
TECHNOLOGIES FOR TEACHING MATHEMATICS VIA THE WORLD WIDE WEB

K.E. JUNQUIERA

ABSTRACT

This paper tries to find answers to the question concerning the availability of suitable
technologies to accommodate the teaching and learning of mathematics by means of the
World Wide Web. It addresses three standards for the presentation of content mark-up
and touches on the importance of adequate browser applicability with respect to MathML
as one of the standards. Various tools for rendering MathML on the web, as well as plug-
ins and extensions and other combinations of technologies, are discussed. The paper
concludes with the introduction of a dynamic mathematics object model (DMOM) by
Robert Miner from Design Science Inc. Requirements for a DMOM are formulated and its
implementation is discussed.

KEY WORDS

• MathML: Mathematical Mark-up Language.

o Content MathML: Mark-up focused on encoding the semantics of an
expression.

o Presentation MathML: Mark-up concerned with the way the mathematical
expression looks.

• OMDOC: An Open Mark-up Format for Mathematical Documents.
• XML: Extensible Mark-up Language. A Meta language based on SGML that may be

used to create other mark-up languages.
• XHTML: Extensible Hypertext Mark-up Language. A reformulation of HTML 4 as an

XML application.

1. INTRODUCTION

This paper reports on web technologies that are available and can be used to facilitate the
teaching of the subject mathematics by means of the World Wide Web. The information
was obtained as part of a doctoral study performed at the Central University of
Technology, Free State during 2005. As the web presentation of a variety of subjects,
including mathematics, is a reality at higher education institutions, the task at hand for
mathematics lecturers is to equip themselves with the knowledge of how to use these
technologies to the best of their ability. The use of the web in teaching and learning is
rapidly becoming the norm and no longer the exception and can therefore not be ignored
by any educator at a higher education institution who sees himself as being on the
forefront regarding the use of modern teaching and learning methods.

 29

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Central University Of Technology Free State - LibraryCUT, South Africa

https://core.ac.uk/display/222966586?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. CONTENT VERSUS PRESENTATION MARK-UP AND MATHEMATICAL
NOTATION

Before we can enter into a discussion of the available web technologies, a few words have
to be said about the nature of mathematical notation and language. The differences
between content and presentation mark-up has to be noted as well.

When studying the technologies needed to present and learn mathematics via the World
Wide Web, a clear understanding of the notation involved is essential. Mathematical
notation is not just a set of symbols and signs that mathematicians use. It is a language
that has arisen through a historical process just like any spoken language. “But now the
question is: can computers be set up to understand that notation?” (Wolfram, 2002:
Computers: 1 of 13). This question is of the utmost importance. If computers cannot
understand the mathematical questions put to them by students using the mathematical
language, they will not be able to assist these students in their acquisition of knowledge in
this field.

According to Wolfram (2002), there are two sides to using mathematical languages. They
are called the input side and the output side. On the output side the situation is
straightforward. This is the side on which the mathematician, the lecturer or the student
does the typing of mathematical text. Mark-up languages such as MathML and TeX or
Latex-applications such as Scientific Workplace and PCTex have been developed to
facilitate this need. The problem, however, is not so much on the output side as it is on the
input side. On the input side the computer needs to interpret what has been typed and
then respond to it. Consider the following expression, for instance:

]1[)1(]1sin[2]^1arctan[−−−+−+− xgxcxx

The expression contains mathematical text with operands and operators. How does the
computer now tell what groups with what? It will only be able to identify groupings if it has
the knowledge of the precedence of the operators. It therefore implies that the computer
should know which operators bind tighter to their operands (Wolfram, 2002). In the above
expression, for example, the constant binds tighter through multiplication to than it
does through addition to . The use of templates of free-form input as used by
Wolfram Research in Mathematica 3.0, attempts to solve this problem on the input side.

c (1−x)
]1sin[−x

It is evident that notation constitutes the first stumbling-block that has to be overcome in an
attempt to present mathematical information successfully to students via the web. A
second has to do with the communication of mathematics between the student and the
programme that carries the learning content.

 30

The computer and the World Wide Web are in essence merely vehicles that accommodate
and transport this learning content. In an attempt to solve the computer-related
communication problem a mathematical mark-up language, MathML, has been developed.
This mark-up language addresses the notational preferences and symbolic ambiguities of
mathematical communication by providing two encoding schemes for mathematical
objects and by defining a mechanism for binding the one encoding scheme to the other
(Huerter, Rodionov & Watt, 2002). These encoding schemes are called semantic (or
content) encoding and notational (or presentation) encoding. Not all MathML applications
use the same type of mark-up, however. Different uses of MathML encoding necessitate
transformations between the content and presentation encoding, in order to share
encoded mathematical objects successfully among different types of MathML applications.
Extensible style-sheet language transformations (XSLT style-sheets) are used to transform
MathML documents from one encoding scheme to another.

