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SUMMARY 

In the industry, automation is used to optimize production, improve product 

quality and increase profitability. By properly implementing automation systems, 

the risk of injury to workers can be minimized.  

Robots are used in many low-level tasks to perform repetitive, undesirable or 

dangerous work. Robots can perform a task with higher precision and accuracy to 

lower errors and waste of material. 

Machine Vision makes use of cameras, lighting and software to do visual 

inspections that a human would normally do. Machine Vision is useful in 

application where repeatability, high speed and accuracy are important. 

This study concentrates on the development of a dedicated robot vision system to 

automatically place components exiting from a conveyor system onto Automatic 

Guided Vehicles (AGV).   

A personal computer (PC) controls the automated system. Software modules 

were developed to do image processing for the Machine Vision system as well as 

software to control a Cartesian robot. These modules were integrated to work in a 

real-time system. 

The vision system is used to determine the parts‟ position and orientation. The 

orientation data are used to rotate a gripper and the position data are used by the 

Cartesian robot to position the gripper over the part. 

Hardware for the control of the gripper, pneumatics and safety systems were 

developed. The automated system‟s hardware was integrated by the use of the 

different communication protocols, namely DeviceNet (Cartesian robot), RS-232 

(gripper) and Firewire (camera). 
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OPSOMMING 

In die industrie word outomatisering gebruik vir optimale produksie, verbeterde 

produkkwaliteit en om wins verhoog. Deur outomatiseringstelsels reg te 

implementeer, word die risiko van beserings aan diens geminimaliseer. 

Robotte word gebruik vir laervlak take soos om herhaalde, ongewensde of 

gevaarlike prosedures te volg. Robotte kan take meer presies en akkuraat uitvoer 

met minder foute en vermorsing van materiaal. 

Masjienvisie maak gebruik van kameras, beligting en sagteware om visuele 

inspeksies te doen wat normaalweg deur ŉ mens gedoen word. Masjienvisie 

word gebruik vir inspeksies waar herhaalbaarheid, hoë spoed en akkuraatheid 

belangrik is. 

Die studie konsentreer op die ontwikkeling van ŉ toegewyde robotvisie stelsel om 

komponente outomaties van ŉ vervoerband na ŉ “Automatic Guided Vihicle” oor 

te plaas. 

ŉ Persoonlike rekenaar word gebruik vir die beheer van die outomatiese stelsel. 

Sagteware modules is ontwerp vir die beeldverwerking van die masjienvisie 

stelsel asook om die „Cartesiese‟ robot te beheer. Die modules is geïntegreer om 

in reële tyd te werk. 

Die visie stelsel word gebruik om die onderdele se posisie en oriëntasie te 

bepaal. Die oriëntasie data word gebruik om ŉ robothand te draai en die posisie 

data word deur die „Cartesiese‟ robot gebruik om die robothand oor die onderdeel 

te posisioneer. 

Hardeware is vir die beheer van die robothand, pneumatika en veiligheidsstelsels 

ontwikkel. Die outomatiese stelsel se hardeware is geïntegreer deur die gebruik 

van verskillende kommunikasieprotokolle, naamlik DeviceNet („Cartesiese‟ robot), 

RS-232 (robothand) en Firewire (kamera). 
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Chapter 1: Introduction 

 

1.1 Overview 

To succeed in the competitive global marketplace of today, it is vital for an 

organisation to optimise its operational costs [1]. Organisations need to find new 

ways to design, manufacture and deliver quality products. At the same time, 

quality improves reliability - which translates to fewer warranty claims and 

increased customer satisfaction. Process improvements can decrease waste, 

improve workflow and enhance workplace safety, all contributing to the 

profitability of an organisation [2]. 

Automation is the use of machines, control systems and information technologies 

in the production of goods and the delivery of service to optimize productivity [3]. 

In the industry, the incentive for applying automation is to increase production 

with improved quality at a lower price without the risk of injury to workers [4].  

Robots are programmable, electro-mechanical machines designed to perform 

specific tasks, such as moving, holding, placing or transferring parts or sub-

assemblies along a specified assembly line. Robots are suitable for continuous, 

repetitive and monotonous tasks. They can be used to perform tasks involving 

undesirable, dangerous or work requiring heavy physical effort or that which a 

human is unable to perform [5][6]. 

Human vision and response can be slow and are vulnerable to errors due to 

boredom, fatigue or other circumstances. Some human inspections are time-

consuming and then selective sampling is used for part assurance. Processes 

where only some parts are checked have the potential to produce errors with 

some irregular parts passing through the system. Replacing human inspection 

with Machine Vision can drastically reduce these kinds of errors. 

Machine vision inspections and measurements of specified criteria may be 

performed tirelessly at high speed and with high accuracy [7]. Machine Vision 

applications include visual quality control, measuring, recognition, sorting and 
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robot guidance. In quality inspection a pass/fail output can be used and for robot 

guidance the parts‟ position and orientation will be used. 

By integrating the results of the Machine Vision inspection with a robotic system, 

the inspection and handling of the parts can be intelligently automated in the 

manufacturing or production environment. By the correct implementation, the 

production will be able to continuously achieve higher speed, accuracy and 

reliability. 

One could think of the automation process as the replacement of a human‟s 

functions. The eyes can be replaced by Machine Vision to gain information of the 

environment. The brain can be replaced by a controller to make decisions from 

the captured data in order for the robot to perform the physical movement and 

handling. 

A robot with vision capabilities can be taught to find and place components on an 

assembly line. The vision camera can either be fixed or mounted on the robot 

arm, which allows a greater degree of reconfigurability of the vision system [8]. 

 

1.2 Problem statement 

During the late 1970s and early 1980s, many United States companies lost 

significant market share, due to foreign competition - particularly from Japan. In 

1980 Detroit`s share of the U.S. automotive market was 71.3 percent and by 

1991 declined to 62.5 percent. One third of the world‟s demand is now supplied 

by Japan. Steel, electronics and other industries faced similar losses in market 

share [9]. 

Automation technology has had a tremendous impact on industries all over the 

world. To produce high quality products at high speed, manufacturing plants 

need to be extremely effective. Therefore, quality control must be done at high 

speed with low error rate. Automation systems must be able to run consistently 

and continuously. 

Traditional automation systems are usually built around a single part or a small 

family of products that can run on the same production line [10]. If the component 
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is changed, a number of changes must be made to the mechanical setup of the 

system. Mostly new fixtures, feeders and positioning guides are required with 

time-consuming setup procedures.  

Machine Vision, using cameras and specialised programs, can replace or even 

improve on human vision where precise and repeatable visual measurements 

and inspections are required [8]. A Machine Vision system can identify parts, 

determine the parts‟ spatial properties and perform quality inspections all while 

the component is on a conveyor.  

By integrating Machine Vision with a robot, the parts‟ position and orientation can 

be used by the robot to pick the part and place it at a required destination. This 

can be performed on a 24-hour basis while increasing production quality and 

speed. 

 

1.3 Aim of study 

The Research Group in Evolvable Manufacturing Systems (RGEMS) has 

launched a number of projects at the School of Electrical and Computer Systems 

Engineering at the Central University of Technology, Free State. RGEMS is 

developing high levels of technological expertise with respect to the design and 

development, commissioning and maintenance of automated production lines 

and subsystems [11].  

A research platform is being developed by means of which staff and students can 

develop research skills. The different researchers‟ projects are integrated into the 

system to function as a workable, automated component handling process. The 

project began with a conveyor system as the central component. 

This study will concentrate on the development of a dedicated robot vision 

system to automatically place components, exiting from the conveyor system, 

onto Automatic Guided Vehicles (AGV).  The project will consist of the integration 

of the following components: 

• Machine vision system 

• Cartesian robot 
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• Gripper 

• Computer with dedicated software. 

The Machine Vision system will detect a part, compare the part with predefined 

size for quality control and determine the part‟s position and orientation. 

Illumination plays a major role in capturing high quality images. The illumination 

will be designed to be unobtrusive to the robot and other handling mechanisms, 

but with adequate illumination of the part. 

The Cartesian robot will be used to move the camera to capture optimal images 

of the part under inspection and will use the resulting Machine Vision data to 

move the gripper to pick the part up and move it to a required destination. 

The gripper will be able to rotate to the best angle (as determined by Machine 

Vision) to pick up the part. The gripper must be able to grip the part with enough 

force so that the part will stay in the claws while it is being transported. 

A personal computer (PC) will be used as the controller for the system. Readily 

available interfacing devices will be used to ensure easy maintenance. The 

software will be designed in an easy-to-understand manner that is fast and 

consistent. 

 

1.4 Hypothetical resolutions 

On completion of the study, the robot vision system must be able to do the 

following automatically: 

• Detect a component on the conveyor belt. 

• Determine the position and orientation of the part. 

• Move the gripper to a position where the gripper will be able to grasp the 

part. 

• Rotate the gripper and grasp the part. 

• Move the component to the desired destination. 
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1.5 Research Method 

The system was divided into subsystems with modules developed in LabVIEW to 

do image processing for the Machine Vision system, control the Cartesian robot 

and to control the gripper. These modules were integrated in one LabVIEW 

program to work in a real-time system. 

 

1.5.1 Machine Vision system 

The development of a software module in LabVIEW to perform machine vision is 

an important part of this study and required a lot of attention. The resulting data 

from this module is used to control the system. 

The Machine Vision system detects parts on the conveyor and determines the 

part‟s position and orientation.  

The orientation data is used to rotate the gripper and the position data is used by 

the Cartesian robot to position the gripper over the part. 

 

1.5.2 Cartesian robot 

In this system, a three-axes Cartesian robot with intelligent motor-drive 

controllers for each axis is used. By means of the drive controller, the position of 

the axis is controlled. Communication between the personal computer (PC) and 

the drive controllers is achieved by a Devicenet interface.  

Different methods to control the axis of the robot will be investigated and tested 

to find the optimum method for incorporating the robot in the system. The best 

travelling path for the Cartesian robot to move the parts from the conveyor belt to 

the appropriate AGV inspection bay is determined by moving the robot through 

the path and recording the coordinates at regular intervals. This is done for the 

different paths and stored in the program memory. Depending on the action that 

needs to be performed by the robot, a specific path program will be selected and 

executed. 
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1.5.3 Gripper 

The gripper used in this system consists of a pneumatic cylinder with two fingers. 

It has two states; open and close.  

A rotator system for the gripper and the control thereof was developed and 

implemented. The computer software was written in LabVIEW in such a way that 

it can easily be implemented with other modules. 

 

1.5.4 Personal computer as controller 

A Devicenet interface card from National Instruments is installed in the computer 

to enable communication on the Devicenet bus. A data acquisitioning card is 

used to allow sensing and switching of sensors and control gear. Firewire is used 

for interfacing of the Machine Vision camera. RS232 is used to communicate to 

the rotator`s control circuit. LabVIEW modules are integrated into one program to 

use the PC as the system controller. 

 

1.5.5 Safety system 

The safety aspects considered are emergency stops, light curtains, a safety mat 

and braking during power failure and malfunction. 

 

1.6 Structure of chapters 

Chapter 2 is a literature review of the products and techniques that can be 

applied in the system. This includes transport systems, robots, computer vision, 

illumination and LabVIEW as software platform and safety systems. 

Chapter 3 gives a system overview and then discusses the actual products used 

in the system and the design of other required products.  
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Chapter 4 discusses the steps needed for the system to perform as an 

automated robot vision component handling system. The design and 

implementation of the different parts of the system are discussed.  

