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ABSTRACT 

In this study an alternative indirect Rapid Tooling process is proposed. It essentially consists 

of producing sand moulds by Additive Manufacturing (AM) processes followed by casting of 

tools in the moulds. Various features of this tool making method have been investigated. 

A process chain for the proposed tool manufacturing method was conceptually developed. 

This process chain referred to as Rapid Casting for Tooling (RCT) is made up of five steps 

including Computer Aided Design (CAD) modeling, casting simulation, AM of moulds, 

metal casting and finishing operations. A validation stage is also provided to determine the 

suitability of the tool geometry and material for RCT. The theoretical assessment of the RCT 

process chain indicated that it has potential benefits such as short manufacturing time, low 

manufacturing cost and good quality of tools in terms of surface finish and dimensional 

accuracy. 

Focusing on the step of AM of the sand moulds, the selection of available AM processes 

between the Laser Sintering (LS) using an EOSINT S 700 machine and Three Dimensional 

Printing using a Z-Corporation Spectrum 550 printer was addressed by means of the Analytic 

Hierarchy Process (AHP). The criteria considered at this stage were manufacturing time, 

manufacturing cost, surface finish and dimensional accuracy. LS was found to be the most 

suitable for RCT compared to Three Dimensional Printing. The overall preferences for these 

two alternatives were respectively calculated at 73% and 27%. LS was then used as the 

default AM process of sand moulds in the present research work. 

A practical implementation of RCT to the manufacturing of foundry tooling used a case study 

provided by a local foundry. It consisted of the production of a sand casting pattern in cast 

iron for a high pressure moulding machine. The investigation confirmed the feasibility of 

RCT for producing foundry tools. In addition it demonstrated the crucial role of casting 

simulation in the prevention of casting defects and the prediction of tool properties. The 

challenges of RCT were found to be exogenous mainly related to workmanship. 

An assessment of RCT manufacturing time and cost was conducted using the case study 

above mentioned as well as an additional one dealing with the manufacturing of an 

aluminium die for the production of lost wax patterns. Durations and prices of RCT steps 
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were carefully recorded and aggregated. The results indicated that the AM of moulds was the 

rate determining and cost driving step of RCT if procurement of technology was considered 

to be a sunk cost. Overall RCT was found to be faster but more expensive than machining 

and investment casting. 

Modern surface analyses and scanning techniques were used to assess the quality of RCT 

tools in terms of surface finish and dimensional accuracy. The best surface finish obtained for 

the cast dies had Ra and Rz respectively equal to 3.23 µm and 11.38 µm. In terms of 

dimensional accuracy, 82% of cast die points coincided with die Computer Aided Design 

(CAD) data which is within the typical tolerances of sand cast products. The investigation 

also showed that mould coating contributed slightly to the improvement of the cast tool 

surface finish. Finally this study also found that the additive manufacturing of the sand mould 

was the chief factor responsible for the loss of dimensional accuracy. Because of the above, it 

was concluded that light machining will always be required to improve the surface finish and 

the dimensional accuracy of cast tools. 

Durability was the last characteristic of RCT tools to be assessed. This property was 

empirically inferred from the mechanical properties and metallographic analysis of castings. 

Merit of durability figures of 0.048 to 0.152 were obtained for the cast tools. It was found that 

tools obtained from Direct Croning (DC) moulds have merit of durability figures three times 

higher than the tools produced from Z-Cast moulds thus a better resistance to abrasion wear 

of the former tools compared to the latter. 
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CHAPTER 1 

INTRODUCTION 

1.1 Foreword 

Mass production processes such as forging, stamping, casting and injection moulding require 

metallic tools in the form of dies, patterns and moulds. The quality, cost and lead time of 

these tools directly affect the quality of parts and the economics of entire production 

planning. There is therefore an ongoing search for improved and innovative Tool and Die 

Manufacturing processes to meet the stringent customer requirements for products (Peres & 

Mafokhami, 2001; Jiang, Liu, & Zhang, 2005). In the present project an alternative tool 

manufacturing process based on metal casting in sand moulds produced essentially through 

an Additive Manufacturing (AM) processes is investigated. 

1.2 Problem Statement 

Sand casting is traditionally not considered for the production of metallic tooling. The 

limitations of this metal casting method in relation to Tool and Die Manufacturing (TDM) 

mainly stem from the need for a pattern, the fabrication of which is notoriously cost and time 

consuming. In addition, sand cast tools are of relatively poor quality in terms of surface finish 

and dimensional accuracy compared to processes such as precision casting, machining and 

Rapid Tooling. Castings are also prone to contain defects that negatively affect the tool 

durability (Beeley, 2001). 

In recent times, significant progress has been achieved in sand casting to alleviate some of its 

shortcomings. Amongst this, is the use of casting simulation software to predict the properties 

of the final casting and to prevent defects (Sakuragi, 2005; Fu & Yong, 2009). In addition the 

application of AM processes such as Laser Sintering (LS) and Three Dimensional Printing 

(3DP) to produce sand moulds directly from Computer Aided Design (CAD) files without the 

need for a pattern is also an important development in sand casting. Taking into account these 

advances, sand casting could be revisited and reassessed for the manufacturing of metallic 

tools. In this instance metallic tooling will be produced by metal casting in sand moulds 
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obtained by AM processes. This alternative method is referred to in this study as Rapid 

Casting for Tooling (RCT). 

Therefore the research problem investigated in this study relates to the integrated 

understanding of the RCT process as an alternative route for tool manufacturing in terms of 

its relevance and effectiveness. In the next section, details are provided regarding the 

hypothetical resolutions of this question. 

1.3 Hypothetical resolutions 

The hypothetical resolutions in order to gain an understanding of RCT as alternative route for 

the production of tools by metal casting in moulds produced by AM processes are as follows: 

i. The development of an RCT process chain combining CAD modelling, casting 

simulation, AM of sand moulds, metal casting and finishing operations of the final cast 

tool. 

ii. The multi-criteria based selection of a suitable AM process for the production of moulds, 

in order to optimise the quality of cast tools at low cost and short lead time. 

iii. The coating of AM moulds in order to further improve surface finish and dimensional 

accuracy of cast tools. 

iv. The follow-up and optimisation of the casting procedure in a real foundry environment. 

1.4 Purpose of the study 

Based on the problem statement and hypothetical resolutions mentioned above, the major 

objectives of the current investigation are: 

i. To conceptually develop an RCT process chain that should combine various input and 

output parameters as well as processing and validation steps. 

ii. To select the most suitable AM processes for the production of sand moulds. 

iii. To implement the RCT concept using locally available CAD and casting simulation 

software as well as casting technologies. 

iv. To analyse factors governing the manufacturing time and cost of tools produced by RCT.  

v. To assess the quality of moulds and tools produced through the RCT process chain in 

terms of surface finish, dimensional accuracy and durability.  
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1.5 Importance of the study 

The importance of the present study resides at two levels namely the tool and die 

manufacturing (TDM)ield and the small and medium enterprise in South Africa. At its first 

level this investigation is important as there is always a quest for new TDM methods to 

respond to stringent requirements for cost effectiveness and better quality in finished goods 

production (Altan, 2001). TDM is not a stagnant field but one that is developing at a rapid 

pace with the improvements of existing processes or introduction of new technologies such as  

all the relatively new Rapid Tooling processes including Laser Cusing and Metal Matrix 

Printing (Rosochowski et al., 2000).  

At the second level, TDM firms are small and medium enterprises that are supposed to 

significantly contribute to the country’s overall Gross Domestic Product (GDP) and serve as 

a catalyst for job creation. In that sense this study adequately responds to the national 

imperative of strengthening this small and medium industry. 

A recent study that surveyed the state of the local South African tooling industry (FRIDGE, 

2005) revealed among other findings that it was non-competitive. The study uncovered the 

following reasons: 

i. Because of the low tool making capacity and the lack of qualified skills in the country, 

the South African TDM represented only 1% of the manufacturing GDP. There were only 

240 tool rooms in the country. Hence the local tooling manufacturing industry cannot 

meet the growing local demand from the packaging and automotive industry. South 

Africa was found to be a net importer of tooling from overseas. 

ii. The local capability measured in terms of delivery time and tool quality was observed to 

be below par. The general inefficiency was essentially attributed to the use of aged 

equipment and old technologies as well as the lack of skills. 

The consequence of the above is that the South African small and medium enterprises 

involved in mass production of goods for automotive, mining and packaging industries have 

also demonstrated a lack of competitiveness in the global market. They have been surpassed 

among others by their Chinese and Indian counterparts (Viljoen, 2005). 
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The study made several recommendations to re-invent the local tooling manufacturing 

industry. These include government support, skills development and training and technology 

initiative.  