3. ADDRESSING CONTENT MARK-UP ON THE WEB

“Currently, almost all mathematical documents available on the Web are marked up only
for presentation, severely crippling the potential for added-value services like concept-
oriented navigation and information retrieval, data mining or document personalization”
(Kohlhase & Asperti, 2002: 1 of 7). The absence of content mark-up in mathematical web
documents restricts the possibility of interaction between the student and the mathematical
content, as presentation mark-up is non-interactive. To obtain added-value-services and
interactivity, preference has to be given to content mark-up for publishing mathematics on
the web. It involves a passing from machine-readable to machine-understandable
representations of mathematical information.

According to Kohlhase and Asperti (2002), the World Wide Web is the largest single
resource of mathematical knowledge, and its importance will grow as display technologies
like MATHML, OPENMATH and OMDOC emerge. These three display technologies that
assist with the managing of aspects of mathematics teaching via the World Wide Web, are
subsequently discussed.

3.1 MathML

The MathML standard was started with the vision of addressing all possibilities with
respect to mathematics on the web. It was the first web standard that introduced a content
mark-up layer in parallel with a presentation mark-up layer, and has therefore become a
pioneering project in the field (Kohlhase & Asperti, 2002).

MathML focuses primarily on mathematical expressions, though. In order to bring the idea
of a semantic web of mathematics to its full potential, which would be contained in the
content mark-up, other layers of mathematical information should also be considered. This
information includes a clear mark-up description for proofs; a mark-up for mathematical
statements such as theorems, lemmas, corollaries and examples; a mark-up for structured
collections of objects such as documents and theories; mark-up for possible relationships
between these collections and, finally; a good metadata layer (Kohlhase & Asperti, 2002).

 31

Asperti, Padovani, Coen and Schena (2000) support the choice of MathML as a standard
for writing mathematics. They justify their choice on the grounds that MathML has the
following characteristics:
• MathML has been conceived as an extensible and thus potentially infinite language.
• Many specific logical MathML dialects can be mapped into the same intermediate

language or into suitable extensions of the language. Similarly, the intermediate
representation can be transformed into different presentation formats.

• Being a standard, MathML may be exploited to cut and paste expressions from one
application into another.

• Content MathML can precisely capture the informal semantics or meaning of well-
known operators, such as equality, for example.

3.2 OPENMATH

OPENMATH is a standard most suitable for the content mark-up contained in
mathematical expressions and its focus is on extensibility. Instead of supplying a wide
range of primitive elements representing mathematical concepts and operators,
OPENMATH totally relies on a representation of primitive symbols that reference concepts
defined in so-called content dictionaries. These dictionaries are XML documents in a
standardised form that define symbols and specify their meaning. OPENMATH supplies
symbols from content dictionaries for all MathML primitives, for content MathML and for
OPENMATH itself. An example is the csymbol element. As a MathML element it can
provide the same function as the OPENMATH OMS element. OPENMATH and content
MathML are therefore roughly isomorphic (Kohlhase & Asperti, 2002). From the above is it
evident that many OPENMATH and content MathML characteristics overlap and
correspond.

3.3 OMDOC

The OMDOC format integrates content MathML and OPENMATH with respect to
mathematical expressions and extends the combination on the level of mathematical
statements, including definitions, lemmas and proofs, as well as on the level of
mathematical theories (Kohlhase & Asperti, 2002). This integration allows better
navigation, theory re-use and modularisation, specifically on theory level. Even though
standardisation efforts for theories in the field of algebraic specification have been made,
OMDOC is the first real result from efforts to develop the combination of MathML and
OPENMATH into a general mark-up language for mathematics, with attention to web
communication and existing standards.

 32

4. THE USE OF STYLE-SHEETS

The development of MathML goes back to the early days of the Web itself. Years of
vigorous debate and search for consensus in ways to publish mathematics through the
web finally led to the first MathML recommendation that was announced in 1998 (Sidje,
2002: 1 of 2). The fact that mathematics could then be written successfully by using
technology did not necessarily mean that it could be successfully reproduced and read
from a computer screen by those interested.

To read mathematical content via the web, a browser is needed that can clearly and
unambiguously reproduce the coded MathML as mathematical text that conveys the
original meaning intended by the author. Teaching mathematics via the web would
therefore be impossible without an applicable browser. But a very limited few of the current
generation of web browsers support MathML by default. Initially it even appeared as if
traditional browser makers were not in any particular hurry to invest their resources into
integrating support for mathematics (Sidje, 2002). As a result MathML content did not
spread very much on the World Wide Web initially.

