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ABSTRACT 
 
This paper tries to find answers to the question concerning the availability of suitable 
technologies to accommodate the teaching and learning of mathematics by means of the 
World Wide Web. It addresses three standards for the presentation of content mark-up 
and touches on the importance of adequate browser applicability with respect to MathML 
as one of the standards. Various tools for rendering MathML on the web, as well as plug-
ins and extensions and other combinations of technologies, are discussed. The paper 
concludes with the introduction of a dynamic mathematics object model (DMOM) by 
Robert Miner from Design Science Inc. Requirements for a DMOM are formulated and its 
implementation is discussed. 
 
KEY WORDS 
 
• MathML: Mathematical Mark-up Language. 

o Content MathML: Mark-up focused on encoding the semantics of an 
expression. 

o Presentation MathML: Mark-up concerned with the way the mathematical 
expression looks. 

• OMDOC: An Open Mark-up Format for Mathematical Documents. 
• XML: Extensible Mark-up Language. A Meta language based on SGML that may be 

used to create other mark-up languages. 
• XHTML: Extensible Hypertext Mark-up Language. A reformulation of HTML 4 as an 

XML application. 
 
 
1. INTRODUCTION 
 
This paper reports on web technologies that are available and can be used to facilitate the 
teaching of the subject mathematics by means of the World Wide Web. The information 
was obtained as part of a doctoral study performed at the Central University of 
Technology, Free State during 2005. As the web presentation of a variety of subjects, 
including mathematics, is a reality at higher education institutions, the task at hand for 
mathematics lecturers is to equip themselves with the knowledge of how to use these 
technologies to the best of their ability. The use of the web in teaching and learning is 
rapidly becoming the norm and no longer the exception and can therefore not be ignored 
by any educator at a higher education institution who sees himself as being on the 
forefront regarding the use of modern teaching and learning methods. 
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2. CONTENT VERSUS PRESENTATION MARK-UP AND MATHEMATICAL 
NOTATION 

 
Before we can enter into a discussion of the available web technologies, a few words have 
to be said about the nature of mathematical notation and language. The differences 
between content and presentation mark-up has to be noted as well. 
 
When studying the technologies needed to present and learn mathematics via the World 
Wide Web, a clear understanding of the notation involved is essential. Mathematical 
notation is not just a set of symbols and signs that mathematicians use. It is a language 
that has arisen through a historical process just like any spoken language. “But now the 
question is: can computers be set up to understand that notation?” (Wolfram, 2002: 
Computers: 1 of 13). This question is of the utmost importance. If computers cannot 
understand the mathematical questions put to them by students using the mathematical 
language, they will not be able to assist these students in their acquisition of knowledge in 
this field. 
 
According to Wolfram (2002), there are two sides to using mathematical languages. They 
are called the input side and the output side. On the output side the situation is 
straightforward. This is the side on which the mathematician, the lecturer or the student 
does the typing of mathematical text. Mark-up languages such as MathML and TeX or 
Latex-applications such as Scientific Workplace and PCTex have been developed to 
facilitate this need. The problem, however, is not so much on the output side as it is on the 
input side. On the input side the computer needs to interpret what has been typed and 
then respond to it. Consider the following expression, for instance: 
 

]1[)1(]1sin[2]^1arctan[ −−−+−+− xgxcxx  
 
The expression contains mathematical text with operands and operators. How does the 
computer now tell what groups with what? It will only be able to identify groupings if it has 
the knowledge of the precedence of the operators. It therefore implies that the computer 
should know which operators bind tighter to their operands (Wolfram, 2002). In the above 
expression, for example, the constant  binds tighter through multiplication to  than it 
does through addition to . The use of templates of free-form input as used by 
Wolfram Research in Mathematica 3.0, attempts to solve this problem on the input side. 

c ( 1−x )
]1sin[ −x

 
It is evident that notation constitutes the first stumbling-block that has to be overcome in an 
attempt to present mathematical information successfully to students via the web. A 
second has to do with the communication of mathematics between the student and the 
programme that carries the learning content.  
 
 
 
 
 
 
 
 
 
 
 
 

 30



The computer and the World Wide Web are in essence merely vehicles that accommodate 
and transport this learning content. In an attempt to solve the computer-related 
communication problem a mathematical mark-up language, MathML, has been developed. 
This mark-up language addresses the notational preferences and symbolic ambiguities of 
mathematical communication by providing two encoding schemes for mathematical 
objects and by defining a mechanism for binding the one encoding scheme to the other 
(Huerter, Rodionov & Watt, 2002). These encoding schemes are called semantic (or 
content) encoding and notational (or presentation) encoding. Not all MathML applications 
use the same type of mark-up, however. Different uses of MathML encoding necessitate 
transformations between the content and presentation encoding, in order to share 
encoded mathematical objects successfully among different types of MathML applications. 
Extensible style-sheet language transformations (XSLT style-sheets) are used to transform 
MathML documents from one encoding scheme to another. 
 