Chapter 5 gives the results, challenges, and adjustments or changes that were 

made to ensure the system functions properly.  

Chapter 6 provides a conclusion of the system`s results, contributions and 

suggestions for future work. 
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Chapter 2: Literature review 

Introduction 

In this chapter, an overview of the components and technologies that are used 

for material handling is presented. The focus will be on components relevant to 

this study because automation, robotics and Machine Vision have so many 

applications and variations.  

Topics covered in this chapter are transport systems, robots, sensors, imaging 

systems, computer vision, Machine Vision, illumination, camera standards, a 

software platform, safety systems and technologies currently used in component 

handling. 

 

2.1 Transport systems 

2.1.1 Conveyors 

Conveyors are used to transport items to positions where it can be sorted or 

stored. Some conveyor configurations are the loop sorter and the line sorter. 

When a product is put on the loop sorter, the product will circulate endlessly on 

the system until the product is moved to the correct destination. An example of 

the loop sorter is a conveyor system found in the passenger baggage pickup 

area at airports, as shown in Figure 2.1. When a product is placed on the 

beginning of the line sorter it will either be moved from the system to be sorted or 

it will travel on the conveyor to the exit point. The loop sorter takes up more floor 

space with higher capacities. 

 



9 
 

 

Figure 2.1 Loop conveyor used in airport for baggage collection [12] 

 

 

Figure 2.2 Tilt tray loop sorter [13] 

Shown in Figure 2.2 is a loop sorter using tilt trays to sort items. The sorter 

makes use of a fully electronic tilt mechanism, which allows the trays to be tilted 

to a maximum of 45 degrees to discharge the transported item. This is a high-

speed, high-throughput sorter and the trays are banked through curves to 

counter centrifugal forces of the transported items [13]. 
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2.1.2 Automatic Guided Vehicles 

An Automated Guided Vehicle or Automatic Guided Vehicle (AGV) is a mobile 

robot that follows markers or wires in the floor. Some can also work with vision or 

lasers to get the packing and moving of products done. They are most often used 

in industrial applications to move heavy materials around a manufacturing facility 

or a warehouse [14]. 

 

Figure 2.3 Forked Automatic Guided Vehicles [15] 

The Forked AGV as shown in Figure 2.3 has the ability to handle heavy, big, 

round and all other types of products or loads such as pallets, carts, trays, racks 

and rolls. They are extremely popular because of their versatility and flexibility 

and can work with many types of equipment such as conveyors, racking and 

stands in addition to floor "pickups" and "drops". This makes the Forked AGV an 

excellent solution for applications where changes to the facility are expected 

during the lifetime of the AGV system [15]. 

 

2.2 Robots 

The Encyclopaedia Britannica defines a robot as any automatically operated 

machine that replaces human effort, though it may not resemble human beings in 

appearance or perform functions in a humanlike manner [16]. 



11 
 

Robots are used to perform tasks that humans could find difficult to do; tasks that 

are boring - such as domestic cleaning; or dangerous operations like exploring 

the inside of a volcano or kilometres under the sea. Other tasks include those 

that are physically inaccessible for humans, such as exploring another planet - 

which could be hard for humans to reach. Medically, robots can help doctors 

save dozens of lives by being used in surgeries such as heart transplants or 

performing laparoscopic surgery [17]. 

Typical applications of robots include welding, painting, cutting, assembly, 

handling, sorting, packaging, palletizing, product inspection and testing. Robots 

can accomplish all the above with high endurance, speed and precision - often at 

a lower cost than human labour [18][19][20]. In Figure 2.4 a robot is used for 

metal die casting in a foundry. 

 

 

Figure 2.4 A Pick and Place robot in a factory [17] 

Typical fields where robots are used in healthcare are during surgery, as pointed 

out above, or more personally in assisting individuals. Robots can also help in the 

metal industry with aspects mentioned above, including welding, moving heavy 

objects and assembling. Military robots are used in ground-based combat and 

unmanned combat air vehicles. In mining, due to the hazardous surroundings, 

autonomous, semi-autonomous and tele-operated robots are used. 
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2.2.1 Robotic arm 

The design of a robotic arm is similar to a human arm. The robotic arm is made 

up of linkages connected together, each controlled by a stepper motor. The 

stepper motors are controlled by drives, which in turn are controlled by a 

programmable controller.  

 

Figure 2.5 Robots in the automotive supply industry [21] 

Robots, as shown in Figure 2.5, are playing a huge role in the automation of the 

car industry. These days, 75% of a car is manufactured by the component 

industry.  From tires to windows, engine blocks to fuel lines, and steering wheels 

to plastic trim, whatever the component, the use of robots pays for itself. The 

reasons companies use robots in cases such as these include their flexible 

applications and user-friendly control technology. They are maintenance-free and 

reliable, even under extreme conditions, where humans would usually fail to 

complete a project. Robots carry a low investment cost and have utmost 

processing flexibility; this enables them to make the industry efficient and thus fit 

for the future [21]. 
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2.2.2 Cartesian coordinate robot 

A Cartesian coordinate robot, or linear robot, is an industrial robot whose three 

principal axes of control are linear (i.e. they move in a straight line rather than 

rotate) and are at right angles to each other [22]. 

Typical applications of the Cartesian robot are handling systems, packaging 

machines, mounting systems, printing machines, machine tools and circuit board 

plotters [23]. 

 

Figure 2.6 Circuit board plotter [24] 

The plotter as shown in Figure 2.6 is used at the CUT by Project Design students 

to manufacture prototype circuit boards. Through the use of this unit, a student 

can easily mill and drill single-sided or double-sided circuit boards.  

The unit makes use of a 10-position tool changer that automatically changes 

milling and drilling tools while the board is being produced. The spindle is 

positioned by a three-axis system with the Z-axis movement done by a moving 

machine table; the X-axis and Y-axis movement are achieved by linear drives. 
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Figure 2.7 A three-axis Cartesian robot moving accelerometers for testing [25] 

Figure 2.7 is a photo of a three-axis Cartesian robot with dual-function, end-of-

arm tooling for moving accelerometers from waffle packs to and from the testing 

nests [25]. 

Prof. Harry H. Asada uses a gantry robot in a hands-on course where students 

design, build and test their own robots in a undergraduate programme at the 

Massachusetts Institute of Technology. He found LabVIEW, as the software 

platform, easy for the students to use and it provides an intuitive programming 

approach for robotic system [26]. 

 

Figure 2.8. Circuit breaker welding system [27] 

A circuit breaker welding system is shown in Figure 2.8 and has the potential to 

cut production time, increase throughput and improve quality and profits [27]. 
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2.2.3 Robot end effector 

The device at the end of a robotic arm which interacts with the work environment 

is called an end effector. The design of the device depends on the application of 

the robot. The end effector may consist of a gripper or a tool. The tools can be for 

spot welding, spray painting or other applications where the working conditions 

can be dangerous for humans [28]. 

Grippers are used to pick up objects for transfer to a location to place the object. 

The number of fingers and gripping surface of a gripper is determined by the 

shape of the object that needs to be moved. 

There are numerous forces acting on the body of the object being moved by a 

robot. The main force is frictional force. The grip force must be adequate to 

secure the object and to withstand acceleration and motion forces during 

movement. 

 

Figure 2.9 End effector [29] 

 

Figure 2.10 End effector [29] 
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The end effectors shown in Figure 2.9 and 2.10 can be used for palletizing and 

material handling. 

 

2.3 Sensors 

A sensor is used to measure a physical quantity and convert it into an electrical 

signal. In material handling, a sensor is used to give indications of the 

environment the system is operating in. 

Table 2.1 is a comparison of different sensor technologies and table 2.2 lists the 

type of material the technology can sense. 

 

Table 2.1 Sensor technologies [30] 

Sensor Advantages Disadvantages Applications 
Electromechanical 

limit switch 

• High current 

capability 

• Low cost 

• Familiar "low-

tech" sensing 

• Requires 

physical contact 

with target 

• Very slow 

response 

• Contact bounce 

• Interlocking 

• Basic end-of-

travel sensing 

Linear 

potentiometer 

• Simplicity 

• Low cost 

• Finite lifetime •Solenoid 

positioning 

• Valve positioning 

LVDT • Excellent 

linearity 

• Wear free 

• High resolution 

• Signal 

conditioning 

• Machine tools 

• Servomechanism 

Hall effect sensor • Cost effective 

• Contactless 

• Signal 

conditioning 

• Pneumatic 

cylinders 

• Tachometers 

• Anti-lock braking 

systems 
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Inductive • Resistant to 

harsh 

environments 

• Very predictable 

• Long life 

• Easy to install 

• Distance 

limitations 

•Industrial and 

machines 

• Machine tool 

• Senses metal-

only targets 

Capacitive • Detects through 

some containers 

• Can detect non-

metallic targets 

• Very sensitive to 

extreme 

environmental 

changes 

• Level sensing 

Ultrasonic • Senses all 

materials 

• Resolution 

• Repeatability 

• Sensitive to 

temperature 

changes 

• Anti-collision 

• Doors 

• Web brake 

• Level control 

Photoelectric • Senses all kinds 

of materials 

• Long life 

• Longest sensing 

range 

• Very fast 

response time 

• Lens subject to 

contamination 

• Sensing range 

affected by 

colour and 

reflectivity of 

target 

• Packaging 

• Material handling 

• Parts detection 

 

Table 2.2 Comparison of technology and the detectable material [30] 

Sensor type Objects detected Technology 

Inductive Metal Electromagnetic field 

Capacitive Any Electrostatic field 

Ultrasonic Any Sound waves 

Photoelectric Any Light 
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2.3.1 Proximity sensors 

An object being sensed by a proximity sensor is mostly referred to as “the target”. 

Different types of proximity sensors are shown in Figure 2.11. A proximity sensor 

is able to detect the presence of nearby targets without physical contact. 

 

Figure 2.11 Proximity sensors [30] 

The operation principle of a proximity sensor is to emit a signal and to measure 

the changes in the return signal. Different target materials require different 

sensing technologies to be used by proximity sensors. A photoelectric or 

capacitive sensor might be more suitable for a plastic target where as an 

inductive proximity sensor only senses metal targets [31]. 

 

2.3.2 Rotary encoder 

A rotary encoder, also called a shaft encoder, is an electro-mechanical device 

that converts the angular position or motion of a shaft or axle to an analog or 

digital code. The information about the motion of the shaft is typically processed 

elsewhere into information such as distance, position and speed. Figure 2.12 is 

an example of a typical rotary encoder. 

Two types of rotary encoders are available, namely: absolute and incremental 

encoders.  

An absolute encoder indicates the current position of the shaft. This information 

is maintained when the power is removed and is immediately available when 

power is applied. 
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A controlling system, using an incremental encoder, will normally move to a 

home position to initialize the position measurement. The incremental encoder 

indicates the movement of the shaft and by processing the current position is 

determined. During a power failure or failure of the processing data, the position 

of the incremental encoder system is not guaranteed [32]. 

An absolute encoder was chosen for the orientation unit because it always gives 

the current position of the shaft. 

 

Figure 2.12 Rotary encoder [31] 

 

2.4 Imaging systems 

Figure 2.13 illustrates the five factors of an imaging system, which are resolution, 

field of view, working distance, depth of field and sensor size [33] [34]. 

1. Resolution – Imaging system's ability to distinguish object detail [34]. 

2. Field of view – The portion of the object under inspection that the camera can 

acquire. 

3. Working distance – The distance form the object under inspection to the front 

of the lens. 

4. Sensor size – Typically defined by the horizontal area of the camera sensor‟s 

active area. 