Until recently authors of documents that contain MathML needed to place specific mark-up
in the document to enable the MathML rendering. This specific mark-up committed the
document to being read by only one particular browser. It was a situation far removed from
the ideal of posting documents with mathematics content on a web server to be read by
anyone irrespective of the browser that they used (Carlisle, 2002). Over recent years there
have been efforts that today are resulting in readily available means to represent MathML
in the major browsers. Nowadays specified extensions have been developed that enable
good quality MathML rendering in a surprisingly large set of browsers or operating system
combinations. One such an extension type, which aims at greatly reducing the need for
rendered-specific mark-up to appear in the document, is an extensible style-sheet, XSLT
in short. The style-sheet, named the Universal Math Style-sheet, and the document should
operate from the same server, however. The author only needs to link the document to the
Universal Math Style-sheet. The style-sheet will detect the browser and the type of
MathML mark-up that is used and will transform the document within the browser, adding
whatever extra mark-up is required to make it readable (Carlisle, 2002).

XSLT (extensible style-sheet) is a language designed to transform XML (extensible mark-
up language) documents (Carlisle, 2002). Since MathML falls into the extensible mark-up
languages (XML) category, XSLT is applicable to documents that were written by using
MathML. We can now conclude that, “…MathML is now ready to be used on the web…
There are freely available robust implementations of MathML renderers [sic] which work
with the current generation of browsers” (Carlisle, 2002: 3 of 3). This is good news, as it
ensures that mathematical text written in MathML will be able to be rendered on the web
with the use of an applicable browser. In the next section we consider such browser
applicability.

 33

5. BROWSER APPLICABILITY WITH RESPECT TO MathML

Different browsers have to be considered in an attempt to determine how successfully they
operate with respect to MathML. According to Quint and Vatton (2002), a technology such
as MathML, although necessary since it can be used to publish mathematics on the web,
is only the so-called tip of the ice berg when teaching and learning by means of the web is
considered. MathML should be implemented in tools that students can use easily. Such
tools should be able to display web pages with equations and provide complementary
services that facilitate the various tasks involved in the teaching process (Quint & Vatton,
2002). Students should therefore not only be able to see and read mathematical material
from the web, but should also be able to create their own online documents or to complete
documents written by lecturers. A complete web client must provide powerful editing
functionalities through an easy to use browser interface. In such a situation students will
be able to focus on the actual content of the document that they are compiling, instead of
struggling with the tool (Quint & Vatton, 2002: 2 of 5).

Just as writing with a pen comes naturally, using the editing tool should become a basic
skill. This requirement implies that entering mathematical expressions in textual notation is
not an option. Students should not have to learn such a textual language in addition to
learning the mathematical language and concepts covered in a syllabus. A direct
manipulation style of interface is therefore required. The interface should be as simple as
possible, providing only the commands the user needs and can understand. To this extent,
even a what-you-see-is-what-you-get interface may present an important cognitive load for
a beginner student. Furthermore, the tool should be flexible enough to allow lecturers to
use the same tool in various classes (Quint & Vatton, 2002).

Another important aspect contributing to ease of use is consistency. Writers of
mathematical documents, such as lecturers and students, do not manipulate equations in
isolation, but rather do so within documents that also contain text and graphics. It is
therefore important that a uniform environment exists in which all the content can be
manipulated in a consistent way (Quint & Vatton, 2002). The above-mentioned
requirements underline the need for a tool that would be customisable.

As a browser, Mozilla natively provides MathML support and contains the source code for
Netscape 6.x (Sidje, 2002). Amaya is yet another tool that was designed while taking most
of the aforementioned requirements into account. It is a full-featured web client that
seamlessly integrates editing and browsing functionalities (Quint & Vatton, 2002). Some of
Amaya’s most important functionalities are the following: Amaya can display and print web
pages that are stored on local files or that lie on web servers.

 34

It can edit those pages or create new ones. Amaya can save documents either locally or
on remote web servers, whilst from the user’s point of view, there is no difference between
documents stored in the local filing system or elsewhere.

Amaya closely follows the MathML 2.0 specification for editing equations within web
pages. As the primary goal is to allow users to easily enter complex expressions, the
emphasis was put on presentation MathML (Quint & Vatton, 2002). Although content
MathML was not implemented, all the presentation tags and attributes are available. The
usage of these tags and attributes leads to a very natural user interface that could be
compared to the way that mathematics is written by hand.

Using presentation mark-up means that the user is not required to enter all the details of
the MathML structure (Quint & Vatton, 2002). The editor generates elements on a lower
level of interpretation automatically. It is based on simple heuristics that recognise
numbers, operators, function names, etc. When the representation is not linear, however,
the user needs to enter those commands that generate the main constructs of
presentation MathML. Palettes containing these constructs can easily be created and used
when only mathematics is edited.

In summary, it is clear that however big the contribution of MathML to the publishing of
mathematics on the web might be, it becomes useless to both students and lecturers if it is
not incorporated into an application that supports both browsing and editing functionalities.
Mozilla and Amaya were mentioned as suitable browsers that accommodate MathML and
which could be utilised in the teaching of mathematics by means of the World Wide Web.

