languages support. JavaScript fulfils most of the requirements, but it is mostly 
used in web-browsers and it also has a large memory requirement. Python is a 
general purpose scripting language and is easily embedded into software 
applications. However, it has a large memory requirement and is not very 
efficient.

 

Table 1: Scripting Language Evaluation 

Requirement JavaScript Python Ruby Lua 

Well known X 

Mature 

Support multiple threads 

Cross platform 

Efficient 

Small size 

Easy to embed 

X X X 

X X X X 

X X X 

X X X X 

X X 

X 

X X 
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Ruby, like Python, is a general purpose scripting language. It is used more in 
web-server scripting applications and is not easily embedded into other 
software. Lua was designed to be embedded into other software applications. 
It also supports execution in multiple threads and has a small memory 
requirement. Lua is ANSI-C compliant and therefore supports all the platforms 
which LabVIEW can execute on.

3.1 LabVIEW Binding

LabVIEW, by being graphical in nature creates some unique challenges for 
embedding a scripting language. Two things are needed to integrate Lua into 
LabVIEW: the ability to call the embedded interpreter, and the ability to pass 
information and retrieve results. The Lua source code is written in the C 
programming language and exposes a stack-based interface for passing 
data. LabVIEW provides the 'Call Library Function Node' to interface to 
externally compiled C code. This provides a means of passing data between 
the two programming languages, but does not solve the problem of 
synchronising the function calls between LabVIEW and Lua. Two methods 
were explored to synchronise LabVIEW and Lua execution:

• Using events
• Using cooperative multi-threading

3.2 Using Events

The first method employed to embed Lua used the Windows and LabVIEW 
event API to synchronize access to shared memory. The shared memory 
functioned as the communication channel between the two programming 
languages. This method was implemented and abandoned in favour of the 
coroutine based multi-threading approached described in Section 3.4. Figure 
8 shows the structure for an event-based embedding of Lua into LabVIEW.

 

Figure 8: Embedding Lua Using Events & Shared Memory

The process is as follows:
1. LabVIEW calls Lua and starts an event listener thread.
2. Lua puts arguments for a function call in shared memory. It notifies 

LabVIEW by using a LabVIEW event and then waits on a Windows 
event.
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3. LabVIEW receives the event and retrieves arguments from the 
shared memory. It then continues with the function call, after which it 
places return values into the shared memory and by using a Windows 
event, notifies Lua to continue execution.

4. Lua retrieves return values from the shared memory and continues 
with execution.

Embedding by using events has several disadvantages, which are:

• Windows Events: This ties the application to the Microsoft Windows 
operating system, which limits the real-time deployment of the 
software.

• Complexity: The synchronization mechanisms used to communicate 
between the LabVIEW thread and the Lua thread are difficult to 
debug. 

• Performance: Using events and two separate threads cause the 
processor to switch between them frequently. This results in high 
context switching overhead.

3.4 Using Cooperative Multi-Threading

The previous section showed an event-based binding between LabVIEW and 
Lua. This method was abandoned in favour of using a cooperative multi-
threaded approach. The valuable experience gained from the event-based 
binding approach contributed to the final structure of the code. Many of the 
low-level data translation routines could be reused, and without implementing 
the event based approach, the concept of using co-routines would not have 
been realized. Co-routines were introduced in the early 1960's and represent 
one of the oldest proposals of a general control abstraction. 

Co-routines are similar to functions, but include persistent data and the ability 
to suspend/resume execution. The flowchart for the co-routine based method 
of embedding is displayed in Figure 9. The ability to suspend execution in Lua 
and call-back into LabVIEW is shown by the branch in the flowchart. The call-
back is completed by resuming the Lua interpreter, with the return values from 
LabVIEW on the stack. This is all done within a single thread which means the 
processor does not incur the context switching overhead. Another advantage 
of this approach is the ease of debugging as a direct result of the single 
threaded approach.
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Figure 9: Embedding Lua Using Co-routines

4. LASER MEASURING MACHINE

The previously discussed scripting facility for LabVIEW was implemented into 
a new version of the LMM software application. The improved LMM is shown 
in Figure 10, where the machine and controller have been separated allowing 
it to be integrated into an automated production line. The two parts are 
connected by an umbilical cord that contains all power and control signals. An 
Ethernet cable connects the control panel with the SCADA system.
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Figure 10: Measurement System

Journal for New Generation Sciences: Volume 11  Number 1



53

4.1 Software Framework

The control panel in Figure 10 contains the computer that controls the 
machine's operations. The structure of the software is shown in Figure 11. It 
displays the various LabVIEW functions that make the machine operational. 
Central to the software structure is the embedded Lua interpreter. The 
interpreter executes scripts that synchronise the various LabVIEW functions. 

Application

Networking

RMI

PLC 
Communication

Scripting

Interpreter

Utility

Status

Program Log

GUI

Analysis

Process Data

Calibration

Motion

Manager

Data Acquisition

DAQ Driver

Trial Run

Laser Actuator

Table Actuator

Figure 11: Software Layout

The embedded Lua interpreter simplifies the creation and debugging of the 
LabVIEW software application. The individual LabVIEW functions can be 
developed and tested separately and then combined into the final application. 

4.2 Measurement & Analysis

The primary purpose of the software running on the LMM machine is to take 
the analogue signal from the laser position sensor and convert it into usable 
information. This involves setting up the data acquisition hardware to capture 
the input signal from the laser correctly and then to process the values. To 
simplify the design of the software, the data acquisition and analysis functions 
were exposed to the Lua interpreter. 

Figure 12 shows graphically how the Lua interpreter executes the code.

 

Data 
Acquisition

Interpreter
1

Data 
Analysis

2 3

4

Figure 12: LabVIEW Scripting Example 
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This piece of Lua code is executed within the LMM LabVIEW software and can 
be modified after the application is compiled and deployed to the controller. 
The sequence of operations is:

1. Call the data acquisition function to request data.
2. The raw data is then returned to the interpreter.
3. After the data has been collected the interpreter calls the data 

analysis function to process it.
4. When the data has been processed the analysis function returns with 

the results.

The corresponding Lua code as executed on the LMM:

The previous script can then be modified by the engineer whilst the machine is 
in operation to:

Lines 8 and 9 are added, which program the machine to send the results using 
the LabVIEW network component to a remote location. By programming the 
actions of the machine using Lua scripts, the engineer can modify and 
optimise the machine without recompiling the main LabVIEW application. This 
translates into shorter cycle-times and reduces costly down-time.

5. CONCLUSION

Engineers are often put in the position of writing or maintaining software. 
These software applications can be large and complex, requiring in-depth 
computer programming knowledge to create and edit correctly. In this study, 
the continued improvement of the software for the laser measuring machine 
resulted in the embedding of a scripting language into LabVIEW. Well known 
scripting languages were evaluated with Lua being chosen. 
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First an event-based method was developed. This was replaced by an 
approach using cooperative multi-threading. Lua coroutines provide a 
simplified method for embedding Lua into LabVIEW, whilst also making the 
resulting solution as portable as LabVIEW. The Lua scripting facility allows 
LabVIEW software to better respond to changing requirements. It also makes 
structuring and debugging the software simpler. This was demonstrated in a 
new version of the software for a LMM used in an automated production line. 
The resulting LabVIEW application is more modular, easier to maintain and 
can accept small modifications online with minimal impact on production. It is 
therefore concluded that by embedding the Lua scripting language into 
LabVIEW, that the development and maintenance of industrial LabVIEW 
software is simplified.
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