The technology initiative is aimed at adopting modern techniques from developed countries 

through collaborative and joint venture projects. This technology initiative also encourages 

innovation in the field of TDM to develop technologies that are suitable to the local industry 

and also addresses the limitations of the current manufacturing methods such as machining 

and Rapid Tooling. In the spirit of the technology initiative, the present research is proposing 

an alternative manufacturing route for metallic tooling. It is believed that this process will be 

well suited for South Africa and developing countries as well as address the limitations of 

current TDM processes. 

1.6 Research methodology 

The methodology followed in order to achieve the objectives of the current research includes: 

i. The conceptual development of a process chain combining casting design tools, AM of 

sand moulds and sand casting methods.  

ii. The multi-criteria based optimum selection of the most suitable available AM processes 

choosing amongst Electro Optical Systems (EOS) Laser Sintering and Z-Corp Three 

Dimensional Printing using the Analytic Hierarchy Process (AHP). 

iii. The use of two selected case studies related to foundry tooling manufacturing for the RCT 

practical implementation and its economic assessment. 

iv. The production of sand moulds by the most suitable available AM processes. 

v.  Gravity casting of the final tools in the AM moulds. 

vi. The uses of modern techniques of surface finish analysis, 3D scanning respectively and 

scanning electron microscopy (SEM) for the assessment of surface finish, dimensional 

accuracy and durability of sand moulds and cast tools. 
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1.7 Scope of the study 

The current research is concerned with tool manufacturing and not the design of the tools. In 

addition, only AM processes available in South Africa have been used for the practical 

implementation of RCT. Finally standard setup parameters were used on the AM machines 

for the production of the moulds. At this stage, no optimisation attempt was made. 

1.8 Layout of the Thesis 

The “paper format” is the layout adopted for the presentation of this thesis. Eight publishable 

papers of approximately 3000 words each will constitute the core of the thesis. The structure 

of each paper consists of the following sections: Abstract, Introduction, Experimental or 

Methodology, Results, Discussion, Conclusion, References and Appendices. 

In particular the abstract section of each article contains the following sub-sections: 

- Purpose clarifying the objectives of the article 

- Design/method/Approach describing the paper methodology 

- Findings summarising the main results obtained from the study.  

- Originality/Value highlighting the unique contribution of the paper 

- Keywords listing the main words of the article  

- Paper type specifying the type of paper that can be a review or a research paper. 

- Paper status indicating if the article has been published, is under peer reviewing or has not 

been submitted (prepared). 

Thus, the layout of the current thesis is as follows: 

- Chapter 1 constitutes the introduction of the thesis. In this chapter the problem statement, 

the study objectives and its importance are explained. 

- Chapter 2 reviews the literature review on Rapid Tooling processes and metal casting 

methods used for the production of metallic tools. 

- Chapter 3 examines the recent advances in AM processes for the production of sand 

moulds. 

- Chapter 4 deals with the conceptual development of RCT. 
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- Chapter 5 is dedicated to the multi-criteria based optimum selection of AM processes 

using the AHP. 

- Chapter 6 deals with the practical implementation of RCT for the manufacturing of 

foundry tooling.  

- Chapter 7 investigates the RCT economics in terms of manufacturing time and cost. 

- Chapter 8 evaluates the quality of tools produced by RCT in terms of surface finish and 

dimensional accuracy of moulds and cast tools. 

- Chapter 9 assesses the durability of RCT tools.  

- Chapter 10 draws general conclusions and makes recommendations relating to the RCT 

process. 
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CHAPTER 2 

A REVIEW OF ALTERNATIVE MANUFACTURING 
PROCESSES DIFFERENT FROM MACHINING FOR THE 
PRODUCTION OF METALLIC TOOLING  

Abstract 

Purpose – The objective of this paper is to report on the recent advances and modern trends 

of alternative manufacturing processes apart from machining for the fabrication of metallic 

tooling. 

Design /methodology/approach – A literature review of Rapid Tooling (RT) and metal 

casting was conducted. 

Findings - It was also found that RT is a dynamic and growing field offering real benefits in 

terms of lead design time compression and low manufacturing cost compared to machining. 

However the durability of tools obtained by RT is still a challenge because of porosity issues. 

Metal casting is sometimes used essentially because of its low cost, near net shape advantage 

and excellent quality in the case of precision casting methods. However metal casting has an 

important limitation in that tooling is required in the form of patterns or dies, the 

manufacturing of which is time and cost consuming. Sand casting is generally not considered 

for tool making essentially because of additional problems regarding inferior quality of cast 

tools in terms of surface finish and dimensional accuracy. 

Originality/ value - The paper focuses on the manufacturing of metallic tooling. It also 

reveals the shortcomings of exiting Tool and Die Manufacturing (TDM) processes thus the 

need for innovative TDM. 

Keywords- Rapid Tooling, Additive Manufacturing, Metal casting, Precision casting 

Paper type Review paper 

Paper status: Prepared 
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2.1  Introduction 

Metallic tooling in the form of dies, sand casting patterns and permanent moulds constitutes 

an important class of production tooling used in processes such as metal casting, injection 

moulding, forging, etc. The significance of this class of hard tooling derives from the 

interesting properties of metals. Compared to other engineering materials such as ceramics 

and polymers, metals are generally characterised by a combination of properties such as good 

mechanical properties at low and high temperatures, superior thermal and electrical 

conductivity and high resistance to wear. These characteristics make metallic tooling suitable 

for severe operational conditions such as the ones prevailing during sand moulding or 

injection moulding.  

Considerable forces are required to cut through the metallic bonding in order to shape a block 

of material and produce the final tooling. Therefore special manufacturing processes, 

equipment and tools are required to accomplish the above. Machining includes all the 

processes that achieve manufacturing of metallic tooling through cutting and material 

removal. The various types and forms of machining processes are described in detail in 

literature and academic textbooks (Kalkpakjan et al., 2006; Altan et al., 2005, Krajuik et al., 

2004). Machining is the de facto manufacturing processes for metallic tooling. It provides an 

excellent surface finish to the final metallic tooling as well as tight dimensional accuracy. 

Machining processes have several shortcomings that can be classified into two broad groups 

namely technical and operational. The main technical deficiencies include long machining 

time during manufacturing and the exorbitant price of equipment (Agarwala, 2000; Altan et 

al., 2005). The operational shortcomings encompass excessive running cost of the equipment, 

scarcity of skills, a steep learning curve to operate machining equipment and environmental 

unfriendliness with regards to the production of metallic waste (Morrow et al., 2005). 

Developing countries do not have enough resources to adequately deal with the machining 

limitations explained above. The situations results in non-competitiveness of the tool and die 

making (TDM) industry in developing countries. In the case of South Africa, a survey 

conducted on behalf of the government in 2005 revealed that the TDM industry was ageing, 

non-competitive and incapable to serve the local demand (FRIDGE, 2005).  



 10 

There is therefore a need for alternative approaches in tooling manufacturing that could 

alleviate the limitations of machining and be better suited for specific applications in different 

countries. The present paper review two types of such tool manufacturing processes namely 

Rapid Tooling (RT) and metal casting. 

2.2. Rapid Tooling  

2.2.1 Description of Rapid Tooling 

RT is the application of Additive Manufacturing (AM) commonly known as Rapid 

Prototyping (RP) or free-form fabrication to the manufacturing of tooling. AM is defined as 

the growing of parts, layer-by-layer in special machines directly from computer three 

dimensional model files (www.astm.org). AM techniques employ five basic steps to produce 

a part (Palm, 2002; Yan et al., 2009). These steps are: 

i. Modeling of the part using a Computer-Aided Design (CAD) software package such as 

SolidWorks®. 

ii. Conversion of the CAD file into Standard Triangulation Language (STL) format. This 

format represents a three dimensional surface as an assembly of planar triangles. It is a 

well defined and easy-to-handle format that enjoys wide support in the CAD fraternity. 

It is the preferred format for visualisation, analysis programmes and RP manufacturing. 

iii. Slicing of the CAD part in virtual layers for the manufacturing process using software 

such as Magics® from Materialise®. This is followed by preparation of the STL file to 

be built by carefully choosing the suitable build orientation and creation of support 

structure for the model during building. 

iv. AM of the part using one of the several techniques listed in Section 2.2.2.  

v. Cleaning and finishing followed by curing to provide strength and surface treatment.  

