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Abstract 
 

The South African (SA) manufacturing industry requires developing similar levels 

of sophistication and expertise in automation as its international rivals to compete 

for global markets. To achieve this, manufacturing plants need to be managed 

extremely efficiently to ensure the quality of manufactured products and these 

plants must also have the relevant infrastructure. Furthermore, this industry must 

also compensate for rapid product introduction, product changes and short 

product lifespan. To support this need, this industry must engage in the current 

trend in automation known as reconfigurable manufacturing.  

The aim of the study is to develop a reconfigurable assembly system with 

enhanced control capabilities by utilizing virtual commissioning. In addition, this 

system must be capable of assembling multiple different products of a product 

range; reconfigure to accommodate the requirements of these products; 

autonomously reroute the product flow and distribute workload among assembly 

cells; handle erroneous products; and implement enhanced control methods. To 

achieve this, a literature study was done to confirm the type of components to be 

used, reveal design issues and what characteristics such a system must adhere 

to. Software named DELMIA was used to create a virtual simulation environment 

to verify the system and simultaneously scrutinize the methods of verification. On 

completion, simulations were conducted to verify software functions, device 

movements and operations, and the control software of the system. Based on 

simulation results, the physical system was built, and then verified with a multi 

agent system as overhead control to validate the entire system. The final results 

showed that the project objectives are achievable and it was also found that 

DELMIA is an excellent tool for system verification and will expedite the design of 

a system. By obtaining these results it is indicated that companies can design 

and verify their systems earlier through virtual commissioning. In addition, their 

systems will be more flexible, new products or product changes can be 

introduced more frequently, with minimum cost and downtime. This will enable 

SA manufacturing companies to be more competitive, ensure increased 

productivity, save time and so ensure them an advantage over their international 

competition.  
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Chapter 1 Introduction 

1.1 Introduction 

Manufacturing companies today are faced with the increasing need for new 

methods of automating assembly processes that are driven by frequent 

unpredictable and constantly changing markets as well as the application of just-

in-time production techniques, where parts are required to arrive at the work 

station exactly when they are needed. These market changes include the 

frequent introduction of new products, changes in product demand and 

fluctuations in batch orders [1]. The driving factor behind the design and 

development of flexible assembly systems is economics, with the world market 

demanding a wider variety of products at a constant high quality, competitively 

low priced, in the shortest time span, and rapid new product introduction in 

varying quantities [2]. 

The traditional inclination to resort to the use of manual assembly for complex 

parts, instead of rigid special-purpose lines, is mainly justified by the high cost of 

dedicated lines and the inability of dedicated lines to deal with any type of part 

variation. Dedicated lines cannot be adjusted easily to facilitate the assembly of 

dimensional variations of families of parts, as well as the added manipulation 

requirements of such variations. Manual assembly is easily justifiable in countries 

with low wage levels and high unemployment ratios (large availability of labour). 

Any automated assembly system must compete at all levels of production to 

prove feasible within such a scenario (as described above). In this respect, a 

competitive, automated system must be capable of competitive high-volume 

productivity, rapid part change-over and rapid ramp-up to full production ability. 

Such a system must show a certain degree of flexibility with respect to the system 

structure and the system capabilities. A proposed system is shown in Figure 1.1. 

This gives rise to the concept of systems that have reconfiguration abilities or 

reconfigurable systems. 
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Figure 1.1 Proposed physical system and flow 

1.2 Problem Statement 

Dedicated manufacturing systems cannot easily be manipulated to facilitate the 

assembly of multiple products of a product range, and manual assembly proves 

too costly for the manufacturer because of high cost and/or low productivity of 

labourers.  

1.3 Research Goals and Objectives 

1.3.1 Hypothesis 

South African manufacturing companies can be more competitive, increase 

productivity and keep expenses to a minimum by making use of reconfigurable 

assembly systems (RAS). 

1.3.2 Specific Objectives 

The objectives of this study are to: 

• Develop a reconfigurable assembly system with various control options to 

have enhanced control capabilities. 

• Develop a simulation or virtual model to verify control and operation before 

a real version of the system is built. 
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• Develop a RAS that can switch control between a Multi Agent System 

(MAS) and the system controller. 

• Develop a system that will be able to manufacture different products of the 

same product family. 

• Develop a RAS that is able to adapt automatically, depending on the 

requirements of the specific product to be made. 

• Develop a RAS that is able to reroute the product flow and shift the 

workload between conveyors. 

• Develop a system that can do error handling in case of product failure. 

1.4 Research Methodology 

The complexity of a control system makes it difficult to determine the 

performance of the system analytically [3]. For this reason, simulation software 

will be used to design the subsystems or assembly cells. The software choice will 

be DELMIA from Dassault Systems [4] [5]. DELMIA allows Programmable Logic 

Controller (PLC) code to be simulated in a virtual environment. This eases 

debugging and design faults can be rectified before the physical system is 

implemented. 

In addition, the physical structure and design of the system will be divided into 

assembly cells as shown in Figure 1.2. The physical design will make use of a 

PLC and motion controllers for the control of the subsystems. The motion 

controllers will drive servo motors or stepper motors connected to linear drives. 

This will allow the subsystems to be reconfigured and adapt to the requirements 

of each product part to be made. Proximity sensors will be used to determine 

when and if a part has arrived at the correct position. 

Additionally, the DeviceNet™ fieldbus protocol will be investigated for 

communications between the main controller and its peers at component level [6]. 

The main controller will communicate over Ethernet with the MAS to send and 

receive information to and from the MAS. PLC memory will be used to store 

information regarding the capabilities, availability and status of the subsystems 

equipment. This memory will allow the MAS to determine the best setup for each 
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subsystem depending on the product type to be made. The main controller must 

be able to administer full control in case the MAS system seizes to operate or if a 

client prefers not to have the facilities of the MAS available in the system. 

 

Figure 1.2 Proposed system block diagram 

1.5 Layout of Dissertation 

Chapter 1: This is an introductory chapter, which contains the problem 

statement, hypothesis and the objectives of the project. 

Chapter 2: This is a literature study done by the author, to acquire preliminary 

knowledge in the field of study, which contains current practices in industry. 

Chapter 3: This is an overview of DELMIA e.g. how the infrastructure works, how 

to obtain the needed geometry and control elements, and how to accomplish 

virtual commissioning. 

Chapter 4: This is a chapter containing a description of the utilization of the 

proposed machinery and possible methods for implementing control elements. 

Chapter 5: This is a chapter dedicated to the tests that were done, how they 

were done and the results obtained. 

Chapter 6: A closing chapter to discuss test results as well as future work. 
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Chapter 2 Literature Study 

2.1 Introduction 

This chapter encloses a literature study done to acquire preliminary knowledge in 

the field of study (reconfigurable automation) and illuminate terms like 

reconfigurability and flexibility. In addition, the study encloses the characteristics 

of RMSs; provides design principles, and discusses typical components used in 

RMSs. Furthermore, how humans and machinery are integrated in RMSs and the 

safety aspects hereof are also considered. Also included in this chapter is an 

evaluation of available simulation software, the functionality of the software and 

justification for the choice of software. In brief, the chapter provides clarification 

on the field of study, and includes an overview of important practices currently 

relevant to industry. 

2.1.1 Reconfigurability and Flexibility 

Reconfigurability is defined by Wiendahl [7], Setchi and Lagos [8] as the 

operative ability to repeatedly change and rearrange the components of a system 

in a cost-effective way, through the addition or removal of functional elements 

with minimal effort and delay. The prospect of an assembly system sporting the 

characteristics of reusability, scalability, agility and reconfigurability has resulted 

in an assembly paradigm known as RASs or RMSs.  

On the contrary, flexibility is defined by the tactical ability of an entire production 

and logistics area to switch with reasonably little time and effort to new, although 

similar, families of components by changing manufacturing processes, material 

flows and logistical functions.  

Furthermore, the key differences between reconfigurability and flexibility can be 

elucidated by the following:  

• Firstly, the diversity of work pieces handled: reconfigurable systems may 

switch between different families of products, while flexible systems switch 

between similar products. 
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• Secondly, the extent of change the manufacturing system has to undergo: 

reconfigurable systems may add or remove machine components, while 

flexible systems change the process or material flow. 

In addition, there are two types of reconfiguration that can occur in a 

manufacturing system, namely basic and dynamic reconfiguration. Basic 

reconfiguration is reconfiguration in its simplest form, which can be achieved by 

stopping the system, applying the necessary hardware or software changes, and 

then restarting the system. This is also known as “cold starting the system”. 

Dynamic reconfiguration is reconfiguration which takes place while a system is 

still in operation, without having to stop the system [9]. 

2.1.2 Characteristics of Reconfigurable Manufacturing Systems 

Koren et al. mentions five important characteristics of RMSs [10]. ElMaraghy 

summarized these and adds an additional characteristic [11]. Together these are:  

• Modularity of both hardware and software components. 

• Integrability for both ready integration and future introduction of new 

technology. 

• Convertibility to allow quick changeover between products and quick 

system adaptability for future products. 

• Diagnosability to identify the sources of quality and reliability problems 

quickly. 

• Customization to match designed system capability and flexibility to 

applications. 

• Scalability to incrementally change capacity rapidly and economically [11].  

2.1.3 Flexibility of Reconfigurable Manufacturing Systems 

There are different levels of flexibility; ElMaraghy lists ten types of flexibility as 

follows [11]:  

• Machine: Various operations can be performed without set-up change. 
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• Material handling: Various paths available for transfer of materials between 

machines. It can be measured by a number of used paths divided by the 

total number of possible paths between all machines. 

• Operation: Various operation plans are available for part processing. It can 

be measured by the number of different processing plans available for part 

fabrication. 

• Process: Different sets of part types can be produced without major setup 

changes, e.g. part-mix flexibility. 

• Product: Ease (in terms of time and cost) of introducing products into an 

existing product mix; this contributes to agility. 

• Routing: It can be measured as the ratio of the number of feasible routes 

of all part types to the number of part types. 

• Volume: The ability to vary production volume profitably within production 

capacity. 

• Expansion: Ease (in terms of effort and cost) of augmenting capacity 

and/or capability, when needed, through physical changes to the system. 

• Control Program: The ability of a system to run virtually uninterruptedly 

(e.g. during different shifts) due to the availability of intelligent machines 

and system control software. 

• Production: It can be measured as the number of all part types that can be 

produced without adding major capital equipment. 

2.1.4 Design Issues Related to Reconfigurable Manufacturing Systems 

The degree of flexibility of a manufacturing system largely depends on its 

modularity. A modular design makes it easy to install, remove and regroup 

various modules of an assembly system. An advantage of modular design is the 

possibility of “plug and play/produce”. This means that modules can be 

dynamically added or removed from the system without having to change, 

reconfigure or recalibrate the hardware or software of the assembly system. Six 

design principles for RMSs suggested by Katz follow directly [12]: 

• Design around a specific part family. 
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• Customized flexibility. 

• Easy and rapid convertibility. 

• Modular scalability, addition or removal of elements that increase 

productivity or efficiency. 

• Allow reconfiguration so the machine may operate at several locations 

along the production line performing different tasks at different locations 

using the same basic structure. 

• Should be implemented using a modular approach, common hardware and 

interfaces. 

2.2 Typical Components used within Assembly Systems 

This section discusses the typical components used in an assembly system, the 

importance of these components and the factors considered when choosing 

these components. In addition, this section shows that these components are 

agile, modular, diagnosable and easily assembled. Furthermore, these 

components are readily available because of their high demand; and are 

relatively cheaper than their dedicated non-flexible equivalents—due to their 

reusability and reconfigurability. In addition to the latter, modifications to an 

obsolete machine can prove more costly than purchasing a new machine. In 

short, this section shows the usage of typical components in assembly systems, 

as well as what makes them reconfigurable. 

2.2.1 Industrial Robots  

To quote from literature, an industrial robot can be defined as: “a 

reprogrammable, multifunctional manipulator designed to move materials, parts, 

tools or specialized devices through variable programmed motions for the 

performance of a variety of tasks” [13] [14]. Industrial robots are extensively used 

in modern industry, in applications which are too dirty, dull, dangerous or difficult 

to be done by human beings. These applications include pick and place work, 

cutting, spraying, drilling, welding, assembly operations, quality inspection and 

heavy lifting. In addition, the choice of robot depends greatly on what 

environment it is used in, the required payload at a required speed, the size of the 
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work envelope and the accurate repeatability of motions. Furthermore, depending 

on the application, these robots can either be floor, wall, shelf, roof or gantry 

mounted to fit the application [15]. 

2.2.1.1 Robot Types 

Moreover, these different types of robots are constructed from varying numbers 

of axes and axes orientations, which are linked together either by rigid, revolting 

or prismatic joints. Major types of industrial robots are classified by their 

mechanical structure and are categorized as: Articulated robots, Cartesian (also 

known as, gantry or XYZ robots), SCARA, Cylindrical, Parallel, Spherical or Polar 

robots [16]. Examples of various industrial robots are shown in Figure 2.1 below. 

 

Figure 2.1 Various industrial robots [17] 

2.2.1.2 Robot Components 

Although various types of industrial robots have different mechanical structures, 

they still consist of the same elementary subcomponents and are distinguished 

as the controller, arm, drives, end of arm tooling (end effectors) and feedback 

sensory. These components can be described as follows [18]: 

• Controller: Firstly, the controller in conjunction with a teach pendant, are 

connected to the physical robot arm and enables an operator to control, 

interface, program or configure the robot. In addition, the controller runs a 

required control program to instruct the robot to execute a sequence of 

movements and operations, and stipulate the velocity, acceleration and 

deceleration these movements must yield to. 
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• Arm: This is the mechanical moving part of the robot, which manipulates 

the location of the end effector in the working envelope. As seen in the 

previous section, the construction of the arm depends on the number of 

axes, the orientation of these axes (XYZ) and the type of robot to be 

constructed. 

• Drives: The drives are the actuators used to cause motion to the individual 

axes of the arm, and are driven by either electrical motors or other types of 

actuators. 

• End of Arm (EoA) tool: is any device or tool attached to the robot flange 

(wrist), which once the arm has moved to the correct position, performs a 

specific task. EoA tools include grippers [19], paint and welding guns, 

vision equipment, suction devices and EoA tool changers, and are also 

known as end effectors (also see actuators). Figure 2.2 shows various 

EoA tooling. 

• Sensory: (Refer to sensors), is used to transmit feedback signals or data to 

the robot controller about the position of the respective axes, orientation of 

objects, status of the EoA tool and the surrounding environment. 

 

Figure 2.2 Various end of arm tools [20] 
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2.2.2 Material Transport Equipment 

There are different practices and methods concerning the transportation of raw 

materials, parts or products around a manufacturing facility. These methods 

include manual transportation by humans, the use various conveyors, chutes and 

slides, factory vehicles like forklifts, and autonomous guided vehicles (AGVs) or 

robots, which are designed to store and retrieve manufactured goods 

automatically. Selecting a suitable transport system depends strongly on the 

application at hand. Factors that need to be considered include cost-

effectiveness, available workspace, size and weight of materials to be 

transported, safety of the method used, and the reusability if the system is to 

change. In conclusion, the transport system best suited for an application must be 

utilized by manufacturers. 

2.2.2.1 Conveyors 

Different types and variations of conveyors are available to industry [21], which 

are tailor-made to suit the individual needs of different applications. Conveyors 

come in a variety of shapes and sizes and it is nearly impossible to list them all. 

Conveyors allow for the quick, efficient and effortless transportation of materials 

from one point to another inside a factory. Conveyors consist of transporting 

belts, chains or cables which are driven mechanically, hydraulically or electrically. 

In addition, some conveyors only ease manual transportation (roller conveyors) or 

use gravity to transport material (chutes and slides).  

There are a variety of important factors concerning the selection of a conveyor 

system. These factors include, firstly the style of conveyor that is needed (based 

on application). Must material be transported on a solid belt, in trays or buckets? 

How will the accumulation and sorting of materials be handled? Lastly, what are 

the size, weight and shape of the materials to be handled? Examples of these 

conveyor solutions are shown in Figure 2.3. The major types of conveyors include 

belt, chain, cart, monorail, bucket, and towline conveyors.  

Following below is a list of some benefits concerning the use of conveyors: 

• Conveyors are able to safely transport material point to point, where it is 

laborious and expensive when done manually by humans or by vehicles 

operated by humans (operating cost plus salaries). 
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• Conveyors can be installed anywhere (floor or overhead), and are much 

safer than using machinery like hoists and forklifts, thus increasing human 

safety. 

• Conveyors can move materials of all shapes, sizes and weights 

continuously without unnecessary stoppage of the system. 