5. Depth of field – The distance between the nearest and furthest objects where 

the objects are in focus. 

Figure 2.13 also shows a representation of the image captured by the camera 

and illustrates the most important features of an image. 
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6. Image – Image of object captured by camera. 

7. Pixel – The smallest element in an image. 

8. Pixel resolution – The minimum number of pixels to represent the objet. 

 

 

Figure 2.13 The fundamental parameters of an imaging system [34] 
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2.4.1 Computer vision 

Computer vision covers the core technology of automated image analysis to 

provide automated inspection and robot guidance in industrial applications [36]. 

In a high-speed, detailed, repetitive manufacturing process, computer vision is 

more cost-effective and reliable than human intervention. Examples are in the 

manufacturing of semiconductors, medical, pharmaceutical, and computer 

products [37]. 

Consumer products such as cellular phones, disk drives, components, pagers, 

monitors and printers must pass quality standard tests required by ISO 9001. 

Vision systems can be used to identify and record fault conditions [37]. 

 

2.4.2 Machine Vision 

Machine Vision (MV) is the process of applying a range of technologies and 

methods to provide imaging-based automatic inspection, process control and 

robot guidance in industrial applications [38]. 

The primary uses for Machine Vision are automatic inspection and robot 

guidance [38]. Common Machine Vision applications include sorting, robot 

guidance, material handling, optical gauging and quality checks. 

Machine Vision can be used to solve common tasks such as completeness 

checking, dimensional and shape inspection, surface inspection, position 

detection and object identification [39]. 

Solving a Machine Vision problem can be divided into five steps [40]: 

 Image acquisition - Illumination, optics, techniques and camera 

 Image processing - Shading correction, filters, contrast and brightness 

 Image segmentation – Threshold and edge detection 

 Feature extraction - Centre of gravity, perimeter and area 

 Image classification - Fuzzy classification, neural networks and statistical 

classifications. 
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2.4.3 Image processing methods 

After an image is captured, image processing methods are used to enhance 

required features. These features are then used in the measurement of a object 

to determine the physical properties of the object under inspection. Typical 

methods used are given hereafter. 

 

2.4.3.1 Thresholding 

This is a process that is used to isolate an object in an image; thresholding 

converts the image from a greyscale image, with pixel values ranging from 0 – 

255 to an image with pixel values of 0 – 1 (or a binary image). This process sets 

all grey-levels outside the threshold interval to a 1 and all the other values in the 

picture to 0 [17]. 

 

2.4.3.2 Binary Morphology 

The resulting image of the thresholding function may contain unwanted noise 

particles like particles touching each other or the border of the image. By 

applying a binary morphology function these unwanted particles can be removed 

to improve the image information. 

 

2.4.3.3 Gauging 

Gauging is used to make precise measurements of products; for example, it‟s 

length, angle and diameter to determine if a product was manufactured correctly. 

Gauging can also count products and can be used in in-line and off-line 

production. 
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2.4.3.3.1 In-Line Gauging Applications 

In-line inspection is mostly used in container inspection, electronic packaging and 

mechanical assembly. This is very accurate as each component is inspected as it 

is manufactured. 

 

2.4.3.3.2 Off-line Gauging Applications 

These gauging applications are used to measure the quality of products off line. 

A sample of a product is extracted from the assembly line and measurements are 

made to ensure the sample is within an acceptable tolerance limit [37]. 

 

2.4.3.4 Detection 

A detection application is used to determine if an object is present in a certain 

area or not.  

 

2.4.3.5 Edge detection 

Edge detection is a fundamental tool in Machine Vision, computer vision and 

image processing to determine the object‟s spatial measurements. Edge 

detection identifies sharp changes in the image brightness to do feature 

extraction and feature detection to be used for alignment, gauging and detection 

[41]. 

 

2.4.3.6 Alignment 

Alignment determines the position and orientation of a part. In many Machine 

Vision applications, the object that one wants to inspect may be at different 

locations in the image. Edge detection finds the location of the object in the 

image before one performs the inspection, so that one can inspect only the 
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regions of interest. The position and orientation of the part can also be used to 

provide feedback information to a positioning device [42]. 

 

2.4.3.7 Pattern Matching 

Pattern matching quickly locates regions of a grayscale image that match a 

known reference pattern, also referred to as a model or template [42]. 

 

2.5 Illumination 

The specification of the image acquisition subsystem entails the proper design 

and/or selection of lighting sources, sensors and supporting optics and their 

positioning with respect to the objects being imaged [41]. The goal of the imaging 

subsystem is to acquire an image with high contrast between background (noise) 

information and any object features (signal) required to perform the task [41].  

Illumination is the most critical aspect of any Machine Vision application. It is a 

serious and costly mistake to assume that inadequate lighting can be 

compensated for in an algorithm. In fact, the desired image quality can typically 

be met by improving the illumination scheme of the system, rather than investing 

in higher resolution detectors, imaging lenses, and software [38]. 

The presence of ambient light input can have a tremendous impact on the quality 

and consistency of inspections, particularly when using a multi-spectral source, 

such as white light [44].  

The goal of illumination in Machine Vision is to make the important features of the 

object visible and suppress undesired features of the object [39]. 

Common light sources are fluorescent tubes, halogen and xenon lamps, light 

emitting diodes (LEDs) and lasers [45]. 
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2.5.1 Illumination techniques 

Illumination techniques comprise of the following [44]: 

• Backlighting 

• Diffuse lighting (also known as full bright field) 

• Bright field (actually partial bright field or directional) 

• Dark field 

 

 

Figure 2.14 Backlighting [44] 

Backlighting, as shown in Figure 2.14, is a method commonly used to determine 

object placement, orientation and to measure dimensions. The camera and light 

source are placed on different sides of the object generating a good contrast with 

dark silhouettes against a bright background. 

 

 

Figure 2.15 Dome Diffuse [44] 
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Diffuse or full bright field lighting, as shown in Figure 2.15, is used on shiny or 

reflective objects. With this setup, shadows are minimized but surface features 

are also less distinct because the object is not hit by direct light rays. 

 

 

Figure 2.16 Directional Bright Field [44] 

Shown in Figure 2.16 is the directional bright field lighting technique. This 

technique generates a strong, relatively even illumination which is a good choice 

for generating contrast and enhancing topographic detail. 

 

Figure 2.17 Medium Angle Dark Field [44] 

With dark field illumination, as in Figure 2.17, there is no direct path between the 

light source and camera. This technique is used to do surface inspections where 

the surface appears black and a scratch on the object surface appears be bright. 
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2.6 Camera Standards 

Table 2.3 contains the rankings of the different bus standards in use today as 

given by National Instruments while the graph in Figure 2.18 is a visual 

interpretation thereof [46]. A rating of 5 is high and a rating of 0 is low. 

 

Table 2.3 Camera bus standards and ratings [46] 

Bus Through- 
put 

Cost 
Effect 

Cable 
Length 

Standard 
Interface 

Power 
over 
cable 

Camera 
Available 

CPU 
Usage 

Analog 1 3 4 3 1 5 5 

Camera 
Link 

5 1 3 3 3 4 5 

USB 2 5 1 2 5 1 1 

IEEE 
1394 

3 4 1 5 5 3 3 

GigE 
Vision 

3 4 5 5 1 1 2 

 

The goal of the comparison in Figure 2.18 is not to determine the best bus, but 

rather to determine the best bus for the application at hand. 

 

Figure 2.18 Camera bus standards and ratings 

0
1
2
3
4
5

Through-
put

Cost Effect

Cable
Length

Standard
Interface

Power over
cable

Camera
Available

CPU Usage Analog

Camera Link

USB

IEEE 1394

GigE Vision



28 
 

Some advantages of the different busses are: 

 Analog is easily available and uses a frame grabber resulting in low CPU 

usage. 

 Camera link has the highest throughput and uses a frame grabber 

resulting in low CPU usage. 

 USB is very cost-effective and receives power through the interface cable. 

 IEEE 1394 uses a standard interface and receives power through the 

interface cable. 

 GigE Vision has a cable length of up to 100m.  

Some disadvantages of the different busses are: 

 Analog has low throughput; frame grabber must be used and an extra 

power cable is needed. 

 Camera link is expensive and a frame grabber is needed. 

 USB has a maximum cable length of 5m and low resolution. 

 IEEE 1394 has a maximum cable length of 5m. 

 GigE Vision makes use of a separate power cable. 

As can be seen from this discussion, the application will determine the type of 

busses to consider. 

 

2.7 LabVIEW 

LabVIEW offers a package with a wide range of solutions for many measurement 

and automation applications.  

LabVIEW is a graphical programming language and makes use of icons instead 

of lines of text. The graphical approach allows users with limited programming 

skills to build programs by dragging and dropping virtual representations of lab 

equipment with which they are already familiar [47].  
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Figure 2.19 LabVIEW Front panel 

The user interface of a LabVIEW program is shown in Figure 2.19 and is known 

as the Front panel. The Front panel is built with a set of tools and objects. This is 

where the user will interact with the program. Controls are the inputs simulated 

by objects like switches and outputs by objects like dials and indicators. 

 

Figure 2.20 LabVIEW Block diagram 

The block diagram resembles a flowchart and is where the program is written 

with graphical representation of functions. An example of a LabVIEW block 

diagram is shown in Figure 2.20. The objects in the block diagram control the 

front panel and can include terminals, subVIs, functions and wires - which 

transfer data among other block diagram objects [48]. 
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Physical instruments like Oscilloscopes and signal generators can be imitated by 

LabVIEW, which is why LabVIEW programs are called VIs (Virtual Instruments) 

[49]. 

Before VIs are placed into a larger program as a subroutine it can be easily 

tested by the user. The modularity of the LabVIEW program enables the user to 

easily adapt the program to the user‟s needs [50]. 

What makes LabVIEW better than other programs is its ability to access 

instrumentation hardware with unending support in development environments 

[47]. 

 

2.8.1 NI Vision Assistant 

NI Vision Assistant can be used to accelerate the development of Machine Vision 

applications as it is used as a tool in testing image processing applications [51]. 

 

2.8.2 NI Vision Builder AI 

With National Instruments Vision Builder for Automated Inspection (AI) a 

complete automated inspection task can be configured and inspected, which can 

run as standalone software without LabVIEW [56]. 

Vision Builder AI can be used for deploying Machine Vision applications, building 

and benchmarking. It also includes the ability to control digital I/O devices, 

communications with serial or ethernet devices such as HMIs, PLCs and PACs 

and the ability to set up complex pass/fail decisions [52]. 

Vision Builder AI will enable the user to do programming in a much shorter 

amount of time as little programming experience is needed [51]. 



31 
 

 

Figure 2.21 Vision Builder AI configuration mode 

Vision Builder AI has two modes of operation – configuration or inspection. 

• Configuration is used to test and configure an inspection. 

• Inspection interface is used to perform online or offline visual inspections 

and to deploy software [53]. 

 

The configuration interface is used to configure and debug an inspection. The 

interface has an inspection diagram window that displays the list of steps that 

comprise the inspection. The user can run the inspection once, in a loop or until a 

failure occurred. It is possible to run the inspection from a camera, or a simulated 

image can be used. 

When the results obtained from the configuration and debugging are satisfactory, 

the program can be switched to the inspection interface to deploy the software 

and perform online or offline visual inspection. Here the final inspection 

application can be run from within Vision Builder AI. 
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2.9 Safety 

Studies show that people continuously subjected to stressful situations are more 

susceptible to psychosomatic illnesses. Even though people can adapt to 

extreme situations over the long term, a great strain is placed on the 

individual [54].  