 
3. ADDRESSING CONTENT MARK-UP ON THE WEB 
 
“Currently, almost all mathematical documents available on the Web are marked up only 
for presentation, severely crippling the potential for added-value services like concept-
oriented navigation and information retrieval, data mining or document personalization” 
(Kohlhase & Asperti, 2002: 1 of 7). The absence of content mark-up in mathematical web 
documents restricts the possibility of interaction between the student and the mathematical 
content, as presentation mark-up is non-interactive. To obtain added-value-services and 
interactivity, preference has to be given to content mark-up for publishing mathematics on 
the web. It involves a passing from machine-readable to machine-understandable 
representations of mathematical information. 
 
According to Kohlhase and Asperti (2002), the World Wide Web is the largest single 
resource of mathematical knowledge, and its importance will grow as display technologies 
like MATHML, OPENMATH and OMDOC emerge. These three display technologies that 
assist with the managing of aspects of mathematics teaching via the World Wide Web, are 
subsequently discussed. 
 
3.1 MathML 
 
The MathML standard was started with the vision of addressing all possibilities with 
respect to mathematics on the web. It was the first web standard that introduced a content 
mark-up layer in parallel with a presentation mark-up layer, and has therefore become a 
pioneering project in the field (Kohlhase & Asperti, 2002). 
 
MathML focuses primarily on mathematical expressions, though. In order to bring the idea 
of a semantic web of mathematics to its full potential, which would be contained in the 
content mark-up, other layers of mathematical information should also be considered. This 
information includes a clear mark-up description for proofs; a mark-up for mathematical 
statements such as theorems, lemmas, corollaries and examples; a mark-up for structured 
collections of objects such as documents and theories; mark-up for possible relationships 
between these collections and, finally; a good metadata layer (Kohlhase & Asperti, 2002). 
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Asperti, Padovani, Coen and Schena (2000) support the choice of MathML as a standard 
for writing mathematics. They justify their choice on the grounds that MathML has the 
following characteristics: 
• MathML has been conceived as an extensible and thus potentially infinite language. 
• Many specific logical MathML dialects can be mapped into the same intermediate 

language or into suitable extensions of the language. Similarly, the intermediate 
representation can be transformed into different presentation formats. 

• Being a standard, MathML may be exploited to cut and paste expressions from one 
application into another. 

• Content MathML can precisely capture the informal semantics or meaning of well-
known operators, such as equality, for example. 

 
3.2 OPENMATH 
 
OPENMATH is a standard most suitable for the content mark-up contained in 
mathematical expressions and its focus is on extensibility. Instead of supplying a wide 
range of primitive elements representing mathematical concepts and operators, 
OPENMATH totally relies on a representation of primitive symbols that reference concepts 
defined in so-called content dictionaries. These dictionaries are XML documents in a 
standardised form that define symbols and specify their meaning. OPENMATH supplies 
symbols from content dictionaries for all MathML primitives, for content MathML and for 
OPENMATH itself. An example is the csymbol element. As a MathML element it can 
provide the same function as the OPENMATH OMS element. OPENMATH and content 
MathML are therefore roughly isomorphic (Kohlhase & Asperti, 2002). From the above is it 
evident that many OPENMATH and content MathML characteristics overlap and 
correspond. 
 
3.3 OMDOC 
 
The OMDOC format integrates content MathML and OPENMATH with respect to 
mathematical expressions and extends the combination on the level of mathematical 
statements, including definitions, lemmas and proofs, as well as on the level of 
mathematical theories (Kohlhase & Asperti, 2002). This integration allows better 
navigation, theory re-use and modularisation, specifically on theory level. Even though 
standardisation efforts for theories in the field of algebraic specification have been made, 
OMDOC is the first real result from efforts to develop the combination of MathML and 
OPENMATH into a general mark-up language for mathematics, with attention to web 
communication and existing standards. 
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4. THE USE OF STYLE-SHEETS 
 
The development of MathML goes back to the early days of the Web itself. Years of 
vigorous debate and search for consensus in ways to publish mathematics through the 
web finally led to the first MathML recommendation that was announced in 1998 (Sidje, 
2002: 1 of 2). The fact that mathematics could then be written successfully by using 
technology did not necessarily mean that it could be successfully reproduced and read 
from a computer screen by those interested. 
 