 

Figure 2.3 Various types of conveyors [22] 

In addition to conveyors transporting material, parts and pallet feeders supply the 

material (parts) as well as the containers (pallets) in which materials are 

transported. Feeders are normally situated near the start of a conveyor to feed 

pallets and initial parts, and near assembly cells where the parts are needed for 

completion of products. Contrary to feeders, sorting and orientation devices are 

used to route the material through the system and to ensure that material is 

orientated correctly so it can be picked from the conveyor. Examples of such 

devices include deflectors, push diverters, rake pullers, moving slats, tilt trays and 

cross belts. In conclusion, conveyors utilized in conjunction with auxiliary devices 

can enable an assembly system to operate around the clock and therefore 

increase productivity. 
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2.2.2.2 Autonomous Guided Vehicles 

An AGV is a mobile vehicle or robot which makes use of sensors to navigate itself 

through a facility autonomously in order to achieve specific tasks. Vast varieties 

of AGVs are currently being implemented in industrial applications to move 

materials around a manufacturing facility autonomously. Examples of industrial 

AGVs include [23]: autonomous guided carts (AGCs), which are used similarly to 

conveyors, to move material around a factory floor. In addition, automatic storage 

and retrieval vehicles (AS/RV), which can be defined as “automated forklifts” and 

are used to store materials autonomously for a period of time and retrieve it for 

dispatch. In conclusion, the use of AGVs to transport material is just as trendy as 

the use of conveyors; AGVs have been confirmed to be a feasible material 

transport solution, but will not be considered given the scope of the project. 

2.2.3 Actuators 

Figure 2.4 shows examples of various industrial actuators. Actuators are devices 

which transform potential energy (compressed air) into actions or motion when 

instructed to by input signals (normally electrical signals). To rearticulate, 

actuators are the components which do the physical labour in an assembly 

system when instructed to by a controller. Moreover, common types of actuators 

include electrical motors, air muscles, and pneumatic or hydraulic cylinders and 

drives [24]. Actuators can be part of a machine, an EoA tool or an auxiliary device 

in an assembly cell. Furthermore, actuators are used to drive a belt or to stop, lift, 

tilt, clamp, push, align and orientate objects on a conveyor. In conclusion, 

actuators translate the instructions of the controller into physical actions. 
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Figure 2.4 Various industrial actuators [25] 

2.2.4 Sensors 

Monitoring and receiving feedback from sensors forms a vital part of an assembly 

system. Sensors are widely used in various and different applications. Figure 2.5 

shows an assortment of different types of sensors. Basic types of sensors include 

sensing proximity of objects, variation in temperature, flow, as well as fluid and 

gas pressure [26]. The most commonly used sensors in assembly systems must 

be proximity sensors. It senses the presence of parts or objects, within a certain 

range, at a defined position. Furthermore, different types of proximity sensors are 

present in industrial applications. Examples of these types include capacitive 

sensors that sense any object in its proximity; inductive sensors that sense metal-

containing objects; magnetic sensors that sense magnetic fields; and infrared (IR) 

sensors that sense transmitted beams of IR light, where the light can be sourced 

either from itself or a different source. In addition to proximity sensors, pressure 

and flow sensors are used to provide feedback to a controller (PLC) used in 

hydraulic or pneumatic systems. The feedback from the sensors is then used by 

the controller to determine if air pressure is present or if the system is working at 

or under a safe pressure. Lastly, contact switches can also be used as sensors. A 

common application example is using a micro-switch to detect the physical limits 

of a machine. In conclusion, sensors provide a system with capabilities, similarly 

to what senses provide to a human being. 
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Figure 2.5 Assortments of industrial sensors [27] 

2.2.5 Controllers, Modules and Communications 

A large number of industrial programmable controllers are available to the 

automation market, come in different types and sizes and have different 

capabilities [28]. The most commonly used controller in industry is the 

Programmable Logic Controller (PLC). PLCs include two types and can be 

categorized as “Brick” with a fixed number of IOs, and “rack mount” where a 

central processing unit (CPU) along with IO modules comprising different 

functions can be added into the rack. The CPU executes controller functions like 

scanning data and the execution of control sequences. Furthermore, aiding the 

CPU, IO modules which are classified as analogue inputs, analogue outputs, 

digital inputs, and digital outputs read data from sensors and control various 

actuators. In addition, these modules must comply with stringent electrical 

specifications and adhere to industrial standards. 

An additional variation of PLC includes the Programmable Automation Controller 

(PAC). It has increased processing speeds, supports multiple simultaneous tasks 

and functions, and is used to control advanced and complex systems. In other 

words, it is an advanced PLC. Besides PACs, the inclusions of Distributed 

Control Systems (DCS) are widely used in process control. DCSs use multiple 
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controllers to handle particular tasks which are networked together by industrial 

standard communication protocols individually. Typically, instances of DCSs 

operate an entire factory from a central control room.  

Similarly to a DCS, a PLC in conjunction with compact or field IOs can distribute 

control over a facility. The PLC acts as the main controller and the field IO 

modules provide a means of remote IOs to monitor and control. Furthermore, 

intelligent relays (basic PLCs) are used in smaller systems and processes. It is 

used instead of PLCs when the process at hand consists of basic logical 

functions and in cases where it is not profitable to use PLCs. 

Finally, communications with the backplane of a controller can be achieved by a 

variety of communication protocols and fieldbuses. Standard communication 

protocols include RS-485, RS-232, CAN and Ethernet, where as industrial 

fieldbusses include PROFIBUS, PROFINET, CANopen®, Modbus®, 

DeviceNet™, Ethernet IP™, EtherCAT, etc. [29] [30]. 

In conclusion, the choice of controller depends largely on the processing speed 

required (scan rate), the intended scheme of control, the type and amount of 

expansion modules needed, the complexity and size of the system, and the 

finances allocated to the application. 

2.2.6 Automatic Identification and Tracking 

With the growing complexities of assembly systems and assembly processes, the 

need arises to identify and track manufactured parts or products throughout the 

progression of all manufacturing stages, hence traceability. Traceability provides 

the ability to identify and track a product during a manufacturing cycle, identify 

product specifications, ensure the quality of parts by eliminating human errors 

and collect historical data (batch numbers). Following below are typical example 

applications to obtain and support the traceability of products. 

2.2.6.1 Barcodes and Data Matrixes  

Referring to Figure 2.6, barcodes are one-dimensional, optical, machine-readable 

labels, which represent data by parallel lines with varying width and space 

between them [31]. Furthermore, a barcode reader or scanner can be used to 

retrieve data from the barcode, as long as line of sight to the reader is assured. 
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Figure 2.6 Example of a barcode [31] 

In addition to barcodes, Data Matrixes represent a two-dimensional variation of 

barcodes [32], where data are represented by tiny squares instead of parallel 

lines (refer to Figure 2.7). A Data Matrix is prearranged into a “finder pattern” and 

a “timing pattern”. The finder pattern is normally shaped in an “L” and is used to 

find and orientate the symbol. The timing pattern, normally the opposite corner to 

the finder pattern, provides information on the number of rows and columns that 

are present in the symbol. The rest of the squares enclosed inside these borders 

contain the data concerning the product it is labelled with. 

 

Figure 2.7 Example of a Data Matrix [33] 

2.2.6.2 Radio Frequency Identification (RFID) 

RFID systems consist of tags containing electronically stored information and 

readers that use radio frequencies to transfer identification data wirelessly from a 

tag to a reader on request of a querying reader [34]. Figure 2.8 shows an 

example of such a system. Furthermore, RFID tags can be divided into two types, 

namely active and passive tags. Active tags have internal batteries and are used 

in applications which require additional range. In contrast to active tags, passive 

tags have no internal batteries. Passive tags use the power induced by the 

electromagnetic fields received from the reader and responds by sending data 

back to the reader. In contrary to barcodes, RFIDs do not need to have line of 

sight with the reader and only require being within the specified range. 
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Figure 2.8 RFID reader with tags 

2.2.6.3 Machine Vision 

Machine or computer vision is typically used in manufacturing systems to check 

for quality, position, orientation and completion of products [35]. These vision 

systems rely on image sensors (cameras) to detect electromagnetic radiation in 

the form of either visible or infrared light, which is reflected by objects of interest. 

Furthermore, a camera is used to capture images, where filtering is applied 

(hardware or software filtering) and finally compared to a reference image. 

Further, these comparisons will determine what manipulations must be done to 

the object in the region of interest. However, machine vision is a broad field and 

will not be discussed in depth. 

2.3 Integration of Robots and Humans in Assembly Systems 

Assembly systems can consist of either robots or humans or a combination of 

both. The integration of robots and humans must be planned in such a way that 

the system operates safely and efficiently. However, this may increase the need 

for human detecting sensory, making the system more complex and increasing 

the chances of system failures.  

In addition to increased sensory, a complication may arise which is known as 

manumation [36]. Manumation is the failure of implemented automation systems 

(hardware and software) to automate a manual work process. Furthermore, 

manumation may require more human involvement than before the 

implementation of automation components and therefore fails to achieve 

automation. Thus, it is important to design a system with no redundant 
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components present in the system. The next paragraph lists applications where 

robots are preferred to humans. 

Typically, industrial robots are used instead of humans in difficult, dangerous and 

repetitive applications [37]. A robot can lift heavy objects; perform operations with 

great precision, repeatability and speed; save labour cost; and never shows 

fatigue or makes errors associated with fatigue. Furthermore, robots are used in 

cases where a product is harmful to a human (radioactive material), and where 

the presence of a human can contaminate a product (pharmaceuticals) [38]. 

In contrast, some applications necessitate the use of humans instead of robots. 

These applications include processes which are too delicate and have too many 

variations for the utilization of a robot. In addition, some applications need human 

interpretation and occasionally humans have better speed and quality. In 

additional cases, humans are favoured where it is not profitable to use robots; 

where robot systems are too complex to maintain and where a shortage of skilled 

programmers exist. 

It is ideal to have a fully-automated assembly system, but this section has shown 

that certain applications have specific needs and it can be beneficial to utilize 

both robots and humans. 

2.4 Industrial Safety Precautions 

Safety measures must unquestionably be the most important issue to consider in 

industry. No monetary value can weigh up against a human life or a serious 

accident. In addition to human safety, safeguards must be taken to prevent 

collisions between system components and self-inflicted system component 

damage. 

This presents two conflicting points of view concerning industrial machinery and 

robots. The utilization of industrial robots can increase the safety of humans, 

where robots instead of humans are implemented in hazardous environments 

and unsafe working conditions. Contrary to securing human safety, the presence 

of industrial robots can sometimes be the cause of an environment being 

hazardous. Therefore, it is crucial that manufacturers have safeguards in place to 

eliminate unforeseen potential hazards and ensure the safety of humans.  
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2.4.1.1 The E-Stop 

The most important safety precaution, which is universally used in assembly 

systems in industry, must be the emergency stop (E-stop) [39]. During an 

emergency, the E-stop is used to stop the system as quickly and safely as 

possible. The E-stop must be easily accessible; recognizable; must work safely 

and reliably; and always be used as a last resort. It may never be a push button 

or be part of control logic (PLC program). It can be a grab wire, hand-held 

pressure switch, an unenclosed foot pedal or a combination of the mentioned 

devices. The location must be obvious. It can be in proximity of a machine, 

adjacent to a work cell or in the vicinity of a supervisor’s post. Furthermore, the E-

stop should be a red mushroom shape (top left corner, Figure 2.9), mechanically 

latching switch, preferably on a yellow or orange background. When the switch is 

actuated, it should break the continuity of the contacts (open circuit), removing 

the power to final power relay, actuating the power brake system using hardware-

based components, and compel the system to a safe state. When resetting the E-

stop, the system must remain in a safe idle state, preventing machines from 

restarting until the system returns to safe operating conditions.  

With the use of an E-stop system, the following questions could be raised: 

• Is it safe to have the E-stop system interrupt the power to motor drives and 

actuators?  

• Should the E-stop system actuate an emergency brake or clamp? 

Disconnecting the power to devices may result in hazardous “freefalling”, leading 

to a more disastrous, unpredictable and dangerous situation, which might cause 

machine damage or injury. In contrast to interrupting the power supply, 

considering the use of self-braking motors, which applies the brakes during a 

power failure or when an E-stop has been actuated, would increase the safety of 

the situation. It should be determined whether stopping a machine in position 

would worsen the situation by increasing the severity of an injury or leave the 

system in the safest possible state. Some power tools (power drill) used as EoA 

tools, still take a period of time to come to a complete standstill. In this case it 

would be recommended to apply the emergency brakes. Another consideration 

would be to allow the machine to operate in a reverse direction to a safe position. 
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If the EoA tool poses no threat, reversing the machine movements may free an 

operator from being trapped between the machine and a fixture. 

 

Figure 2.9 Safety products from Rockwell Automation [40] 

2.4.1.2 Potential Hazards 

The potential hazards can be divided into the following three categories [41] [42]: 

Firstly, “impact hazards” which include scenarios where a human is being struck 

by a moving robot arm, EoA tool or a carried part. In addition, the robot can drop 

or fling (throw) work pieces and parts, which also result in injury due to impact. In 

addition to impact hazards, “trapping hazards” include scenarios where a human 

is being caught between a robot arm and fixed features or perimeter fencing, 

resulting in being crushed. Trapping also include when a limb gets caught inside 

the mechanisms of a machine. On the contrary, health hazards which exclude 

impact and trapping are specified as “other hazards”. This is when the 

application, in which the robot is used, produces by-products and as a result 

exposes the perimeter to hazardous elements. Examples of such hazards include 

exposure to ultraviolet rays and sparks during welding, harmful vapours from 

spray painting and high levels of noise from the surroundings. Health and safety 

issues can be resolved by proper implementation and installation of preventative 

safety measures. 
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2.4.1.3 Preventative Measures 

Alongside E-stop procedures, it is recommended that the hazardous conditions 

discussed in the previous section rather be prevented by well-planned installation 

of safeguards instead of allowing potentially dangerous situations. The level of 

danger can be determined by the probability of an accident occurring, and by 

identifying potential exposure to harmful elements. These risks can be classified 

into three levels; level 1 being the lowest risk of danger and level 3 being the 

highest [43]. By referring to Figure 2.10, the following are examples of hazardous 

areas: the outer limits of a work cell (level 1), where the system components pose 

no great threat to anything outside this border; inside the envelope of a work cell 

(level 2); and in close proximity of the working areas of machinery and robots 

(level 3). 

 

Figure 2.10 Three safety risk regions [43] 

To maintain a low risk of danger in a system, preventative safety measures must 

be considered and implemented. Following below is a discussion on the 

topic [44] [45]: 



�

23�
�

Firstly, by providing factory staff with the necessary training in regards to safety 

procedures (safety rules), publicizing warning signs in proximity to potential 

hazards, and enforcing the use of protective clothing (hardhats) would prepare 

staff members in evading the threats present in their surroundings. 

Secondly, referring to Figure 2.11, prevent staff members physically from entering 

an unsafe area through the installation of perimeter fencing. This can be a 

physical cage, structure or enclosure. It can be implemented with interlocking 

systems, where a robot seizes to operate when the cage gate is opened. 

Furthermore, securing of the perimeter by installing screening between work 

areas also prevents environmental and impact hazards like exposure to ultraviolet 

rays and the robot flinging work pieces respectively. Enforcing physical perimeter 

fencing will ensure that the system maintains a level 1 safety risk. In addition to 

physical perimeter fencing, infrared light curtains (top right corner, Figure 2.9) and 

perimeter beams can be installed. Curtains and beams form a virtual boundary 

and provide feedback to robot controllers once the light beams are interrupted. 

However, the use of curtains without screening off machines and robots will 

decrease safety if the possibilities of impact hazards are not addressed.  

 

Figure 2.11 Perimeter fencing and screening [46] 

Lastly, if personnel must work inside the border of the work cell or near the 

working envelope of a robot, emphasis must be placed on reliable sensing of 
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human proximity. The function of such sensing equipment is to prevent 

machinery from injuring personnel working nearby. Safety mats (bottom right 

corner, Figure 2.9) or pressure sensing mats are placed in a safe area close to 

machinery to ensure safety when programming and calibrating the machine. 

Further, safety solutions like SafeZone™ [47] from Rockwell Automation (bottom 

left corner, Figure 2.9), emit dispersed infrared light and use the reflection to 

sense the invasion of humans or unwanted objects within a pre-configured safety 

zone. 

To conclude, it is necessary for manufacturers to implement safety equipment to 

ensure the safety of their employees, as well as protection against damage of 

their factory equipment. 

2.5 Software Platforms 

2.5.1 Introduction 

There are huge varieties of software available to a large and diverse industry. 

These industries include the automotive, aerospace, shipbuilding, construction, 

machining, welding, cutting, spraying—and the list continues. For the scope of 

this thesis, focus will be exclusively on Product Lifecycle Management (PLM) 

software for automation, where PLM software is used to manage the entire 

lifecycle of a product. In other words, PLM software supports the user from the 

product as a concept design to the product in service. 

2.5.2 Available Software and Functionality 

Choosing the right software can be a tedious task. Additionally, the software 

choice must accommodate the complexity of the consumer’s needs; include full 

technical support from the vendor, and at an affordable cost of ownership.  

When browsing the internet for “computer-aided” software, multiple vendors come 

to the forefront offering world-class software solutions. The leading software 

solutions used by companies in industry, shown by software reviews and articles, 

include DELMIA [4] [5], Siemens PLM [48], WinMOD® [49], 3D-Automate [50], 

Virtual Universe [51] and other smaller packages. Incidentally, the above-
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mentioned software solutions promise the same type of functionalities and 

similarities. 