One of the objectives of a safety system should therefore be that operators and 

maintenance personnel must be able to rely on the safety of a machine [54]. 

 

Figure 2.22 Safety systems should stop the process when a person is 

detected [55] 

The safety system must be able to differentiate between people and material. 

When material goes through the process, as in Figure 2.22, the system should 

continue as programmed, but when people are detected the system should stop. 
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Figure 2.23 Hand detection safety systems [55] 

A light curtain makes use of a transmitter emitting an infrared light beam in a 

sequence and a receiver at the other end to detect only the sequenced infrared 

light beam. Should this infrared light beam be broken, a signal will be sent to the 

safety system to stop dangerous conditions in the work environment. Figure 2.23 

shows how a light curtain is set up to detect a person‟s hand approaching a 

dangerous area.   

 

Figure 2.24 Safety systems to detect a human entering a hazardous area [55] 

Figure 2.24 is a typical setup of a safety system using light curtains to detect a 

human body entering a hazardous area. With this kind of safety system a person 

outside the hazardous area will have no effect on the process, but when a person 

enters the hazardous area the process will be stopped [55]. 
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2.10 Technology currently used in component handling 

2.10.1 Tripod handling system 

The Tripod handling system as shown in Figure 2.25 is from Festo. The Tripod 

handling system makes use of electrical linear drives for rapid movement of small 

parts at speeds up to 150 picks per minute. Through the tripod design, the unit is 

highly dynamic and at the same time more accessible than Cartesian systems. 

This unit is a good choice for pick and place applications, sorting and palletising 

tasks, as well as adhesive applications [56][57].  

 

Figure 2.25 Tripod designed by Festo [56] 

 

2.10.2 Bionic Handling Assistant 

The elephant‟s trunk inspired the structure and function of the Bionic Handling 

Assistant developed by Festo and is shown in Figure 2.26. 

 

Figure 2.26 Bionic Handling Assistant developed by Festo [58] 
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The bellow structure makes use of polyamide to make the system inherently 

flexible, while the pneumatic control unit stiffens the system in a specific manner. 

With this system, humans and machines can work safely and efficiently as a 

team. This flexible structure prevents danger in the event of direct human-

machine contact. Should a collision occur, the system immediately yields with no 

change to the desired overall dynamic behaviour. The Bionic Handling Assistant 

was chosen to receive the German future award in 2010 because of the system‟s 

yielding characteristics and the resulting risk-free human-machine 

contact [58][59]. 

 

2.10.3 Grippers 

An adaptive gripper was developed by Festo and fitted on the Bionic Handling 

Assistant that consists of a pneumatic drive and three fingers. The finger design 

is based on the Fin Ray Effect, derived from the movement of a fish‟s tail fin. The 

flexibility and resilience of the grippers are especially useful when holding and 

transporting objects with varying contours or sensitive objects - like fruit or 

bulbs [58]. 

When handling flowers, bulbs or fruit with conventional metallic grippers, a high 

level of loss or damage results, which is counter to the two objectives of 

automation technology: speed and quality [60]. 

This gripper is currently used by Total Systems, to sort Dutch flower bulbs and 

was proven to be quick and efficient, improving the productivity at the plant [60]. 

 

Figure 2.27 Adaptive gripper with integrated camera [58] 
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The miniature camera, as shown in Figure 2.27, is implanted in the gripper to 

enable the system to register the working area, detect target objects, follow them 

and issue the command to grasp them at the appropriate time [58]. 

 

2.10.4 3D Imaging 

 

Figure 2.28 Kuka robot used for bin picking [61] 

Scape Technologies have developed a system to pick parts from a bin and place 

them on mounting assembly. The system is shown in Figure 2.28 where the 

camera takes a snapshot of the parts in the bin; the camera is then moved to a 

different angle to take another snapshot of the parts. From the result of the image 

processing of the two images, the position and orientation of a part is determined. 

The gripper grasps the part and moves it to the mounting assembly. 

 

2.11 Summary 

For this study an overview of the conveyor, Cartesian robot, camera and software 

platform were provided. To make the system as effective as possible the 

appropriate sensors, illumination and component setup needs to be used. 
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As can be seen from the discussion on new technologies used in handling 

systems, it is clear that much research and development are being done to make 

the handling process more effective.  
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Chapter 3: Development 

In this chapter, an overview of the automated robot vision system is given and it 

is explained how it will be used in the automated handling system. The hardware 

components used in the automated robot vision system are discussed and 

explained how they will be integrated into the robot vision system. 

 

3.1 System overview 

As stated in chapter 2, the aim of this study is to develop an automated robot 

vision system. The system consists of a Cartesian robot and a Machine Vision 

system. The Cartesian robot should have the ability to move a camera to an 

optimal position for the Machine Vision system to capture a high quality image of 

the part. The Machine Vision system will:  

 Do quality control 

 Calculate the part‟s position 

 Determine the part‟s orientation 

These results will be used by the Cartesian robot to move a gripper to a position 

to grasp the component and move it to the collection bay.  

 

Figure 3.1 Automation system for quality control and sorting of parts 
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The automated robot vision system is incorporated into a larger automation 

system as indicated in the layout in Figure 3.1. The aim of the automation system 

is to do quality assurance and sort parts. The automation system was assembled 

in different stages with the help of different developers. 

The system consists of a part feeder to place parts on the first conveyor. While 

moving on the first conveyor, the type of part is determined by an existing 

Machine Vision system. For this system an enclosure was built and it was 

mounted on top of the conveyor. Two halogen lamps as well as a Basler camera 

are mounted inside the enclosure. By the use of this enclosure design, the 

ambient light cannot have any effect on the image captured of the parts traveling 

on the conveyor. This system was designed by different students. They used a 

compact vision system (CVS) for Machine Vision processing. 

The quality and fault tolerances for this automated handling system were 

determined by P Williams in her final year project. 

From the first conveyor the part slides to the lower second conveyor.  

The complete automation system is controlled by a programmable logic controller 

(PLC). The automated robot vision system is designed to communicate with the 

automation systems via the PLC. 

Outputs from the CVS System is processed by the automation PLC. The 

conveyor system will react to outputs form the PLC. See paragraph 3.4 for a 

detailed explanation of the PLC simulator. 

 

3.2 Automated robot vision system 

A personal computer (PC) is used as the controller of the automated robot vision 

system. Figure 3.2 gives a block diagram of how the system is integrated. 

LabVIEW is used as the software platform and for the communication to the 

devices connected to the PC.  
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Figure 3.2 System block diagram 

 

3.3 Computer data acquisition 
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Figure 3.3 Computer data acquisition 

The blocks used for data acquisitioning are highlighted in Figure 3.3. Data 

acquisitioning is the process of measuring real-world physical conditions and 

converting them into digital numerical values [62]. A National Instruments card 

was fitted in the PCI slot of the PC to enable the PC to do data acquisitioning.  
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Figure 3.4 NI PCI 6014 Data Acquisition card [63] 

 

Figure 3.5 NI CB-68LP termination accessories [64] 

The PCI 6014 DAQ card as shown in Figure 3.4 is used for digitizing measured 

voltages and the control of digital data output signals. The NI CB-68LP as shown 

in Figure 3.5 has 68 screw terminals for easy connection of the signal wires to 

the PCI 6014. 

Two of the digital inputs of the DAQ are used to monitor the PLC simulation unit 

outputs. These signals will give the appropriate signal to the control program to 

indicate a new component has arrived on an inspection bay. 
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A digital output of the DAQ is used to switch the pneumatic valve control unit. 

This signal is generated by the control program when the gripper should close to 

grasp a part or open to release the part.  

 

3.4 PLC simulation 

The PLC in the main automation system sends a signal to indicate that a 

component was placed on a inspection bay.  To be independent from the 

operation of the other developers in the automation system, switches are used to 

simulate the signal received from the PLC. These signals are connected to the 

DAQ card as shown in Figure 3.6 

 

Figure 3.6 Schematic of PLC simulator 

Pin 4 is connected to 5V, pin 3 to ground and pin 2 and pin 1 is connected to the 

digital inputs of the DAQ card. When SW1 or SW3 is closed pin 2 will be made a 

TTL high state to simulate a part present signal. 
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Figure 3.7 PLC simulator switch unit 

The toggle switches on the bottom of the simulation unit, as indicated in Figure 

3.7, were used during the first stage of the simulation software design. One of the 

toggle switches was switched to the on position until the software acknowledged 

the on state. With changes to the program, the push buttons are used to simulate 

a part present and the state is kept active in software until a software reset signal 

is received. 

 

3.5 ROTATOR UNIT 
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Figure 3.8 Rotator unit 
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Figure 3.9 Block diagram of rotator unit 

The blocks discussed for the rotator unit are highlighted in Figure 3.8. A block 

diagram of the components used in the rotator unit is shown in Figure 3.9. The 

unit consists of the gripper, the gripper‟s valve driver, a stepper motor, an 

absolute encoder, a driver board, and a control board. The gripper is mounted on 

the front shaft of the stepper motor and the encoder is mounted on the rear shaft 

of the stepper motor. A camera, used with the Machine Vision system, is 

mounted on the front part of the rotator unit.  

 

Figure 3.10 Rotator unit and Machine Vision camera 
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Figure 3.10 is a photo of the rotator unit with the camera mounted on the front. 

The Machine Vision system calculates the part‟s position and orientation. The 

orientation value is sent through the serial RS232 connection to the rotators 

control board to adjust the gripper‟s rotation accordingly. The gripper is 

positioned by the Cartesian robot over the part and the PC sends a signal 

through the DAQ card to the valve switch to close the gripper‟s claws. 

 

3.5.1 Stepper motor 

A four-phase hybrid stepper motor from RS Components is used in the system. 

The motor operates at 3 volt and a current of 2 ampere. See Figure 3.11 for an 

example of a stepper motor. 

 

Figure 3.11 Hybrid stepper motor [65]  

The stepper motor used is a four-phase hybrid stepper motor capable of 

delivering much higher working torques and stepping rates than a permanent 

magnet type. This stepper motor can also maintain a high detent torque, which is 

particularly important for this project as a gearbox was not implemented [68]. 

When correctly loaded and driven, this motor produces discrete steps at a 1.8 

degree step angle. The number of steps and speed of rotation are determined by 

the number of pulses and frequency from the driver board. This provides an ideal 

method for both speed and position control. 
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The stepper motor has a rear extension shaft to enable the attachment of a 

feedback device. The pneumatic cylinder is coupled to the front shaft of the motor 

and the position encoder is connected on the rear shaft. 

 

3.5.2 Gripper 

The pneumatic cylinder used in the system is a double-acting, two finger cylinder 

from SMC (see Figure 3.12). The pneumatic cylinder has only an open or closed 

state with a stroke distance of 14 mm. The external gripping force is 65 N per 

finger at a pressure of 0.5 MPa and a gripping point of 20 mm. The operating 

pressure of these cylinders is between 0.1 and 0.7 MPa. The maximum operating 

frequency of the cylinder is 180 cycles per minute. 

 

 

Figure 3.12 SMC cylinder [66];[16]  

A Festo two-way pneumatic valve, as shown in Figure 3.13, is used to control the 

cylinder. The valve is electrically actuated by a 24 volt dc solenoid coil. 
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Figure 3.13 Festo pneumatic valve [67]  

The controlling software was designed in LabVIEW. The software design is 

simple and has two states, on or off. The software communicates with a National 

Instruments data acquisition (DAQ) card and the software controls the pneumatic 

valve driver board (see Figure 3.14) using the outputs of the DAQ card.  

