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DEVELOPMENT OF STREAMFLOW FORECASTING MODEL
USING ARTIFICIAL NEURAL NETWORK IN THE AWASH
RIVER BASIN, ETHIOPIA

D.C. EDOSSA AND M.S. BABEL
Abstract

Early indication of possible drought can help in developing suitable drought
mitigation strategies and measures in advance. Therefore, drought forecasting
plays an important role in the planning and management of water resource in
such circumstances. In this study, a non-linear streamflow forecasting model
was developed using Artificial Neural Network (ANN) modeling technique at the
Melka Sedi stream gauging station, Ethiopia, with adequate lead times. The
available data was divided into two independent sets using a split sampling tool
of the neural network software. The first data set was used for training and the
second data set, which is normally about one fourth of the total available data,
was used for testing the model. A one year data was set aside for validating the
ANN model. The streamflow predicted using the model on weekly time step
compared favorably with the measured streamflow data (R* = 75%) during the
validation period. Application of the model in assessing appropriate agricultural
water management strategies for a large-scale irrigation scheme in the Awash
River Basin, Ethiopia, has already been considered for publication in a referred
journal.

Keywords: Awash River Basin; ANN; streamflow forecasting; drought early
warning system; Ethiopia

1. INTRODUCTION

Knowledge of droughts has been an important aspect in the planning and
management of water resource systems. Reservoirs are often planned so that
they are able to meet the expected water demands during drought of a certain
magnitude and water supply systems are often evaluated to see whether they
will be able to withstand a T-year drought (Frick et al. 1990). In any case,
determining drought properties at a time and in space (or region) is an important
aspect of water planning and management activities. Drought analysis may be
made based on single site data (Yevjevich 1967; Dracup et al. 1980) and multi-
site data (Tase 1976; Santos et al. 1983; Guttman et al. 1992; Soule 1992),
depending on the specific purpose of the study at hand.

Traditionally, hydrologic variables of interest, such as annual and monthly
precipitation and streamflows, have been extensively modeled using linear
techniques, such as autoregressive moving average with exogenous inputs
(ARMAX) (Salas et al. 1985), Box-Jenkins multiplicative Seasonal
Autoregressive Integrated Moving Average (SARIMA) class of models
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(McKerchar and Delleur 1974; Panu et al. 1978; Cline 1981; and Govindasamy
1991) and also non-linear regression (Chang and Hwang 1999). These methods
have been generally accepted by practitioners during the past several decades.
However, they are based on the basic assumptions that data is stationary, and
has a limited ability to capture non-stationarities and non-linearities in hydrologic
data.

Itis necessary for hydrologists to consider alternative models when nonlinearity
and non-stationarity are important and play a significant role in the forecasting.
Artificial Neural Networks (ANN) have shown great ability in modeling and
forecasting nonlinear and non-stationary time series data in hydrology and water
resources engineering due to their innate nonlinear property and flexibility for
modeling (ASCE Task Committee 2000). ANN is a “computational paradigm
inspired by the parallelism of the brain”. The ANN is particularly valuable in
performing classification and pattern recognition functions for processes
governed by complex nonlinear interrelationships.

In the recent past years, the use of ANNs in hydrological modeling has been
rapid, such as rainfall estimation and forecasting (Hsu et al. 1999; Shin and Salas
2000; Luk et al. 2001; Kim and Valdes 2003), real-time reservoir operation
(Chang and Chang 2001) and streamflow forecasting (Atiya et al. 1999;
Sajikumar and Thandaveswara 1999; Govindaraju and Rao 2000; Chang and
Chen 2001; Chang et al. 2001; Kisi 2004; Kisi 2005; Wu et al. 2005; Jain et al.
2007).

The demonstration of a relatively strong relationship between precipitation and
El Nino-Southern Oscillation for many regions (Ropelewski and Halpert 1996)
has also aroused considerable interest and encouraged investigations of
possibilities of forecasting rainfall and perhaps alleviating some of the socially
undesirable effects of sudden and unexpected occurrences of extremes such as
floods and droughts. Many studies have reported an approach to predict drought
from atmospheric circulation patterns (Pesti et al. 1996; Pongracz et al. 1999;
Pongracz et al. 2003).