Several AM processes are commercially available, well established and described in detail in 

literature and textbooks (Ashley, 1995; Kalpakjan et al., 2006). They include 

stereolithography (SLA), Laminated Object Manufacturing (LOM), Three Dimensional 

Printing (3DP), Laser Sntering (LS), etc. AM is a very dynamic manufacturing field with new 

processes continuously being developed with various applications in the area of RT 

(Wolhers, 2009). 

http://www.astm.org/
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2.2.2 Rapid Tooling processes 

A classification of RT processes has been proposed based on its practical use for tooling 

(Rosochowski et al, 2000).  Figure 2.1 shows that three major groups can be considered: 

those that are used to produce patterns for casting, those used to produce patterns for both 

soft and hard tooling (indirect tooling) and those that produce production-ready tools directly 

from RP methods (direct tooling) (Altan, 2005; Knights, 2005; Pal, & Ravi, 2007).  

From the above classification, the RT processes that are used for the manufacturing of 

metallic tooling include: Spray metal tooling, Cast metal tooling, Keltool tooling, the metal 

powder process and microcast tools. The other processes provide soft tools or hybrid tools 

that are a mixture of metal and other materials. A great deal of development is taking place in 

the field of RT with new AM processes being applied to the production of tooling. Some of 

the latest ones that merit to be mentioned are Direct Metal Laser Sintering (DMLS) and metal 

printing (Strategies, 2008). They fall in the Direct Tooling manufacturing processes. In 

random order these processes are described in the section below.  

 

Figure 2.1 Classification of RT processes (Altan, 2005). 
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2.2.2.1 Spray metal tooling 

Spray metal tooling is an indirect tooling process in which the tool is obtained after spraying 

molten metal around a pattern produced by AM such as LS in polycarbonate or, Fused 

Deposition Modelling (FDM) in Acrylonitrile Butadiene Styrene (ABS). Another related 

method called the Rapid Solidification Process (RSP) (Monroe, 2006) involves spraying 

molten H13 tool steel onto a ceramic pattern. The developers claimed the RSP produces tool 

steel shells with superior strength, hardness and surface finish.  

2.2.2.2 Cast metal tooling 

Cast metal tooling is an indirect tooling process whereby the metallic tooling is produced by 

casting in an investment casting shell. The shell patterns are produced by AM processes such 

as SLA or LOM. Machining may be necessary to improve the surface finish. Tooling can be 

cast in various alloys such as aluminium and zinc for prototyping purposes or in tool steel for 

high volume production. 

2.2.2.3 Keltool tooling 

The Keltool is an indirect tooling process that requires a master pattern obtained by SLA that 

can be used to develop a silicone mould that will then be used to produce the Keltool mould. 

The Keltool mould is then processed with a copper infiltration and sintered to cure the mould 

and increase its strength. The finished Keltool part has the hardness of an A6 tool steel (and 

can be machined like a traditional hard tool. Accuracies are typically 0.125 to 0.375 mm. 

This process has mainly been used for injection moulding dies and inserts. The method is 

advantageous for small, complex moulds that would require much time to make with 

Computer Numerical Control (CNC) machining or Electrical Discharge Machining (EDM) 

techniques. The 3D KeltoolTM was owned and licensed by 3D Systems (Zelenski, 1997). 

2.2.2.4 Metal powder 

Powder processing is the precursor of the DMLS explained in the next section. This is a 

direct tooling process whereby the tool is manufactured from metallic powder by LS or 3D 

ink-jet printing methods. Several metal powdered methods that have successfully been used 

for the manufacturing of tooling for injection moulding and die casting are mentioned in 

literature. Amongst them is the LS RapidTool process that uses 420 stainless steel based 

http://en.wikipedia.org/wiki/Acrylonitrile
http://en.wikipedia.org/wiki/Butadiene
http://en.wikipedia.org/wiki/Styrene
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particles, coated with a thermoplastic binder. Consolidation of the metal powder is achieved 

by selective melting of the binder by the laser. The green part is converted into a fully dense 

metal part by infiltration with molten bronze in an oven at between 450 and 650 degrees 

Celcius (Dimov et al, 2001). 

2.2.2.5 New developments in the field of direct tooling 

The RT field is developing everyday with applications of new AM methods. Some of these 

include the production of dies and moulds by DMLS in which single-component metallic 

powders are fused directly, layer-by-layer (Knirsch, 2003). It produces high-density products 

with excellent mechanical properties (Buijs, 2005; Herzog, 2008). Metal Printing Process 

(MPP) is another innovative AM technique that uses photo-masking and electrostatic 

attraction forces to achieve the layer-by-layer production of dies and moulds (Eijk et al, 

2005). 

2.2.3 Advantages and limitations of Rapid Tooling processes 

The major benefits of RT processes are the reduced manufacturing cost and time to produce 

metallic tooling compared to machining. Savings of 50% in time and cost are often reported 

by companies (Kochan, 2000; Rosochowski, 2000; Knights, 2005; Twarog, 2007; Strategies, 

2008; Unknown1, 2011). These benefits are important for the competitiveness of the TDM 

industry as well as the outbound industries down the supply chain such as metal casting and 

injection moulding industries.  

The main limitations of RT processes include the quality in terms of dimensional accuracy, 

surface finish, durability and cost. The surface finish is still inferior to machining due to the 

layer-by-layer texture. The porosity of direct tooling is generally high, reducing the tooling 

durability except in the case of DMLS where part density is around 99.7%. Finally the cost is 

still on the exorbitant side due to the fact that AM processes are still relatively new 

technology (Rosochowski, 2000).  

RT processes address to some extent the concerns expressed as to the suitability of machining 

in tool making processes. However, their availability and cost are still hurdles in developing 

countries. For example in South Africa there are only 15 high-end RP machines exclusively 

found in academic institutions that have enough funding to purchase such equipment, the 
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cheapest of them was imported to South Africa for around half a million Rand. The market is 

currently flooded with low cost 3D printers but the up market DMLS machines are still 

expensive.  

2.3 Metal casting 

2.3.1 Description  

Metal casting is a manufacturing technique for metallic components that consists of pouring 

molten metal in the cavity of a refractory mould or die.  The metal flows and solidifies in a 

controlled manner inside the mould or die.  At the end of the solidification process, the mould 

or die is separated from the casting. Various casting methods exist and are well documented 

in specialised textbooks on foundry technology. Amongst the casting processes are sand 

casting, die casting, lost foam casting, investment casting and many others. (Beeley; 2004; 

Campbell, 2004; Brown, 1999). The basic steps in the sequence of casting production with 

minor modifications depending on specific casting processes are summarised in Figure 2.2 

(Beeley, 2004). 

The casting methods that are used for the manufacturing of metallic tooling essentially 

belong to the group of investment casting processes in which moulds are produced from 

liquid slurries of fine refractory materials. The processes fall into two distinct categories, 

based on whether the pattern is expendable or permanent. These are explained in the next 

sections.  

2.3.2 Metal casting processes used for manufacturing metallic tooling 
2.3.2.1 Lost wax investment casting 

Investment casting processes based on expendable patterns are also known as lost wax 

investment casting where the pattern is made of wax, a fusible material melting in the range 

of 55 to 90 degrees Celsius to form a low viscosity liquid. The essential steps of investment 

casting are schematically shown in Figure 2.3 (Beeley, 2004). 

When lost wax investment casting is used for the manufacturing of metallic tooling, the wax 

pattern will represent the mould or die. “Cast metal tooling” (Rosochowski et al, 2000) is a 

lost wax investment casting process that has been used for the production of injection 
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moulding and die casting tooling. RP technologies produce sacrificial patterns for investment 

casting. The combination of RP and investment casting will be explained later in this section. 

 

Figure 2.2 Flow diagram of casting production (Beeley, 2004) 
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Figure 2.3 Production sequence in investment casting (Beeley, 2004) 

2.3.2.2 Investment casting from permanent patterns 

In this group of investment casting processes, the patterns are permanent metal, wood or 

plaster. The moulds are also made from plaster of Paris (CaSO4) slurries that are dried at high 

temperatures. Other variants of the plaster of Paris process include the Antioch process and 

the Shaw process where the plaster of Paris is mixed with silica sand and zircon or mullite 

with ethyl silicate respectively. The castings have a high standard of accuracy and surface 

finish but the degree of precision is inferior to that of castings produced from expendable 

patterns because of the occasional misalignment of cope and drag of moulds.  

Literature mentions application of investment casting for the manufacturing of metallic 

tooling. The Paris process is claimed to be suitable for manufacturing of aluminium lost wax 

pattern dies (Beeley, 2004). Beeley also reports that the Shaw process can be applied for 
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production of steel cast dies for forging, drawing, extrusion, die casting and glass making.  A 

further example is the application of the Unicast process in production cast to size metallic 

tooling (Greenwood, 1976). 