 

Figure 3.14 Pneumatic valve driver board 
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Figure 3.15 Schematic representation of pneumatic valve driver board 

The circuit in Figure 3.15 is a current amplifier used to activate the pneumatic 

valve‟s solenoid. The red LED indicates that power is supplied to the circuit and 

the green LED illuminates when the valve is energized. 

This board uses a Darlington transistor for better current gain. The solenoid 

switching the valve is energized by 24VDC at 188mA. By using a Darlington 

transistor circuit with a gain of 500 the switching current from the DAQ will be 

0.376mA, which is well below the maximum source current of 5mA.  

To use the pneumatic cylinder as a gripper, fingers had to be designed to enable 

a part to be properly grasped. The first attempt was to make universal fingers to 

grasp a wide variety of part shapes and sizes. To accomplish this goal, the 

fingers needed to have a large stroke distance. The part of the fingers that would 

grasp the part was designed with a curved shape. Fingers as shown in Figure 

3.14 were made and fitted on the pneumatic cylinder.  
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Figure 3.16 Downwards movement of the fingers when the gripper closes 

 When the fingers were positioned over a part and the gripper was closed, the 

fingers‟ curve mostly did not match the shape of the part. This led to only a small 

part of the fingers being in contact with the part. A soft material was applied to 

the inside of the gripper fingers to increase the coeficient of friction between the 

gripper and part and still allow the force to be low enough not to damage the part. 

When this design was tested, it was found that the mechanism needed a lot of 

force just to open or close the gripper. When a part was picked up, there was not 

enough force to keep the part in the fingers while moving the part to counter the 

acceleration and motion caused by the movement.  

Another challenge of the finger design as in Figure 3.16 is that the fingers move 

downwards when the gripper is closed. The gripper will stop closing depending 

on the part‟s size and the downwards movement will also stop depending on the 

part‟s size. When a small part is picked up, the gripper should not move as low 

as with a smaller part. This needed to be calculated by the Machine Vision 

system and then compensated for in the robot`s software design. 

The focus of this project was to use and integrate the gripper and not the 

mechanical design of the gripper. This led to the search for a design - especially 

for the parts that will be handled in this system.  

The parts‟ dimensions that needed to be handled in this system were noted and it 

was realised that both parts had the same width. The parts‟ sides are parralel to 
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each other. This made the design of the gripper fingers simpler. The gripper`s 

fingers as shown in Figure 3.17 works very well to grasp the specific part. 

 

Figure 3.17 Parrallel fingers designed for the pneamatic cylinder 

The two types of blocks used in the system is shown in Figure 3.18. The one 

block is square and the other is rectangular. Fingers were designed for the 

cylinder to enable the gripper to grip the blocks. 

 

Figure 3.18 Blocks used in the automation system 

 

3.5.3 Encoder 

A digital absolute encoder from Bourns, as shown in Figure 3.19, is coupled to 

the rear shaft of the stepper motor. A special feature of this encoder is that it 
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assigns a unique, digitally encoded signal to each increment, which prevents 

erroneous readings. For example, if a power failure or transient malfunction 

occurs, the position can be measured when the power is restored without moving 

back to a reference position, as would be required with incremental encoders.  

 

Figure 3.19 Absolute encoder [69] 

Unlike a traditional potentiometer which requires an A/D converter, the encoder 

provides an absolute digital output. The absolute digital output simplifies the 

electronic circuit by allowing the micro-processor to be directly linked to the 

encoder.  

By using this principle, the absolute position of the motor is always known. 

Should the motor slip a step, for example, the position data could be read from 

the encoder and the fault condition could be rectified by the controller. 

 

Figure 3.20 Schematic diagram of the encoder board 
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Figure 3.20 is the schematic diagram of the absolute encoder board with 

connector J1 connected to CON2 of the stepper motor controller board. 

 

3.5.4 Stepper motor driver 

 

Figure 3.21 Stepper motor driver board 

Examples of stepper motor driver schematics were found on the internet and a 

circuit was built accordingly, as in Figure 3.21. The stepper motor driver board 

consists mainly of control logic and high current drivers. The control logic uses 

CMOS logic gates. The logic gate circuit supplies the MOSFET drivers with the 

appropriate pulse train. By using the on-board oscillator, the driver board could 

be used to manually control the stepper motor as well. Two controlling signals 

are supplied to the driver board. The first determines the stepping direction and 

the other is the step signal. The motor will step once each time this step signal is 

pulsed. The pulse signals must have a 50% duty cycle. CON8 of the driver board 

is connected to CON3 of the stepper motor controller board to receive power for 

the logic circuit and the step and step direction signals. 
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3.5.5 Stepper motor controller board 

 

Figure 3.22 Stepper motor controller board 

A stepper motor controller board which consists of a microcontroller and a TTL to 

RS232 converter for communication to a PC was designed as shown in 

Figure 3.22. 

The function of the board is to receive the parts orientation data from the PC, 

read the data from the absolute encoder and through the use of the driver board, 

step the motor to the position as given by the PC. The microcontroller firmware 

used in this controller board was developed in the C programming language. 

The parts angle data received from the PC are converted by the microcontroller 

to a usable format and compared to the data read from the absolute encoder. 

The direction and the amount of steps are then calculated and the driver board is 

pulsed to synchronise the gripper‟s angle to the data received from the PC. 

The real-time position of the motor is read at regular intervals from the absolute 

encoder. Should it be different from the last position received from the PC, the 

controller board will calculate the direction and amount of steps to rectify this 

error and will pulse the driver board without any further commands from the PC.  
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3.6 Robot 

Figure 3.23 highlights the blocks that will be discussed for the robot. A Cartesian 

robot from Bosch Rexroth was used in this study. 
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Figure 3.23 Robot 

These systems have been proven to provide significant cost- and time-savings 

due to dramatic reductions in planning and assembly stages [70].  

This was the first robot system bought in the School of Electrical and Computer 

Systems Engineering at the CUT. This system was a cheaper alternative than a 

six-axis robot like the Kuka and was the only robot available to use for the 

project. 

 

Figure 3.24 Cartesian Motion System [71] 
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The Cartesian robot consists of three linear drives with a drive controller for each, 

as shown in Figure 3.24 [71] 

PC Drive controller 1

Drive controller 2

Drive controller 3

RS232

Devicenet
Linear axis 1

Linear axis 2

Linear axis 3

 

Figure 3.25 Communication interface to the ECODRIVE Cs 

A drive can be connected through an RS232 interface to a computer and 

DriveTop software can then be used for commissioning and maintenance of the 

drive. As indicated in Figure 3.25, only one drive can be connected through the 

RS232 interface to the computer at a time. 

A Devicenet card from National Instruments is installed in the PC. The Devicenet 

interface is connected between the PC and the three drives. Real-time data can 

be transmitted with the Devicenet interface to all three drives. This data is used to 

initiate and control the drives‟ position and speed of travel. 

Each linear axis is equipped with an AC servomotor, an absolute rotary encoder 

for continuous position feedback and an integrated holding brake. An ECODRIVE 

Cs AC servo drive (ECODRIVE Cs) is used to compare the signal from the rotary 

encoder with the target value supplied by the PC to control each axis‟s position 

[71]. The ECODRIVE Cs used in this project is fitted with a DeviceNet 

communication module for the interface to the PC. 

Figure 3.26 shows the connection diagram of the Cartesian robot motors, 

encoders, safety system and supply to the drives. The supply voltage is 

connected directly to the control voltage of the drive controllers to ensure that a 

permanent supply is available to the controlling devices of the drive. The supply 

voltage is connected to the motor driver circuit input of the drive controllers 
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through a magnetic contactor to enable the power to be cut from the motors 

during an emergency stop. 

 

Figure 3.26 Schematic representation of the connection diagram for the Bosch 

Rexroth ECODRIVE Cs Drive [72] 

Additional limit switches are mounted at the ends of each drive to stop the robot 

when a drive is driven beyond a safe working distance. Figure 3.27 indicates how 

these switches and the emergency switch are electrically connected in series. 

Should any one of the switches be activated, the power to the motors will be 

disconnected, by deactivating the contactor at the motor input while power is 

maintained to the control voltage of the drive controllers. 

 

Figure 3.27 Schematic diagram of the limit and emergency switches 
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3.7 Machine Vision 
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Figure 3.28 Machine Vision 

The blocks of interest for the Machine Vision system are highlighted in 

Figure 3.28. 

 

3.7.1 Illumination 

The goal of the imaging subsystem is to acquire an image with high contrast 

between background (noise) information and the object features (signal) [4].  

The different light sources and lighting methods experimented with are: 

frontlighting, diffused frontlighting, a ring LED light and backlighting. 

 

3.7.1.1 Frontlighting 

With this method, two 50W Halogen lamps were placed on the sides of the 

camera at an angle so as to shine directly on the part under inspection on the 

conveyor belt. The conveyor belt and the components are reflective and it was 

challenging to place the lights at the correct positions to minimise reflections. 

Another challenge was the shadows of the component and the changing ambient 

light in the laboratory. 
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3.7.1.2 LED Ring light 

 

Figure 3.29 Typical configuration of a ring light [73] 

Figure 3.29 shows a typical setup of a ring light. A direct type LED ring light was 

tested in search of shadow-free illumination as a ring light encircles the camera 

lens and produces even illumination. With this method there were still a circular 

reflection from the conveyor belt and the changes in ambient light was a big 

challenge. 

 

3.7.1.3 Backlighting 

Backlighting is used whenever feasible, because it provides the greatest scene 

contrast and highest lighting efficiency of any lighting technique [4]. The term 

“diffuse” refers to illumination sources that have their radiant energy emitting from 

a translucent material. Although the light source may be highly directional, the 

light radiation pattern resulting from the diffusing surface is uniform.  

Figure 3.30 shows the principle of backlighting. Diffuse backlighting places the 

target between the camera‟s sensing lens and the light source. By illuminating 

the target from the rear with respect to the lens, the background appears 

uniformly white and the target is silhouetted. The use of backlighting effectively 

produces a black and white (binary) image directly [4]. 
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Figure 3.30 Diffused backlighting [73] 

 

3.7.2 Machine Vision Camera  

 

Figure 3.31 Basler A601f camera [74] 

The Basler A601f camera, as in Figure 3.31, makes use of a firewire (IEEE1394) 

interface. By the use of the correct software driver it is hot pluggable to allow the 

camera to be connected or removed from the computer with the software 

automatically recognizing the change. This camera is of industrial standard and 

the full VGA resolution was used. The camera operates from a single supply 

voltage through the 6 pin firewire interface connected between the camera and 

the PC. According to specifications it can be used in 8bit output mode at up to 

60fps and in 16bit mode up to 30fps. In this project a lower frame rate is sufficient 

as the part is not moving while the image is being captured. The firewire cable 
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needed to be long enough for the camera to be mounted on the rotator and be 

fed through the cable housing on the Cartesian robot to the PC. The IEEE1394 

standard limits the maximum cable length to 4.5m, which was just long enough 

for the traveling distances of the Cartesian axes [67].  

 

3.8 Adding of inspection bays 

As discussed in chapter 5, the conveyor‟s surface is reflective and this made it 

difficult to capture high quality images. The solutions found were to install two 

inspection bays at two exit points as shown in the block diagram in Figure 3.32 

and the photo in Figure 3.33. The second inspection bay was incorporated as a 

buffer to allow a higher flow rate of parts through the system. 