There have been notable droughts in Ethiopia throughout human history. In
particular, frequent droughts and floods are the key hazards to life in the Awash
River Basin in Ethiopia (Desalegn et al. 2009). Droughts entail loss of assets in
the form of crops, livestock, and other productive capitals as a result of water
shortages and related impacts. The existing coping strategy, in the country in
general and in the Awash River Basin in particular, is based on crisis
management (reactive approach) which may lead to untimely and costly short-
term solution rather than through the formulation and implementation of
anticipatory measures commonly referred to as risk management (proactive
approach). Edossa et al. (2006) reported that there is no drought early warning
system in the Awash River Basin.
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Moving from crisis to risk management will require the adoption of a new
paradigm by land and water managers, governments, international and regional
development organizations, and nongovernmental organizations. This
approach emphasizes preparedness, mitigation, and improved early warning
systems over emergency response and assistance measures. A typical reason
mentioned by decision makers for the lack of such drought planning and
management is the lack of means to forecast climate conditions with sufficient
skills and lead-time due to the randomness of drought events in both time and
space dimensions. Therefore, it goes without saying that drought forecasting in
the Awash River Basin is necessary in mitigating its impacts on various water
sectors and thereby on the livelihood of the basin community.

In this study, a streamflow forecasting model was developed using Artificial
Neural Network (ANN) technique at the headwork of a large irrigation scheme,
Middle Awash Agricultural Development Enterprise (MAADE) in the Awash River
Basin, Ethiopia. Applicability of the developed model in assessing appropriate
agricultural water management strategies to be adopted in the irrigation scheme
under drought conditions has been published (Edossa and Babel 2011).

2, MATERIALS AND METHODS

A three-layer neural network with back-propagation algorithm was applied to
develop a streamflow forecasting model for the Awash River at a point of
diversion for MAADE irrigation scheme. WinNN32 neural network shareware
(Danon 1997), one of the ANN software families, was used in this study.

Weekly time series of streamflow data (19872001) were used in order to develop
a long-term streamflow forecasting model, at least one season. The model was
trained using a 10 and half year data (1987 to 1996/97) and tested with the next
three and a half year data (1997-1999/2000). Finally, a one year data (2001)
were used to validate the model. The optimum weights obtained from the ANN
using the historical data were used to establish a non-linear autoregressive
model for the streamflow time series.

21. Design of ANN Architecture

There are no hard and fast rules governing the correct design of a neural
network. It goes without saying that more complex problems will require more
complex networks. However, when there are a large number of free parameters,
the network will be (a) slower to train and (b) more susceptible to over-fitting.
Important factors such as the number of inputs, the number of hidden units, and
the arrangement of these units into layers are often determined using 'trial and
error' experimental design procedures (Fischer & Gopal 1994) or fixed in
advance according to the subjective opinion of each individual designer
(Abrahart & Kneale 1997).
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Figure 1. ANN architecture used in the model development

A three-layer ANN, which is typically used in hydrology and water resources
engineering, was adopted in this study. It has input, output, and hidden (middle)
layers (Figure 1). Each neuron in a layer is connected to all the neurons of the
next layer, and the neurons in one layer are not connected among themselves.
All the neurons within a layer act synchronously. The number of neurons in the
input and output layers were fixed according to the number of input and output
variables, respectively. In order to determine the optimal network architecture,
the optimum number of neurons in the hidden layer was determined by
experimentation. Accordingly, the number of neurons in this layer was varied
between 1 and 7 (Ozgur 2004) during the training phase and the configuration
that gave the minimum RMSE (residual mean squared error) and the maximum
correlation was selected as the best net for modeling the streamflow.

In this modeling, the use of daily streamflow data was constrained by the
limitation imposed by the WinNN32 software with regard to the maximum
number of weights to be determined (180 in this case) vis-a-vis the period of
forecast. The total number of weights depends on the number of inputs to the
network. In this study, the neural network was made to model a streamflow
process of the following form:

0=10.)