Moreover, functionality concerning geometry includes design and drafting, 

importing and supporting various file formats, digital mock-up and modelling. 

Furthermore, vendors promise planning functionalities like factory and resource 

layout, assembly process planning, bottleneck detection, crash and stress 

analysis. Additionally, internal control logic and device tasks can be allocated to 

imitate the operation of a system. Using the virtual version of a system, a PLC 

can be connected via a desired fieldbus and then validated to speed up the real 

commissioning and optimizing of a system.  

It is clear that the functionalities of the abovementioned software solutions 

enables a consumer to be more productive, more competitive, save time and 

ensure a good product. The choice strongly depends on whether a vendor’s 

product will suffice in terms of the consumer’s needs. 

2.5.3 Software Selection 

As a result, WinMOD, 3D-automate and Virtual Universe will be excluded from 

the study due to vague descriptions in the vendor’s webpage and limited access 

to information about its capabilities. This leaves DELMIA and Siemens PLM as 

the best viable solutions [52] [53]. The fact that DELMIA offers a more complete 

solution, has an explanatory online help archive with sample projects, is readily 

available to the South African market, and by contradicting favouritism to a 

specific PLC vendor (multiple different PLC products from different vendors are 

used in this project), made DELMIA an apparent choice. The only drawback of 

this choice is that DELMIA requires a steep initial learning curve, but this applies 

to Siemens PLM as well. In conclusion, DELMIA provides the recommended all-

inclusive software suite that is needed to model and verify the system under 

development. 
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Chapter 3 Simulation within a Virtual Environment 

3.1 Introduction 

This chapter provides the specifics of virtual commissioning such as, what is 

virtual commissioning? What is the significance of it? How is it implemented in 

industry? What path is followed to obtain it? By definition, virtual commissioning is 

the commissioning of an assembly system within a virtual environment without 

needing to develop a physical system beforehand. By obtaining virtual 

commissioning, design flaws can be rectified early in the design stage; space 

reservation can be allocated for the machinery used in the system; and controller 

software can be verified well in advance, before building the physical system. 

Virtual commissioning also allows for easy reconfiguration of an existing system, 

where process, software or hardware changes can be made in the digital model 

of the system, then analysed to see how these changes influence the system, 

and then—based on the results, the physical system can be modified, preventing 

costly downtime of the physical system. Furthermore, in industry it enables 

manufacturers to streamline an assembly line, where planning is done more 

efficiently and through-put can be predicted due to the visualisation of the 

assembly line. In short, virtual commissioning is established when a virtual factory 

is controlled by either a virtual system controller (virtual machine) or a physical 

system controller (PLC) to emulate the behaviour of the physical system.  

3.1.1 Dassault Systems Product Structure 

Dassault Systems, also known as the 3D Experience Company, provides industry 

with a virtual universe to envision sustainable innovations. Furthermore, Dassault 

Systems offers a wide collection of products, but for the purpose of this study only 

CATIA, DELMIA and DELMIA Automation will be evaluated [54]. 

Figure 3.1 represents an overview of Dassault Systems’ product structure and 

how the assorted programs interrelate. CATIA, DELMIA and DELMIA Automation 

are interconnected, where each product has distinctive functions, like geometry 

creation, simulation and analysis to attain virtual manufacturing, but all the 

respective functions are available in one workbench. Together, CATIA, DELMIA 



�

27�
�

and DELMIA Automation, along with other additional products, form Dassault 

Systems’ Product Lifecycle Management (PLM) software suite.  

 

Figure 3.1 Product structure of Dassault Systems 

3.1.2 CATIA 

This is Dassault System’s initial product (Computer-Aided Three-dimensional 

Interactive Application). It addresses the entire lifecycle of product development, 

from product concept specification through design, analysis, and simulation to 

final product in service [55]. 

3.1.3 DELMIA & DELMIA Automation 

DELMIA is the PLM digital manufacturing software from Dassault Systems. It 

allows manufacturers to build a virtual version of a production facility and 

accompanying equipment. It handles early process planning through monitoring 

and control to final commissioning of the system [5]. 

3.1.4 Work Cell Hierarchy  

Before continuing with the subsequent sections, it is important to know how 

“Products” are structured within the DELMIA environment. DELMIA uses a tree 

structure to build up geometry, where a “Product”, is the root element of the 

hierarchy and contains multiple subelements or parts to represent the branches 

of the tree. Figure 3.2 clearly shows that a collection of parts are grouped 

together to form an assembly. Internal logic written in SFC language is then 
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allocated to these assemblies to form what is called “smart devices”. Similarly, 

multiple smart devices can be used together to form work cells. Basically, 

Figure 3.2 demonstrates how a complex system can be built up from multiple 

levels of subassemblies or smaller parts. 

 

Figure 3.2 Hierarchy of a work cell 

3.2 The Path to Virtual Commissioning 

To obtain virtual commissioning, some preparations must be done ahead of time. 

These preparations include that the user must acquire prior knowledge of the 

software environment under discussion. Furthermore, the proposed devices or 

machines to be used in the system and the intended layout for these must be 

known. Additionally, knowledge of the behaviour and kinematics of these devices 

should be known, as well as how the multiple devices are to be interconnected. 

Then the geometry used to represent these devices, which can either be 

downloaded from a vendor’s website if it is available or must be designed from 

start, must be acquired. Thereafter, the geometry must be assembled into smart 

devices which entail the allocation of kinematic data, as well as internal logic 

behaviour. Then, ultimately, the control software utilized to operate the various 

devices must be developed. 

In addition, all the subsequent methods utilized to realize virtual commissioning 

are obtained from the online help documentation which are installed as part of the 

software suite, but are also available online [56] [57]. 



�

29�
�

3.2.1 Creating Smart Devices 

As described in section 3.1.4, smart devices are built up using parts, assemblies 

and internal logic. A smart device can be anything from a basic linear drive or an 

entire multi axis machine. Fundamentally, a smart device is simply geometry with 

intelligence. The succeeding sections describe how to acquire the building blocks 

needed to obtain smart devices which are then later used for virtual 

commissioning. 

3.2.1.1 Creating Parts 

Parts are the most fundamental elements of any geometry and there are two 

methods of attaining these parts. Downloading the parts from a vendors’ website 

is one method or, alternatively, parts can be designed and created using CATIA. 

Important to know is that multiple types of file formats can be imported into the 

CATIA environment. File formats like “CATpart” and “CATproduct” are native to 

CATIA and are represented in a tree-type structure when created. Further, this 

means that the parts are modifiable and can contain other smaller parts within the 

structure of a part. On the contrary, universal formats like “IGES” (Initial Graphics 

Exchange Specification) and “STEP” (The Standard for the Exchange of Product 

Model Data) are compatible with various other popular computer-aided design 

(CAD) software packages and can be imported into CATIA as well. These 

formats are simply graphical representations of a part, which means that their 

geometry cannot be modified, thus are of lower quality and use less computer-

memory during generation. 

Informatively, Figure 3.3 shows the typical steps taken to create new parts [58]. 

Number 1 in the figure shows how geometry is initially sketched, starting with a 

rough profile of the part. Afterwards (shown at numbers 2 and 3), the dimensions 

and constraints are defined, which includes constraints like distance, offset, 

parallelism, perpendicular and radius. In turn (shown at number 4), the sketch is 

transformed into a “solid” using the “pad” tool, whereafter further detailing to the 

part (solid) can be done by adding features like holes, pockets, grooves and 

shafts (shown at number 5 and 6). Additionally, after the parts are completed, it 

can be rendered, which means that the colour and material type can be specified. 

Then finally, the created parts are saved in an archive or catalogue for future 
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reuse within other parts or assemblies. To conclude, this section captures the 

importance of being able to obtain parts, through either downloading or creation.  

 

Figure 3.3 Steps to design a part in CATIA 

3.2.1.2 Creating Assemblies, Mechanisms and Tasks 

An assembly is a collection of parts, linked together by means of specified 

constraints. In order to understand assemblies, it is important to distinguish 

assemblies into two groups, namely rigid and moveable assemblies. Firstly, rigid 

or static assemblies imply that parts are assembled together into one unyielding 

unit. An example is using multiple small parts to construct one fixed, bigger part. 

On the contrary, moveable or alterable assemblies represent a mechanical 

assortment, which contain at least one fixed part and other moving parts. An 

example of a moveable assembly is a piston driven by a crank. In DELMIA 

terminology, alterable assemblies can also be referred to as “mechanisms”, 

where mechanisms are a collection of numerous “joints”. 
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The steps taken to construct these assemblies and subassemblies can be better 

explained by referring to Figure 3.4 [59]. Firstly, the parts must be imported into 

the environment (shown at number 1). Next, the parts must be assigned 

constraints, which include alignment, orientation of parts, surface contacts, 

offsets and fixed-part constraints (shown at number 2 and 3). On completion of 

constraint allocation, the geometry can be updated, causing the parts to 

rearrange into their intended positions (shown at number 4). This is a typical 

example of a subassembly or a component. 

 

Figure 3.4 Assembly of parts 

Afterwards, several joints, which represent the most basic form of moveable 

assemblies, are created. Joints can either be created manually or the constraints 

allocated to the assemblies can be converted into joints automatically. In addition, 

joints can be divided into several different types namely prismatic, rigid, revolute, 

cylindrical, and other joints. Furthermore, depending on the type of joints created, 

kinematic commands and relations are specified to define the degrees of freedom 

(DoF) of a mechanism [60]. Primarily this involves the specification of physical 
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limits, direction of movement, speed, and acceleration properties of the joints. 

This is followed to create the joints of an entire machine. 

In a similar fashion to joint creation, different components can be assembled 

together to form a larger, more complex assembly [60]. Figure 3.5 shows how the 

components are first imported (shown at number 1), then aligned into position 

(shown at number 2) and finally attached. These attachments can be seen in the 

figure at number 3. The components are attached in a parent-child manner 

(shown at number 3), which causes the components to move respective to 

others. The example in the figure shows that the Y-axis (child) must move as if it 

is fastened to the slider of the X-axis (parent). Likewise, the cylinder (child) 

moves with the Y-axis (parent) and the gripper tool (child) moves with the cylinder 

(parent) and so forth. 

 

Figure 3.5 A complete assembly cell 

On completion, a sequence of possible activities can be identified to demonstrate 

the performance of the mechanisms. These activities can be grouped into tasks 

and operations. To differentiate, an operation depicts the movement of a joint or 
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several joints when executed, whereas a task executes a series of consecutive 

operations and functions. The steps followed to create these tasks are described 

below [61]. 

Figure 3.6 shows a cylinder in two different, pre-taught home positions. Home 

positions are taught either at the absolute limits or at regular reoccurring positions 

on the device e.g. up and down. Teaching is done by jogging the device into 

position (using the jog panel), and then saving the position with a descriptive 

name. The taught positions are stored in a program inside the device hierarchy 

along with other functions like, grab, release, delay and can then be called (like a 

subroutine) to examine the task behaviour. At this stage, the device geometry 

and kinematic behaviour are created and defined completely. This enables the 

user to finally apply logic behaviour and use the device geometry as a smart 

device. 

 

Figure 3.6 Model of a cylinder in two home positions 
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3.2.2 Creating Control Logic 

In order for a device to imitate the behaviour of a physical counterpart or cause 

several devices to cooperate with each other within a digital factory, control 

elements must be allocated to it. Figure 3.7 shows that control elements or 

control logic can be divided into two types, namely device logic and control logic 

[62] [63], where control logic divides into internal and external control logic.  

  

Figure 3.7 Description of control allocation 

Firstly, device logic which is also known as internal logic (IL), assigns unique 

behaviour to the devices created in the previous section (make it smart 

devices).The internal logic monitors the input and output ports (IO ports), then 

perform tasks depending on the IO port conditions. Basically, IL assigns 

distinctive behaviour to each device and controls it via the IO ports. On the 

contrary, control logic is a standalone control block, which can be used to control 

various smart devices. To clarify, internal control can be seen as a virtual PLC 

(local virtual machine) connected to devices to emulate the behaviour of a real 

PLC. With external control on the other hand, the devices are connected to a real 

PLC via OPC (Ethernet). However, for the control elements to have intelligence 

and behaviour, a program to define it must be written and compiled. This is 

achieved by using functional block diagrams (FBD) or sequential function charts 
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(SFC), in conjunction with device tasks. The creation of both control and device 

logic are achieved in a similar manner and for the purpose of this study, only SFC 

programming will be examined. The steps to accomplish it follow below.  

Referring to Figure 3.8 (at number 1), a control module must be created under 

the product tree. Afterwards, ports and signals are created, and the direction of 

these specified. An empty logic block is now generated. Next, the behaviour of 

the logic block is specified with the SFC editor [64]. From Figure 3.8 (at 

number 2) it can be seen that SFC uses squares to represent steps inside the 

behaviour. The steps are then connected by conditional transitions, symbolized 

by the lines between the steps. If a condition is true, the current step is 

terminated and the next step in the sequence will be active. In addition, optional 

“call action” tags are connected to each step. These actions include the calling of 

a task or changing the values of IO ports and signals. The SFC example in the 

figure shows the internal logic of a pneumatic cylinder. The input ports of the 

cylinder are monitored; then—depending on the transition condition—a 

corresponding task is called and the cylinder moves to the matching position. 

Onwards, control logic and internal logic can be assigned to all devices using the 

same method as described. Afterwards, the logic is built (compiled) and 

simulated to verify that the behaviour operates accurately. On completion, the 

various devices can be connected (mapped) to a control element, and therefore a 

digital factory is constructed. 

 

Figure 3.8 Control block with internal SFC logic 
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3.2.3 Process Plan and Simulation 

In industry it is important to manufacturing companies to verify how their systems 

will operate well ahead of time. By commissioning a process simulation, 

manufacturers can visualize system tasks and through-put, undertake collision 

analysis, validate “what if” scenarios, and determine the effect of reconfiguration 

on a system. Therefore, planning a system is done more efficiently. Process 

planning within the DELMIA environment enables manufacturers to test a system 

without the use of control logic. A sequence of activities is defined in a process 

plan, enabling a process engineer to validate the behaviour of a work cell. 

The following are the steps engaged to acquire a process plan: 

Before a process plan can be obtained, the capabilities of a system and a 

sequence of activities must be provided. Activities consist of verified device tasks 

as well as other operations like move and delay activities. A process plan is used 

to plan and verify the sequential order in which subprocesses must be executed 

[65] [66] [67]. Further, activities can either be routed as series or concurrent 

tasks, validating the operation of a single task at a time or numerous tasks 

simultaneously. This is made possible by the use of PERT and Gantt charts. 

Referring to Figure 3.9, a PERT chart presents a graphical illustration of a 

process as a network diagram consisting of nodes (squares) representing 

subprocesses, linked by directional lines. The direction of the arrows on the lines 

indicates the sequence in which the tasks must be executed. The sequence of 

the subprocesses can be altered, simply by deleting directional lines, reordering 

the nodes and reconnecting the lines. The figure further shows how 

subprocesses can be defined by containing other subprocesses. However, the 

time taken to execute a process is defined by a Gantt chart. Referring to 

Figure 3.10, Gantt charts are a type of bar chart that shows the start, finish and 

the time duration of a process or subprocess. It can be altered to vary the 

process time by stretching the time bars for each subprocess. Various 

subprocesses are executed at different time durations—and by varying the 

process time, the speed of the tasks will be altered, synchronizing tasks to finish 

simultaneously. Lastly, by running a process simulation of the entire system, the 
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sequence in which tasks are executed can be observed which can further verify 

that the process plan is flawless. 

 

Figure 3.9 Example of a PERT chart 

 

 

Figure 3.10 Example of a Gantt chart 
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3.2.4 Creating an Execution Environment and Virtual Commissioning 

In contrast to a process plan, an execution environment uses control logic instead 

of process activities to validate the behaviour of a system [52]. Before an 

execution environment can be created, some work must be done ahead of time. 

This includes the installing of an OPC server and the set up of the support drivers 

to communicate with the physical devices used (explained in Chapter 4). 

Furthermore, all the smart devices to be used must be completed (section 3.2.1) 

and the control element (section 3.2.2) to run it must be programmed beforehand. 

Fortunately, DELMIA has a large selection of ready-built devices from a variety of 

vendors in their robot library that can be imported directly into the environment 

which expedites the process. Furthermore, the validation of a system using 

control logic is referred to as virtual commissioning. Virtual commissioning can be 

obtained using two methods. Firstly (Figure 3.11), the digital factory can be 

connected to a virtual PLC, to validate the performance of the system and the 

control logic inside the environment. Secondly, the digital factory can be 

connected to an external real PLC, validating the software used in the physical 

PLC and predicting how the physical system will react. 