 

Figure 3.32 Automation system with the added inspection bays 

Proximity sensors were mounted on Conveyor 2 to detect objects on the 

conveyor belt. Two swing arms, each connected to a pneumatic cylinder, are also 

mounted on the second conveyor. The proximity sensors are used for the correct 

timing in order to activate a swing arm to push a part from the conveyor onto the 

appropriate inspection bay.  
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Figure 3.33 Inspection bays mounted on the conveyor assembly 

3.9 Summary 

In this chapter, components, technologies and techniques to consider for this 

study were discussed.  
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Chapter 4: System integration 

In this chapter, the operational steps of the automated robot vision system are 

described. The design of LabVIEW modules to manipulate the input data and to 

control the hardware, as well as the integration of these modules to function as 

described are subsequently discussed thereafter. The setup of the hardware to 

operate efficiently in the system is discussed. 

 

4.1 Operational Process 

The flow diagram in Figure 4.1 is an illustration of the step-by-step operational 

process of the automated robot vision system. On startup, the control program 

initializes the Cartesian robot, the vision system and the gripper. 
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Figure 4.1 Process flow diagram 

The control program wil go into a loop polling the output lines from the PLC to 

determine if a part was sent to the inspection bays.  

When the PLC indicates a part was sent to the inspection bay, the Cartesian 

robot will be moved to camera position 1 for inspection bay 1 or camera position 

2 for inspection bay 2. The Machine Vision system will then take a snapshot of 

the part under inspection. Image processing will be done on the captured image 

to determine the part‟s position, coordinates and angle. 

The gripper is rotated to the angle as calculated by the Machine Vision system 

and then the robot positions the gripper‟s claws over the part. 
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The gripper is closed to grasp the part and then the robot moves the part to the 

drop off point. The gripper then releases the part and the robot returns to the 

home position. 

These steps are all controlled by a PC fitted with the IO and interfacing cards to 

communicate to the hardware. 

The software design was done modularly with LabVIEW to enable the separate 

development and testing of the different parts of the control program. When a 

LabVIEW module is tested and operates as expected, it can either be copied or 

combined into another program or a VI can be made of that program. 

 

4.2 Rotator 
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Figure 4.2 Steps of the flow diagram where the Rotator is discussed 

The blocks discussed for the steps of the rotator are highlighted in Figure 4.2.  

The first LabVIEW module that was developed, was for the PC communication 

with the rotator unit. The front panel is shown in Figure 4.3 where the RS232 

initialization values and a rotational value for the rotator is set. 
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Figure 4.3 LabVIEW Front panel of rotator control program 

 

 

Figure 4.4 LabVIEW Block Diagram of rotator control program 

The initialization for the PC`s RS232 port is done once. After that, the program 

runs in a loop as indicated in Figure 4.4. During each loop execution the value 

entered in the rotational value box of the LabVIEW program‟s front panel is sent 

through the RS232 port to the controller. 
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As mentioned in chapter 2, the device at the end of the robot that interacts with 

the environment is called an end effector. The photo of the end effector on the 

Cartesian robot is shown in Figure 3.10. The unit consists of the stepper motor 

with encoder mounted on the back shaft and the gripper mounted on the front 

shaft. The camera is mounted on the front of the end effector. The planned steps 

are to move the camera over the region of interest and to capture the image of 

the part. The Machine Vision will calculate the position and angle of the part and 

give this data to the Cartesian robot. The robot will move the gripper to the 

position calculated by the Machine Vision system to grasp the part and move the 

part to the inspection area. 

As can be seen in Figure 3.10, there will be a rotational area where the gripper‟s 

pneumatic pipes obstruct the camera‟s view of the part. Another challenge was 

the pipe‟s high resistance to the rotation of the gripper compared to the strength 

of the stepper motor. As the gripper‟s fingers are symmetrical, it is possible to 

use the gripper in the 180 degree area where the pneumatic pipes will not 

obstruct the camera‟s view. By experimenting with different routes for the 

pneumatic pipes, a route was found were the pneumatic pipes had the lowest 

resistance to the rotational movement. 

 

4.3 Cartesian robot 
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Figure 4.5 Steps of the flow diagram where the Cartesian robot is discussed 

The steps of interest for the discussion of the Cartesian robot are given in 

Figure 4.5. 

An exchange student, Florian König, helped to develop the control program for 

the Bosch Rexroth Cartesian robot.  
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Different programs were written to test the robot and find a suitable configuration 

to satisfy the requirements of the project. For this project, the aim of the robot is 

to move to different position coordinates as determined by the control program. 

For this purpose, the position control configuration was found to be the best 

option, because the only variables needed from the control program are position 

and speed.  

 

Figure 4.6 LabVIEW Front Panel for the control of the Cartesian robot 

The front panel of the position control program is shown in Figure 4.6. On this 

panel the robot‟s initialization, speed and position values are set. In this program, 

the gripper`s valve control was also incorporated. 
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Figure 4.7 LabVIEW Block diagram for the control of the Cartesian robot 

The block diagram shown in Figure 4.7 is the section of the program where the 

Devicenet and DAQ interface cards are set up. After the initial setup, commands 

are sent through the Devicenet bus to the three EcoDrives for their initialization. 

From there, the program runs in a loop where the front panel controls are read 

and those values are sent through the Devicenet bus to the EcoDrives. 

This program enables a user to move the robot to a position as entered on the 

front panel and to open or close the gripper‟s claws by the activation of the 

gripper button on the front panel. This program is very useful for the manual 

testing of the robot movements and the gripper‟s grasping action.  

During the testing phase, the robot was moved to position the gripper over the 

part. The gripper‟s claws were closed to grasp the part. The robot lifted the 

gripper and moved the part to the drop-off point and released the part. One 

should work cautiously during the manual control of the Cartesian robot and 

move one axis at a time using the position control program. 

The PLC input simulation was incorporated by placing parts in a specific region, 

moving the robot along a safe path and recording coordinates on the path to 

create a point-to-point program [76]. Depending on the PLC switch output read 
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by the DAQ, one of the two paths was followed by applying the point coordinate 

values to the position control program. A delay is used to give the robot enough 

time to move to a coordinate. With every execution of the program loop, the next 

coordinate value is sent to the Ecodrive controllers and the robot is moved in 

steps through the path. With this setup, the part had to be at the same position 

and angle as the part‟s position and angle could not be measured yet. 

 

4.4 Machine Vision 
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Figure 4.8 Steps of the flow diagram where Machine Vision is discussed 

The step of the automated robot vision system that will perform Machine Vision is 

highlighted in Figure 4.8. The Machine Vision system determine the part‟s 

position and orientation. 

 

4.4.1 Camera lens 

For the camera to capture a focused image of the part under inspection, the 

camera lens must be positioned at the correct height from the part. This height is 

known as the working distance (see Figure 4.9) and was calculated by using the 

specifications of the camera‟s sensor, the lens and the inspection bay‟s 

dimensions. 
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Figure 4.9 Camera working distance and field of view 

The lens used in the system has a focal length of 12mm and the maximum 

aperture ratio is 1:1.4. 

The Basler camera makes use of a (656 pixel X 491 pixel) 8mm CMOS sensor. 

The sensor length and width can be calculated as follows: 

X = 656 pixels X 9.9um per pixels = 6.494mm 

Y = 491 pixels X 9.9um per pixels = 4.861mm 

A clear Perspex piece was cut and placed on the lighting box to restrict the 

inspection bays to a width of 130mm. The 130mm width of the inspection bay is 

used as the value for field of view. 
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1 

Inspection bay 

2 
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Figure 4.10 Calculating working distance [76] 

The working distance (see Figure 4.10) was then calculated by the following 

formulae: 

focal length = (sensor size × working distance) / field of view [30] 

Working distance = (12 X 130) / 6.494 = 240mm 

From the calculations it can be seen that the distance from the front of the lens to 

the part under inspection should be 240mm. 

 

4.4.2 Machine Vision setup 

National Instruments Measurement and Automation (MAX) explorer can be used 

to view the devices connected to the PC. MAX was used to setup the Basler 

camera‟s gain, brightness and exposure time. By using MAX it is very easy to 

view the video stream from the Basler camera while other experimentation or 

troubleshooting is done. In this study it was intensely used with the illumination 

setup and experimentation as the gain and brightness had to be adjusted for the 

different types of illumination setups. MAX was used in Figure 4.11 to take a 

snapshot of the rectangular part during the illumination setup. 
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Figure 4.11 An image of the rectangular blocks is captured using MAX 

In this system, the real world coordinates must be calibrated with the camera 

coordinates in order for the Cartesian robot to pick up the parts. MAX was also 

used to position the camera by the robot to get calibration values. 

NI Vision Builder AI was used to configure and for the testing of the Machine 

Vision inspection. When the inspection in Vision Builder runs as expected, the 

inspection steps can be migrated to LabVIEW. Figure 4.12 shows the front panel 

and Figure 4.13 the block diagram created from the final inspection steps 

migrated to LabVIEW. An exchange student, Petri Leinonen, was involved in the 

implementation of the Machine Vision and Cartesian integration.  
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Figure 4.12 Front panel of the inspection steps migrated from Vision Builder AI to 

LabVIEW 

 

Figure 4.13 Block diagram of the inspection steps migrated from Vision Builder AI 

to LabVIEW 

With this VI a pass or fail result was given as output. The subVI “Proces” is where 

the image processing steps are done as shown in Figure 4.14. 

subVI Proces  
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Figure 4.14 Proces subVI expanded 

From the Proces subVI the results from the different image processing steps can 

be obtained. From detect object the position of the part can be read and from find 

straight edge the angle of the part is read.  

 

4.4.3 Calibration 

4.4.3.1 Rotator 

A flowchart of the control program software is shown in Figure 4.15. The encoder 

used in the rotator has 128 discrete steps and the rotational value from Process 

subVI is given in 360 degree value. The control program for the rotator converts 

the 360 degree value to 128 steps in gray code. The values are then manipulated 

to ensure that the gripper move only in the desired 180 degree area as discussed 

in section 4.2.  

Convert value to a value in the 180 degree 
free turning angle of the rotator

Convert the value from degrees to a gray 
value

Send the gray value to the motor controller

Input received from 
Process subVI

Start

New orientation 
angle received

NO

YES

 

Figure 4.15 Flowchart of the controller’s software for the rotator 
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The microcontroller‟s software, as used in the rotator controller, is shown in 

Figure 4.16. The rotator control units program compares the values received from 

the RS232 interface to the value of the encoder and step the gripper to make 

adjustments if necessary.  

Move gripper to new angle

Input received from PC 
via RS232 port

Start

New orientation 
angle received

Move to home position

YES

NO

 

Figure 4.16 Flowchart of the rotator controller’s software 

 

4.4.3.2 Cartesian robot 

There was no need for the Machine Vision system and Cartesian robot to be 

calibrated in metric units. The two systems just need to be calibrated to each 

other‟s coordinates. The result of the Process function for the part‟s position is 

given in pixels and the input coordinates of the Cartesian robot is a long integer.  

The robot was moved to the coordinates where the camera captured the image 

of the part. The outside borders of the image were determined and the robot was 

manually moved to the edges while the robot coordinates were noted. This was 

done for both inspection bays and used as the robot‟s reference coordinate 

values. As the values of the Process subVI and the input to the Cartesian robot 

are both linear, a simple conversion formula was created to manipulate the pixel 

value to the correct long integer value. 
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4.4.3.3 Spatial calibration 

Spatial calibration is the process of transforming pixel to real-world measurement 

units. In this study, it is important to know the real-world coordinates of the part 

under inspection for the robot to position the gripper and grasp the part. 