2.3.3 Advantages and limitations of metal casting processes 

Investment casting processes produce near net shape components with very good surface 

finish and dimensional accuracy. The cross-sectional limits for investment castings are 

0.6 mm to 75 mm. Typical tolerances are 0.1 mm for the first 25 mm and 0.02 mm for each 

additional centimetre. A standard surface finish is 1.3–4 microns Root Mean Square (RMS) 

(Degarmo, Black, Kohser, 2003). Generally the quality of tooling obtained by casting will be 

better than RT processes but second to machining processes. The durability of tools is better 

than direct RT and can be comparable to machining. In addition the manufacturing cost is 

generally inferior to machining and RT. Metal casting is relatively simple and easy to 

understand. From the foregoing, metal casting partly addresses the limitations inherent in 

machining and RT. 

One of the main limitations of the conventional investment casting processes is the use of a 

pattern. The manufacturing of the pattern is generally dexterous and time-consuming. 

Expendable patterns are produced from a permanent tool such as a die that has to be 

manufactured usually by machining or precision casting. On the other hand, permanent 

patterns also need to be produced by skilful pattern makers or by precision machining. The 

pattern-producing step is generally the bottleneck in the casting process chain, thus limiting 

its use in manufacturing of tooling. This is especially true in developing countries where 

there is acute skills shortage of qualified pattern makers (Viljoen, 2005). 

Developments in the field of investment casting have looked at incorporating AM processes 

such as SLA and LOM for manufacturing expendable and permanent patterns (Yury et al, 

2001). Processes such as Quick Cast whereby the lost wax pattern is produced by SLA have 

been successfully used in commercial investment casting applications (Jacobs et al, 2000; 

Cheah, Chua, Lee, Feng, & Totong, 2005).  

A further application of AM to metal casting is the direct AM processes of refractory moulds 

and shells. These processes offer huge potential for manufacturing metallic tooling but have 

not been fully investigated in literature. The present work on Rapid Casting for Tooling 

http://en.wikipedia.org/wiki/Investment_casting#CITEREFDegarmoBlackKohser2003#CITEREFDegarmoBlackKohser2003
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process endeavours to close the gap.  The stages of this process are reviewed in a follow-up 

paper. 

2.4 Conclusion 

RT and metal casting are the two groups of alternative TDM processes apart from machining. 

RT is a dynamic and growing field offering real benefits in terms of lead design time 

compression and low manufacturing cost compared to machining. However, the durability of 

tools obtained by RT is still a challenge because of porosity issues. Metal casting is 

sometimes used essentially because of its low cost, near net shape advantage and excellent 

quality in the case of precision casting methods. However, metal casting has an important 

limitation in that tooling is required in the form of patterns or dies, the manufacturing of 

which is time and cost consuming. Sand casting is not mentioned for tool making essentially 

because of additional problems regarding inferior quality of cast tools in terms of surface 

finish and dimensional accuracy. 
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CHAPTER 3 

ADDITIVE MANUFACTURING PROCESSES FOR THE 
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Abstract 

Purpose – The objective of this paper is to find out the recent advances and modern trends of 

Additive Manufacturing processes for the production of sand moulds. 

Design /methodology/ approach – A literature review of Additive Manufacturing processes 

for the production of sand moulds and their application for metal casting. 

Findings - The paper indicates that Laser Sintering and Three Dimensional Printing are the 

two major Additive Manufacturing processes for the fabrication of sand moulds. The 

processes are essentially used during the design stage of metal casting for the production of 

casting prototypes. Modern applications include the mass production of casting and high-tech 

casting applications such as aerospace components. 

Originality/ value - The paper focuses on the Additive Manufacturing processes for the 

production of sand moulds and their application to sand casting. The recent advances justify 

revisiting sand casting for the manufacturing of tooling. 

Keywords - Additive Manufacturing, Laser Sintering, Three Dimensional Printing, Metal 

casting 

Paper type - Review paper 

Paper status: Published 

 

 

 



 23 

3.1 Introduction 

Additive Manufacturing (AM) is the fabrication of solid parts, layer-by-layer directly from 

three dimensional files of computer generated models. AM essentially consists of five basic 

steps including: 

i. Modeling of the part using a Computer-Aided Design (CAD) software package. 

ii. Conversion of the CAD file into Standard Triangulation Language (STL) format. This 

standard format represents a three dimensional surface as an assembly of planar 

triangles. It is a well defined and easy-to-handle format that enjoys wide support in the 

CAD fraternity. It is the preferred format for visualisation, analysis programmes and 

Rapid Prototyping manufacturing. 

iii. Preparation of the STL file by carefully choosing the suitable build orientation and 

creation of support structure for the model during building. 

iv. Manufacturing of the part using one of the several AM techniques.  

v. Cleaning and finishing operations such as curing to provide strength. 

A number of AM systems are commercially available. New versions of processes are 

continually appearing on the market (Wolhers, 2009).   Examples of well established AM 

processes include sterolithography, laminated object manufacturing, Three Dimensional 

Printing, fused deposition modeling, Laser Sintering, laser cusing and metal printing. 

Fundamental differences between these processes reside at the type of raw materials used 

such as metallic, ceramic or plastic powders and the binding mechanism employed to bond 

the powder such as laser, glue, resins, and electrostatic forces. The different AM processes 

are described in detail in literature (Ashley, 1995; Kalpakjan et al., 2006). 

AM has been used in making parts in different scientific disciplines such as medicine (Bou et 

al., 2004), tool and die making (Altan et al., 2005) and metal casting (Beaudoin et al., 1997; 

Wirtz & Freyer, 2000).  AM processes consist of three conventional applications namely, 

prototyping, Rapid Tooling and rapid manufacturing (Palm, 2002). The main benefits of AM 

processes have generally been a reduction of lead design time, short time to market of new 

products, decrease in manufacturing cost for low volume production and the ability to 

produce complex shapes.  
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Metal casting using AM techniques was first employed for foundries fifteen years ago mainly 

in Rapid Tooling (RT).  In this application, tools such as sand casting patterns, lost wax 

patterns for investment casting, permanent moulds and dies are manufactured directly or 

indirectly using AM processes.  Metal casting for RT is comprehensively reviewed in 

literature (Lerner et al., 2002; Chua et al., 2003).  This paper focuses on the use of AM for the 

direct production of sand moulds. This is a relatively new application where interesting 

developments are taking place and new trends are emerging.  The paper attempts to widen the 

scope for the application of AM for the present and future in relation to its potential 

significance in transforming the South African foundry industry.  

Two types of AM processes namely Laser Sintering and Three Dimensional Printing, have 

been dominant for the production of sand moulds over the years. These processes are briefly 

described in the next section. 

3.2 Additive Manufacturing processes for the production of sand 
moulds 

The AM processes for producing sand moulds for casting are refractory powder based 

systems and subdivided in two categories; Laser Sintering (LS) technology and Three 

Dimensional ink jet printing (3DP) technology. LS was developed at the University of Texas 

in the mid-1980s while 3DP was invented at the Massachusetts Institute of Technology 

(MIT) in the late 1980s. Since then these academic institutions have sold licenses to several 

business institutions to manufacture machines that can grow sand moulds.  

3.2.1 Laser Sintering 

Sand moulds can be produced directly from CAD files by AM processes based on LS. In this 

process a laser beam is used to selectively fuse powder particles into a solid part that will 

become a component of the sand mould. LS processes are divided into two categories 

namely, the direct process and the indirect process. The indirect process generally makes use 

of foundry sand that is pre-coated with a chemical binder while the direct process does not 

use any binder at all.  

In indirect LS, the heat generated by the laser beam melts the binder, which then glues the 

sand particles together. This type of binding mechanism is based on partial melting of binder 
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during liquid phase sintering. After the green part is grown, excess powder is removed from 

the surfaces followed by curing in a furnace to develop optimum strength and high density.  

The two indirect LS based processes that produce commercial moulds for metal casting are 

the Direct Croning Laser Sintering Process (DCLSP) by Electro Optical Systems (EOS) 

GmbH and the Sand Form Process by DTM (currently known as 3D Systems). 

Some technical characteristics of the Direct Shell Sand Rapid Prototyping (DSS RP) 

processes are summarised in Table 3.1 (Beeley, 2001; Chua et al., 2003). Figure 3.1 shows a 

schematic diagram of the Laser-sintering of Croning®-molding material.  DSS RP is 

currently commercialised by companies such as EOS in Europe and DTM in the United 

States of America. The DSS RP is based on the use of phenolic resin coated sand (shell sand).  