6. PLUG-INS AND EXTENSIONS

Most tools for rendering MathML are either full web browsing applications, such as Amaya
and Mozilla, or plug-ins and extensions, such as the WebEQ applet, IBM Techexplorer and
MathPlayer. In the first case, the MathML formatting engine is implemented as part of a
more general layout engine used for HTML display, which permits MathML fragments to
integrate within HTML mark-up. In the second case, an external component is embedded
into a larger browsing application by means of an application-specific extension
mechanism. In such a case the MathML formatting engine is completely separate from the
general layout engine and MathML fragments are rendered inside rectangular portions of
this rendering area (Padovani, 2002). A number of well-known plug-ins and extensions
that could be used to render MathML will now be discussed.

 35

6.1 THE IBM MathML Expression Editor

The IBM MathML Expression Editor is an example of an external MathML application that
can be used for rendering, authoring, converting, and interacting with expressions that are
encoded by means of content or presentation MathML elements (Dooley, 2002). It consists
of a standalone application edition as well as a component edition. Both editions use the
same core framework for editing MathML elements and builds on the rendering support for
MathML presentation elements provided by the IBM Techexplorer Hypermedia Browser.
This browser provides mathematical editing facilities for the entire range of MathML 2.0
content and presentation elements (Dooley, 2002).

The standalone application edition of the editor provides a compact tool for creating
MathML expressions that can be incorporated into web pages or other documents. These
expressions can then be rendered in a variety of containers using the component edition of
the editor, since it supports the same editing functionality as the standalone application
edition. MathML elements that are embedded in other documents become immediately
interactive and a user can edit them by using the component edition in the host container
in the same way as when the standalone application is used directly (Dooley, 2002).

Because the IBM MathML Expression Editor supports both content and presentation
MathML, these interfaces can be used to convert content to presentation MathML, or to
incorporate presentation mark-up within content mark-up and vice versa. The focus of the
editor is twofold and includes the creation of content MathML elements and the production
of a co-ordinated MathML presentation of those elements.

The MathML presentation elements are used only to display the expressions and therefore
no direct support for editing presentation MathML has been implemented in the editor
(Dooley, 2002). Template-based transformations are commonly used for editing content
MathML elements in the IBM MathML Expression Editor. This is done by inserting and
removing the desired structures such as elements, attributes and character data.

According to the developers, the programming interfaces provided by the editor bring
content-based mathematics-aware applications to the web in the form of a re-usable
component that can provide user interaction with mathematical expressions and that can
accept user feedback containing mathematical information. In conclusion, the developers
of the IBM MathML Expression Editor consider it to be a powerful and flexible new tool for
rendering and authoring MathML expressions that support a high degree of interactivity on
deployment (Dooley, 2002). These considerations are fundamentally important as
interactivity is the main consideration when teaching mathematics via the World Wide
Web.

 36

6.2 THE WebEQ Developers’ Suite

Another example of an external MathML application is the WebEQ Developers’ Suite. It
consists of two main tools for authoring MathML, namely an equation editor, the WebEQ
Editor, and a document translator, the WebEQ Publisher (Miner, 2002b). Both tools can be
configured to generate MathML output, as they were tailored to be used with Design
Science’s MathPlayer application or David Carlisle’s Universal Math Style-sheet.

The WebEQ Editor is a graphical MathML equation editor in which expressions are built up
by using templates, symbol palettes and keyboard shortcuts (Miner, 2002b). As an
equation is edited, a presentation MathML data structure is created for it. The WebEQ
Editor can, however, also be used to generate content MathML. These options are
possible, as the editor provides a MathML export configuration dialogue that allows
authors to specify what kind of MathML mark-up should be generated.

The WebEQ Publisher is a tool that can be used for the hand-authoring of MathML
documents. It generates an output document from a source document by translating
mathematics mark-up in the source into a web-ready format (Miner, 2002b). The WebEQ
Publisher recognises both MathML and WebTex mark-up in the source and can generate
MathML, images or WebEQ ViewerControl applet wrappers. The publisher can also be
configured to add header declarations for MathPlayer, David Carlisle’s Universal Math
Style-sheet or for Mozilla if they are needed.

6.3 MathPlayer

“MathPlayer is a state-of-the-art plug-in that enables Internet Explorer (IE) to display
MathML” (Miner & Topping, 2001: 7). Developed in collaboration with Microsoft using
Internet Explorer’s behaviour or binding technique, MathPlayer seamlessly integrates
MathML into web pages. Behaviour technique is a new plug-in technology from Microsoft
that allows much better integration into web pages than other plug-in technologies.
MathPlayer can automatically match font sizes and styles, as well as align mathematical
input with surrounding text. The use of MathPlayer results in high quality printing. It is
designed to be part of the HTML Platform and can be scripted with JavaScript and styled
with CSS.