 

Figure 3.11 Device Control Connection Editor 

An execution environment can be created, by using DELMIA’s “CSM Device 

Control Connection” workbench [68]. To describe this it is helpful to mention that, 

an execution environment is a virtual workspace where multiple elements are 
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gathered to function as one unit with a common purpose. These elements consist 

of control logic, device geometry and virtual sensory (Figure 3.11). The intention 

of this environment is to test how a virtual factory would behave with numerous 

variations of control logic and control types. Following below is an implementation 

example of the usage, and how to create an execution environment.  

Firstly, the initial setup of the environment must be completed. All the smart 

devices (also known as resources), must be imported into the workspace and 

moved into place. Figure 3.12 shows how an environment is gradually being built 

and how further features are added to give a “real life” feel to the environment. 

After aligning all devices, it is necessary to mount all the EoA tools, by using 

attachments. An attachment is made between a resource and a tool in a parent-

child approach, where the resource is the parent and the tool is the child (similarly 

to section 3.2.1.2). At this point the geometry part of the setup is complete and 

can be saved as a product.  

 

Figure 3.12 Virtual system built in DELMIA 
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Afterwards (see Figure 3.13), an execution environment is created under the 

product tree, whereafter devices and control elements can be entered into the 

environment. Given the fact that an assembly system can consist of multiple work 

cells, it is not necessary to include all the devices that are in the product tree into 

the execution environment, since only the included devices (a single work cell) 

will be part of the emulation. 

 

Figure 3.13 Execution environment setup window 

Next, it is necessary to set up the communication to obtain an “external control 

connection” between the execution environment and the OPC server (OPC 

server is handled in Chapter 4). This is done by selecting OPC as the protocol 

type and then opening the “external PLC properties” window (Refer to 

Figure 3.14). Next, enter the path (address) and name of the server, and then 

connect to the server. If connected successfully, the user will be able to browse 

the server to obtain the address path for the PLC, as well as the OPC tags within 

it. The needed tags are selected, the type (Boolean for example) and direction 

(in, out or bidirectional) specified, and then the signal quality of the tags are 

checked. After this setup, a control block representing the external PLC with all 

the selected IO ports will appear in the “device connection editor”. At this stage 

the PLC is created virtually and can be used inside the environment. 
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Figure 3.14 OPC setup for external PLC 

Afterwards, the devices and control elements are interconnected by using the 

“device connection editor” workbench. Figure 3.15 shows how devices are 

represented by blocks with selectable IO ports and how they are connected to 

control elements by drawing lines (mapping) between the input and output ports 

(signals). Additionally, a human machine interface (HMI) can be included into the 

system to interface between the user and the PLC [69]. After all connections are 

made, the environment can be built (compiled) and checked for errors. After 

device and connection errors are rectified, the execution environment can be 

simulated and predictions can be made. In conclusion, the setup for virtual 

commissioning is obtained. 

 

Figure 3.15 Interconnections using connection editor 
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3.3 Solution to Conveyor Limitation in DELMIA 

3.3.1 Introduction  

A limitation involved in DELMIA V5R20 being used in the project is that it does 

not support conveyors as a smart device. An additional solution is available in 

DELMIA Quest, but at additional cost to company. DELMIA has an option to 

create a conveyor run, but the feature is intended for space reservation. 

Furthermore, when conveyor geometry is downloaded from a vendor’s website, it 

is normally in a rigid joint form. This causes a situation where no moving parts are 

present whatsoever. In short, the conveyor geometry cannot be used to emulate 

its physical counterpart. 

To clarify the dilemma, if a pallet is loaded onto the conveyor from a pallet feeder, 

the pallet will remain stationary on the virtual conveyor; where on the contrary, a 

pallet will move along the real system conveyor in the same situation. Moreover, 

if a pallet reaches a stop-gate, the virtual environment will not detect that the 

pallet has reached an obstacle and will continue to move through the obstruction. 

To remedy this predicament, a means to transform the conveyor into a smart 

device must be acquired. This will enable the conveyor to move pallets present 

on the conveyor and stop pallets when reaching a stop-gate, allowing the 

conveyor to imitate the operations of the real system conveyor. Thus, the 

following solution is developed.  

The solution to the quandary can be divided into two sections. First, the geometry 

of the conveyor must be tailored to facilitate a moving mechanism to substitute 

the belt section of the conveyor. Secondly, the conveyor must be given behaviour 

by developing internal control logic. In conjunction, the latter replicates the 

operations of the real system conveyor and the result is shown in Appendix A. 

3.3.2 Conveyor Geometry 

Due to the fact that the conveyor geometry is obtained in rigid form, the following 

modifications must be made to the geometry to accommodate a moving 

functionality. 
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Firstly, by referring to Figure 3.16, the conveyor is fitted with stop-gates at 

predetermined positions where pallets must be stopped. The stop-gates are 

custom-built smart devices and need no modifications. Next, a replica of a system 

pallet (ghost pallet) is built and then assembled to the conveyor geometry to form 

a prismatic joint. Furthermore, the joint limits are specified as the length of the 

conveyor, with the result that the ghost pallet moves on the entire surface of the 

conveyor. In addition, the ghost pallet is made transparent and will appear 

invisible to the observer. This provides the moving mechanism, which is needed 

to imitate the moving action of the conveyor belt section.  

 

Figure 3.16 Conveyor with resource sensors 

In addition to the moving mechanism, virtual resource sensors which are 

available in DELMIA must be placed at strategic locations along the conveyor. 

These sensors, as seen in Figure 3.16, informs the control logic of the conveyor 

about the presence and location of the pallets.  

Referring to Figure 3.16, the first sensor is placed along the path the pallet must 

follow on the conveyor. Its purpose is to sense if a pallet is present on the belt 

section and actuate the movement if the conveyor motors are switched on. If both 

the presence sensor and the motor outputs are true, the ghost pallet will start 

moving as if the pallet is driven by the conveyor belt.  
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In addition, a sensor is attached to the ghost pallet. The purpose of this sensor is 

to sense and grab pallets, enabling the ghost pallet to drag along what is sensed, 

creating the illusion that the pallet moves. 

Lastly, a sensor is attached to the stop-pin of the stop-gate. While this sensor is 

false, the pallet is free to move from the one side of the conveyor to the other. 

However, if the pallet travels within close proximity of the stop-gate, the sensor 

will detect that the pallet is touching the stop-gate and signal true. When the 

sensor is true, the movement of the ghost pallet is stopped, with the result that 

the pallet remains stationary as if the stop-gate is restraining it to move. On the 

contrary, if the stop-gate is activated, the stop-pin along with the sensor will 

retract, resulting in the situation that the sensor will not detect the pallet anymore. 

Afterwards, the ghost pallet will continue to move again, emulating that the 

obstruction is removed. The geometry of the conveyor is now tailored to imitate 

the operation (movements) of the real conveyor. 

3.3.3 Conveyor Internal Logic 

Recalling from section 3.2.2, SFC code starts at an initial step (S0) and executes 

the succeeding steps in an order determined by transitioning conditions and 

repeats. The rate at which these steps are scanned and executed is referred to 

as the scan rate or cycle time. By obtaining the cycle time, the movement of a 

mechanism can be manipulated to move at a certain speed [70]. This method is 

used to move the pallet on the conveyor and make it seem realistic.  

To provide the conveyor mechanism with the necessary logic behaviour, the SFC 

code as shown by Figure 3.17 is implemented to operate the conveyor actions. 

Firstly, the routine starts and the initial step is activated. At this step, the speed 

constant at which the conveyor must move is obtained and the “motors on” 

condition is monitored. If “motors on” is false, the conveyor must remain at a 

standstill. On the contrary, if “motor on” is true, the next step is activated and the 

following variables are manipulated simultaneously. First, the cycle time is 

obtained from the simulation. It is then used in a formula along with the speed 

constant to obtain the step value at which the conveyor mechanism must move. 

The step value obtained is added to the current step value, and updated by 

writing it to the position value of the conveyor mechanism. This provides the 
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illusion that the conveyor moves at a constant speed. Subsequent to the variable 

manipulations, the position value of the conveyor and the resource sensors are 

monitored to determine which conveyor action to follow. To clarify, if the position 

value is less than the maximum conveyor length, a pallet is present on the 

conveyor and if the pallet is not touching a stop-gate, then the pallet is grabbed 

by the ghost pallet and will move until one of these conditions is not met. On the 

contrary, if the pallet moves across the conveyor, the position value will be 

greater than the maximum length of the conveyor with the result that the pallet is 

no longer present on the conveyor. Afterwards, the pallet is released by the ghost 

pallet; the mechanism is reset to its initial position and is then ready to move the 

next pallet.  

 

Figure 3.17 SFC code implemented in conveyors 

3.3.4 Summary 

To summarize, by transforming rigid conveyor geometry into a smart device 

enables virtual conveyors to imitate their physical counterparts. In addition, this 

method provides a tool to emulate an assembly system successfully and is used 

as part of the tests done in Chapter 5. 
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3.4 Conclusion 

Fundamentally, this chapter reveals the path taken to verify the operation and 

control logic of a modelled system through obtaining virtual commissioning. In 

addition, it provided clarity on how the infrastructure of the DELMIA environment 

works; how parts, assemblies and mechanisms are built to form the geometry 

used in the system; and how to create smart devices by developing internal logic 

and adding it to this geometry. In addition to system geometry, various methods 

of verification were identified, which enabled the prediction of system behaviour 

and the validation of internal and control logic without initially building the actual 

system. One of these methods verified the operation of the system using a 

process plan, which enables a system designer to reserve space for machinery, 

visualise the operations of this machinery and perform crash analysis on the 

system without risking damage to the system components. The remaining two 

methods focused more on validating the control and internal logic of system 

devices and how the system reacts to the applied virtual or real PLC code. These 

methods are extensively used to debug initially developed control logic to validate 

a system as soon possible and analyse changes to be made to the control logic 

of a running system without pausing actual production, thus limiting downtime. To 

aid the latter, how to set up and connect to an OPC server, and mapping OPC 

tags and IO ports amongst devices in the environment were also discussed. This 

formed the basis for communication between the environment and the 

implemented control logic. In addition, a solution to conveyor limitations were 

provided, which further contributed to the foundation needed to perform virtual 

commissioning. This solution enabled the animation of conveyor operations 

based on the signals sent to and from the control logic. To conclude, it showed 

that by using DELMIA to establish virtual commissioning; proper initial planning 

can be performed; apparent design faults can be resolved early in design stages; 

analysis can be done to validate changes to a system; and it can be determined if 

it is actually profitable to build a system—thus, build it right the first time or not at 

all. The exposition above reveals that DELMIA provides a great tool for overall 

system verification.  
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Chapter 4 Methodology 

4.1 Introduction 

The research problem at hand insists that it would be beneficial to manufacturers 

if a RAS with enhanced methods of control is developed. This chapter reveals the 

methodologies undertaken to develop such a system. These methodologies 

include the following: identifying the system layout, the intended operation and 

product flow, obtaining the hardware and software components, and finding a 

means to intercommunicate between components. In addition, safety precautions 

must also be considered to maintain a secure setting. Everything considered, this 

chapter provides the methods to accomplish the development of the system. 

4.2 System Hierarchy 

Figure 4.1 shows the system hierarchy and an overview of the interconnections 

between the system components. Two types of communication protocols were 

investigated and utilized in the system, namely Ethernet and DeviceNet. Ethernet 

was used for communication between the (MAS), OPC server, an operator panel 

(HMI), a programming terminal (PC), and the system main controller. On the 

other hand, DeviceNet was used (via a remote DeviceNet module) to 

communicate between the system controller, the KUKA articulated robot and the 

gantry crane. In addition, the Cartesian assembly robot, proximity sensors, and 

pneumatic actuators are wired directly to the IOs of the main controller.  
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Figure 4.1 Network and component connection layout 

4.3 Operation and Product Flow 

Figure 4.2 shows the current layout and material flow, indicated by the red 

arrows, of the system at the RGEMS research laboratory. Initially, parts are fed 

into the system at node 1 and then pass through a visual inspection point at 

node 2. At this point a quality check is done to sort between good and faulty 

parts. Afterwards at node 3, the KUKA KR6 robot shown at node 4 picks up the 

parts that passed inspection and places them on the conveyor at node 5; the 

parts that failed inspection however, is left to be rejected. At node 5, parts again 

pass through a visual inspection point to be sorted by colour. At this point the 

Cartesian robot at node 6 picks up the sorted parts and places them into a parts 

feeder, which will supply parts to Cartesian robot at node 8. Meanwhile at node 7, 

pallets with trays mounted on top are fed into the system. These pallets proceed 

to the Cartesian robot at node 8, where matching features between products are 

built. Afterwards the pallets are conveyed to node 9, where again a visual 

inspection is done, whereafter the pallets are conveyed either to node 10 or 11. 

At this point in time the KUKA KR5-sixx at node 12 will build, for example, a 
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product A at node 10 and a product B at node 11. In contrast, if one of these 

conveyors should fail, the system must reroute the products to the working 

conveyor and build both on the same line. On completion, the products are 

conveyed to a gantry crane at node 13 where, finally, products are either 

rejected, reworked or distributed. 

 

Figure 4.2 System layout and product flow 

4.4 OPC and KEPserver 

4.4.1 Background 

The system utilized for this project in the RGEMS laboratory consists of multiple 

different devices from different vendors. Based on this diversity in system 

components, a communication platform to act as a standardized interface 

between the incompatible applications must be utilized. OPC is a feasible solution 

to be implemented in the system because of the fact that OLE for Process 

Control (OPC) is a proven, widely-used industry standard, compatible with 

multiple vendors’ products. In addition to OPC being a widely used industry 

standard, OPC is the communication protocol used by the majority of PLM 

software packages to obtain virtual commissioning. 

�  
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4.4.2 OPC 

OPC was initially designed to provide a standard communication interface 

between Windows-based software applications and process control hardware 

(PLCs) [71]. OPC is a standards specification which resulted from collaboration 

between leading worldwide automation suppliers and Microsoft in 1996. It is 

based on Microsoft’s OLE (Object Linking and Embedding) Component Object 

Model technology, which compels that data must be transferred in a standardized 

and usable format between applications. Furthermore, the standard defines 

reliable methods of accessing and manipulating field data from implemented 

factory floor devices.  

Each application or client must implement one OPC compliant driver to access 

data from any OPC compliant server. In addition, these OPC servers provides the 

platform for software clients to access production data from process control 

devices, such as PLCs, and interact on a client-server base.  

In conclusion, OPC forms the communication platform for software applications to 

communicate with factory floor hardware devices, including that all these devices 

are connected to the factory floor network (Ethernet).  

4.4.3 KEPserver  

Multiple devices have OPC servers of their own that are developed by the 

manufacturers themselves and are easily accessed by various OPC clients. 

Unfortunately, these OPC servers do not necessarily support the competition’s 

product or has enough flexibility to add or modify the server to accommodate all 

vendors. However, KEPware offers a solution, namely KEPserver [72], which 

supports multiple vendors and have support drivers for numerous hardware 

devices. Additionally, if a device is not supported, additional plug-in drivers can 

be imported into KEPserver to accommodate these devices. Following below are 

the steps to set up KEPserver. 

4.4.4 KEPserver Setup 

Firstly, KEPserver must be installed on a server (computer), which is networked 

with all the devices used in the system. In addition, software drivers to support 
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the devices which are not included in the initial KEPserver package must be 

imported to establish communication with these devices. 

On completion of the installation, the KEPserver application can be executed to 

start the server runtime. At this point, either a new server can be configured or an 

existing server (runtime) can be modified by adding or removing devices and 

tags [73]. In addition, channels and devices can then be created, by specifying 

the devices by vendor and model, as well as specifying the network paths and IP 

addresses. Referring to Figure 4.3, the main AB PLC is visible through the OPC 

driver and can be browsed to see the OPC tags inside the device. Moreover, 

these tags are either created manually or can be imported into the server if the 

PLC supports this feature. 

 

Figure 4.3 OPC tags in KEPserver 

If tags must be created manually, the respective device under which the tags 

must be created is highlighted, and then tags are created individually or as 

groups. Furthermore (referring to Figure 4.4), tag properties can be modified and 

tags can be assigned user-definable descriptive names, as well as the tag 
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address located in the respective device. In addition, the data type, clients’ read 

or write privileges and scan rate for each tag are specified.  

 

Figure 4.4 Modifying tag properties 

Afterwards, the quality of the OPC tags is then confirmed by running the OPC 

quick client. This ensures that a good connection between the server and the 

various devices are established and that the data are able to update. In addition 

to quality checking, the quick client is also used for monitoring and manipulating 

tag data, to ensure the accurate operation of the implemented production system. 

In conclusion, by utilizing KEPserver, multiple devices from different vendors can 

be interfaced and tested, without the need for expensive interfacing equipment, 

and, additionally, these devices are able to intercommunicate by using a standard 

data format. 

4.5 System Components 

This section discusses the components that are chosen to be utilized in the 

system, as well as why they were chosen. In addition to component choice, how 

these components are configured and controlled, along with their function in the 

system are also described. Moreover, the control software developed on device 
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level to operate these components is also an area under discussion. In short, this 

section shows how the selected components are implemented in the system. 