Table 3.1 Technical characteristic of commercial DSS RP processes 

Processes Companies Equipments Mould/shell 

materials 

Casting 

alloys 

Accuracy/ 

tolerances 

DCLSP  

 

EOS GmbH/  

Ac Tech 

EOSINT S 

series 

Croning moulding 

material (silica, 

zircon sand) 

All 

foundry 

alloys 

few tenths of 

a mm 

Sand 

Form 

DTM Sinterstation 

2005 

Silica and zircon 

sands 

All 

foundry 

alloys 

- 

 

Figure 3.1 Procedure of Laser-sintering of Croning®-molding material (AcTech, 2012). 
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3.2.2 Three Dimensional Printing 

Three dimensional ink-jet printing (3DP) technology is the alternative AM method that is 

used to grow refractory sand moulds and shells directly from CAD file. The principle is 

similar to ink impression on a piece of paper from an ink-jet printer. An ink-jet head 

selectively deposits or “prints” binder fluid that glues the powder particles together (Palm, 

2002). Figure 3.2 shows the functioning principle of typical 3DP equipment. The powder 

which is either synthetic or a natural refractory material is able to withstand high temperature 

and is coated with a catalyst. The proprietary binder fluid which is in a way similar to 

foundry resin, chemically bonds sand moulds through a chemical reaction that hardens the 

mould.  

 

Figure 3.2 Functioning principle of 3DP Additive Manufacturing (Chua et al., 2003) 

Some 3DP processes for the commercial manufacture of casting sand moulds include  Direct 

Shell Production Casting (DSPC) from Soligen Technologies 

(www.soligentechnologies.com), the Z-Cast process from Z-Corporation (www.zcorp.com ), 

the ProMetal RCT process from ProMetal RCT GmbH, the Generis Sand process from 

Generis GmbH and the Patternless Casting Modelling (PCM) process from Beijing Yinhua 

Ltd.  Some technical characteristics of these processes are summarised in Table 3.2  

http://www.soligentechnologies.com/
http://www.zcorp.com/
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3.2.3 Comparison of the various Additive Manufacturing processes 

Several features differentiate the commercial AM processes able to grow sand moulds and 

shells (Pham et al., 1997). Some of the characteristics that are relevant in the production of 

casting moulds and shells include resolution, accuracy, scan speed, maximum part 

dimensions and cost. Tables 3.1 and 3.2 presented some additional technical data in terms of 

types of materials, suitable alloys and surface finish. Further technical characteristics of the 

AM equipment that can be found on supplier websites include achievable mould strength, 

binder content, etc.  

 

Table 3.2 Technical characteristics of 3DP processes for manufacturing of casting 

moulds (Uziel, 1993; Anonymous, 2007; Ederer, 2005) 

Processes Companies Equipments Mould/shell 

materials 

Casting 

alloys 

Accuracy 

DSPC Soligen 

Technologies 

DSPC system: 

Shell Design Unit 

(SDU) + Shell 

Production Unit 

(SPU) 

Ceramic shell  

(investment 

casting) 

All 

foundry 

alloys 

- 

Z-Cast 

501 

Z-Corporation Spectrum Z510 

ZPrinter 310 lus 

Mixture of 

foundry sand, 

plaster, and 

other additives 

Non 

ferrous 

metals 

± 0.0150 in 

per build 

Surface 

finish 300 , 

100  with 

core wash 

Generis Generis GS 1500 Silica sand and 

Magetite 

Furan bonded 

sand 

All 

foundry 

alloys 

0.1% (max 

± 0.5mm) 

ProMetal  

RCT 

ExtrudeHone 

ProMetal RCT 

GmbH Horne 

S-15, S-Max, S-

Print 

Quartz and 

specialty sands  

All 

foundry 

alloys 

-  

PCM  Beijing Yinhua PLCM1200 Foundry sands All 

foundry 

alloys 

0.5 – 1.0 

mm 

Literature contains some comparative studies of these processes when used for rapid casting 

applications. For example, it was found (Dimitrov et al., 2005) that sand parts produced on 



 28 

EOSINT S equipment that uses LS technology had better dimensional accuracy than the parts 

that were manufactured on Z-Corporation equipment that uses 3DP technology. In addition 

the LS process was faster than the 3DP process. The single advantage of the 3DP process in 

this investigation was the production cost as it was found to be cheaper than the LS process. 

In general 3DP printers are cheaper and smaller than the counterpart LS machines that are 

bulkier and more expensive. In addition the price of the 3DP printer is declining faster 

(Wolhers, 2009). In another comparative study of rapid mould making technologies including 

quick tooling, direct sand moulding by LS and direct sand milling (Hanh et al., 2005), the 

speed and accuracy advantages of the LS Croning Sand process were significant especially 

for small to medium size mould components that are highly detailed, intricate and delicate. 

From the foregoing, a non exhaustive list of important characteristics of moulds and shell 

produced by AM processes is presented in Table 3.3. The effects of these properties on the 

final casting will be explained in the next section. 

3.3 Modern trends of Additive Manufacturing processes 

Modern trends and developments in AM processes to produce sand moulds and shells have 

been driven by a better scientific understanding of processes, an improvement of technologies 

and experimentation with new applications. These trends are described below.  

3.3.1 Better scientific understanding of Additive Manufacturing 

Better understanding of AM is made possible by research in the field. The types of 

investigations include benchmarking studies, optimisation and characterisation: 

3.3.1.1 Benchmarking studies 

Benchmarking studies are conducted to compare the different AM processes and technologies 

available (Gill & Kaplas, 2009). Benchmarking assists in the selection of most suitable AM 

processes for a particular casting application. In these studies AM processes and machines are 

compared on various criteria such as mechanical properties, dimensional accuracy, surface 

finish, manufacturing speed and material costs of part manufactured.  

Comparative studies of these processes for use in rapid casting are published in literature. For 

example Dimitrov et al., (2005) found that sand parts produced on EOSINT S 700 equipment 
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that uses LS technology had better dimensional accuracy compared to parts that were 

manufactured on Z-Corporation equipment using 3DP technology. In addition the LS process 

was faster than the 3DP process. The major advantage of 3DP process was found to be the 

lower production cost of parts in comparison with that produced through the LS process. In 

addition 3DP printers are generally cheaper and smaller than the counterpart LS machines 

(Utela, 2008). Furthermore, the prices of 3DP printers continue to decline (Wolhers, 2009). In 

another comparative study of quick tooling between direct sand moulding by LS and direct 

sand milling, the LS Croning Sand process was  noted for speed and accuracy, especially for 

small and medium size mould components that are highly detailed, intricate and delicate 

(Hahn et al., 2005). 

The factors that influence the quality of the casting moulds and shells are similar to those for 

the LS process.  The departure lies in the parameters of laser beams and the binder content 

which is critical for the 3DP moulds. Some parameters such as shell thickness have an effect 

on the quality and mechanical properties of the shell as well as the dimensional accuracy of 

the castings (Singh & Verner, 2008). It was also shown that the type of powder can have 

significant influence on precision and dimensional accuracy (Dimitrov et al., 2003). 

3.3.1.2 Process optimisation 

Various factors influence the quality of final sand casting moulds obtained by DSS RP 

processes. These variables include the environment (humidity and atmosphere), the laser 

settings (wavelength, diameter, and operation mode), the powder characteristics 

(composition, homogeneity, particle size, and shape and thermo-physical properties) and the 

post-treatment and the equipment processing parameters (temperature, time and atmosphere). 

Some fundamental studies on the effects of LS parameters on phenolic resin sand parts have 

been conducted by various researchers (Casalino et al., 2002; Casalino et al., 2004; Jain et al., 

2008; Singhala et al., 2009). Specific LS parameters included scan spacing, scan speed, laser 

beam power and laser spot diameter. The characteristics of the sand investigated include 

sintered layer thickness, permeability, compressive strength and fracture morphology. In 

these studies interactions between the LS parameters and the part properties were analysed 

statistically.  

 Findings revealed that the interaction between LS parameters and sand part properties is 

complex.  Carbon dioxide lasers proved better for LS sintering in terms of wider operating 
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window, better quality and precision than diode lasers. It is possible to optimise a set of 

working LS parameters for optimum properties of sand compaction.  For all combinations of 

laser parameters and curing processes there were an inverse relationship between the 

permeability and the compressive strength.  

3.3.2 Bond characterisation 

Commercial RP machines differ for example in the method of powder deposition (i.e. either 

by roller or scraper), an inert atmosphere (Ar or N
2
) and in the type of laser they use (CO

2 

laser, lamp or diode pumped Nd:YAG laser, disk or fiber laser). Another useful classification 

of LS processes is based on the bonding mechanisms that consolidate the part. The four 

principal binding mechanisms are shown in Figure 3.3 (Kruth et al., 2004). The interactions 

between the laser and the various materials including foundry sands have been reviewed by 

other authors such as (Kruth et al., 2003) arriving at the conclusion about the dominant 

phenomena that define the feasibility and quality of any LS process.  