6.4 MathType

MathType 5 is the next version of Design Science’s first MathType equation editor (Miner
& Topping, 2001: 7 – 8). It involves MathPage technology and revolutionises the process
of exporting a Microsoft Word document with mathematics in it to the web. Design Science
Inc.’s MathPage technology augments Microsoft Word’s “Save as HTML”-feature in
powerful ways, as MathPage uses the full power of the HTML platform to create HTML
pages with mathematics as MathML instances that can be displayed by MathML-capable
browsers.

 37

Such browsers include Mozilla, Amaya and Internet Explorer with MathPlayer. MathPage
can also produce mathematics as GIF images with high resolution for printing. These
mathematics images are all perfectly aligned with the surrounding text (Miner & Topping,
2001: 8). The mathematical islands presented as pictures are non-interactive and
therefore do not contribute as positively to the online learning experience as interactive
material would be able to do.

6.5 Maple

Maple is another system that supports the rendering and editing of MathML (Bernardin,
McCarron & Harder, 2002). It is a server-based system that is mainly used for symbolic
and numeric computation. Maple allows the import of MathML encoded mathematical
expressions. As mentioned in section 5.4 of this chapter, content MathML can easily be
imported into a computational system like Maple. Importing a MathML expression with
multiple different encodings such as presentation and content MathML is also
straightforward, as one can choose the encoding that carries the most semantic
information and is easiest to correctly import.

Because of the ambiguities of the presented objects, importing pure presentation MathML
is much more difficult (Bernardin et al., 2002). Maple resolves this problem concerning
presentation MathML with a rule-based transformation engine that encodes a fixed set of
context dependent choices as to how to interpret elements from presentation MathML.
“The output of the transformation engine is Content MathML with unambiguous semantics,
allowing us to reuse our code for importing Content MathML in order to do the final
translation step to a Maple expression” (Bernardin et al., 2002: 2 of 5). The imported
expressions can then be used in any computation within the Maple system.

The resulting expressions of any such computation can be exported back to MathML or
published to the web (Bernardin et al., 2002). Even though Maple can export the
expressions that it generates to both presentation and content MathML, the preferred
export format is a combined (parallel) tree containing both presentation and content
MathML. This export format allows applications that re-use Maple’s MathML output to be
able to choose the most appropriate format.

Clearly there are currently many technologies that can be used successfully to place
mathematical information on the web. Not all of them consist only of MathML or MathML
applications, however, and not all of them support the same degree of interactivity, which
is necessary for the successful teaching of mathematics via the web. These combinations
of technologies, together with their advantages and disadvantages as set out by Miner and
Topping (2001) in their Status Report of Mathematics on the Web, are considered next.

 38

7. COMBINATIONS OF TECHNOLOGIES

Combinations of technologies include HTML pages with GIF images for equations, Adobe
Acrobat to read PDF documents, IBM Techexplorer pages, HTML and components such
as Design Science’s WebEQ or IBM Techexplorer pages, and server-side programming in
applications such as CGI, Perl, Java and ASP scripts.

7.1 HTML PAGES WITH GIF IMAGES FOR EQUATIONS

Because these web pages are HTML-based, mathematics can more easily be combined
with other media such as movies, sounds, interactivity and data access. They do not
require server-side support and there is no need for the installation of fonts, an important
consideration for cross-platform browsing.

The most important disadvantage is the fact that interaction with the mathematical content
is limited, as the equations are posted as images. There is thus no difference between the
mathematics obtained from the web and the mathematical content printed in a textbook.
Second, printing such content is not of a high quality, as GIF images are more often low-
resolution screen images (Miner & Topping, 2001).

7.2 Adobe Acrobat (PDF)

PDF documents are effective for the online delivery of information that uses paper as the
primary publishing medium. It delivers good quality formatting and printing that are faithful
to the designer’s original intent. It does not require server-side support and if mathematical
fonts are embedded into the document, the mathematics symbol display is guaranteed to
work.

Because the format is not HTML-based, PDF documents cannot easily be combined with
other media such as movies, sound, interactivity and data access. The web browser
merely hosts the PDF viewer application, which must integrate its own user interface with
that of the browser. This integration can be cumbersome or confusing to the user and
limits interaction. Changes made using the browser’s interface will have no effect on the
PDF display (Miner & Topping, 2001).

7.3 IBM Techexplorer PAGES

Herewith mentioned are some advantages and disadvantages of constructing
mathematical text by using the TeX language together with the Techexplorer plug-in. IBM
Techexplorer pages are written by using the TeX language. This language is understood
by many mathematicians and is easy to use, as it enables the user to construct
mathematical text in a way that is similar to how it would have been written by hand. These
pages do not require server-side support and can be printed with TeX quality.