Where: Qtis current streamflow, Qt-n is antecedent streamflow (at t-1, -2, ... t-n
time steps). Therefore, antecedent streamflows (Qt-1, Qt-2, Qt-3... etc) at
different lag times (t-1, t-2, t-3,...etc) were used as inputs to the network to
predict current streamflow, Qt, at time, t, on weekly time step. As a result, the
outputlayer had one neuron to estimate the current streamflow, Qt.
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2.2. Model development

A streamflow time series data at the point of diversion was used as input data to
the ANN to develop a non-linear streamflow forecasting model. After
preprocessing, the historical data were divided into three sets, one for training
and one for testing of the ANN model and the remaining set was set aside for
validating the model.

2.3. Pre-and post-processing of data

The output of the Logistic Activation Function (LAF), which was used in this
study, lies in the interval [0,1]; for this reason the original data need to be
transformed to the interval [0.05,0.95] before being presented to the network.
Each input and output values were normalized with their own specific
normalization factors as follows: suppose a and A are the minimum and
maximum values of the data series, respectively, then an actual flow value of Qt
was transformed to the interval [0.05,0.95] using the formula:

o 0900 —a
0 <0900, -a)
A—a
where, Qt = actual value; a = minimum value of Qt; A= maximum value of Qt; and
=transformed value.

After the best network was found, all the transformed data were retransformed
back to their original range by the equation:

0= (4—a)0, -005)
0.9

24, Training, testing and validation

The practice adopted in the training and testing was to divide the available data
into two independent sets using split sampling tool in the WinNN32 software.
The first data set was used for training and the second data set, which is normally
about one fourth of the total available data, was used for testing. Aone year data
was set aside for validating the ANN model.

During the training, the learning parameters such as Eta (n), Alpha (a), weight
noise, and temperature were set to their default values of 0.2, 0.5, 0, and 1,
respectively. Quickprop (Fahiman 1988), a modification of the backpropagation,
was used as training algorithm. It uses a second order weight-update function,
based on measurement of the error gradient at two successive points to
accelerate the convergence over simple first-order gradient descent.
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Quickprop is one of the earliest modifications designed to speedup
backpropagation.

The backpropagation (BP) method uses a set of input and output patterns. An
input pattern was used by the system to produce an output, O, which then was
compared with the target output, Q. The data passing through the connections
from one neuron to another were multiplied by weights that control the strength of
a passing signal, the product summed and then passed through a transfer
function to produce results. This summation of product is termed the net, N, and
must be calculated for each neuron in the network. Artificial neurons or nodes are
simple processing units which produce outputs as nonlinear functions of
weighted sums of the inputs to that node. Inputs were applied to the ANN from a
set of streamflow data created from the same time series at various lag times.
After net was calculated, an activation function was applied to modify it, thereby
producing the output signal, O. One of the most popular activation function used
in neural network studies (Blum 1992), which was also used in the present study
for the neurons in the hidden and output layers is the Logistic Activation Function
(LAF) or simply sigmoid function of the form:

1
Qam = f(an’r)_ m

where Qnet and Qout are neuron net input and output, respectively. The logistic
function has an S shape and its output ranges between 0 and 1. The use of such
LAF introduces non-linearity in the operation of the neural network thereby
underpinning and enhancing their ability to model non-linear processes.

If there is no difference between the net and target outputs, then no learning
takes place and the signal emanating from the output node is the network's
solution to the input problem. Otherwise, the weights are changed while moving
backward through the network to reduce the difference. When these weights are
modified, the data transferred through the network changes; consequently, the
network output also changes. The objective is to minimize the overall network
error E for all input patterns in the training set. The error of pattern p for a network
having a single output variable was compared as follows:

E, :%Z(Qf _O")Z

where the summation is for all patterns. The backpropagation method tries to
minimize this error by adjusting the weights in an iterative process.
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25 Model performance

Accuracy of models can be evaluated by plotting line graphs that show the actual
data versus the values predicted by the models. However, the five more formal
quantitative measures of accuracy of time series modeling techniques include:
the mean absolute deviation (MAD), the mean absolute percent error (MAPE),
the mean square error (MSE), and the root mean square error (RMSE)
(Rogsdale 2001) and the efficiency index (El). These indices measure the
differences between the actual values in the time series and the predicted, or
fitted, values generated by the model. In this study, two methods were used to
check performance of the developed model: plots of line graphs and RMSE.