The conversion ratio is calculated by dividing the 130mm field of view by the 

sensor resolution of 656 pixels. The real-world coordinates of the object under 

inspection is calculated from the vision system by using the 0.198mm conversion 

multiplier. 

With the field of view of the inspection bays known, the gripper was moved to the 

four corners of each inspection bay‟s field of view. In Figure 4.17 is the 

presentation of the coordinates for the robot‟s region of interest for the inspection 

bays.  

 
Figure 4.17 Coordinates of Machine Vision system and Cartesian robot for the 

inspection bays 

The y range of travel is 55 (97 – 42) for both bays and the x range of travel is 35 

(bay1=90-55, bay2=37-2). For x the scale can be calculated 656 / 35 = 18.743 
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and the y scale 491 / 55 = 8.927. These values represent the transformation 

factor between the Machine Vision system and the Cartesian robot coordinates. 

 

4.5 Safety 

Safety systems are used to protect humans from dangerous movements or 

actions from moving machinery and parts. Machines are designed to perform 

tasks at a high speed and force. The machine does not have the inteligence to 

sense dangerous movement. Sensing systems are integrated with these 

machines to protect mostly humans, but also the machine‟s environment from 

dangerous actions. 

 

4.5.1 Safety Mat 

A pressure-sensitive safegaurding mat is placed in front of the conveyor. The mat 

will detect people on the sensing surface and will stop the automation system to 

keep a person safe from harazdous conditions. 

 

Figure 4.18 Matguard mat from Allen Bradley [77] 

The mat is designed to operate at 24V DC and can be connected with other mats 

in series to form a floor-level guarding system in hazardous areas. When the mat 

is stepped on, the two internal plates wil touch and the resistance will fall to zero. 

The mat makes use of a four-wire system to detect opens and shorts. The mat is 
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500mm wide and 1500mm long and is designed to detect people heavier than 

30kg. 

 

4.5.2 Light curtain 

Safety light curtains are used to protect people from dangerous interaction with 

machines. A sender and a receiver is used to create a multi-beam “curtain” of 

light. When this “curtain” is penetrated, the safety light curtain detects the beam 

or beams that are being blocked, and sends a signal to the safety control circuit. 

The safety contol circuit will send a signal to the machine controls and will halt 

the dangerous process of the machine [78]. 

 

Figure 4.19 Light curtain transmitter, receiver and controller [79] 

The GuardShield Micro 400 as shown in Figure 4.19 is an economical light-duty 

safety light curtain system targeted to the semi-conductor, micro electronic and 

small assembly machine markets. The length of the unit used in this system is 

1200mm with 120 beams and a resolution of 14mm. The maximum sensing 

range of the light curtain is 4.5m [79]. The transmitter and receiver are connected 

to the dedicated MSR41 safety controller. 
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Figure 4.20 The positioning time for the Cartesian robot [80] 

For the Cartesian robot, a linear module‟s positioning time is given in Figure 4.20. 

This is an indication of the time needed to reach a position under maximum load 

with maximum acceleration and velocity. It consists of the acceleration time, the 

time at constant velocity and the braking time.  

To calculate the time it will take the robot to brake, the following formula can be 

used: 

tB = v/a = 1ms / 10 ms2 = 0.1s [80]  

The safety distance for a light curtain can be calculated according to the EN ISO 

13855 standard with these formula [81]. 

S = (K X T) + C  

Where 

S = safety distance 

K = part of body speed in mm/s 

T = T1 + T2 

T1 = the safety device reaction time in seconds 

T2 = the machine‟s reaction time in seconds 

C = further distance in mm based upon the body´s intrusion towards the risk area 

before the safety device has been activated. 

 With K = 2000mm/s for S < 500mm and K =1600mm/s for S > 500mm 



79 
 

In this study, the safety distance was calculated as: 

S = (2000 X T) + 8(d-14) 

   = (2000 X 0.15) + 8(14-14) 

   = 300mm 

This distance represents the shortest distance from the light curtain to any part of 

the robot. 

Figure 4.21 is the photo of the automated robot vision system with the safety 

curtain fitted to detect a person or object entering the hazardous area.  

 

Figure 4.21 Light curtains mounted on the sides of the Cartesian robot 

Figure 4.22 is the schematic representation for the safety system incorporated in 

the robot‟s emergency brake system. 
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Figure 4.22 Schematic representation of the safety system 

With this wiring configuration the GuardShield Micro 400 controller, as shown in 

Figure 4.22, is set for automatic start with start release. 

When a PLC or a computer controlled system is used to control a automation 

process, a dedicated safety PLC have to be integrated in the system. In this 

project the safety system was hardwired into the system, therefore a safety PLC 

was not needed. 

A cabinet was used to mount the control devices of the automation system as 

shown in Figure 4.23. 
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Figure 4.23 Control gear cabinet of automation system 

This cabinet contains the control gear for the conveyor, Cartesian robot and the 

PLC. 

 

4.6 Summary 

The operation of the automated robot vision system was discussed. The parts 

used in the project were discussed and it was described how they are configured 

to operate optimally in the real-time system. 

Ecodrive Cs 

Cartesian robot 

Circuit breaker 

Cartesian robot 
24V PSU for 

control gear 

Conveyor speed 

control 

Auotomation 

PLC 
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Chapter 5: Results 

This chapter focuses on the setup and results obtained with different illumination 

techniques. Steps are discussed to identify a part and obtain the coordinates and 

orientation of a part using Machine Vision. 

 

5.1 Illumination 

5.1.1 Direct light 

The photo in Figure 5.1 shows the two types of parts used in this system on the 

conveyor belt. The reflections on the conveyor belt surface are from the 

fluorescent lights in the laboratory and from this photo it is clear how reflective 

the conveyor surface is. The shadows from the parts on the conveyor are 

prominent and had to be addressed with the illumination setup. 

 

Figure 5.1 Ambient light on conveyor 

From the results of the image in Figure 5.1 a system had to be designed to 

illuminate the parts in an effective way to minimize the shadows and reflections 

that could have an effect on the Machine Vision process. 

The first tests were done with halogen lamps mounted in different positions to 

illuminate the parts. The idea was to use high intensity light to overwhelm the 

light from the fluorescent lamps in the laboratory. 
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Figure 5.2 Direct ligthing with halogen lamps 

Figure 5.2 shows the setup with two halogen lamps illuminating the part. With this 

setup, uniform illumination was expected and therefore that shadows would be 

greatly minimized. Figure 5.3 and 5.4 show tests of this type of illumintaion. 

 

Figure 5.3 Image captured with Basler camera at low intensity 

To test the setup with low intensity light, the halogen lamps were connected in 

series with a supply voltage of 9V at  2.52A. This is equal to a total input power of  
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22.68W or 22.68 % of the specified lamp input power. In Figure 5.3 the captured 

image from the Basler camera is shown. Here the light reflections and the 

deformaties of the conveyor belt are more visible than the part. 

 

Figure 5.4 Image captured with Basler camera at medium intensity 

In Figure 5.4 the voltage was set to 15V at  3.48A which is equel to 52.2W or  

52.2% of the rated lamp input power. Here the part is more visible and the 

reflections are bigger and brighter than the image captured at 9V. From this 

image it is clear that the part and its reflection are intertwined and will make the 

image processing unnecessarily complicated and prone to incorrect results.  

 

5.1.2 Diffused ring light 

 

Figure 5.5 Diffused ring light mounted on Machine Vision camera 
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As shown in Figure 5.5, a diffused ring light was mounted on the system. One of 

the advantages of a diffused ring light is uniform illumination. The expectation 

was to capture images with fewer reflections from the conveyor surface. As can 

be seen in Figure 5.6 the circular reflection from the LED ring light is very 

dominant in the captured image. 

 

Figure 5.6 Reflective ring on conveyor from the ring light’s illumination 

The scratches and damaged areas of the conveyor belt are prominent using the 

ring light and made the image processing more challenging. 

 

5.1.3 Ambient light box 

Another option for the Machine Vision application only, would be to build an 

enclosure around the camera and illumination setup. With this method, only the 

light from the lights inside the box will illuminate the part and the ambient light is 

also blocked. This will give a perfect illumination setup for the vision system to 

take an image of the part. In this project, however, it was not feasible because 

the robot`s gripper must be able to grasp the part and move it to a different 

location. 

It was realized that the conveyor belt‟s surface could not be changed and the 

lights in the laboratory could also not be changed because in a typical factory 
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these will be real-world challenges and other methods had to be found to work 

around this. 

 

5.1.4 Backlighting 

For the Cartesian robot to pick up the component it only needs to know the 

position and orientation of the part. With this in mind, methods were searched for 

where these can be measured with a simple illumination setup. 

By applying backlit illumination correctly, an opaque part is silhouetted and the 

outside dimensions can be determined easily. It was then decided to alter the 

conveyor system to push the parts from the conveyor belt onto inspection bays. 

These inspection bays are also used as an enclosure for the lamps of the 

backlighting system. 

 

Figure 5.7 Two light boxes with 50W halogen lamps 

Figure 5.7 is a photo of the two light boxes built and mounted to be used as the 

inspection bays. The parts are pushed off the conveyor onto these boxes by 

pneumatic cylinders. These boxes were built as a square with all the sides and 

bottom made from wood and painted white. A white Perspex cover is used for the 

top cover and act as a diffuser. 

In order to achieve adequate light output, a 50 W halogen lamp with a fixed 

reflector was chosen as the light source. The light from this lamp is directed at 
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the bottom of the box. By reflecting the light from the white panels it was 

expected to achieve a more uniform light on the top cover.  

With this setup, a high current power supply was needed because a 50W lamp 

with a supply voltage of 12V requires a current of 4.2A.  

 

 

Figure 5.8 Halogen lamp switch 

The 50W halogen lamp converts only about 10% of the consumed energy to light 

and the rest is wasted as heat [82]. The halogen bulb can reach temperatures 

over 200°C and when inside such a small box, the temperature inside the box 

rises very quickly [83]. The circuit in Figure 5.8 was built to switch the lamps on 

only when a part is on the light box. Switching the lamp on only when a snapshot 

of the component is taken minimizes the heat generated by the lamps. The heat 

of the PSU cooling system could be lowered as well. 

After some experimentation, the light on the Perspex cover was still not uniform 

and the two enclosures were replaced by a single enclosure. Halogen lamps 

were placed at different positions to find a more uniform illumination on the 

Perspex cover (see Figure 5.9). The illumination was still not uniform on the 

Perspex cover, as can be seen in Figure 5.10. The problem was that the box was 

not deep enough to position the lights in order to focus the beam over a large 

area. 
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Figure 5.9 Inspection bay with 50 W halogen lamps as a light source 

 

 

Figure 5.10 Bright spots on the inspection bay 

 

Due to the high current consumption and heat generated by the halogen lamps, 

LEDs were identified as a different light source. 

 

Figure 5.11 Inspection bay with LED array as a light source 



89 
 

An array of LEDs were built to fit inside the inspection bay box. By using this 

method as shown in Figure 5.11 it was found that the LEDs were too close to the 

Perspex platform and that there were still bright spots on the Perspex platform.  

 

Figure 5.12 Diffuser placed over the LED array 

A diffuser was placed between the LED array and the Perspex cover as shown in 

Figure 5.12. Using this method, a uniform light was achieved - as shown in 

Figure 5.13. 

 

Figure 5.13 Uniform distribution of light with a LED array as a light source 

By using this method, good results were obtained and it was thus chosen as a  

solution to the illumination problem. 
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5.2 Vision Builder 

The purpose of the Machine Vision system is to determine the part‟s spatial 

properties and the part‟s orientation.  