 39

To compile IBM Techexplorer pages, the Techexplorer plug-in is required. Unfortunately
the plug-in is not free, except for its trial version that does not allow documents to be
printed. Although Techexplorer does allow the inclusion of basic media formats, it cannot
be combined with the full range of media available in HTML pages. Similar to the PDF
Viewer, the web browser is merely a host to the viewer application, which must integrate
its own user interface with that of the browser. This integration can once again confuse the
user and limit interaction. Changes made by using the browser’s interface will have no
effect on the display (Miner & Topping, 2001).

7.4 HTML AND COMPONENTS SUCH AS DESIGN SCIENCE’S WebEQ OR IBM

Techexplorer PAGES

This section mentions some advantages and disadvantages of using ordinary HTML for
text accompanied by other components for representing instances of mathematics. The
fact that the document is HTML-based simplifies the integration with other web
technologies. The implementation of Design Science’s WebEQ or IBM Techexplorer
components supports quick interaction, as it takes place on the client’s side and does not
require server-side support. Interaction is powerful, as generated scripts can be displayed
on the fly.

The interface of the HTML-page requires that the width and the height of each individual
equation be known in advance. If the mathematics is generated through the component by
means of scripting, this information is extremely difficult to obtain beforehand.
Mathematical pages containing hundreds of individual equations can cause performance
problems due to the inability of browsers to handle that many instances of components.
Using components in conjunction with GIF images for non-interactive equations can
minimise this problem (Miner & Topping, 2001).

7.5 Server-side programming: CGI, PERL, JAVA and ASP SCRIPTS

Server-side-programming produces pages that are similar to the ones described in the
above section on HTML and components. Such programming can avoid image size
problems and results in pages with the widest range of browser compatibility. The load on
the client, that is the browser, is minimal because all scripts are executed on the server
and scripting only needs to target the server platform and not all the browser platforms.
Server-side-programming works well for accessing specialised software such as computer
algebra systems.

Server-side scripting is difficult to write and debug as the programming is done on a
different computer as the one from which the browser operates. Furthermore, the scripting
must serve multiple clients simultaneously and runs the risk of making a production server
unstable. Unlike other solutions, the whole programming load is concentrated on the
server.

 40

User interaction furthermore requires a visit to the server, which makes interaction
sluggish and unpredictable (Miner & Topping, 2001).

The choice as to which of the above technologies should be implemented is once again
determined by the availability of the specific technology to its user and by institutional
policy. As each of the described technologies have advantages as well as disadvantages,
no recommendations as to which is most applicable to the presentation of mathematics via
the web, can be made. According to Miner and Topping (2001:4), however, “Each of the
many technologies for putting math on the Web has its merits. However, in the long term
there can be little doubt that, taken together, the collection of HTML-centric technologies
that have taken shape through years of industry collaboration at the W3C [World Wide
Web Consortium] represent [sic] the future of the Web”. This collection of web standards is
called the HTML Platform.

8. THE DYNAMIC MATHEMATICS OBJECT MODEL

“Creating dynamic mathematical content for the Web is difficult” (Miner, 2002a: 1 of 6).
The reason for this observation is simple: the authoring of static content does not involve
difficult programming aspects that are inherent in the authoring of dynamic content. The
situation is further exacerbated by the lack of an effective model for the programming of
dynamic mathematical content (Miner, 2002a). Although a great number of technologies
are available for placing mathematical text on the web, there is no single recommended
model that can effectively be used by mathematics lecturers in all situations to place
dynamic mathematical content on the web. All the information that has been provided so
far with respect to the teaching of mathematics by means of the web and the
implementation of corresponding technologies is now brought together by the introduction
of the object model concept.

A dynamic mathematics object model (DMOM) is a mathematics application-programming
interface (API) that can be used to provide programmatic access to an extensible mark-up
language and in doing so enable mathematics lecturers to place mathematical content on
the web. DMOMs can roughly be divided into two categories. The first category contains
DMOMs that primarily use the web as a delivery vehicle for information (Miner, 2002a). In
this category the interactivity is confined to the rectangle of the plug-in, applet, or the
control. LiveMath and MathWright are two commercial products that provide systems for
authoring and displaying dynamic mathematics in web pages. Cinderella and Geometer’s
Sketchpad are specialised dynamic mathematics authoring tools that can also publish to
the web. Simulink from the MathWorks offers another kind of DMOM, emphasising visual
programming. These simulations cannot be published to the web, however.

 41

The second category of DMOMs contains mathematical web services (Miner, 2002a).
Maplets, from Waterloo Maple, provide a client-side user interface for back-end services
from a MapleNet server. Similarly WebMathematica from Wolfram Research provides the
computation back-end for a server page model. J/Link technology provides a Java bridge
for client-side user interface applications, whereas the Matlab web server from MathWorks
offers a more traditional CGI-style solution.

Unfortunately, most of these models in the second category of DMOMs emphasise server-
side computation (Miner, 2002a), while server-side computation is not what is needed for
interactive, online mathematics education where lecturers are the ones posting the content
onto the web. In addition, web interactivity is added as an extension to existing desktop
software in all of the cases mentioned. But extensions and plug-ins become sluggish to
work with and are therefore also not the ideal solution.