To read mathematical content via the web, a browser is needed that can clearly and 
unambiguously reproduce the coded MathML as mathematical text that conveys the 
original meaning intended by the author. Teaching mathematics via the web would 
therefore be impossible without an applicable browser. But a very limited few of the current 
generation of web browsers support MathML by default. Initially it even appeared as if 
traditional browser makers were not in any particular hurry to invest their resources into 
integrating support for mathematics (Sidje, 2002). As a result MathML content did not 
spread very much on the World Wide Web initially. 
 
Until recently authors of documents that contain MathML needed to place specific mark-up 
in the document to enable the MathML rendering. This specific mark-up committed the 
document to being read by only one particular browser. It was a situation far removed from 
the ideal of posting documents with mathematics content on a web server to be read by 
anyone irrespective of the browser that they used (Carlisle, 2002). Over recent years there 
have been efforts that today are resulting in readily available means to represent MathML 
in the major browsers. Nowadays specified extensions have been developed that enable 
good quality MathML rendering in a surprisingly large set of browsers or operating system 
combinations. One such an extension type, which aims at greatly reducing the need for 
rendered-specific mark-up to appear in the document, is an extensible style-sheet, XSLT 
in short. The style-sheet, named the Universal Math Style-sheet, and the document should 
operate from the same server, however. The author only needs to link the document to the 
Universal Math Style-sheet. The style-sheet will detect the browser and the type of 
MathML mark-up that is used and will transform the document within the browser, adding 
whatever extra mark-up is required to make it readable (Carlisle, 2002). 
 
XSLT (extensible style-sheet) is a language designed to transform XML (extensible mark-
up language) documents (Carlisle, 2002). Since MathML falls into the extensible mark-up 
languages (XML) category, XSLT is applicable to documents that were written by using 
MathML. We can now conclude that, “…MathML is now ready to be used on the web… 
There are freely available robust implementations of MathML renderers [sic] which work 
with the current generation of browsers” (Carlisle, 2002: 3 of 3). This is good news, as it 
ensures that mathematical text written in MathML will be able to be rendered on the web 
with the use of an applicable browser. In the next section we consider such browser 
applicability. 
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5. BROWSER APPLICABILITY WITH RESPECT TO MathML 
 
Different browsers have to be considered in an attempt to determine how successfully they 
operate with respect to MathML. According to Quint and Vatton (2002), a technology such 
as MathML, although necessary since it can be used to publish mathematics on the web, 
is only the so-called tip of the ice berg when teaching and learning by means of the web is 
considered. MathML should be implemented in tools that students can use easily. Such 
tools should be able to display web pages with equations and provide complementary 
services that facilitate the various tasks involved in the teaching process (Quint & Vatton, 
2002). Students should therefore not only be able to see and read mathematical material 
from the web, but should also be able to create their own online documents or to complete 
documents written by lecturers. A complete web client must provide powerful editing 
functionalities through an easy to use browser interface. In such a situation students will 
be able to focus on the actual content of the document that they are compiling, instead of 
struggling with the tool (Quint & Vatton, 2002: 2 of 5). 
 
Just as writing with a pen comes naturally, using the editing tool should become a basic 
skill. This requirement implies that entering mathematical expressions in textual notation is 
not an option. Students should not have to learn such a textual language in addition to 
learning the mathematical language and concepts covered in a syllabus. A direct 
manipulation style of interface is therefore required. The interface should be as simple as 
possible, providing only the commands the user needs and can understand. To this extent, 
even a what-you-see-is-what-you-get interface may present an important cognitive load for 
a beginner student. Furthermore, the tool should be flexible enough to allow lecturers to 
use the same tool in various classes (Quint & Vatton, 2002). 
 
Another important aspect contributing to ease of use is consistency. Writers of 
mathematical documents, such as lecturers and students, do not manipulate equations in 
isolation, but rather do so within documents that also contain text and graphics. It is 
therefore important that a uniform environment exists in which all the content can be 
manipulated in a consistent way (Quint & Vatton, 2002). The above-mentioned 
requirements underline the need for a tool that would be customisable. 
 
As a browser, Mozilla natively provides MathML support and contains the source code for 
Netscape 6.x (Sidje, 2002). Amaya is yet another tool that was designed while taking most 
of the aforementioned requirements into account. It is a full-featured web client that 
seamlessly integrates editing and browsing functionalities (Quint & Vatton, 2002). Some of 
Amaya’s most important functionalities are the following: Amaya can display and print web 
pages that are stored on local files or that lie on web servers.  
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It can edit those pages or create new ones. Amaya can save documents either locally or 
on remote web servers, whilst from the user’s point of view, there is no difference between 
documents stored in the local filing system or elsewhere. 
 
Amaya closely follows the MathML 2.0 specification for editing equations within web 
pages. As the primary goal is to allow users to easily enter complex expressions, the 
emphasis was put on presentation MathML (Quint & Vatton, 2002). Although content 
MathML was not implemented, all the presentation tags and attributes are available. The 
usage of these tags and attributes leads to a very natural user interface that could be 
compared to the way that mathematics is written by hand. 
 