4.5.1 Material Transport System 

The choice in the TS1 [74] conveyor system from Rexroth is based on a study 

done within the RGEMS research group [75]. The study shows that the choice in 

this conveyor is based on cost, ease of assembling and rearranging sections of 

the conveyor, size, maximum payload (accumulative weight it can handle), and 

ergonomics. 

The conveyor is built up from modular belt sections, which makes it possible to 

expand, change or rearrange the path of the conveyor. In addition to the 

modularity of the conveyor, the use of work piece pallets contributes immensely 

to the reconfigurability of the conveyor, in the sense that any product in a range 

can be built on the pallet. Furthermore (refer to Figure 4.5), each belt section has 

two green toothed belts (shown at A), which are guided by aluminium profiling. In 

addition to the guiding profile, these belt sections are powered by three-phase 

induction motors, which are connected to the PLC via contactors. Finally, the belt 

sections are placed on top of foot pieces (legs), to form the frame and structure of 

the conveyor.  

 

Figure 4.5 Conveyor system components 
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For operation refer to Figure 4.5. Shown at B, the work piece pallet is placed on 

top of the conveyor, where the pallet starts moving purely on friction from the 

belts. The pallet can then be stopped by pneumatic actuators, also known as 

stop-gates (shown at D). The default position for a stop-gate is “up”, meaning that 

it stops the pallets from continuing when it reaches the stop-gate. When a pallet 

is stopped by a stop-gate, the two belts beneath it continue to move, rubbing 

gently against the smooth and anti-static bottom of the pallet. To let the pallet 

pass, the stop-gate is pulsed for a second by the PLC, allowing the pallet the 

move past the stop-gate. In conjunction with stop-gates, inductive (sense metal) 

proximity sensors (shown at C) are mounted along the conveyor to sense if 

pallets are present at defined positions. The pallets are fitted with metal inserts 

situated on the front and side, which allows inductive proximity sensors to detect 

if pallets are in place. Using inductive proximity sensors in combination with 

metallic inserts, the system can distinguish between individual pallets present at a 

precise defined location. These sensors ignore the sides (non metal) of a pallet 

until it reaches the metal insert. This is particularly useful when pallets are 

stacked behind one another on the conveyor. In this situation where there is no 

gap/space between the pallets, the possibility exists that a different type of 

proximity sensor would always erroneously detect multiple pallets as one single 

pallet. 

The length of the conveyor can be changed by adding or removing the modular 

belt sections. In addition to changing the length, it is possible to transfer the work 

piece pallet off the main conveyor onto a shunt conveyor system using a 

branching conveyor. Therefore, two products can be built simultaneously on the 

two parallel sections. This is illustrated in Figure 4.6, which shows two parallel 

conveyors, lane A (shown at A) and lane B (shown at B), where they are joined 

together by a tandem lift transverse conveyor (shown at C). The tandem lift 

transverse conveyor units are operated by pneumatics and have three operating 

positions namely idle, up and down. Firstly, when the transverse conveyor is in its 

default “idle” state, it remains stationary in the middle. Here it acts as a stop-gate 

and stops the pallets from continuing. Next, in the case the transverse conveyor 

is actuated in the “down” position, it moves downwards and allows the pallet to 

pass and continues straight on lane A. On the contrary, when the transverse 
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conveyor is in the “up” position, the platform on both lanes lifts simultaneously, 

acts as a bridge and transfers the pallet from lane A to lane B by the belt 

section C. The same procedure is followed when a pallet is transferred back to 

the main conveyor (lane B to A). 

 

Figure 4.6 Tandem lift transverse conveyor 

4.5.2 Pneumatic Parallel Gripper 

Figure 4.7 shows the pneumatic parallel gripper which is used as an end effector 

in all the subsequently explained assembly devices. It uses pressurized air to 

operate and is used to grasp parts which are being handled by the assembly 

devices. It is chosen because it is readily available and it is a standard gripping 

tool. 
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Figure 4.7 FESTO gripper [76] 

4.5.3 FESTO Cartesian Robot 
Firstly, the function of the Cartesian robot in the system is to build all the similar 

features or patterns, which exist between different products and leave the rest of 

the placing tray empty. Secondly, the Cartesian is chosen because of the ease of 

operation; ease of configuration; easy integration with a PLC; and the extensive 

use of Cartesian robots in assembly operations. 

4.5.3.1 Description  

Referring to Figure 4.8, the Cartesian robot is a custom-built 3-axis (XYZ) 

assembly robot, which is built entirely of components manufactured by FESTO. It 

consists of two linear drives, which is mounted perpendicularly in respect to each 

other, to form the X-axis and Y-axis. Additionally, the linear drives are fitted with 

stepper motors, which are connected to and controlled by FESTO motor 

controllers [77] [78]. In addition, a pneumatic cylinder in conjunction with a 

parallel gripper are mounted perpendicularly to the Y-axis to form the Z-axis. 

Furthermore, the gripper is mounted with fingers, which are specially designed 

using CATIA and manufactured by the Centre for Rapid Prototyping and 
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Manufacturing (CRPM) at the CUT. This enables the gripper to pick the blocks 

from a part magazine and place the parts into the tray mounted on a pallet. 

Lastly, a frame is built using aluminium profile to mount and stabilize the linear 

drives. It is also used to enclose the moving axis of the robot and prevent injuries 

caused by impact. 

 

Figure 4.8 FESTO Cartesian robot 

4.5.3.2 Setup and Calibration 

Following below are the procedures taken to configure FESTO motor controllers: 

After the installation of both drives and motor controllers, each axis of the 

Cartesian needs to be configured. Prior to configuring the motor controllers, the 

FESTO Configuration Tool (FCT) software must be installed on a computer 

intended for programming. 

First, the motor controller is connected to the computer via a serial cable. Then 

the FCT software is opened and a software connection with the device 

established and a new project started. In contrast to starting a new project, an 

existing project can be opened or a project can be uploaded (read) from the 

corresponding device.  
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Next, Figure 4.9 shows the project start page, where the user should select the 

operating voltage; the type and size of the motor used; if a gearbox is present 

and the ratio of it, specifics of the type and stroke (working length) of the linear 

drive used, and finally the type of limit switches used. 

In addition to choosing the components, the method of controlling the drive must 

be assigned. A selection between digital IO and analogue voltage control is 

available. Digital IO was selected as control method and is explained in 

section 4.5.3.3. However, analogue control use applied positive or negative 

voltages to control the direction of drive movement, where varying the magnitude 

of these voltages control the speed of the drive. Furthermore, the motor 

controllers have various different control modes, which include “single position 

set”, “link of position sets”, “synchronization”, and “jogging and teaching” [79]. 

Due to the simplicity of commissioning and operation, “single position set” was a 

satisfactory method of control which met the requirements of the system. 

 

Figure 4.9 FESTO configuration tool software 

In addition to control methods, the positions and motion attributes must be 

entered or taught. Referring to Figure 4.10 part (1), positions can be entered into 

the position set table by modifying the value in the “position” column, in the 

respective position (position number) row. Alternatively, the position row can be 
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selected, and by using the FCT software, jog the drive into position, then teach 

the position to the controller. Along with the physical position, the motion profile 

and command to be used can be defined. Moreover, Figure 4.10 part (2) shows 

the position profile table, which is used to assign velocity, acceleration and 

deceleration values to each profile, and optimizes the movements for best 

operation. Finally, the configuration must be downloaded (written) to the controller 

and stored to ensure correct operation after power up. 

This should be repeated for every axis in the Cartesian robot, which is to be 

configured or recalibrated. 

 

 

Figure 4.10 Position set table (1), position profile (2) 

4.5.3.3 Operation 

Figure 4.11 illustrates the operation of the FESTO motor controllers. When power 

is applied to the motor controller, a compulsory start-up sequence is needed from 

the PLC to put the controller in a “controller enabled” state, which entails setting 

the “Enable Power” bit, delaying for 200ms, followed by setting the “Enable 

Control” (enabling the control logic) bit. Afterwards, a homing run must be 

completed, for the controller to find the physical limits of the linear drive. The 

controller can be configured to do this automatically after “controller enabled”, as 

well as the direction (positive or negative), or waits to be instructed by the PLC. 

When homing is completed, the controller is ready to be operated. 
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Figure 4.11 Flow of operation for motor controller 

For operation, the controller uses (see Figure 4.12) four “position or record select” 

inputs, a trigger, and three user-definable outputs for acknowledgement, which is 

commonly defined as “Motion Complete”, “Acknowledge Start” and “Error”. 

Moreover, BCD (Binary Coded Decimal) code are applied to the position select 

inputs, which are used to retrieve coordinates from a predefined position set table 
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(see Figure 4.10) when the trigger is pulsed. The drive will start moving to the 

position and acknowledge with “motion complete” when the drive is stationary. 

Afterwards, the BCD value can be changed to select a different position from the 

position set table. As a result, the preceding procedure is repeated continuously 

to operate the linear drive. 

 

Figure 4.12 FESTO motor controller IO layout 

4.5.3.4 Cartesian Controller Algorithm 

The Cartesian controller algorithm is a modular software program (agent) running 

on a PLC, which is designed to monitor and control the operations of the motor 

controllers used to build the Cartesian. It can operate as part of the main PLC as 

a subprogram (thread) or as a standalone device running on an external PLC, 

interfaced with the main PLC. For the purpose of this project, the Cartesian 

controller algorithm is a thread inside the main PLC. Moreover, the Cartesian 

control algorithm receives production information (recipe) from the main process 

controller (main PLC) internally and handles the signalling to operate the motor 

controllers and actuators (gripper and cylinder). 

At power up, the main process controller runs all the necessary prerequisite 

routines, and upon completion, enable the execution of the Cartesian controller 

shown in Figure 4.13. After the Cartesian controller starts to execute, it instructs 

the motor controllers to initialize by signalling the compulsory required sequence 

to enable the motor controllers and completing a homing run. 
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After initializing the motor controllers, the Cartesian controller acknowledges back 

to the process controller that the Cartesian is ready to operate, and waits for 

further instructions. When a pallet is in place, the process controller sends 

product data to the Cartesian controller and instructs it to start building.  

 

Figure 4.13 Cartesian controller algorithm 

Once the Cartesian controller is instructed to start building a product, it starts 

executing the building sequence algorithm. The controller selects the first position 

on the twelve-position working tray (described in section 4.6.3.3), clears the 

position indicator register and tests if a block should be placed in that position or 

not. If no block should be placed, the indicator is incremented and the next 
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position is tested. Otherwise, the Cartesian controller tests which colour block 

(white or grey) should be placed, sets the corresponding data on the inputs of the 

motor controllers and triggers them to start moving. On motion complete, the 

Cartesian controller signals the actuators (cylinder and gripper) to pick up the part 

at that position. Next, the Cartesian controller changes the BCD value on the 

inputs of the motor controllers to the current position coordinates and triggers the 

motion. After motion complete, the actuators are signalled to place the part into 

the placing tray on the conveyor. Afterwards, the Cartesian controller tests if the 

product is finished or not. If it is not finished yet, the indicator is incremented to 

check the next position. Otherwise, if the product is finished, the Cartesian 

controller acknowledges “Cartesian Complete” to the process controller, and 

waits to be instructed to build the next product. 

4.5.4 KUKA KR5 Sixx R850 

Figure 4.14 shows the KUKA robot and its function in the system is to pick and 

place the remaining blocks into the twelve-position pallet to complete the 

products. It must either assemble two of the same products or two different 

products simultaneously, on the two conveyor lines in front of it (depending on 

priority and quantity). Furthermore, it is chosen because of its speed, extreme 

flexibility, agility and the repeating of tasks with high accuracy. 

 

Figure 4.14 KUKA KR5 Sixx R850 articulated robot 
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4.5.4.1 Description 

The KUKA robot is a 6-axis articulated robot, with a FESTO gripper mounted on 

its flange. Each axis is driven a by stepper motor, of which three of the axis 

manipulate the XYZ Cartesian coordinates and the other three manipulate the 

wrist actions (roll, pitch and yaw angles). Referring to Figure 4.15, it has a 

spherical work envelope with reach radius of 855mm. Additionally, it can handle a 

payload of 5kg on its flange at full speed (250°/s or 7,6m/s) and have a 

repeatability accuracy of ±0.03mm [80]. Moreover, it has pneumatic outputs 

switched by internal solenoids and inputs for feedback near the flange to operate 

EoA tooling. Furthermore, it has digital IOs situated on the back of the controller 

for miscellaneous signalling and supports protocols like Ethernet®, Profibus® and 

DeviceNet™.  

Finally, safety sensory and perimeter guarding equipment must be connected to 

the safety contact at the back of the controller to enable the motor drives and 

enable operation of the robot. 

 

Figure 4.15 Work envelope specifications [81] 

4.5.4.2 Programming and Calibration 

Using the KUKA control panel (KCP) shown by Figure 4.16, an operator or 

programmer can calibrate tool and base profiles, control robot motions and 

program operations. Robots are normally taught motions and operations by 
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leading or jogging it through the desired movements it must follow and then 

saving those positions in the program of the robot. Alternatively, if the robot is 

correctly calibrated, a programmer can use the Cartesian coordinates or “set” and 

“turn” values to manipulate the motions of the robot. Table 4.1 provides a 

description of the labels in Figure 4.16. 

 

Figure 4.16 KUKA control panel [82] 

 

Table 4.1 Description of KCP Labels [82] 

Label Description Label Description 

1 Mode selector switch 10 Numeric keypad 

2 Drives ON 11 Soft keys 

3 Drives OFF 12 Start backwards key 

4 Emergency Stop button 13 Start key 

5 Space Mouse 14 STOP key 

6 Right-hand status keys 15 Window selection key 

7 Enter key 16 ESC key 

8 Arrow keys 17 Left-hand status keys 

9 Keypad 18 Menu keys 

 



�

66�
�

Firstly, the tool and base profiles can be calibrated. To calibrate a tool the 4-point 

method is used [83]. This involves that the tool centre point (TCP) is defined by 

teaching the robot four varying positions touching the same defined reference 

point with the TCP. The robot controller then uses the four positions to determine 

where the TCP is situated in the space in front of the flange. Next, the calibration 

of the base profile entails that the robot is jogged so that the TCP touches the 

zero position of the working platform to be taught as the base. Following this, the 

robot is jogged along a horizontal edge of the platform to calibrate the X-axis. 

Likewise, the robot is jogged along the adjacent edge (at a square angle 

respective to the X-axis) to calibrate the Y-axis. The controller uses the X and Y 

motions to determine the angle of tilt and orientation of the platform (a platform is 

not always level or at right angles with the robot). 

When the tool and base profiles are calibrated, the robot can be programmed 

using KUKA Robot Language (KRL), which has a similar syntax to C-language. In 

addition, a programmer must be granted “expert” or “administrator” rights, to have 

full capability in manipulating the programs of the robot [83]. Additionally, an 

external keyboard, mouse and screen can be connected to the robot controller 

along with the KCP to further ease programming.  

Firstly, by creating a new program, a template of a basic program which consists 

of a main loop and an initiating movement (homing run) is opened by default. The 

programmer can now teach motions by moving or jogging the robot to a desired 

position and then saving that position in the program memory. Various types of 

motion exist. Examples of these motions include point to point (PTP), linear (LIN) 

and circular (CIRC) motions. Moreover, elements like velocity, TCP profiles and 

end or transition conditions can be specified to fine-tune the behaviour of these 

motions. 

Alternatively to jogging and teaching, the programmer can specify the same 

movement types as above, by using the coordinates (XYZABC) or “status and 

turn” values directly in the command. This enables this programmer to manipulate 

the robot motions by using functions and calculations instead of teaching. Using 

this method, the programmer must ensure using a tool profile with its 

corresponding base profile, otherwise results can be hazardous. 
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4.5.4.3 KUKA Control Software 

The KUKA robot implements a similar algorithm to that of the Cartesian, but with 

minor differences. Firstly, the algorithm and all the logic to control the gripper run 

in the KRL program of the KUKA and not on the main PLC. The main PLC 

determined which product must be built, supply the KUKA with a corresponding 

program number and trigger it to start building. Afterwards the PLC waits for an 

acknowledgement from the KUKA to signal it is done. 

Referring to Figure 4.17, when the system is powered up, an operator must do a 

manual homing run, to ensure that the robot returns to mechanical zero safely 

and without collisions (homing run is done manually due to safety). Afterwards, 

the operator can enable the drives and run the KUKA in external PLC mode. The 

KUKA will send a ready acknowledge to the Main PLC to verify it is ready for 

operation. 

When the KUKA is triggered to start building a product, it uses the program 

number supplied by the PLC to obtain the product recipe and starts executing the 

building loop. Similarly to the Cartesian, it selects the first position on the twelve-

position working tray, clears the position counter and starts the sequence. 
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Figure 4.17 KUKA control program 

The KUKA first tests if a block should be placed in the current position or not. If 

no block should be placed, the counter is incremented and the next position is 

tested. Otherwise the KUKA tests which colour block should be placed, moves to 

the XYZ coordinates of that colour block and closes the gripper. Next, it retrieves 

the coordinates of the current position, moves to that location on the twelve-

position pallet and opens the gripper. Afterwards, the KUKA moves to a waiting or 

via point and tests if the sequence is done. If not done yet, the counter is 

incremented and the following position in the sequence is tested. Otherwise, like 

the Cartesian, if the sequence is done, it acknowledges it to the main PLC and 

waits to build the next product. 
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4.5.5 Gantry Crane 

Firstly, the function of the gantry crane in the system is to pick completed 

products from the conveyor, then depending on pass or fail signals from the PLC, 

either rejects it, sends the product for rework or releases it for dispatch. 