“However, there are also a number of dynamic math object models implicit in the many
excellent dynamic math web sites created over the last five years” (Miner, 2002a: 2 of 6).
Two such models that are worth mentioning are Project LINKS and the ActiveMath Project.
These sites provide an excellent guide to what the requirements for a dynamic
mathematics object model (DMOM) should be. In the next section, requirements for such a
DMOM are formulated.

8.1 Formulating requirements for a dynamic Mathematics object model

The formulation of requirements for a DMOM tailored for the World Wide Web can now
commence. A list of five common dynamic mathematical tasks, that the model should be
able to perform, is considered first of all (Miner, 2002a). The DMOM should:
• be able to step a student or reader through a certain number of explanations to a

given problem;
• enable a student or reader to change parameters to observe the effect on a given

equation;
• enable a student or reader to manipulate equations to observe the effect;
• be able to display typeset previews of encoded input, like graphs and tables; and
• be able to obtain and check answers to online test questions.

According to Robert Miner (2002a) from Design Science, Inc., four broad kinds of
functionality on the side of the DMOM are involved in accomplishing such tasks as stated
above. These functionalities are:

• The manipulation of mathematical notation
The DMOM should be able to modify an arbitrary equation in mathematically natural ways.

 42

• Operations on mathematical expressions
The DMOM should be able to check two expressions for equality, check an expression for
a pattern match, evaluate and compute with expressions, and convert expressions into
other formats such as images.

• Working with mathematical-aware user interface widgets
In this respect the DMOM should be able to display an equation in a browser that does not
support native rendering capabilities. It should allow a student or reader to modify an
existing equation in prescribed ways such as filling in the exponent or taking the root. It
should be able to obtain and understand free-form equation input from a student or reader
and should be able to display an interactive graph.

• Managing interaction with students

Expressions should be able to respond to mouse gestures and controls that are operated
by the student. To initialise the mouse and the controls, they should be manipulated
programmatically.

In designing a dynamic mathematics object model the goal according to Miner (2002a)
should be to make the performance of these four categories of tasks by the DMOM as
easy and natural as possible within the existing web development paradigms.

8.2 A dynamic mathematics object model from design science inc.

At Design Science Inc. a Dynamic Mathematics Object Model proposal was made and a
prototype implementation targeting Internet Explorer 6 was carried out. At the 2002
<math>ml and Technologies for Mathematics on the Web International Conference,
hosted by Wolfram Research, Robert Miner discussed the proposal and its prototype
implementation, which will be referred to in this section. The fairly simple, Web-oriented
DMOM is based on the requirement analysis of the preceding section and consists of three
collections of objects: Equations, EquationControls, and MathServices (Miner, 2002a: 3 of
6).

The Equation object is in essence a wrapper or cover for a MathML expression and
provides an interface for both the high and the low level manipulation of the mathematical
expression that it represents. In particular, it provides a standard DOM interface for the
arbitrary manipulation of its expression. It can also expose other higher-level interfaces for
manipulating the expression it represents in more mathematically meaningful ways (Miner,
2002a).

MathService objects perform operations on Equation objects. Performing meaningful
computations with mathematics expressions and equations is typically the most
challenging part of developing dynamic mathematical content for the web. While some
simple operations are appropriate for additional client-side implementation, in many cases,
computations either require substantial libraries of client-side code, or are best performed
on the server-side by specialised software. MathService objects provide a layer of
abstraction so that mathematical content developers have a uniform interface that can be
used on both the local and the remote computation service-sides (Miner, 2002a).

 43

The EquationControl objects provide mathematics-aware user interface widgets that
extend the native set of primarily text-oriented user interface widgets provided by HTML.
There are, for example, ViewerControl, InputControl and GraphControl objects. Last, to
manage the interaction with readers the EquationControl objects implement the DOM
Event interfaces so that content developers can use standard Dynamic Hyper Text Mark-
up Language (DHTML) techniques for firing and handling events (Miner, 2002a). As stated
at the beginning of this section, the dynamic object model prototype as described above
was implemented by targeting Internet Explorer 6.

Possible weaknesses of the DMOM can be noticed. The lack of cross-platform support
and the reliance on Java are limitations. By using JavaScript proxy objects, some of the
cross-platform and cross-technology details can be hidden, though (Miner, 2002a). A
potential strength of the approach is that it lends itself to customisable template
documents. Many authors who are not capable of creating elaborate dynamic
mathematical content from scratch will be able to understand and customise template
documents if they keep to standard, well-known web development techniques.
Unfortunately it seems likely that even if such an approach was fully implemented, the
prerequisite skill level for authors would remain relatively high. Robert Miner (2002a)
considered two possible stumbling-blocks with respect to the implementation of the
constructed DMOM.