Vision Builder was used for the experimentation of the image processing and the 

following steps were used: 

Step 1: Acquire Image (IEEE 1394) 

This step was used to acquire an image of the object under inspection from the 

Basler A601f camera. In this step the camera‟s settings are also set. 

Step 2: Vision Assistant 

In this step the image processing steps, or functions, that will be performed are 

shown. When selecting the edit button, Vision Assistant will open up and the 

steps can be edited. 

Step 3: The Threshold function was applied to the image as shown in Figure 

5.14.  

 

Figure 5.14 NI Vision Assistant Threshold function 
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With the Threshold function, objects were isolated and those of interest can be 

kept. The Threshold function also converts the grayscale image with pixel values 

ranging from 0 to 255 to a binary image with pixel values of 0 or 1.  

 

Figure 5.15 Histogram of the captured grayscale image 

The manual Threshold function was selected. By analysing the histogram, Figure 

5.15, of the captured grayscale image, the threshold values were set to a 

minimum of 26 and a maximum of 151. This function sets all the grayscale values 

that fall outside the minimum and maximum range to 0 and all the values in the 

range are replaced with a 1. The result obtained is a binary image with part pixels 

set to 1 and the background set to 0. This step is needed to convert the 

grayscale image to a binary image because the functions in Step 4 and Step 5 

are performed on binary images.  

Step 4: As mentioned in paragraph 2.4.2 the Binary Morphology function was 

used to remove unwanted noise. The erode objects function, shown in 

Figure 5.16, was used to isolate pixels in the background and pixels touching the 

contour of the objects. The default structuring element is set at 3 X 3 and 

iterations of 1 proved to be sufficient to remove the noise in the image. 
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Figure 5.16 Erode objects function 

Step 5: The Remove Borders (see Figure 5.18) function is used to improve the 

image information by eliminating particles that touch the border of the image. 

By selecting connectivity 4, as indicated in Figure 5.17(a), two pixels touching 

horizontally or vertically are considered to be of the same particle and pixels 

touching diagonally are considered as different particles. By selecting 

connectivity 8, two pixels are considered to be of the same particle if it touches 

horizontally, vertically or diagonally as shown in Figure 5.17(b). 

 
(a) 

 
(b) 

Figure 5.17 (a) Connectivity 4 (b) Connectivity 8 [42] 
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Figure 5.18 Remove borders 

Step 6: The functions in Steps 7 to Step 11 operate on grayscale images. 

Lookup Table 1 with the equalize function selected is applied to convert the 

binary image to a grayscale image. In step 1 the Threshold function was used to 

set the part pixels to 1 and the background pixels to 0. This image is transformed 

with the Lookup Table 1 function to transform the image to a grayscale image 

with a value from of 0 to 255.  
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Figure 5.19 Lookup Table 1 

Step 7: When the Lookup Table 1 function (see Figure 5.19) finished, the Detect 

Objects function in Vision Builder is executed.   

 

Figure 5.20 Detect Objects 

The Detect Objects function searches for objects in the image and determines 

the x and y coordinates, the size and the orientation of the objects. This function 

is used in this study to ensure that there is only one component on the conveyor. 
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The threshold was set to an intensity of 97, and the function was set to look for 

Bright Objects because the intensity of the object pixels is greater than the 

surrounding pixels. A rectangle and square block was processed to determine 

their object size according to the function. From this data the minimum object 

size was set to 14000 pixels per square and maximum object size was set to 

35000 pixels per square. The minimum and maximum number of objects was set 

to 1. A pass inspection result will only be given when all the criteria as mentioned 

for this function are within the correct limits.  

Step 8: Set Coordinate System 

 

Figure 5.21 Set Coordinate System 

In a typical Machine Vision inspection, a region of interest is set to avoid 

irrelevant information and to improve inspection speed. The setup of the region of 

interest is simple in an application where the object under inspection is always at 

the same location and angle. In this application, the object is not at the same 

location or angle and the region of interest needs to move and rotate according to 

the object‟s location. 

Step 9: With the Set Coordinate function (see Figure 5.21) a coordinate system 

is determined according to a specific feature in the image. The mode selected is 

set for a variable horizontal, vertical and angular motion. 
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Step 10: With the Find Straight Edge function (see Figure 5.22) an edge of the 

object is determined. From this data the angle of the object is determined. This 

data can be used to rotate the gripper to an angle for grasping the part. 

 

Figure 5.22 Find Straight Edge 

Step 11: The Count Pixels function (see Figure 5.23) is used to determine the 

size of the part on the conveyor. The result of the function is given as a 

percentage of pixels in the region of interest that are within the range established 

for the current image. The limit was set at 4.5% minimum and 14% maximum to 

output a pass result. 

 

Figure 5.23 Count Pixels 
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Step 12: The Decision Making function determines if the inspection passed or 

failed. A pass result is obtained when all the criteria of Detect Objects (step 7) 

are true and the Count Pixels (step 11) value is within the specified range. 

Should either the Detect Objects 1 or the Count Pixels be false, a fault condition 

will be given and the system will be stopped. 

 

Figure 5.24 Decision Making output image 

In paragraph 4.3.1 it was explained that the steps done in Vision Builder are 

migrated to LabVIEW. From the subVI‟s the orientation and coordinate data is 

read and used to move the Cartesian and gripper to pick up the part. 

 

5.3 Summary 

Illumination is very important part of a Machine Vision inspection, which can be 

time-consuming in certain environments. By the proper setup of the illumination, 

the vision inspection can be done using fewer image processing functions. The 

illumination must be properly set up before the software design and testing can 

be started.  

Vision Builder AI provides a well-designed software platform to test and adapt a 

vision inspection. By using the histogram (see Figure 5.15) and other values read 

from the inspection results, it is easy to set values for the inspection at hand. 
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Chapter 6: Conclusion 

6.1.1 Software platform 

LabVIEW is a powerful program that worked well in the system where different 

software modules for the different hardware were developed. A software module 

and hardware can be developed, tested and improved without having any effect 

on the other components in the system.  

 

6.1.2 Illumination 

In this study it was realised how important illumination is in a vision application. 

Many hours were spent on the design and testing of the illumination setup. It was 

found that it is very difficult to correct a poorly captured image by the use of 

image processing functions. Ambient light plays a major role in the illumination 

setup and has a huge effect on the results of the Machine Vision setup. When the 

illumination is properly setup, the Machine Vision steps can be greatly minimized 

with consistent results.  

Bright reflections were problematic when an image was captured on the conveyor 

belt. Two inspection bays were implemented to enable the system to use 

backlight illumination. This method of illumination proofed to work very good in 

this system. 

 

6.1.3 Machine Vision 

The Machine Vision system detects a part on the inspection bay. The position 

and the orientation of the part are determined by the Machine Vision system. The 

Machine Vision system will give a pass result when the part‟s size is within limits 

and there is only one part on the inspection bay. The initial testing and 

improvements in the Machine Vision software were done in Vision Builder AI. To 

use the result, the inspection steps were migrated to LabVIEW. From the VI and 

subVI`s the results were manipulated and used for the control of the Cartesian 

robot and rotator. 
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6.1.4 Rotator 

The initial finger design was not able to hold a part while the part is moved by the 

Cartesian robot. With the new finger design the part is properly grasped and does 

not slip out of the fingers even at high-speed movement by the Cartesian robot. 

The rotator operates well and is consistent in moving the gripper to the angle as 

calculated by the Machine Vision system.  

 

6.1.5 Safety system 

The safety system consists of an emergency stop, limit switches on the Cartesian 

robot, mechanical brakes built in the Cartesian robot, a safety mat and a light 

curtain. The safety system will stop the Cartesian movement during a power 

failure or when one of the safety devices is triggered. 

 

6.1.6 Purpose-specific software and equipment 

When using high quality or purpose-specific software like LabVIEW and 

equipment like the Cartesian robot, Basler camera and safety systems from 

Rockwell, time is saved in respect of unnecessary troubleshooting. The high-

quality equipment was also found to be consistent and reliable.  

 

6.2 Possible follow-up studies 

At the completion of the study, the AGV was not yet developed. When the 

development of the AGV is completed, the system will have to be reconfigured to 

load the components onto the AGV‟s in the loading area. 

The current illumination works very well for the part under inspection. A challenge 

will be met when transparent parts need to be handled, as backlighting is not 

suitable in such contexts. 
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6.2.1 Smart camera 

As an alternative option the camera, PC and control software can be replaced 

with a Smart camera for the Machine Vision part of the project. A smart camera is 

a self-contained unit that performs image processing on board [84].  

Previously, smart cameras were used for basic projects such as reading 

barcodes. With the increased processing power, as technology advances, the 

smart camera can now manage a wider range of duties and compete with PC-

based systems [85]. 

A smart camera is more reliable than a PC-based vision system because the 

smart camera generates less heat, has fewer components and has fewer moving 

parts. Its size and in many applications ease of use make the smart camera more 

attractive. The Smart camera is easily replaceable without the need to replace 

any of the other hardware, which makes more sense in an automation plant with 

many cameras. 

 

 

Figure 6.1 Smart camera and robot integrated to pick cast parts from a pallet 

onto a conveyor [86] 

Figure 6.1 is a photo of a smart camera integrated with a multi-axis robot to move 

parts from a pallet onto a conveyor. The smart camera offers smooth order 
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picking at high speed with up to 5000 profiles being evaluated per minute and the 

results are sent directly to the robot as position coordinates [86]. 

 

6.2.2 Industrial PC 

In industry, industrial computers are used for the work the personal computer is 

performing in this study. The ideal applications for industrial computers are in 

industrial, mining, military, avionics or any field where normal a PC cannot 

survive [87]. 

The features of Industrial PCs are different from consumer PCs in terms of 

reliability, compatibility, expansion options, long-term supply and they can 

withstand harsh industrial environments [88]. 

 

Figure 6.2 SIMATIC Box PC from Siemens [89] 

The panel PCs from Siemens as shown in Figure 6.2 are maintenance free, 

offering different mounting, expansion and performance capabilities. They can be 

used for measuring, checking machine data and industrial image processing [89]. 

A subset of industrial PC‟s is the Panel PC where a touchscreen liquid crystal 

display (LCD) is typically built into the same enclosure as the other electronics 

and motherboard [88]. 
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Figure 6.3 Panel PC from Advantech [90] 

The panel PC as shown in Figure 6.3 is robust enough to withstand harsh 

environments on factory floors. This expandable panel PC has a die-cast housing 

that acts as a heat sink for protection against overheating [90]. 

 

6.2.3 Improve Pneumatic Gripper 

The gripper designed for the blocks handled in this study works very well. Should 

the need arise to move different parts, the fingers need to be replaced. The 

fingers should be designed according to the part‟s shape, dimensions and 

weight.  

While the part is moved, there are other forces besides gravity working in on the 

part and this should be considered in the new design. 

With the current design of the gripper, a part will be dropped when the air 

pressure is lost. To correct for this, a retention mechanism should be designed to 

keep the gripper‟s claws closed when the pressure is lost [91]. 
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6.2.4 Safety system 

Safety is a very important factor of any automation system. As this study 

focussed only on one part of the automation system, the described safety system 

needs to be integrated into the larger automation systems safety.  

The factors from the other machinery also need to be accounted for and a 

complete redesign of the safety system needs to be done, which is a project in 

itself. A possible solutions will be to add a safety PLC like the Allen Bradley 

Guardlogix with a SIL 3 rating. 
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