Using presentation mark-up means that the user is not required to enter all the details of 
the MathML structure (Quint & Vatton, 2002). The editor generates elements on a lower 
level of interpretation automatically. It is based on simple heuristics that recognise 
numbers, operators, function names, etc. When the representation is not linear, however, 
the user needs to enter those commands that generate the main constructs of 
presentation MathML. Palettes containing these constructs can easily be created and used 
when only mathematics is edited. 
 
In summary, it is clear that however big the contribution of MathML to the publishing of 
mathematics on the web might be, it becomes useless to both students and lecturers if it is 
not incorporated into an application that supports both browsing and editing functionalities. 
Mozilla and Amaya were mentioned as suitable browsers that accommodate MathML and 
which could be utilised in the teaching of mathematics by means of the World Wide Web. 
 
 
6. PLUG-INS AND EXTENSIONS 
 
Most tools for rendering MathML are either full web browsing applications, such as Amaya 
and Mozilla, or plug-ins and extensions, such as the WebEQ applet, IBM Techexplorer and 
MathPlayer. In the first case, the MathML formatting engine is implemented as part of a 
more general layout engine used for HTML display, which permits MathML fragments to 
integrate within HTML mark-up. In the second case, an external component is embedded 
into a larger browsing application by means of an application-specific extension 
mechanism. In such a case the MathML formatting engine is completely separate from the 
general layout engine and MathML fragments are rendered inside rectangular portions of 
this rendering area (Padovani, 2002). A number of well-known plug-ins and extensions 
that could be used to render MathML will now be discussed. 
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6.1 THE IBM MathML Expression Editor 
 
The IBM MathML Expression Editor is an example of an external MathML application that 
can be used for rendering, authoring, converting, and interacting with expressions that are 
encoded by means of content or presentation MathML elements (Dooley, 2002). It consists 
of a standalone application edition as well as a component edition. Both editions use the 
same core framework for editing MathML elements and builds on the rendering support for 
MathML presentation elements provided by the IBM Techexplorer Hypermedia Browser. 
This browser provides mathematical editing facilities for the entire range of MathML 2.0 
content and presentation elements (Dooley, 2002). 
 
The standalone application edition of the editor provides a compact tool for creating 
MathML expressions that can be incorporated into web pages or other documents. These 
expressions can then be rendered in a variety of containers using the component edition of 
the editor, since it supports the same editing functionality as the standalone application 
edition. MathML elements that are embedded in other documents become immediately 
interactive and a user can edit them by using the component edition in the host container 
in the same way as when the standalone application is used directly (Dooley, 2002). 
 
Because the IBM MathML Expression Editor supports both content and presentation 
MathML, these interfaces can be used to convert content to presentation MathML, or to 
incorporate presentation mark-up within content mark-up and vice versa. The focus of the 
editor is twofold and includes the creation of content MathML elements and the production 
of a co-ordinated MathML presentation of those elements. 
 
The MathML presentation elements are used only to display the expressions and therefore 
no direct support for editing presentation MathML has been implemented in the editor 
(Dooley, 2002). Template-based transformations are commonly used for editing content 
MathML elements in the IBM MathML Expression Editor. This is done by inserting and 
removing the desired structures such as elements, attributes and character data. 
 
According to the developers, the programming interfaces provided by the editor bring 
content-based mathematics-aware applications to the web in the form of a re-usable 
component that can provide user interaction with mathematical expressions and that can 
accept user feedback containing mathematical information. In conclusion, the developers 
of the IBM MathML Expression Editor consider it to be a powerful and flexible new tool for 
rendering and authoring MathML expressions that support a high degree of interactivity on 
deployment (Dooley, 2002). These considerations are fundamentally important as 
interactivity is the main consideration when teaching mathematics via the World Wide 
Web. 
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6.2 THE WebEQ Developers’ Suite 
 
Another example of an external MathML application is the WebEQ Developers’ Suite. It 
consists of two main tools for authoring MathML, namely an equation editor, the WebEQ 
Editor, and a document translator, the WebEQ Publisher (Miner, 2002b). Both tools can be 
configured to generate MathML output, as they were tailored to be used with Design 
Science’s MathPlayer application or David Carlisle’s Universal Math Style-sheet. 
 
The WebEQ Editor is a graphical MathML equation editor in which expressions are built up 
by using templates, symbol palettes and keyboard shortcuts (Miner, 2002b). As an 
equation is edited, a presentation MathML data structure is created for it. The WebEQ 
Editor can, however, also be used to generate content MathML. These options are 
possible, as the editor provides a MathML export configuration dialogue that allows 
authors to specify what kind of MathML mark-up should be generated. 
 