First, the DMOM developed by Design Science and described in this section relies heavily
on the availability of MathML-aware browsers, browser extensions, stylesheets and
JavaScript libraries. The worldwide deployment of these MathML-aware runtime
environments to date has been hampered by the lack of quality content (Miner, 2002a).
The problem could be addressed, though, by demanding formal standardisation in
industry.

Second, the question must be asked whether a viable authoring community would exist,
even if all other issues could be resolved. Experience with the prototype suggested that a
relatively high skill level would still be required of authors (Miner, 2002a). This obstacle
might even be more crippling to the development of dynamic mathematical content on the
web than any other technological obstacle discussed.

9. CONCLUSION

This paper has shown that a range of dynamic mathematics object models exists in
addition to the many MathML-based programmes and technologies. Examples of such
dynamic object models include LiveMath, MathWrite and Geometer’s Sketchpad, while
examples of MathML-based programmes include MathType, MathPlayer, Maple and the
WebEQ Developers’ Suite. All of these technologies can be used to accommodate
mathematics on the web, to a certain extent. None of them, however, are completely
adapted to mainstream web development techniques.

 44

It was established that the implementation of a single, effective, widely shared underlying
model (DMOM) for dynamic mathematics programming, was necessary. By studying
existing dynamic object models and websites that use dynamic, interactive mathematics,
the staff at Design Science could construct a basic set of requirements for a web-oriented
DMOM. A relatively simple DMOM sufficed to satisfy a basic set of requirements and the
prototype implementation suggested that such an object model could probably be
adequately implemented for mainstream use, notwithstanding all the cross-platform
issues. According to Robert Miner (2002: Personal interview), however, this DMOM was
not yet ready at that stage to facilitate the successful transfer of new mathematical
knowledge to undergraduate students via the World Wide Web. Even though a single
dynamic object model for the successful transfer of mathematical knowledge does not yet
exist, its absence should not prevent lecturers at higher education institutions from using
computer technology in the presentation of mathematics via the World Wide Web.

10. REFERENCES

Asperti, A., Padovani, L., Sacerdoti Coen, C. & Schena, I. 2000. Formal Mathematics in

MathML. Proceedings from the 2000 conference on <math>ml and Mathematics on the
Web, USA.

Bernardin, L., McCarron, J. & Harder, D. 2002. MathML with Maple. Paper presented on

30 June 2002 at the conference on <math>ml and Technologies for Mathematics on
the Web, Chicago, Illinois, USA.

Carlisle, D. 2002. MathML on the Web: Using XSLT to enable cross platform support for

XHTML and MathML in current Browsers. Paper presented on 29 June 2002 at the
conference on <math>ml and Technologies for Mathematics on the Web, Chicago,
Illinois, USA.

Dooley, S.S. 2002. Bringing MathML Content and Presentation Markup to the Web with

the IBM MathML Expression Editor. Paper presented on 29 June 2002 at the
conference on <math>ml and Technologies for Mathematics on the Web, Chicago,
Illinois, USA.

Huerter, S., Rodionov, I. & Watt, S. 2002. Content-Faithful Transformations for MathML.

Paper presented on 30 June 2002 at the conference on <math>ml and Technologies
for Mathematics on the Web, Chicago, Illinois, USA.

Kohlhase, M. & Asperti, A. 2002. MathML in the MOWGLI Project. Paper presented on 29

June 2002 at the conference on <math>ml and Technologies for Mathematics on the
Web, Chicago, Illinois, USA.

 45

Miner, R. 2002a. A Dynamic Math Object Model. Paper presented on 29 June 2002 at the
conference on <math>ml and Technologies for Mathematics on the Web, Chicago,
Illinois, USA.

Miner, R. 2002b. Two Ways to Author for MathPlayer with WebEQ. Paper presented on 29

June 2002 at the conference on <math>ml and Technologies for Mathematics on the
Web, Chicago, Illinois, USA.

Miner, R. & Topping, P. 2001. Math on the Web: A Status Report.

<http://www.dessci.com/webmath/status>
 Retrieved during February 2001.

Padovani, L. 2002. A Stand-Alone Rendering Engine for MathML. Paper presented on 30

June 2002 at the conference on <math>ml and Technologies for Mathematics on the
Web, Chicago, Illinois, USA.

Quint, V. & Vatton, I. 2002. MathML in E-Learning with Amaya. Paper presented on 30

June 2002 at the conference on <math>ml and Technologies for Mathematics on the
Web, Chicago, Illinois, USA.

Sidje, R. 2002. MathML amidst Open Web Standards: Mozilla's Building Blocks for Today

and Tomorrow. Paper presented on 29 June 2002 at the conference on <math>ml and
Technologies for Math on the Web, Chicago, Illinois, USA.

Wolfram, S. 2002. Mathematical Notation: Past and Future.

<http://stephenwolfram.com/publications/talks/mathml/mathml3.html>
 Retrieved on 14 March 2002.

 46