4.5.5.1 Description  

Figure 4.18 shows the gantry as it is currently used in the system. It is a custom-

built 2-axis (XZ) pick-and-place robot, which is controlled by a PLC and interfaced 

with the main controller using DeviceNet™. The X-axis consists of a linear drive, 

which is purely operated by pneumatic air and solenoids, and the Z-axis consists 

of a cylinder and a parallel gripper. In addition, a displacement encoder is 

mounted parallel to the linear drive. The displacement encoder is basically a 

potentiometer with the wiper connected to the sliding part of the drive. 

Furthermore, if the drive moves, the resistance value on the displacement 

encoder changes and this provides feedback to the PLC.  

 

Figure 4.18 Gantry crane 
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4.5.5.2 Setup and Calibration 

The procedure to teach and calibrate the reference positions of the gantry crane 

are as follows: 

Firstly, an online connection is established between a programming terminal and 

the PLC. Furthermore, the real time monitoring and diagnostics is run to see the 

internal registers of the PLC change. Next, the slider part of the linear drive of the 

gantry is manually pushed into the desired position, the corresponding register 

value recorded and stored in the PLC memory. Finally, the PLC is reprogrammed 

and verified for correct operation. 

4.5.5.3 Operation 

To move to a defined position on the drive, the PLC retrieves the reference of the 

position it must move to, reads the encoder and compares it to the reference to 

determine which direction the drive must move. Afterwards, the PLC actuates the 

corresponding solenoid to start the motion and keeps comparing the current 

reading of the encoder to the reference. Once the encoder value is equal to the 

reference, the motion is stopped. 

4.5.5.4 Gantry Programmable Logic Controller Operation 

Referring to Figure 4.19, at power up the gantry initializes itself, which entails 

moving to the reject position and rejecting any “unknown” product that might still 

be in the gripper. After initializing, the gantry moves to the waiting position and 

sends a gantry ready acknowledgement to the main controller. When triggered by 

the main controller, the gantry tests for a pass or fail, then moves to the pick 

position, and signals the actuators (cylinder and gripper) to pick up the pallet. 

Afterwards, the gantry moves to the corresponding position and places the pallet. 

After placing the pallet, the gantry moves back to the waiting position and waits 

for the next trigger. 
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Figure 4.19 Gantry PLC program 

4.5.6 Controller Hardware 

Figure 4.20 shows the chosen Allen Bradley (AB) controller and can be 

programmed by using the ControlLogix 5000 programming software. It is built up 

using a ControlLogix 5563 processor, power supply, DeviceNet and Ethernet 

communication modules, two digital input modules and two digital output 

modules—which are all slotted into a 1756 chassis. 
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Figure 4.20 Allen Bradley controller [28] 

In addition to controller components, Table 4.2 lists selected features included in 

the AB controller [28] [84]. 

Table 4.2 Controller features 

Controller tasks • 32 tasks 
• 100 programs per task 
• Event tasks: all event triggers 

Built-in communication 
ports 

• 1 RS-232 serial port 

Communication options • EtherNet IP 
• ControlNet 
• DeviceNet 
• Data Highway Plus 
• Remote IO 
• Third-party process and device networks 

Controller connections 
supported 

• 250 

Programming languages • Relay ladder 
• Structured text 
• Function block 
• SFC 
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4.5.7 PanelView™ Plus 700 Human Machine Interface 

Figure 4.21 shows the chosen PanelView™ Plus 700 HMI from Allen Bradley to 

allow an operator to interface with the system [85]. This graphical interface has a 

6.5 inch colour touch-screen display, with a 640 x 480 graphics resolution. The 

operator screens, running on the HMI, are developed using FactoryTalk® View. 

In addition, the HMI supports a keypad and twenty-two function keys for operator 

input and can be seen in Figure 4.21. Furthermore, it also has a RS-232, 

Ethernet and two USB ports available for communication. To conclude, this 

graphical interface offers a complete solution to interface between operator and 

machine. 

 

Figure 4.21 PanelView Plus 700 HMI 

4.6 System Software Overview 

Figure 4.22 shows the overall software structure of the system and how the 

different software modules and hardware components are interconnected. The 

proposed requirements of the system include that control must be alternated 

between different supervisory software instances, where each instance must 

perform production planning and oversee device and assembly operations. The 
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system consists of two software instances which must alternate control. The first 

being the PLC itself and the second a computer-based multi agent software 

system. 

To achieve this, the PLC code is developed to execute several concurrent 

software modules. The main PLC routine utilizes a state machine to select 

between the control states (MAS or PLC), and the other specialized routines 

(handled subsequently). Each of these states enables certain functions of the 

system and excludes others, depending on the requirements of the selected 

state. In addition, a device handler to control assembly device operations 

executes concurrently with the state machine and is available for use by both the 

control instances in the system. Furthermore, additional subroutines and 

functions to aid the system are also available when requested by the state 

machine. 

 

Figure 4.22 Software architecture 

4.6.1 State Controller 

Recalling from the preceding section, the main routine implemented in the PLC is 

a state machine and will subsequently be referred to as the state controller. The 
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state controller has different operating states which are defined as system self 

check, initialize, clear, internal process control and the MAS state. Each one of 

these states performs a certain function when selected.  

How the state machine operates can be explained by referring to Figure 4.23. 

When power is applied, the system remains idle and the state controller switches 

to the “system self check” state. At this point the main PLC has full control of 

(over) the system and starts the system pre-checks, which include testing the air 

pressure, communications and if the KUKA robot is initialized (initialized manually 

due to safety). After the pre-checks are completed, the state controller waits for 

further instructions from an operator. 

Upon instruction of an operator, the system starts up and the PLC tests if the 

system components (Cartesian and gantry) must be initialized. If initializing is 

necessary, the state controller changes state to “initialize”, where it instructs the 

Cartesian robot and the gantry crane to initialize and acknowledge when 

complete. After initialization, the state controller changes state to “clear”. On the 

contrary, if initialization was not necessary, the state controller will skip the 

“initialize” state and change directly to the “clear” state. 

Once in the “clear” state, the PLC will start the conveyors and run the clearing 

routine. This will clear the system from any unknown, faulty and half-built 

products. In addition, clearing is also done when the system is in an unknown 

state or is about to perform a handover to another process controller. After 

clearing, the state controller will determine which one of the process controllers 

must seize control and change to that corresponding state. 

Additionally, for one of the process controllers to acquire control, either one of the 

instances must first request for control and then wait for the instance having 

control to finish all its current processes. If the instance in control verifies to the 

state controller that processing is complete, the state controller will switch to the 

clear state, and afterwards hand over control to the requiring instance. 
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Figure 4.23 State machine utilized in state controller 

4.6.2 Device Handler 

The device handler is a control subroutine which resides inside the main PLC 

program to coordinate the actions that each assembly device must perform. For 

explanation refer to Figure 4.24. Firstly, the process controller monitors if a pallet 

is at a defined position on the conveyor. When a pallet is present, the process 

controller uses the production planner (described in section 4.6.3.2) to determine 

the build data and provides it to the device handler (for the gantry pass or fail is 

sent). Afterwards, the device handler then interprets the data and uses the build 
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algorithm of the corresponding device to instruct the device to perform the 

sequence of actions needed to build the product. After the building sequence is 

complete, the device handler acknowledges to the process controller that the 

device has finished building. This procedure runs concurrently for each device in 

the system. 

 

Figure 4.24 Device handler process 

4.6.3 Internal Process Controller  

Figure 4.25 shows the software functions utilized when the system is in the 

“internal process controller” state. The system accepts product orders from an 

operator panel (HMI), runs the internal production planner and also accesses the 

device handler to control the assembly devices. Additionally, the internal process 

controller also executes a subprocess to handle the conveyor actions. The 



�

78�
�

purpose of each software function used by the internal process controller is 

explained in the sections following directly. 

 

Figure 4.25 Internal process controller state 

4.6.3.1 Interfacing with the System 

The PanelView Plus 700 HMI (which was discussed in section 4.5.7) is utilized by 

the system to receive production orders from an operator. For subsequent 

explanations, only the internal process controller state will be considered. 

After reaching the internal process controller state successfully, the interface will 

start up with a menu screen with various options. Available on the menu are 

options like system analysis, production history, new product creation and 

product ordering. Only product creation and ordering will be handled for this 

project. 

When an operator desires to create a new product, the product creation screen is 

entered by selecting it from the main menu screen. Under product creation, the 

operator is able to select an arrangement of parts to create a customized product. 

These customized products are then saved for future use and later used in 
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default ordering. To prove the concept of building multiple products, three product 

variations will be built. 

In addition to product creation, the product ordering screen is used to provide the 

assembly system with the necessary production data and instruct it to start or 

stop production. Moreover, orders can be made by three different methods. 

Firstly, the system is instructed to build a product by acquiring a product string 

(product strings is handled section 4.6.3.2) by reading a RFID which is included 

on each pallet. Here the system will require quantity from an operator and build 

products according to the information stored in the RFIDs of each pallet. 

Secondly, orders can be made by manually entering a product string. The 

operator is requested to provide the system with the quantity and priority of each 

product to be built. A drawback to using this method is, however, that the 

operator must take great care when determining the product strings and entering 

it afterwards. To ensure correct building of products, this method is not 

recommended and is only used for testing purposes. Lastly, orders can be made 

by selecting from the default pre-saved products (created using product creation) 

available to the system. Here the operator only needs to provide quantity and 

priority to the system. In addition, to keep track of the products on the conveyor, 

the latter two methods assign a product to be built to the RFID present on the 

pallet. Here the data on the RFID only identify the pallet, instead of providing 

building data. For the purpose of further explanation, only the default ordering will 

be considered. 

Once the default order screen shown in Figure 4.26 is selected, an operator is 

able to provide the system with the necessary production data. Present in the 

order screen are the default products which the operator can choose from, as 

well as a provision to set the quantity and priority of each product to be built. To 

vary the quantity and priority, the operator must click on the plus and minus 

buttons under each label next to the corresponding product to change it. The 

values will update and display on the HMI.  

In addition to quantity and priority, control buttons to start and stop production, 

navigate back to the main menu and a software E-stop are also provided in the 

order screen. The software E-stop was included for testing and simulation 

purposes and must not be used instead of the physical system E-stop. To start 
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production, orders are placed by altering the quantity and priority of each product, 

and then the operator has the option of starting production by clicking on the start 

button. At this point in time, the system stores the data obtained from the HMI for 

further manipulation to determine the production plan for each product (explained 

subsequently). Afterwards, the system uses the manipulated data to start building 

the products and returns to an idle state when building is complete. In case 

production must be stopped prematurely, the operator can click the stop button, 

and terminate production with the result that the system returns to an idle state. 

The operator is now free to place a new order or navigate to other system 

options. 

 

Figure 4.26 Product ordering screen 

4.6.3.2 Production Planner 

The production planner is a subprocess only available to the internal process 

controller and is implemented to supervise over the masking, priority and RFID 

handlers, as seen in Figure 4.27. The function of the production planner is to 

capture product orders, manipulate it into a building recipe, and then convey this 

recipe to the device handler to administer assembly operations. How the 

production planner determines building recipes and how the different handlers 

which it oversees operate are explained in the following sections respectively. 
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Figure 4.27 Production planner 

4.6.3.3 Twelve-Position Product Tray 

To demonstrate the concept that the RAS can build multiple products on the 

same conveyor line, a twelve-position product tray, shown in Figure 4.28, is used 

to assemble variations of a product in the same product family. The product tray 

has twelve slots, in which white or grey blocks can be placed to represent 

different product variations. Furthermore, each slot in the tray is allocated a 

reference number, as seen in Figure 4.28, and is then used by the device handler 

to decode the product strings into device actions. To rearticulate, each reference 

position or slot located on the product tray represents a location where a part can 

be placed. 

 

Figure 4.28 Twelve-position product tray 
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4.6.3.4 Product Strings 

With reference to section 4.6.3.1, product strings are obtained by ordering 

products or entering them manually using the system HMI and storing it to the 

PLC memory. These product strings provide the system with the necessary 

information to build related products and are later manipulated to determine the 

building recipe for each product at different assembly cells.  

Figure 4.29 shows an example of a twenty-four bit product string. Moreover, each 

bit in the string represents one of the twelve reference locations which are 

allocated to the product tray. Furthermore, a string contains two components of 

information. The first part contains block placement data and the second part 

block colour data. Block placement data includes information as to whether a 

block should be placed at a reference location or not. On the contrary, if a block 

should be placed at a reference location, the colour data provides the colour of 

the block to be placed. This enables the system to interpret where in the pallet a 

block should be placed, and which colour at this specific position.  

In addition, the system uses these strings to determine which part of the product 

is built at which assembly cell. This product data are used extensively by the 

Cartesian and KUKA robots, and is explained in the succeeding section.  

 

Figure 4.29 Example of a product string 

4.6.3.5 Product String Manipulation (Masking Handler) 

Recalling from section 4.3, the Cartesian robot is assigned to build all the 

matching features between products, and the KUKA robot builds the remaining 

features. To achieve this, the product strings obtained from product ordering must 
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be manipulated in some way to determine a production plan for the ordered 

batch. To achieve this, the production planner executes the masking handler 

subroutine to enable the internal process controller to determine where which part 

of a product is built. 

To explain how the software routine functions, it can be represented by the logic 

equivalent circuit shown in Figure 4.30. Firstly, the respective product strings are 

bitwise AND together and the result stored in a temporary location in the PLC 

memory. At the same time, these product strings are bitwise NOR together and 

the result stored in a different memory location. Afterwards, the two results in the 

PLC memory are bitwise OR together to find all the matching bits between the 

respective product strings. The result obtained from the bitwise OR is used as the 

Cartesian masking string. In contrast, the KUKA masking string is obtained by 

taking the complement of the Cartesian masking string. 

 

Figure 4.30 Logic representation of obtaining masking strings 

To illustrate how the product masking strings are obtained can be better 

explained by referring to Figure 4.31. Firstly, orders are made using the system 

HMI to obtain the respective product strings along with their quantities and 

priorities. The three desired products are visualized at number 1. Afterwards, the 

masking handler compares the product strings to find matching features between 

the products. This is shown at numbers 2 and 3. By obtaining the matching 

features, the masking handler determines which part of the product should be 

built at which assembly robot. The resultant of what the KUKA builds and what 

the Cartesian builds are shown at number 4. In addition to finding the masking 

strings, the system must also determine which product must be built on which 

parallel conveyor line at the KUKA robot. By referring to section 4.5.1, this is 
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simply achieved by building the product with higher priority on lane A (strait) and 

the other on lane B (branch). 

 

Figure 4.31 Comparing and masking scheme 

4.6.3.6 Priority Handler 

In contrast to the masking handler, the priority handler establishes the order in 

which products are built and decides what should be built at the parallel conveyor 

lines at the KUKA robot. To clarify, it must determine if different products must be 

built on each line or if the same product must be built on both lines. Initially, the 

building order of products is prioritized by assigning each product with a priority 

value between one and five when ordering. Value one being the highest priority 

and five the lowest. To clarify, if two different products have the same priority, 

then the product which is scanned first (higher on scan list), has precedence.  

For explanation of the routine refer to Figure 4.32. Firstly, the priority handler sets 

the system priority equal to one. Afterwards, the priority of each product is 

scanned until the priority handler finds a match. If it finds a match, the quantity of 

the corresponding product is tested and the products are built until the quantity 

reaches zero. If the quantity is zero, the priority handler continues to scan for 

other products with the same priority. Afterwards, if no more products with a 

matching priority and a quantity more than zero are found, then the system 

priority is decreased to build the lower priority products. The priority handler 

repeats the above procedure until all the priority values are scanned and the 

quantities for the matching products are equal to zero.  
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Figure 4.32 Priority handler routine 

4.6.3.7 Radio Frequency Identification Handler 

The function of the RFID handler in the system is simply to monitor all the RFID 

readers installed at various locations on the conveyor. In addition, when a tag is 

detected by a reader, the handler stores the tag data and which reader detected it 

to determine its location. Afterwards, this data are relayed to the production 

planner to track the products present in the system. 

4.6.4 Multi Agent System State 

A study completed by the RGEMS research group included “the development of 

process control and configuration in a reconfigurable production system using a 
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multi agent software system” [86]. A software agent is a computer program which 

works autonomously and goal-driven in a dynamic environment on behalf of a 

human or any other computational entity, possibly over an extended period of 

time, without direct supervision, to transform goals into executable tasks. In 

addition, a multi agent system is a community of software agents, working 

together to achieve a common goal. 