 

Figure 3.3 LS binding mechanisms (Kruth et al, 2003) 
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3.3.3 Improvement of Additive Manufacturing processes 

The improvement of AM processes for the production of sand moulds include the 

development and use of new materials and the testing of technologies in terms of laser and 

printer heads.  

Powder materials that have been successfully experimented to produce casting moulds and 

shells by LS include among other zirconium silicate (Klocke et al, 2000; Wirtz and Freyer, 

2000) and zirconium oxide (Harlan et al, 2001). In the case of zirconium silicate the bond is 

due to the formation of silica gel between the grains of the powder material. This type of 

binding mechanism is classified as chemically induced binding. This material allows the 

production of ceramic shells for investment castings. Some of the advantages of zirconium 

silicate over phenolic coated silica or zircon sand are high strength, the reproduction of 

delicate details and thin-walled parts and   suitability to a wide variety of foundry alloys.  In 

the case of zirconium oxide a low melting copolymer binder is initially used and replaced 

during the post-treatment of the green mould by infiltration of unstabilised zirconia. In a case 

study cited in literature, a zirconium oxide sand mould was used to successfully cast a 

titanium human prosthetic femur (Harlan et al, 2001). 

An interesting experimentation of LS for the production of sand moulds is the direct laser 

sintering of silica sand with no binder used (Tang et al, 2003). The sintering of silica sand in 

a self-developed high-temperature laser sintering machine (200W CO2 laser) is due to 

superficial melting of particles and connection through bridges. It was revealed by Energy 

Dispersive X-rays (EDX) analysis that superficial melting of silica sand is possible because  

of the presence of small traces of aluminum oxide inclusions decrease the melting 

temperature of silica sand. This type of binding mechanism is defined as Solid State Sintering 

(SSS).  Phenix Systems in France commercialises an LS-like system that realises SSS using a 

high temperature process chamber reaching 900°C (http://www.phenix-systems.com/). The 

compacted powder, which is close to the SSS temperature, is sintered due to the energy 

contribution of a Nd:YAG laser source. This way, ceramic materials can be processed as well 

as metal powders. To obtain the desired characteristics, a post sintering operation is 

necessary.  
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3.3.4 New applications 

New applications of AM processes for the production of sand moulds and shells to metal 

casting include Rapid Manufacturing and casting of exotic alloys.  

3.3.4.1 Rapid manufacturing of sand moulds and shells 

Traditionally AM processes were used for the production of prototype castings that were used 

for testing purposes. This was particularly evident in the automotive industry where new parts 

are continuously required for new models of cars.  AM processes are being employed for 

production of sellable castings. This application is referred to as Rapid Manufacturing or 

Rapid Fabrication where AM processes are used to produce sand moulds similar to 

conventional methods. One example is the Generis Process that produced furan bonded sand 

moulds (Ederer, 2005).  With improvements in technology, new systems with high 

productivity will be developed to manufacture sand moulds and shells. 

3.3.4.2 Casting of new alloys  

Sand moulds produced through AM processes can be used for the casting of new alloys  for 

which no tooling has been developed for mass production.  Titanium alloys for example are 

extremely reactive therefore special moulds of materials such as zirconia are used for casting 

without the use of part-specific tooling or wax patterns (Harlan, 2001).    

3.4 Additive Manufacturing use in the South African foundry 
industry 

AM processes for the production of sand moulds are available in South Africa but currently 

reside in two academic institutions. The Central University of Technology in Bloemfontein 

possesses an EOSINT S 700 LS system while the University of Johannesburg has a Z-Cast 

Spectrum 510 3DP machine. These equipments are currently mainly used for fundamental 

research including benchmarking studies (Dimitrov et al, 2003).  One of the rare practical 

casting applications is currently the development of an aircraft engine for which  components 

are cast in sand moulds produced by LS (Adept, 2011). 

The local foundry industry has not yet taken advantage of AM technologies. Bearing in mind 

that this sector is made up of close to 80% of sand casting foundries mainly jobbing, AM 
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processes can be beneficial to this industry and thus possibly alleviating its lack of global 

competitiveness (Viljoen, 2005). The latter situation is due to factors such as the 

obsolescence of existing foundry equipment that is responsible for the low casting 

productivity and high level of scrap. In addition, there is a scarcity of foundry skill including 

pattern making. This contributes to the bottleneck in the procurement of foundry tooling and 

the long lead time to supply castings on the market.  

Probable reasons that explain why local foundries have not yet embraced AM processes 

include the fact that AM technologies are still relatively expensive in terms of equipment 

procurement. Local foundries are mainly small to medium enterprises with limited budgets. 

The newness of the AM processes is another factor considering that local foundries are late 

adopters of recent technologies. Finally, there is a skill barrier in the use of CAD 

technologies crucial for AM processes. 

3.5 Conclusion 

The AM processes is a growing and dynamic field that is finding application in the 

production of moulds as evidenced by the number of systems commercially available on the 

market.  The innovative use of these processes as well as cutting edge research is proving 

beneficial to the industry.  However, further investigation in the application of AM for 

metallic tooling is required with regard to selection of suitable processes, process 

optimisation and financial implications of acquiring these technologies in relation to viability 

(e.g. net present value and break event point). 

There are huge benefits of AM applications for the local foundry industry that is facing 

challenges related to procurement of tooling, scarce skills in terms of pattern making, etc. 

The adoption of AM processes can significantly contribute to competitiveness of the foundry 

industry, once the barriers of entry of new technologies are removed.  
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CHAPTER 4 

A CONCEPTUAL FRAMEWORK FOR THE 
MANUFACTURING OF TOOLING BY METAL CASTING IN 
REFRACTORY MOULDS AND SHELLS PRODUCED BY 
RAPID PROTOTYPING (RAPID CASTING FOR TOOLING) 

Abstract  

Purpose – The objectives of this paper is to design a process chain for the manufacturing of 

tooling by casting in additive manufactured sand moulds. 

Design/ methodology/ approach – The integrated process chain referred to as Rapid Casting 

for Tooling (RCT) comprises five steps including Computer-Aided Design (CAD), Casting 

Simulation, Rapid Prototyping (RP) Metal Casting and Finishing Operations. A validation is 

provided that determines a suitable tool to be manufactured by RCT on the basis of minimum 

wall thickness of tool design and chemical composition of the tool material.  

Findings - The study indicates that RCT offers potential for significant time compression, 

cost efficiency as well as good quality of the cast tool in terms of surface finish and 

dimensional accuracy.  

Originality/ value – In the paper sand casting is proposed as an alternative tool 

manufacturing process. 

Key words - Tooling, Rapid Prototyping, Metal Casting, Rapid Tooling, CNC Machining 

Paper type Research paper 

Paper status: Published 

4.1 Introduction 

Metallic tooling includes dies, sand casting patterns and permanent moulds used in mass 

production processes such as forging, metal casting and injection moulding. They are 
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essentially manufactured by Computer Numerical Control (CNC) machining and Rapid 

Tooling (RT). These two die and tool making processes change very rapidly as a result of the 

ever increasing demand to satisfy the stringent requirements of the tooling market. Users 

insist on superior quality of tools in terms of durability, surface finish and dimensional 

accuracy. Furthermore short delivery times and premium price are critical to increase 

profitability as well as quick turnover of new products on the market.  

New challenges have emerged in the last ten to fifteen years. First, the worldwide shortage of 

the tool making skills due to the threat of the digital revolution is one of the current problems 

facing the tooling manufacturing industry. Second, the environmental quest to reduce waste 

and elimination of pollution has contributed to the challenges. Thirdly, the stiff competition 

from countries such as China and India that are able to produce very cheap products has 

given rise to an incessant demand for new tool manufacturing methods that are easy to learn, 

competitive, technologically advanced and green. 

RT processes have appeared in the last ten to fifteen years ago in response to some of the 

challenges mentioned above. RT is the application of Rapid Prototyping (RP) technologies to 

the manufacturing of tooling. RP itself is the Additive Manufacturing (AM) of physical parts 

in various materials including metal layer-by-layer directly from Computer-Aided Design 

(CAD) files.  Various RT processes are commercially available and extensively reviewed in 

literature (Rosochowski & Matuszak, 2000). Their major benefits compared to CNC 

machining include the reduction of lead design time and the cost efficiency.  