The WebEQ Publisher is a tool that can be used for the hand-authoring of MathML 
documents. It generates an output document from a source document by translating 
mathematics mark-up in the source into a web-ready format (Miner, 2002b). The WebEQ 
Publisher recognises both MathML and WebTex mark-up in the source and can generate 
MathML, images or WebEQ ViewerControl applet wrappers. The publisher can also be 
configured to add header declarations for MathPlayer, David Carlisle’s Universal Math 
Style-sheet or for Mozilla if they are needed. 
 
6.3 MathPlayer 
 
“MathPlayer is a state-of-the-art plug-in that enables Internet Explorer (IE) to display 
MathML” (Miner & Topping, 2001: 7). Developed in collaboration with Microsoft using 
Internet Explorer’s behaviour or binding technique, MathPlayer seamlessly integrates 
MathML into web pages. Behaviour technique is a new plug-in technology from Microsoft 
that allows much better integration into web pages than other plug-in technologies. 
MathPlayer can automatically match font sizes and styles, as well as align mathematical 
input with surrounding text. The use of MathPlayer results in high quality printing. It is 
designed to be part of the HTML Platform and can be scripted with JavaScript and styled 
with CSS. 
 
6.4 MathType 
 
MathType 5 is the next version of Design Science’s first MathType equation editor (Miner 
& Topping, 2001: 7 – 8). It involves MathPage technology and revolutionises the process 
of exporting a Microsoft Word document with mathematics in it to the web. Design Science 
Inc.’s MathPage technology augments Microsoft Word’s “Save as HTML”-feature in 
powerful ways, as MathPage uses the full power of the HTML platform to create HTML 
pages with mathematics as MathML instances that can be displayed by MathML-capable 
browsers.  
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Such browsers include Mozilla, Amaya and Internet Explorer with MathPlayer. MathPage 
can also produce mathematics as GIF images with high resolution for printing. These 
mathematics images are all perfectly aligned with the surrounding text (Miner & Topping, 
2001: 8). The mathematical islands presented as pictures are non-interactive and 
therefore do not contribute as positively to the online learning experience as interactive 
material would be able to do. 
 
 
6.5 Maple 
 
Maple is another system that supports the rendering and editing of MathML (Bernardin, 
McCarron & Harder, 2002). It is a server-based system that is mainly used for symbolic 
and numeric computation. Maple allows the import of MathML encoded mathematical 
expressions. As mentioned in section 5.4 of this chapter, content MathML can easily be 
imported into a computational system like Maple. Importing a MathML expression with 
multiple different encodings such as presentation and content MathML is also 
straightforward, as one can choose the encoding that carries the most semantic 
information and is easiest to correctly import. 
 
Because of the ambiguities of the presented objects, importing pure presentation MathML 
is much more difficult (Bernardin et al., 2002). Maple resolves this problem concerning 
presentation MathML with a rule-based transformation engine that encodes a fixed set of 
context dependent choices as to how to interpret elements from presentation MathML. 
“The output of the transformation engine is Content MathML with unambiguous semantics, 
allowing us to reuse our code for importing Content MathML in order to do the final 
translation step to a Maple expression” (Bernardin et al., 2002: 2 of 5). The imported 
expressions can then be used in any computation within the Maple system. 
 
The resulting expressions of any such computation can be exported back to MathML or 
published to the web (Bernardin et al., 2002). Even though Maple can export the 
expressions that it generates to both presentation and content MathML, the preferred 
export format is a combined (parallel) tree containing both presentation and content 
MathML. This export format allows applications that re-use Maple’s MathML output to be 
able to choose the most appropriate format. 
 
Clearly there are currently many technologies that can be used successfully to place 
mathematical information on the web. Not all of them consist only of MathML or MathML 
applications, however, and not all of them support the same degree of interactivity, which 
is necessary for the successful teaching of mathematics via the web. These combinations 
of technologies, together with their advantages and disadvantages as set out by Miner and 
Topping (2001) in their Status Report of Mathematics on the Web, are considered next. 
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7. COMBINATIONS OF TECHNOLOGIES 
 
Combinations of technologies include HTML pages with GIF images for equations, Adobe 
Acrobat to read PDF documents, IBM Techexplorer pages, HTML and components such 
as Design Science’s WebEQ or IBM Techexplorer pages, and server-side programming in 
applications such as CGI, Perl, Java and ASP scripts. 
 
7.1 HTML PAGES WITH GIF IMAGES FOR EQUATIONS 
 
Because these web pages are HTML-based, mathematics can more easily be combined 
with other media such as movies, sounds, interactivity and data access. They do not 
require server-side support and there is no need for the installation of fonts, an important 
consideration for cross-platform browsing. 
 