Figure 4.33 illustrates how system components are interconnected when the 

state controller activates the MAS state. In this state, the MAS seizes control over 

the PLC functions, as well as selected software modules like the device handler. 

To clarify, the MAS is responsible for process planning and control; and instructs 

the PLC to do operations by monitoring and updating PLC tags in the PLC 

memory through OPC. In addition, however, the MAS cannot ensure accurate 

and stable delay timing, which is used to trigger stop-gates and operate the lift 

transverse conveyors; therefore, tasks that require accurate timing are allocated 

to the PLC. 

 

Figure 4.33 MAS state 
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Furthermore, since the MAS is responsible for its own production planning, it 

monitors the proximity sensors present on the inputs of the PLC and, based on 

their states, executes its production plan by triggering the corresponding 

conveyor and device actions. To control the assembly devices, the MAS sends 

the determined production data to the device handler in the PLC, where the 

device handler takes over the building process of the products, and relays the 

required instructions to the assembly devices. After a device has finished 

assembling, the device handler returns an acknowledgement to inform the MAS 

that the device operations are complete. This procedure continues until either the 

production has stopped or the MAS hands back control to the PLC. 

4.7 Safety Precautions Implemented in the System 

The assembly system developed in the RGEMS research laboratory utilizes 

multiple safeguards to ensure the safety of laboratory personnel. The machinery 

and conveyors are enclosed by a structure built from aluminium profile. The 

structure provides an overhead cable tray, where the wiring used for the 

equipment can be situated and protected from damage. Furthermore, the frame 

acts as a basic perimeter fence, preventing observers from wandering in 

proximity of dangerous machines while it is operating. Paired with the structure, 

infrared curtains are mounted on the exterior (envelope) of the frame. The 

curtains form a virtual barrier and provide feedback signals to the main power 

control circuit. In addition to securing the perimeter, the system is fitted with 

multiple E-stop switches, which are situated at strategic positions. The E-stop 

switches are connected in combination with the IR curtains and are hard-wired to 

the power control circuit. The power circuit entails that the AC-mains are wired in 

series with two safety relays. The function of the relays is to interrupt the AC-

mains supply, if one of the safety precautions is breached. The usage of two 

safety relays ensures that the system power is reliably interrupted, regardless of 

whether one of the relays fail due to its contacts “welding” together (current 

overload). 

Finally, a pressure-sensing safety mat is installed in a safe area outside the 

KUKA robot’s work envelope (reach). The safety mat ensures that a technician 

can safely program or calibrate the robot while standing on top of the mat, 
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including that the robot must be forced to move at a slower speed. The safety mat 

is wired to the robot controller and acts like an E-stop switch during programming. 

With these safety measures in place, the safety of laboratory personnel and 

observers present in the vicinity becomes apparent. 

4.8 Conclusion 

This chapter focused on the specific requirements in hardware and software 

components, how they were chosen, and the development of the required 

methods to implement them to accomplish the development of a RAS. A brief 

overview of the intended system layout and hierarchy, operation of the system 

and product flow was discussed. Furthermore, the various assembly devices in 

the system where described, along with their operation, capabilities and the 

methods to control them. In addition to assembly devices, the overhead software 

to capture orders from an operator, determine and control production processes 

and relay instructions to the assembly devices were also considered. Moreover, a 

brief introduction and background information on OPC and KEPserver were 

provided, followed by its setup and use as a flexible communication bridge 

between the implemented devices from various different vendors and the control 

elements. Furthermore, some of the implemented hardware devices can be 

potentially dangerous, which is why precautionary safety equipment were 

implemented, preventing damage to devices and ensuring safety of laboratory 

personnel. 

In conclusion, by utilizing the hardware and software components chosen in this 

chapter, and implementing the overhead software with the embedded 

functionality, planning methods and communications, a system with typical 

characteristics of a RAS, which consists of flexible reusable industry standard 

components that are used in typical industry applications, and comprises the 

capability to easily reconfigure or recalibrate with minimum effort from an operator 

to limit downtime, can be attained. 

�  
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Chapter 5 Testing and Results 

5.1 Introduction 

This chapter reports on a series of tests that were undertaken to verify the 

operation of the system and its subcomponents, by initially making use of 

simulation and afterwards verifying the results through physical testing.  

The tests are compiled in such a way that the fundamental functions are verified 

first, and then afterwards used to verify system subprocesses, and eventually 

testing the system as a unit. The testing includes verifying each assembly device 

separately while investigating the three verification methods and distributing the 

project objective amongst each test. Furthermore, the testing is also separated 

into verifying the system with PLC in control as well as MAS in control. 

The procedure in which testing was conducted as well as the subsequent section 

can better be explained by referring to Figure 5.1. In Figure 5.1, notice that the 

blue-coloured blocks represents the start of each test to be conducted. In 

addition, the grey-coloured blocks represent what is tested along with the 

methods of testing, and lastly the green-coloured blocks show the sections of the 

system that has been verified by testing.  

Initially, test 1 shows the verification of the production planner which is used in 

both the internal process controller of the PLC and in the DELMIA simulations. 

Test 1 includes testing the priority and masking routines. Next in test 2, each 

assembly device is verified using a respective verification method along with 

certain system capabilities. The first method verifies the KUKA robot using a 

process plan. The second method verifies the gantry crane with a virtual PLC. 

Lastly, the third method verifies the Cartesian robot using the actual system PLC. 

This is known as virtual commissioning. In contrast with tests 1 and 2, test 3 

verifies the system with the MAS in control. It uses the physically built system 

which is verified by tests 1 and 2 to perform a simple assembly operation. As a 

result the entire system is verified with both PLC and MAS in control.  
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Figure 5.1 Testing to verify system 

5.1.1 System layout  

Figure 5.2 shows the physical layout of the system components, as currently 

implemented in the RGEMS laboratory. Furthermore, it shows the physical wiring 

which contains power connections, sensor wires and output actuators. Moreover, 

it is also identified where all the control logic devices are allocated and how these 

are interconnected. For a detailed description of the system layout, also refer to 

section 4.2. 
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Figure 5.2 System layout 

5.2 Tests Done in Internal Process Controller Mode 

Figure 5.3 shows all the active processes and functions in the PLC when the 

internal process controller is enabled. 

 

Figure 5.3 Active processes in PLC mode 

5.2.1 Testing the Production Planner 

To verify the production planner which supervises over the masking, priority and 

RFID handler routines, each handler was tested separately. The RFID handler 
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simply returned an identification value when a RFID tag is in proximity of a reader 

and stores the value in a location the PLC can use, and thus will not be tested. 

On the contrary, the masking and priority handlers were loaded into a simulation 

environment, whereafter simulations were conducted to obtain results. These 

simulations and the results thereof are revealed in the succeeding sections. 

5.2.1.1 Masking Handler 

Table 5.1 shows the setup and the results obtained from a simulation done to 

model the output of the comparing and masking routine. The simulation was set 

up to test three sets of product variations, as shown in each column, to obtain the 

masking strings for each assembly device. The first comparison had no variations 

between the product strings (same product for all three). The result shows that all 

the parts to be placed are assigned to be done by the Cartesian, leaving the 

KUKA robot unused. This shows that the routine identifies matching features with 

success. The second comparison had no similarities between the product strings 

(three completely different products tested). This result shows that all the parts to 

be placed are assigned to the KUKA robot instead of the Cartesian. This 

furthermore shows that the routine accomplished to recognize the fluctuations 

between the product variations. The last comparison was done using typical 

product variations. The result shows that the workload is equally distributed 

between each assembly device. By implementing this routine, it becomes evident 

that the production handler is able to perform comparing and masking functions. 

Table 5.1 Simulation results for masking handler 

 
Strings values 

 
Compare 1 

 
Compare 2 

 
Compare 3 
 

Product 1 001100110011 011100101010 001111001011 

Product 2 001100110011 111110000111 000111100010 

Product 3 001100110011 100001011101 000100000111 

Cartesian Mask 111111111111 000000000000 110100010010 

KUKA Mask 000000000000 111111111111 001011101101 
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5.2.1.2 Priority Handler 

To verify the priority handler, a simulation is set up using a virtual PLC and a 

virtual HMI. To expedite the simulation, the virtual assembly devices are included 

in simulation, and the simulation speed is increased to maximum. By doing this, 

device movements and operations cannot be observed clearly, but the order in 

which the products where built can be obtained faster. Furthermore, the 

simulation is set up by placing three batch orders in such a way so as to test 

different scenarios, as shown in Table 5.2. After ordering is completed, the 

system is instructed to start production and the simulation is underway.  

Table 5.2 Setup for priority routine simulation 

 

Scan list 
 

Order 1 
 

Order 2 
 

Order 3 

 Priority Quantity Priority Quantity Priority Quantity 

Product A 1 2 3 2 2 2 

Product B 1 2 2 2 1 2 

Product C 1 2 1 2 2 2 

 

After the simulation is completed, the results are obtained and tabulated as in 

Figure 5.4. The results show the sequence in which the products where built in 

each respective batch order as determined by their product priorities. In general, 

products with higher priority are built first. This is confirmed by results two and 

three. In addition, if the priorities are made equal, the products are built according 

to their order in the product scan list (A to C). If a product is scanned first, it is 

built first. This is corroborated by results one and three. Based on these results, it 

is clear that the production handler is able to prioritize the building order of 

products by utilizing this routine.  

 

Figure 5.4 Sequence in which products were built 
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5.2.2 Testing System Capabilities with a Process Plan 

5.2.2.1 Introduction 

The first simulation test is done using the virtual KUKA robot and a process plan 

(refer to Figure 5.5). This method of verification simulates the behaviour of an 

assembly cell without connecting control logic to the cell. The intention of the test 

is to verify the operations of the KUKA assembly cell, to prove that the system 

can build more than one product on the same assembly line, shift workload to 

neighbouring conveyors, and evaluate the method of verification. To clarify, by 

using this method of verification, a process can be tested for collisions, and 

erroneous device operations can be rectified without damaging the real 

equipment. 

 

Figure 5.5 KUKA robot in virtual environment 

5.2.2.2 Setup 

To set up the process simulation, the environment is built up using the methods 

described in Chapter 3. Firstly, the operations the assembly cell must execute 

and the sequence in which the operations must occur have to be identified. 

Afterwards, the KUKA robot and the surrounding auxiliary devices in the cell are 

taught the various tasks needed to perform the identified operations, and then 

inserted into the process simulation as activities. These activities are shown in 

Figure 5.6. Lastly, these activities are linked together in the sequence that the 

activities should occur by using a PERT chart (shown in Figure 5.7). At this point, 

the process simulation is set up and is ready to be executed.  
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Figure 5.6 Processes present in product tree 

 

 

Figure 5.7 PERT chart implemented in process testing 

5.2.2.3 Results 

The process simulation is commenced and the result is shown in a support video 

in Appendix B. 

The sequence starts with a conveyor activity that loads pallets (from the 

Cartesian robot assembly cell) onto both conveyor lines. After the pallets are in 

place, the KUKA robot is signalled to start assembling. For the first assembly 

process, the KUKA must build the same product on each of the conveyor lines 
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and executes it. This process demonstrates that the system is able to share 

workload among conveyor lines by building the same product on each conveyor 

line. Afterwards, the KUKA acknowledges that it finished assembly and the next 

conveyor activity is triggered. The conveyor now transports the finished products 

towards the gantry crane, and simultaneously loads new pallets for the next 

assembly process. When the new pallets are in place, the second KUKA process 

is triggered. For the second process, the KUKA must build two different products 

on each conveyor line. This firstly demonstrates that the system is capable of 

building more than one product, and secondly has the capability to build different 

products at the same time. After assembly is complete, the KUKA acknowledges 

and the last conveyor activity is triggered to offload the newly-built products. 

5.2.2.4 Summary 

To summarize, the test has shown the capability of the system to build multiple 

products on the same line and sharing the workload among conveyors. In 

addition to system capabilities, the operation of the KUKA robot was verified by 

using a process plan. Furthermore, by using a process plan as verification 

method, the system activities are confirmed with ease and can be altered in case 

of unpredictable operations. In contrast, the only drawback to using this method is 

that no control logic is involved in the simulation. This means that device 

operations can be tested and overall system capabilities be verified, but not the 

control logic which operates the system. 

5.2.3 Verifying Control with a Virtual Programmable Logic Controller 

5.2.3.1 Introduction 

The second assembly cell verification test is done using the virtual gantry crane 

and a virtual PLC (refer to Figure 5.8). This method of testing is referred to as a 

“software in the loop” simulation. Here the cell verification is focused on how 

control logic effects the device operations. The intention of the test is to verify the 

operations of the gantry crane, to demonstrate how the system handles 

erroneous products, and evaluate this control verification method. Thus the work 

cell operations and movements can be verified using a virtual PLC, without 

needing to purchase a physical system PLC. 
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Figure 5.8 Gantry crane in virtual environment 

5.2.3.2 Setup 

The execution environment is set up by firstly preparing the geometry, then 

developing the control logic and afterwards mapping the signals. 

Referring to Figure 5.8, the environment is prepared by placing four products on 

the outgoing conveyor, where one of these products is intentionally made faulty. 

This will simulate how the system handles erroneous products. Furthermore, the 

geometry is setup by placing a resource sensor at the end of the conveyor, to 

signal the virtual PLC that a product is in place. In addition, this resource sensor 

is tailored to return an integer value, to identify products like an RFID. In this way, 

the virtual PLC can discriminate between the detected products. 

Next, the virtual PLC code to control the gantry operations is developed. This is 

done by using SFC and can be seen in Figure 5.9. For clarification, the gantry 

has internal control logic to control device operations and is interfaced with the 

supervisory virtual PLC to delegate the gantry operations. To conclude the setup, 

the devices and the virtual control logic are mapped to inform the execution 

environment how these components are interconnected. This is shown by 

Figure 5.10. At this point, the environment setup is prepared and ready to be 

executed. 
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Figure 5.9 SFC code implemented in virtual PLC 

 

 

Figure 5.10 Interconnections between virtual PLC and gantry 
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5.2.3.3 Results 

The execution environment is initiated and the result is shown by the video in 

Appendix C. 

As a completed product reach the end of the conveyor, the virtual PLC detects its 

presence at the resource sensor and obtains an integer value (RFID value). Due 

to the fact that the visual inspection equipment for quality control cannot be 

connected to DELMIA for testing, simulation signals must be induced manually to 

inform the virtual PLC of faulty products. With this in mind, the first two products 

pass the quality check and the corresponding simulation signal to inform the PLC 

is provided. Afterwards, the PLC presents the gantry with a pass signal and 

instructs it to start operation. The gantry responds by picking up the product, 

moving to the pass position and placing the product on the dispatching conveyor. 

Afterwards, the gantry returns back to the picking position and acknowledges 

completion to the PLC. This procedure is repeated for the second product 

detected by the virtual PLC. For the third product, a simulation signal to inform 

the PLC that the current product is faulty is induced. Afterwards, the PLC 

provides a fail signal and instructs the gantry to execute the operation. The gantry 

reacts by picking up the faulty product, moving towards the reject bin and 

discarding the faulty product. Afterwards, the gantry returns to the picking position 

and acknowledges completion to the PLC. For the last product, the product is 

passed and the same procedure is followed as for the first two products, 

providing evidence that the system can distinguish between how to deal with 

good and faulty products.  

5.2.3.4 Summary 

To summarize, the test confirmed that the system can handle both good and 

faulty products, and verifies how the gantry operates in response to the virtual 

control logic. This method of verification provides an excellent way to validate the 

internal logic of a device and confirms that the control logic applied to the device 

provides the accurate signalling to operate the device. A drawback to using this 

method is that the actual PLC code to be implemented cannot be verified using 

this method. The reason for this is the coding language (ladder or SFC) used in 

DELMIA is not compatible with or similar to the equivalent used in the real system 
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PLC. Thus, only the functionality and methods of the control logic can be tested 

and not the actual code to be implemented. 

5.2.4 Validating Logic with System Programmable Logic Controller 

5.2.4.1 Introduction 

The last assembly cell verification test is done using the virtual Cartesian robot 

and the real system PLC (refer to Figure 5.11). This is also referred to as a 

“hardware in the loop” simulation. The intention of the test is to verify the 

operations of the Cartesian assembly cell, validate function of the device handler, 

verify the actual control logic implemented on the PLC and evaluate the method 

of verification. Basically, this is a real-time system verification test, with emphasis 

on evaluating the actual controller code. 

 

Figure 5.11 Cartesian robot in virtual environment 

5.2.4.2 Setup 

To set up the test environment, some functions and subroutines are disabled in 

the main PLC so that only the Cartesian robot and its auxiliary devices will be 
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able to operate. Next, the environment is set up in a similar manner to 

section 5.2.3.2, but in contrast an external (real) PLC is used instead of a virtual 

PLC. Furthermore, by using the methods from section 3.4.4 (setup an OPC 

server) and section 4.2.4 (setup of external PLC), the OPC tags are created, the 

path (IP address) specified and the connection (signal quality) between the OPC 

server and the environment is checked. Afterwards, the external PLC and the 

subcomponents of the Cartesian are interconnected as shown in Figure 5.12. To 

clarify, the control logic to operate the Cartesian is located inside the main 

controller; thus, the PLC must address the individual components separately. As 

a result, the setup of the execution environment is concluded and the simulation 

can commence.  