In reviewing the different applications of RP to tooling manufacturing, it is clear that the RP 

of sand mould has not been fully used for tool and die making. One rare case study in the 

literature reports the manufacturing of metallic tooling for injection moulding by casting in a 

sand mould produced on an EOSINT S RP machine (Chua, Leong, & Lim, 2003).  The 

reasons for the limited application of RP sand moulds for casting of metallic tooling are due 

to the disadvantages of sand casting as a manufacturing process including the difficulty to 

produce thin wall parts, segregation, coarse microstructure of castings as well as poor 

dimensional accuracy and surface finish of parts. These technical challenges have restricted 

the use of metal casting for the production of quality tooling. 

The low thermal conductivity of sand moulds results in coarse metallographic microstructure 

of castings with inferior mechanical properties compared to metallic processes such as 
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forging and machining. Furthermore shrinkage during metal solidification and cooling 

combined with mould wall movement due to the metallostatic pressure are at the origin of 

dimensional accuracy problems. Finally chemical reaction of metal and sand as well as the 

presence of interstices between sand particles at the surface of the mould are responsible for 

poor surface finish of castings. These metallurgical phenomena are explained in detail in 

various specialised foundry technology manuals.  

Major developments have taken place in the field of metal casting to improve the cast 

structure and the quality of castings. Worth to be mentioned is the use of advanced and 

powerful casting simulation software, synthetic refractory sand and superior mould coating 

technologies and products. Casting simulation is now common practice in modern foundries 

and reduces scrap rate due to porosity and shrinkage defects. Synthetic sands with improved 

thermal properties allow for the production of thin wall casting of superior mechanical 

properties. In addition new mould coating with fine suspension and high refractoriness are 

continuously being developed to improve the surface finish of sand casting. These coatings 

minimise metal penetration and reduce the mean surface roughness of castings.  

Taking into account the above sand casting developments, the use of RP moulds for the 

casting of metallic tooling deserves attention as a feasible tool manufacturing option.  Its 

main benefits will possibly comprise the short manufacturing time and cost deriving from 

metal casting and Rapid Prototyping advantages. 

In order for this proposed tooling manufacturing to be recognised amongst the tool making 

technologies, its conceptual framework needs to be formalised. This framework referred to in 

the present paper as Rapid Casting for Tooling (RCT) will validate tool design that can be 

successfully manufactured by casting in RP moulds. It will also describe the various steps 

that need to be performed in order to produce a sound and high quality tool.  

The conceptual development and theoretical assessment of RCT is the objective of the 

present paper. In a future paper RCT will be assessed with the aid of case studies.  The next 

section is a background to the fundamentals and recent developments of the RP of sand 

moulds and metal casting. 
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4.2 Background 
4.2.1 Metal Casting 

Metal casting is a manufacturing technique for metallic components that consists of the 

solidification of liquid metal in the cavity of a refractory sand mould or metallic die.  The 

basic steps in the sequence of production with minor modifications depending on specific 

casting processes are shown in Figure 4.1. Some of these steps have experienced fundamental 

changes over the years in casting design, patternmaking and preparation of moulding 

materials. 

The design of parts to be produced by metal casting is specific and critical to the process. 

Amongst several principles the drawings of castings need to include contraction allowances 

to compensate for shrinkage during solidification. In addition the filleting of sharp corners is 

essential to prevent hot tear defects. Finally, section transitions in the part should be optimal 

and modified if necessary to avoid hot spot defects or the formation of carbide compounds in 

thin sections. CAD software are nowadays used by the foundryman to speedily assist in the 

creation of three dimensional models of castings (Ravi, 2005; Fu & Yong, 2009). These 

models are used for 3D visualisation and prediction of possible problems during production.  

 

Figure 4.1 Flow diagram of casting production (Beeley, 2005) 
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In addition to the physical dimensions and shape of the casting, casting design also provide 

accurate dimensions of gating and feeding systems. These features will be part of the mould 

and die. The gating system constitutes the piping system of the mould to allow complete 

filling of the mould cavity in a manner that prevents casting defects such as formation of 

oxides, non-metallic inclusions, mould erosion, cold laps and short runs (Gebelin, Jolly, & 

Hsu, 2006). The feeding system serves as reservoir of molten metal to compensate for liquid 

metal shrinkage and thus avoids macro-shrinkage defects (Nayak & Sundarraj, 2009). 

Modern metal casting methods make use of casting simulation computer programs to design 

and dimension feeding and gating systems. Many of these software packages are available 

including Magmasoft and Procast that are predominantly used locally. The main advantage of 

these simulation programs is the right first time (RFT) concept that leads to considerable 

reduction of casting defects during production and elimination of trial and error. 

Patternmaking is an essential step of traditional metal casting to manufacture the foundry 

tooling that is used to create the mould cavity. This step is generally the rate determining step 

and cost driver of the metal casting process. The reason for the high cost is the required skill 

as well as the cost of technology involved such as CNC machining to produce a sand casting 

pattern or a tool steel die. Since mid 1990 several RP technologies have been successfully 

used to manufacture foundry tooling (Lerner, Rao, Kouznetsov, 2002). The benefits have 

been the reduction of tool manufacturing time and cost. Lately new patternless processes 

based on the RP have been able to directly produce sand moulds and shells for metal casting 

thus eliminating the need for patternmaking. These processes are described in section 4.2.  

Moulding materials are mixed together and mechanically or chemically processed to produce 

strong moulds and shells that can withstand the metallostacic pressure of liquid metal during 

casting. These raw materials essentially comprise various refractory sands and binders. They 

have a profound impact on the final properties of the casting in terms of minimum section 

thickness, mechanical properties, dimensional accuracy and surface finish. Developments in 

the field of refractory sands have seen the emergence of synthetic sand with better thermal 

properties to produced thin wall castings and high integrity with superior mechanical 

properties (Campbell, 2003) The use of fine sands has tremendously improved the surface 

finish. New mould coatings based on high melting point fillers have reduce the incidence of 

surface defects such as metal penetrations and burn on. Finally modern catalysts and resins 
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have improved the strength of moulds thus reducing the problem of mould wall movement 

that poses of dimensional accuracy challenges (Brown, 1999). 

4.2.2 Rapid Prototyping of sand moulds 

RP is the AM of parts, layer-by-layer in special machines directly from computer three-

dimensional model files. RP techniques employ five basic steps to produce a part (Palm, 

2002.)  These steps are:  

i. Model creation: Modeling of the part using a CAD software package. 

ii. Conversion: Conversion of the CAD file into Standard Triangulation Language (STL) 

format. This standard format represents a three dimensional surface as an assembly of 

planar triangles. It is a well defined and easy-to-handle format that enjoys wide support in 

the CAD fraternity. It is the preferred format for visualisation, analysis programs and RP 

manufacturing. 

iii. Slicing: Preparation of the STL file to be built by carefully choosing the suitable build 

orientation and creation of support structure for the model during building. 

iv. Layer-by-layer construction: Manufacturing of the part using one of the several 

techniques listed below.  

v. Clean and finish: curing to provide strength, surface treatment, etc. 

New developments in the field of RP have seen the production of investment casting shells or 

sand moulds directly from 3D-CAD files (Wohlers, 2009.) The manufacturing processes are 

based on Laser Sintering (LS) and 3-Dimensional Printing (3DP) technologies. In LS a laser 

beam is used to selectively fuse pre-coated foundry sand into a solid part that will become a 

component of the mould or shell. In 3DP the principle is similar to ink printing on a piece of 

paper from an ink-jet printer. In this case in a layer-by-layer fashion, a printing head 

selectively deposits or “prints” binder fluid that fuses the powder particles together in desired 

areas. Commercial examples of technologies for sand mould and shell production based on 

SLS and 3DP include the Direct Croning Laser Sintering Process (DCLS) 

(www.actTech.com) and the Direct Shell Production Casting 

(DSPC)(www.soligentechnologies.com).  

The main advantages of RP processes of sand moulds and shells have been the reduction of 

lead design time. Prototype casting for visualisation and metallurgical evaluation can be 

http://www.acttech.com/
http://www.soligentechnologies.com/
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produced quickly because no pattern is required. In addition because of their patternless 

nature, RP processes have reduced design time cost. These processes have also been used for 

manufacturing low volume casting (Ederer & Ochsmann, 2005.) It has been shown that for 

low volume casting RP processes are more cost efficient than conventional sand casting 

processes.  

The development of RP of sand moulds and shells as well as the achieved progress in metal 

casting to overcome previous technical limitations are opening new possibilities for this 

manufacturing method of metallic components as describe in the section below.  

4.3 The Rapid Casting for Tooling Framework 
4.3.1 Rapid Casting for Tooling (RCT) 

In the present study Rapid Casting for Tooling (RCT) is proposed for the manufacturing of 

metallic tooling. Essentially dies, permanent moulds and sand casting patterns will be 

produced by metal casting in refractory sand moulds or shells obtained by RP processes. 