The most important disadvantage is the fact that interaction with the mathematical content 
is limited, as the equations are posted as images. There is thus no difference between the 
mathematics obtained from the web and the mathematical content printed in a textbook. 
Second, printing such content is not of a high quality, as GIF images are more often low-
resolution screen images (Miner & Topping, 2001). 
 
7.2 Adobe Acrobat (PDF) 
 
PDF documents are effective for the online delivery of information that uses paper as the 
primary publishing medium. It delivers good quality formatting and printing that are faithful 
to the designer’s original intent. It does not require server-side support and if mathematical 
fonts are embedded into the document, the mathematics symbol display is guaranteed to 
work. 
 
Because the format is not HTML-based, PDF documents cannot easily be combined with 
other media such as movies, sound, interactivity and data access. The web browser 
merely hosts the PDF viewer application, which must integrate its own user interface with 
that of the browser. This integration can be cumbersome or confusing to the user and 
limits interaction. Changes made using the browser’s interface will have no effect on the 
PDF display (Miner & Topping, 2001). 
 
7.3 IBM Techexplorer PAGES 
 
Herewith mentioned are some advantages and disadvantages of constructing 
mathematical text by using the TeX language together with the Techexplorer plug-in. IBM 
Techexplorer pages are written by using the TeX language. This language is understood 
by many mathematicians and is easy to use, as it enables the user to construct 
mathematical text in a way that is similar to how it would have been written by hand. These 
pages do not require server-side support and can be printed with TeX quality. 
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To compile IBM Techexplorer pages, the Techexplorer plug-in is required. Unfortunately 
the plug-in is not free, except for its trial version that does not allow documents to be 
printed. Although Techexplorer does allow the inclusion of basic media formats, it cannot 
be combined with the full range of media available in HTML pages. Similar to the PDF 
Viewer, the web browser is merely a host to the viewer application, which must integrate 
its own user interface with that of the browser. This integration can once again confuse the 
user and limit interaction. Changes made by using the browser’s interface will have no 
effect on the display (Miner & Topping, 2001). 
 
7.4 HTML AND COMPONENTS SUCH AS DESIGN SCIENCE’S WebEQ OR IBM 

Techexplorer PAGES 
 
This section mentions some advantages and disadvantages of using ordinary HTML for 
text accompanied by other components for representing instances of mathematics. The 
fact that the document is HTML-based simplifies the integration with other web 
technologies. The implementation of Design Science’s WebEQ or IBM Techexplorer 
components supports quick interaction, as it takes place on the client’s side and does not 
require server-side support. Interaction is powerful, as generated scripts can be displayed 
on the fly. 
 
The interface of the HTML-page requires that the width and the height of each individual 
equation be known in advance. If the mathematics is generated through the component by 
means of scripting, this information is extremely difficult to obtain beforehand. 
Mathematical pages containing hundreds of individual equations can cause performance 
problems due to the inability of browsers to handle that many instances of components. 
Using components in conjunction with GIF images for non-interactive equations can 
minimise this problem (Miner & Topping, 2001). 
 
7.5 Server-side programming: CGI, PERL, JAVA and ASP SCRIPTS 
 
Server-side-programming produces pages that are similar to the ones described in the 
above section on HTML and components. Such programming can avoid image size 
problems and results in pages with the widest range of browser compatibility. The load on 
the client, that is the browser, is minimal because all scripts are executed on the server 
and scripting only needs to target the server platform and not all the browser platforms. 
Server-side-programming works well for accessing specialised software such as computer 
algebra systems. 
 
Server-side scripting is difficult to write and debug as the programming is done on a 
different computer as the one from which the browser operates. Furthermore, the scripting 
must serve multiple clients simultaneously and runs the risk of making a production server 
unstable. Unlike other solutions, the whole programming load is concentrated on the 
server.  
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User interaction furthermore requires a visit to the server, which makes interaction 
sluggish and unpredictable (Miner & Topping, 2001). 
 
The choice as to which of the above technologies should be implemented is once again 
determined by the availability of the specific technology to its user and by institutional 
policy. As each of the described technologies have advantages as well as disadvantages, 
no recommendations as to which is most applicable to the presentation of mathematics via 
the web, can be made. According to Miner and Topping (2001:4), however, “Each of the 
many technologies for putting math on the Web has its merits. However, in the long term 
there can be little doubt that, taken together, the collection of HTML-centric technologies 
that have taken shape through years of industry collaboration at the W3C [World Wide 
Web Consortium] represent [sic] the future of the Web”. This collection of web standards is 
called the HTML Platform. 
 