 

Figure 5.12 Interconnections between external PLC and Cartesian 
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5.2.4.3 Results 

Since the real PLC is connected to the virtual environment, the virtual parts 

cannot be picked, placed or moved around in the environment. Due to this, only 

the movements and operations of the device can be shown and not the actual 

building. In addition, to start the emulation reliably, the execution environment is 

first initiated, and then instructions are sent to the PLC. The resulting process is 

shown in Appendix D. Afterwards, the PLC is provided with a product string to 

build the matching features between multiple products as determined by the 

method used in section 4.6.3.5. The resultant of this product to be built is shown 

in Figure 5.13. 

 

Figure 5.13 Matching features to be built by Cartesian 

After the build data are provided to the PLC, the process is started by triggering 

the “START_CART” OPC tag present in the IO monitoring window (see 

Figure 5.14). The PLC responds by ensuring that the cylinder piston is up and the 

gripper is open (released). Afterwards, the PLC presents the Cartesian with X 

and Y coordinates (X_POS and Y_POS values) to direct the linear drives to the 

corresponding pick position and triggers the motion. Note that the motion 

complete outputs (MC1 and MC2) from the linear drives are false while the drives 

are in motion. After the drives are in position, the Cartesian responds with motion 

complete. Next, the PLC runs a pickup routine and signals the cylinder and 

gripper to perform the sequence. After the pickup sequence is completed, the 

PLC provides the Cartesian with placing coordinates and triggers the drives. 

Afterwards, motion complete is detected and the PLC runs a placing routine and 
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signals the cylinder and gripper to execute the sequence. This process continues 

until the product shown in Figure 5.13 is completely built and afterwards, the PLC 

remains idle until instructed to build the next product. 

 

Figure 5.14 IO monitoring window 

5.2.4.4 Summary 

To outline, the operations of the Cartesian as well as the actual PLC code are 

successfully verified in real-time. This method of verification provides a means to 

verify the internal logic of a device, the movements and operations, as well as the 

actual PLC code without the risk of damaging the real system equipment. 

Although movements of parts cannot be animated, virtual commissioning is 

successfully obtained and how the real system will operate is predicted. However, 

care should be taken to ensure that simulation speed corresponds to the 

processing speed of the PLC; otherwise, the virtual work cell performs unrealistic 

and erroneous device movements. To conclude, if a PLC of any brand can be 

browsed using an OPC server, the control logic and device operations can be 

verified through virtual commissioning. 
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5.2.5 Analysis - Compare the Different Cell Verification Methods 

Based on the comparison done in Table 5.3, each method shows advantages 

and disadvantages. If emphasis is placed on early system layout, space 

reservation and process prediction, then method 1 is the suggested choice. On 

the contrary, if emphasis is placed on verifying control and device logic, along 

with cell operations, then methods 2 and 3 are highly recommended. To choose 

the supreme method to use depends mostly on what is intended to be achieved. 

Fortunately, DELMIA offers manufacturing companies a complete solution to test 

their designs well ahead of time, thus giving them the advantage over their 

opposition. 

Table 5.3 Comparison between cell verification methods 

  
Method 1 

(section 5.2.2) 
Process 

 
Method 2 

(section 5.2.3) 
Virtual Controller 

 
Method 3 

(section 5.2.4) 
Real Controller 

 

Verify Device 
Movements 

Yes Yes Yes 

Verify               
Pick and Place 

Operations 

Yes Yes, but limited 
operation 

No 

Simulate   
Conveyor Action 

Yes Yes, but extra 
configuration setup 

is required 

No 

Collision Analysis Yes Yes Yes 

Verify Control 
Logic 

No Yes, but differ from 
actual control logic 

Yes 

Verify Device 
Logic 

No Yes Yes 
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5.3 Test Done in Multi Agent System Mode 

5.3.1 Test Setup 

To test the system with the MAS in control, control is handed over to the MAS 

and the all the processing done by the PLC is inhibited. Figure 5.15 shows all the 

functions that are available to the MAS when this state is active. In addition to all 

the functions available to the MAS, the PLC switches to slave mode and runs the 

subroutine shown in Figure 5.16. By recalling that the MAS cannot ensure 

accurate and stable delay times (section 4.6.4), this routine performs delay tasks 

on behalf of the MAS. This results in the PLC executing all the tasks that the MAS 

instructs. 

 

Figure 5.15 Active processes in MAS mode 

 

Figure 5.16 PLC in slave mode 
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5.3.2 Result  

To reveal system operation with the MAS in control, an operator instructs the 

MAS to start production and a simple process is demonstrated. 

The MAS starts the process by switching on the various conveyors and loading a 

pallet at the first (Cartesian) assembly cell. The MAS presents the device handler 

in the PLC with a product string and triggers the operation. The Cartesian 

executes the operations and the device handler acknowledges that the assembly 

operation is done. At this point, the MAS communicates to the vision system to 

execute a quality check. The product passes inspection and the MAS performs 

the necessary conveyor actions to let the pallet travel to the second (KUKA) 

assembly cell. Similarly to the Cartesian, the MAS provides the device handler 

with the corresponding product string, which the KUKA must build, and triggers 

the operation. The KUKA responds by building the second part of the product. 

Afterwards, the device handler informs the MAS that assembly is completed. The 

MAS once more enquires a quality check and the product passes inspection. The 

finished product is then conveyed towards the gantry crane. Unfortunately, the 

physical assembly of the gantry crane is not yet complete, but the movements 

and operations can be demonstrated without picking and placing the actual pallet. 

At this point, the MAS relays a pass signal to the device handler and the gantry is 

instructed to dispatch the product to the packaging conveyor. This reveals that 

the system is able to function flawlessly with the MAS in control. 

5.4 Conclusion 

This chapter revealed the testing done to verify the capabilities of the system and 

were divided into two parts, PLC and MAS in control of the system. In addition, a 

scrutiny of the methods of verification was done and the results obtained from it 

were presented. Also included in the chapter was a brief description of the 

system layout and where the wiring and network cables are located. 

The first part of testing entailed validating the system with the PLC in control, and 

was performed by using DELMIA as the simulation environment. The tests 

validated the PLC process planner and its subcomponents, the device handler 

and each of the assembly devices present in the system. Furthermore, the tests 
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also examined the capabilities of the DELMIA verification methods and how 

virtual commissioning contributes towards system verification. These methods 

included system verification by a process plan, virtual logic and actual system 

control logic. The second part of testing was performed using the physical system 

with the MAS in control to verify overall system operation. This revealed that the 

MAS can execute a production process by accessing and controlling the IOs and 

subfunctions of the PLC; showed how the PLC operates in slave mode and 

responds to instructions from MAS.  

To conclude, the results from simulations and testing revealed that the project 

objectives are achievable and that it is possible to build a system with these 

requirements. In addition, virtual commissioning can be utilized to expedite the 

validation of such a system. Furthermore, the results also showed that both the 

PLC and MAS control options are feasible, and that the utilization of either will 

depend solely on consumer preference. Finally, the comparative analysis which 

was done to inspect the capabilities of the DELMIA verification methods, revealed 

the most suitable methods for future use and it was found that virtual 

commissioning with real PLC control provides the most complete and accurate 

method of system verification for this project.  
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Chapter 6 Contributions and Conclusion 

6.1 Introduction  

This chapter briefly recapitulates the project, scrutinizes the research goals and 

objectives, lists the contributions made, and reveals future work to be done. 

6.2 Summary 

Chapter 1 introduced the project and placed it in perspective. It stated the 

problem, contained the hypothesis, research methodology and listed the 

objectives of the project. 

In Chapter 2 a literature study was conducted to gain preliminary knowledge on 

the various aspects of a RAS. These aspects included characteristics of a RAS, 

design and flexibility issues, typically considered hardware and software 

components, and the use of PLM software in industry. 

Afterwards, Chapter 3 introduced DELMIA as the test environment. It revealed 

how the infrastructure works, how to obtain geometry and specifying its 

behaviour, and how to accomplish control element verification through virtual 

commissioning. 

Later, chapter 4 documented on which basis the system components were 

chosen and how they were implemented in the system. The implementation in 

Chapter 4 revealed the necessity to develop various methods and software 

modules to control and operate the system successfully. This included methods 

on how an operator interacts with the system to place orders, how the system 

translates these orders into a process plan, and how the process is executed 

afterwards. In addition, OPC and KEPserver were introduced along with how 

these are set up and used as a communication platform. Another aspect was the 

two overhead control instances and how the control was handed over between 

these instances by the system. 

Ultimately, Chapter 5 presented the tests which were done to verify the various 

objectives of the project. It showed how the tests were prepared, the simulations 

executed and the results which were obtained afterwards to verify critical system 
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components. In addition to simulations, the physical system was also tested with 

the MAS in control. This test showed that the MAS was able to control a 

production process by using OPC as the communication platform and verified the 

MAS as a control instance. 

6.3 Research Goals and Objectives 

The main goals of the project were to develop a RAS with enhanced control 

capabilities which can switch control between the MAS and system PLC, build 

more than one product on the same assembly line, distribute the workload among 

system components, and handle erroneous products in the system. In addition, 

this had to be achieved by creating and utilizing a virtual simulation environment 

to verify the operation and control of the system.  

This was met through firstly building a virtual version of the system by using the 

methods discussed in Chapter 3. In addition, the subcomponents used in the 

virtual system were given the equivalent functionality and behaviour as their 

physical counterparts as chosen and specified in Chapter 4. Afterwards, the 

control logic for the system was developed as shown in Chapter 4 and combined 

with the virtual system to perform the verification testing done in Chapter 5. Also 

in Chapter 5, the physical system was used to verify how the system performs 

with the MAS in control as well as other subfunctions incorporated in the system. 

6.4 Contributions 

The project delivered the following contributions: 

6.4.1 Enhanced Control (State Machine) 

A flexible and reconfigurable state machine was developed as part of the main 

PLC code to control the system. It consists of various operational states, where 

the state machine chooses between MAS and PLC control by transferring to one 

of these operational states. In addition to the state machine, software functions 

are developed to be modular so that they can be easily added or removed from 

the system software, or be enabled or disabled in a particular operational state. 

Moreover, when an operational state is selected, particular functions are enabled 

and executed, and the redundant and unused features disabled to provide the 
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selected state with the required functionalities. This enhances the control 

capabilities and options of the system PLC. 

6.4.2 Production Planner 

A production planner was developed to aid the PLC to handle production and 

assembly processes when in the “internal process controller state”. The 

production planner consists of a priority routine to determine the order in which 

products are built, a masking routine to determine the workload at each assembly 

cell, and an RFID handler to track products in the system. Essentially the function 

of the production planner is to decide “what” is built “where,” and “in which order”. 

6.4.3 Device Handler (Build Algorithm) 

A device handler was implemented to operate the various assembly devices in 

the system. A flexible build algorithm to determine the operations and instruct the 

respective assembly devices was developed to provide functionality to the device 

handler. The device handler seizes control over device operations and executes 

recipes provided from both PLC and MAS, respectively, when either one has 

control. 

6.4.4 Simulation Model and Virtual Commissioning 

A virtual simulation model of the entire system was created using CATIA and 

DELMIA. All the CAD models for the subcomponents used to build up the virtual 

system are designed at a 1:1 ratio compared to the real system. Furthermore, 

these subcomponents were assembled into the respective system assembly 

devices by creating mechanical joints, moving constraints and the internal logic to 

specify behaviour for each. Afterwards, the devices were arranged into their 

proposed positions in the virtual version of the laboratory. This forms the basis of 

all current and future simulation testing done on the system.  

In addition to the virtual infrastructure, a virtual version (code was modified to run 

in DELMIA) of the overhead control software was also developed, which will 

enable future students to test new implementations or modifications without 

changing the physical system. Furthermore, an OPC server was set up and 

communication between it and the DELMIA environment was established, 
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enabling connections with the real system PLC. This ensures that the 

movements, operations, processes and control logic of the virtual system can be 

verified, thus establishing virtual commissioning for future use. In addition to 

virtual commissioning, the solution shown in section 3.3 was contributed to 

simulate the actions and operation of the system conveyor. 

As a result, future students have access to a complete simulation platform, which 

enables them to introduce new projects into the system easily, modify current 

designs with ease and verify the changes made in both software and hardware 

using virtual commissioning.  

6.4.5 Physical System Infrastructure 

A complete physical version of the system has been built in the RGEMS research 

laboratory. This includes that all the assembly devices were assembled from their 

various subcomponents; the devices were placed and secured into their positions 

in the system; the respective wiring and communication connections were made 

with the controlling instances and their required EoA tools were mounted. 

Furthermore, the conveyor joining the assembly devices was assembled, and its 

driving motors, proximity sensors and actuators were also mounted and 

connected. In addition to the physical components, an Ethernet and DeviceNet 

network has been installed to communicate between the control instances and 

the various assembly devices. Furthermore, precautionary safety devices were 

implemented, as well as an enclosing physical structure that was built to ensure 

the safety of laboratory personnel. As a result, current and future RGEMS 

students will benefit by having access to a full system, having a range of 

assembly devices, which enable them to complete their projects faster, more 

easily and safely.  

6.5 Future Work 

6.5.1 Simulation Environment 

The current simulation environment functions satisfactorily for the project, but 

different methods and possibly evaluation of other software packages is worth 
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looking into to find the best, up-to-date practices and PLM software available to 

the manufacturing industry. 

6.5.2 Error Handling 

The system currently only tests if certain software modules are available and if 

hardware devices are active and responds to instructions. However, methods to 

resolve system errors like hardware or software component failure must still be 

developed and implemented. Some recommendations concerning this include 

that the system might automatically bypass a faulty component, reroute products 

to other assembly lines, and shift the workload of the faulty component to the 

remaining operational components to perform. Furthermore, software might be 

modified to test for errors and solve the errors without the need for operator 

intervention.  

6.5.3 Tool Reconfigurability 

Considerations to further improve the reconfigurability of the system include the 

implementation of either multi tools or tool changers. A multi tool, for instance, 

consists of various tools (gripper, sucker and a glue gun) mounted on the flange 

of a robot at different angles and changes the posture or approach of the robot to 

use it. In contrast, a tool changer consists of a tool gripper, which picks up a tool 

needed for an application from a tool tray and substitutes it with another when the 

current operation is complete. Adding tool flexibility to the system devices will 

increase the assembly capability and enhance the overall reconfigurability of the 

system. 

6.5.4 Rework Bay 

Presently if the system encounters an erroneous product it discards it without 

considering why it is defective. Plans to add an addition shunt conveyor system 

with incorporated machine vision and assembly robots are considered for future 

endeavours. The purpose of this shunt conveyor system will be to reconsider the 

condition of the product and determine the immensity of the errors on it. It would 

be considered to rather rework the product by fixing the minor errors instead of 

discarding it without consideration.  
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6.6 Conclusion 
Most of SA manufacturing exports are aimed at niche markets, the majority of 

which involve high varieties of products in small volumes. Furthermore, SA has a 

large availability of manual labour to accommodate for the manufacturing of this 

diversity in products, but the quality of these products cannot be ensured by 

utilizing manual labour alone. In addition, cases where manufacturers do utilize 

automation and techniques, a tendency towards dedicated assembly lines are 

pursued and this restricts the flexibility which the products in demand require. 

This then clearly indicates why SA should pursue utilizing RAS to provide a 

flexible platform that is needed to accommodate the required diversity in product 

fabrication. This will result in SA manufacturing industries having reconfigurable 

systems which can handle rapid introduction of new products and assemble 

multiple product variations at variable volumes with no concern of short product 

lifecycles. It then becomes evident that the possibilities are endless; instead of 

having numerous discrete dedicated systems to perform various devoted tasks 

and processes, these same tasks can be achieved by one system simply by 

reconfiguring it. In addition, by utilizing PLM software to design these systems 

and verifying it by obtaining virtual commissioning, the development time can be 

decreased, modification to an existing system can be made with ease, and the 

final system can be quicker operationally. This will give the SA manufacturing 

industry a further advantage, which makes PLM software a must-have tool in 

RAS development and maintenance. However, the long-term benefits that the 

utilization of RAS can provide to SA include that the production and quality of 

products will increase and the product cost will decrease, which results in an 

increase of revenue. This will restore the trust of foreign companies in SA, which 

will draw investors and increase economical security in SA. Additionally, the skills 

requirements to build, maintain, and operate these systems will create job 

opportunities for professionals which will further develop SA and its communities. 

In short, the implementation of RAS will benefit SA tremendously and enable it to 

compete for global markets. This raises the ultimate question. How can the SA 

manufacturing industry not be more competitive, more productive, limit expenses 

and show a profit if they utilize RAS?  
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Appendices 
 

The following appendices can be attained from the attached CD: 

Appendix A: Conveyor 

Appendix B: KUKA process simulation 

Appendix C: Gantry using virtual PLC 

Appendix D: Cartesian virtual commissioning using system PLC 

 