3. RESULTS AND DISCUSSION
3.1 ANN Architecture

The selection of number of inputs is one of the critical issues in ANN-based
streamflow forecasting model, since it provides the important information about
the complex autocorrelation structure in the data. Too many or too few inputs can
affect both the network training and forecast capability of the model. Therefore, it
is important to monitor the performance measures of both the training and testing
sets during the modeling process to avoid overtraining of the network. A network
is considered to be over-trained when the training error keeps reducing while the
error over the testing setis getting increased.

Figure 2 shows the change in the performance of the model (RMSE) with change
in the number of inputs. Different combinations of number of nodes in the input
and hidden layers were evaluated and an ANN architecture with 40 and 4 nodes
in the input and output layers, respectively, was found to give reasonably
minimum RMSE. Therefore, in order to forecast streamflow into the future with a
reasonable lead time (one season), the 40-4-1 ANN architecture was selected in
this modeling where 40, 4 and 1 are indicating the number of nodes (neurons) in
the input, hidden and output layers, respectively. It can be noted that RMSE of
the training set decreases whereas that of the testing set shows irregular
patterns (neither increases nor decreases) with an increase in the number of
inputs.
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3.2 Streamflow Forecasting Model

Figures 3, 4, and 5 show plots of measured and predicted time series data of
streamflow for the training, testing and validation sets, respectively at the Melka
Sedi stream gauging station. These results show that the proposed model tends
tofitthe datain the low flows range fairly well in all the three data sets. However, it
tends to underestimate the peak flows in all of the three data sets.
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Figure 3. Forecasted and observed streamflow at the Melka Sedi stream
gauging station during training stage
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Figure 4. Forecasted and observed streamflow at the Melka Sedi stream
gauging station during testing stage
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Figure 5. Forecasted and observed streamflow at the Melka Sedi stream
gauging station during validation stage

Table 1 shows performance measures of the proposed model. The model
produced the smallest RMSE during the training set and the largest RMSE
during the testing set while the validation set produced intermediate RMSE
value. The correlation value is worse during the testing than during training, as is
expected. Again the model produced an intermediate correlation value during
validation period.
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The model efficiency index shows that there is fairly good agreement between
the measured and predicted values over the entire range of recorded data.
Table 1 Configuration and performance measures of the ANN model

ltemiparameter Value
Medel archilecture 40-4-1
Efficiency Index 0.70
RMSE (m™/s)
=Enfire data set 27.38
=Training set 16.65
=Testing sct 46.63
=Validation Z
Correlation
—=FEntire data set 0.84
=Training set 0.93
=Testing set 0.70
—Validation 0.88
Target error 0.05
Input noise 0.03

Figure 6 shows plot of measured versus predicted flows at the stream gauging
station over the entire data set. To get an overview of the deviation between the
measured and predicted flows, a 1:1 line was superimposed on the plot.
Minimum deviation is observed in the region below 50 m°/s and increases with
the flow magnitude suggesting that the model performs better in the low flow
regions. Therefore, the model performance is justified with respect to the task for
which itwas developed drought planning and management.
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Figure 6. Measured versus ANN predicted flows for long-term forecasting
at the Melka Sedi stream gauging station

3.3 Forecasting results

The proposed model was used to forecast the streamflow 40-weeks ahead into
the future at the Melka Sedi stream gauging station which might be used for
analyzing and assessing appropriate water management practices to be
implemented in the area. Figure 7 shows plot of measured and forecasted
streamflows during the forecasting period. The figure shows that the forecasted
streamflows follow similar general patterns with the measured streamflow data
during the forecasting period with a correlation value of 0.78.
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Figure 7. Measured and forecasted flows at the Melka Sedi stream gauging
station

20



4. SUMMARY AND CONCLUSION

A non-linear long-term streamflow forecasting model was developed for the
Melka Sedi stream gauging station using three-layer back-propagation neural
network algorithm. The model was validated using a one year streamflow data
which were not used in the model development. Finally, streamflow time series is
forecasted with sufficient lead time using the developed model for planning
drought mitigation strategies. This study found that on the basis of the developed
long-term streamflow forecasting model, there is an opportunity of developing a
drought watch system for mitigating impacts of droughts in a large-scale
irrigation scheme supplied by water from Awash River through a diversion canal.
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