 
8. THE DYNAMIC MATHEMATICS OBJECT MODEL 
 
“Creating dynamic mathematical content for the Web is difficult” (Miner, 2002a: 1 of 6). 
The reason for this observation is simple: the authoring of static content does not involve 
difficult programming aspects that are inherent in the authoring of dynamic content. The 
situation is further exacerbated by the lack of an effective model for the programming of 
dynamic mathematical content (Miner, 2002a). Although a great number of technologies 
are available for placing mathematical text on the web, there is no single recommended 
model that can effectively be used by mathematics lecturers in all situations to place 
dynamic mathematical content on the web. All the information that has been provided so 
far with respect to the teaching of mathematics by means of the web and the 
implementation of corresponding technologies is now brought together by the introduction 
of the object model concept. 
 
A dynamic mathematics object model (DMOM) is a mathematics application-programming 
interface (API) that can be used to provide programmatic access to an extensible mark-up 
language and in doing so enable mathematics lecturers to place mathematical content on 
the web. DMOMs can roughly be divided into two categories. The first category contains 
DMOMs that primarily use the web as a delivery vehicle for information (Miner, 2002a). In 
this category the interactivity is confined to the rectangle of the plug-in, applet, or the 
control. LiveMath and MathWright are two commercial products that provide systems for 
authoring and displaying dynamic mathematics in web pages. Cinderella and Geometer’s 
Sketchpad are specialised dynamic mathematics authoring tools that can also publish to 
the web. Simulink from the MathWorks offers another kind of DMOM, emphasising visual 
programming. These simulations cannot be published to the web, however. 
 
 
 
 
 
 
 
 
 
 
 

 41



The second category of DMOMs contains mathematical web services (Miner, 2002a). 
Maplets, from Waterloo Maple, provide a client-side user interface for back-end services 
from a MapleNet server. Similarly WebMathematica from Wolfram Research provides the 
computation back-end for a server page model. J/Link technology provides a Java bridge 
for client-side user interface applications, whereas the Matlab web server from MathWorks 
offers a more traditional CGI-style solution. 
 
Unfortunately, most of these models in the second category of DMOMs emphasise server-
side computation (Miner, 2002a), while server-side computation is not what is needed for 
interactive, online mathematics education where lecturers are the ones posting the content 
onto the web. In addition, web interactivity is added as an extension to existing desktop 
software in all of the cases mentioned. But extensions and plug-ins become sluggish to 
work with and are therefore also not the ideal solution. 
 
“However, there are also a number of dynamic math object models implicit in the many 
excellent dynamic math web sites created over the last five years” (Miner, 2002a: 2 of 6). 
Two such models that are worth mentioning are Project LINKS and the ActiveMath Project. 
These sites provide an excellent guide to what the requirements for a dynamic 
mathematics object model (DMOM) should be. In the next section, requirements for such a 
DMOM are formulated. 
 
8.1 Formulating requirements for a dynamic Mathematics object model 
 
The formulation of requirements for a DMOM tailored for the World Wide Web can now 
commence. A list of five common dynamic mathematical tasks, that the model should be 
able to perform, is considered first of all (Miner, 2002a). The DMOM should: 
• be able to step a student or reader through a certain number of explanations to a 

given problem; 
• enable a student or reader to change parameters to observe the effect on a given 

equation; 
• enable a student or reader to manipulate equations to observe the effect; 
• be able to display typeset previews of encoded input, like graphs and tables; and 
• be able to obtain and check answers to online test questions. 
 
According to Robert Miner (2002a) from Design Science, Inc., four broad kinds of 
functionality on the side of the DMOM are involved in accomplishing such tasks as stated 
above. These functionalities are: 
 
• The manipulation of mathematical notation 
The DMOM should be able to modify an arbitrary equation in mathematically natural ways. 
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• Operations on mathematical expressions 
The DMOM should be able to check two expressions for equality, check an expression for 
a pattern match, evaluate and compute with expressions, and convert expressions into 
other formats such as images. 
 
• Working with mathematical-aware user interface widgets 
In this respect the DMOM should be able to display an equation in a browser that does not 
support native rendering capabilities. It should allow a student or reader to modify an 
existing equation in prescribed ways such as filling in the exponent or taking the root. It 
should be able to obtain and understand free-form equation input from a student or reader 
and should be able to display an interactive graph. 
 
• Managing interaction with students 
 
Expressions should be able to respond to mouse gestures and controls that are operated 
by the student. To initialise the mouse and the controls, they should be manipulated 
programmatically. 
 
In designing a dynamic mathematics object model the goal according to Miner (2002a) 
should be to make the performance of these four categories of tasks by the DMOM as 
easy and natural as possible within the existing web development paradigms. 
 
8.2 A dynamic mathematics object model from design science inc. 
 
At Design Science Inc. a Dynamic Mathematics Object Model proposal was made and a 
prototype implementation targeting Internet Explorer 6 was carried out. At the 2002 
<math>ml and Technologies for Mathematics on the Web International Conference, 
hosted by Wolfram Research, Robert Miner discussed the proposal and its prototype 
implementation, which will be referred to in this section. The fairly simple, Web-oriented 
DMOM is based on the requirement analysis of the preceding section and consists of three 
collections of objects: Equations, EquationControls, and MathServices (Miner, 2002a: 3 of 
6). 
 
The Equation object is in essence a wrapper or cover for a MathML expression and 
provides an interface for both the high and the low level manipulation of the mathematical 
expression that it represents. In particular, it provides a standard DOM interface for the 
arbitrary manipulation of its expression. It can also expose other higher-level interfaces for 
manipulating the expression it represents in more mathematically meaningful ways (Miner, 
2002a). 
 
MathService objects perform operations on Equation objects. Performing meaningful 
computations with mathematics expressions and equations is typically the most 
challenging part of developing dynamic mathematical content for the web. While some 
simple operations are appropriate for additional client-side implementation, in many cases, 
computations either require substantial libraries of client-side code, or are best performed 
on the server-side by specialised software. MathService objects provide a layer of 
abstraction so that mathematical content developers have a uniform interface that can be 
used on both the local and the remote computation service-sides (Miner, 2002a). 
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The EquationControl objects provide mathematics-aware user interface widgets that 
extend the native set of primarily text-oriented user interface widgets provided by HTML. 
There are, for example, ViewerControl, InputControl and GraphControl objects. Last, to 
manage the interaction with readers the EquationControl objects implement the DOM 
Event interfaces so that content developers can use standard Dynamic Hyper Text Mark-
up Language (DHTML) techniques for firing and handling events (Miner, 2002a). As stated 
at the beginning of this section, the dynamic object model prototype as described above 
was implemented by targeting Internet Explorer 6. 
 
Possible weaknesses of the DMOM can be noticed. The lack of cross-platform support 
and the reliance on Java are limitations. By using JavaScript proxy objects, some of the 
cross-platform and cross-technology details can be hidden, though (Miner, 2002a). A 
potential strength of the approach is that it lends itself to customisable template 
documents. Many authors who are not capable of creating elaborate dynamic 
mathematical content from scratch will be able to understand and customise template 
documents if they keep to standard, well-known web development techniques. 
Unfortunately it seems likely that even if such an approach was fully implemented, the 
prerequisite skill level for authors would remain relatively high. Robert Miner (2002a) 
considered two possible stumbling-blocks with respect to the implementation of the 
constructed DMOM. 
 
First, the DMOM developed by Design Science and described in this section relies heavily 
on the availability of MathML-aware browsers, browser extensions, stylesheets and 
JavaScript libraries. The worldwide deployment of these MathML-aware runtime 
environments to date has been hampered by the lack of quality content (Miner, 2002a). 
The problem could be addressed, though, by demanding formal standardisation in 
industry. 
 
Second, the question must be asked whether a viable authoring community would exist, 
even if all other issues could be resolved. Experience with the prototype suggested that a 
relatively high skill level would still be required of authors (Miner, 2002a). This obstacle 
might even be more crippling to the development of dynamic mathematical content on the 
web than any other technological obstacle discussed. 
 
 
9. CONCLUSION 
 
This paper has shown that a range of dynamic mathematics object models exists in 
addition to the many MathML-based programmes and technologies. Examples of such 
dynamic object models include LiveMath, MathWrite and Geometer’s Sketchpad, while 
examples of MathML-based programmes include MathType, MathPlayer, Maple and the 
WebEQ Developers’ Suite. All of these technologies can be used to accommodate 
mathematics on the web, to a certain extent. None of them, however, are completely 
adapted to mainstream web development techniques. 
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It was established that the implementation of a single, effective, widely shared underlying 
model (DMOM) for dynamic mathematics programming, was necessary. By studying 
existing dynamic object models and websites that use dynamic, interactive mathematics, 
the staff at Design Science could construct a basic set of requirements for a web-oriented 
DMOM. A relatively simple DMOM sufficed to satisfy a basic set of requirements and the 
prototype implementation suggested that such an object model could probably be 
adequately implemented for mainstream use, notwithstanding all the cross-platform 
issues. According to Robert Miner (2002: Personal interview), however, this DMOM was 
not yet ready at that stage to facilitate the successful transfer of new mathematical 
knowledge to undergraduate students via the World Wide Web. Even though a single 
dynamic object model for the successful transfer of mathematical knowledge does not yet 
exist, its absence should not prevent lecturers at higher education institutions from using 
computer technology in the presentation of mathematics via the World Wide Web. 
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