These RP processes have been introduced in Section 4.2. As such RCT is approached as an 

indirect tool manufacturing process based on two pillars; RP and Metal Casting. These two 

key elements characterise and differentiate RCT from the other tooling manufacturing 

processes. They will also confer to RCT the advantages of near net shape and time 

compression. RCT is further refined by the use of CAD and analysis techniques such as solid 

modelling and casting simulation. Benefits such as right first time of RCT will be directly 

derived from these computer aided techniques.  

RCT does not deal with the initial design stage of the tooling nor does it concern itself with 

the selection of the suitable alloys for the dies or moulds. These considerations depend on the 

final application of the tooling as well as the type of finished parts that will be produced. The 

inputs to RCT are the drawings of the final metallic tooling accompanied with the exact 

material specifications.  

4.3.2 RCT Process chain steps 

The steps of RCT process chain are linked together and interact with each other in what is 

referred to in this study as the RCT framework. The framework is made up of two structural 

parts comprising the validation stage and the process chain. The validation stage determines 
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if a tool is able to be manufactured by RCT based on its minimum wall thickness and its 

material chemical composition.  Metal casting limitations in terms of difficulty to produce 

thin wall parts as well as segregation have been explained in the background section.  Only 

the design that successfully passes the validation test criteria can be considered for 

manufacture by the RCT process.  

The RCT process chain is made up of five steps including; Solid Modelling, Casting 

Simulation, RP, Casting and Finishing operations. The flowchart of RCT framework is 

presented in Figure 4.2. The functions and main characteristics of these processing stages are 

summarised in Table 4.1. These are described in the next sections. 

Table 4.1 Functions and main characteristics of RCT process chain steps 

RCT Steps Functions Main characteristics 

Solid Modelling Casting and mould design STL file format 

Casting Simulation Gating and feeding systems design Rule-based software 

RP Moulding and core-making  Laser Sintering 

 Three Dimensional Printing 

Metal Casting Casting of tool Gravity casting 

 

Finishing Operations  Minimal machining 

 Polishing 

 Heat treatment 

 Annealing 

 Homogeinization 
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Figure 4.2 RCT framework diagram showing the two structural pillars: Validation and 

Process Chain 
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4.3.2.1 Solid Modelling  

In the solid modelling step, 3D representations of the tool and the mould are created using 

suitable CAD software. This first step forms the backbone of the RCT process chain ensuring 

three main functions namely: 

i. The input definition for downstream steps 

ii. The casting design of the tool 

iii. The modelling of the shell or sand mould components. 

The downstream steps such as casting simulation and RP require solid models in order to 

function.   The CAD software that will be used should therefore be able to save solid models 

in a compatible format throughout the process chain thus facilitating exchange between steps 

and avoiding alteration of the accuracy during transfer. STL format can be one such format. 

Casting design consists of the modification of the original tool design to incorporate 

contraction allowance and filleting. Casting section transitions are also carefully examined 

and altered if necessary to avoid contraction defects such as hot spot and hot tears.  Finally 

the modelling of mould or shell follows soon after the casting design. Here shell and mould 

cavities are generated from the 3D drawings. This will include the drafting of the sand mould 

features namely cope and drag cavities, parting line, core with its support (or print), gating 

and feeding system.  

The solid modelling of the metallic tooling and the shell and mould components are saved as 

STL files to be used at the casting simulation and RP stages. The casting simulation step 

needs to be completed before the RP manufacturing of the mould can start. There is an 

iterative loop connecting casting simulation and solid modelling. Ideally this loop ends as 

soon as the casting simulation confirms that the design is satisfactory with no defect expected 

during the metal casting step.  

4.3.2.2 Casting Simulation 

Casting simulation is carried out for two reasons including ensuring defect-free casting, i.e. 

devoid of shrinkage cavities, solid inclusions and oxidation and a reduction of manufacturing 

time by eliminating the reliance on trial and error.  These two elements of the casting 
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simulation provide cost advantage for RCT because of the “right first time” approach 

philosophy. 

The following steps are followed during RCT casting simulation to ensure product quality: 

i. Import the appropriate casting model from solid modeling 

ii. Carry out solidification and mould filling analysis to determine the location of the last 

freezing region and the possible flow pattern likely to cause turbulence and splashing 

iii. Select the correct riser unit and gating system to attach to the mould 

iv. Repeat casting analysis to check efficacy of the procedure 

v. If turbulence, splashing and shrinkage persist modify the feeder unit 

vi. Verify new feeding design until elimination of all problems 

vii. Send STL file to solid modelling step for modification of mould and casting design. 

This is shown in Figure 4.2 by the double arrows between the solid modelling and the 

casting simulation steps. 

4.3.2.3 Rapid Prototyping 

RP step constitutes the moulding stage of RCT. No pattern is required as sand moulds and 

shells are produced directly layer-by-layer from the STL file obtained in step 1 and 2. 

Processes such as DCLSP or DSPC can be used to manufacture sand moulds and refractory 

shells for metal casting in RCT. The moulds and shell are coated in order to improve the 

surface finish of the castings.  

4.3.2.4 Casting 

The casting stage of RCT combined three steps of the traditional casting production 

flowsheet (Figure 4.1) including metal melting, casting and fettling. The suitable alloy 

specified in the tool material is melted in a furnace. The liquid metal is poured in the sand 

mould or shell and feeds by gravity. The casting is fettled to remove the gating and feeding 

components then sand blasted to a rough tool.  

4.3.2.5 Finishing Operations 

In this last stage of RCT, the near-net cast tool is brought to the required final dimension and 

surface finish. This is achieved by minimal machining and polishing that form part of the 
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finishing operation step. This step also includes possible heat treatment in order to improve 

the mechanical properties and durability of the tool by altering the internal metallurgical 

structure of the tool.  

4.4  Assessment of RCT 

Now that the RCT conceptual framework has been presented and described, it is necessary to 

critically discuss how it addresses the requirements mentioned in the Introduction. In 

particular, a theoretical assessment of the manufacturing time and cost, the overall 

implementation cost, the tooling quality in terms of the surface finish and the dimensional 

accuracy need to be performed. The user-friendliness of the process will also be determined 

in order to establish if RCT can compete with CNC machining and other existing RT 

processes for metallic tooling.  

In the RCT analysis that follows below only the RP and metal casting steps are considered 

because they have the biggest impact on the manufacturing time and cost as well as the tool 

quality when RCT is compared to other tool manufacturing processes such as CNC 

machining and RT. The other RCT steps that are solid modelling, simulation and finishing 

operations are also found in some form or another in other tool manufacturing processes. 

4.4.1 Manufacturing time  

RCT manufacturing time will essentially depend on the RP step which is the rate determining 

step generally measured in terms of days while the metal casting that consists of melting and 

pouring of casting is measured in hours. Pouring is controlled by the Bernoulli equation 

(Campbell, 2004) and generally expressed in time of the order of second. The melting time 

will be a function of the type of the melting furnace used and will be controlled by 

conduction, convection and radiation equations of heat transfer. The RP manufacturing time 

is a function of the size of the component to grow and the scan speed of RP equipment. 

RCT is an indirect tooling manufacturing technique. In this case a mould or shell is grown to 

form the casting cavity. It can therefore be expected that it is quicker to build the shell or the 

mould than it is to grow the part itself. In this sense RCT will be quicker than direct tooling 

and machining. Correspondingly, RCT is expected to be faster than investment casting 

because there is no need for pattern manufacturing. Even in the case where lost wax patterns 
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are produced by AM, RCT provides better time-saving because the shell is manufactured by 

RP instead of the usual and time-consuming procedures of dipping in refractory slurry. This 

was demonstrated by a study (Wirtz & Freyer, 2000) that compared the investment casting of 

shells by LS to traditional investment casting using RP patterns.  

4.4.2 Manufacturing cost 

The RCT manufacturing cost is mainly driven by the AM stage that is more expensive than 

the melting and casting stages. The melting cost factors are listed in literature (Ravi, 2005) 

and include energy and labour costs. Of importance is the energy cost that will be a function 

of the type of furnace used and the superheat required. In general electrical furnaces are 

cheaper and more environmentally friendly than fossil fuel furnaces based on coke or natural 

gas (Brown, 1999). Regarding the superheat necessary for good metal fluidity, the larger the 

superheat, the more the energy required, hence the higher will be the energy cost.  

The cost of RP is determined by the technology used, whether LS or 3DP. Because of the use 

of a laser, the manufacturing cost with the LS is generally higher than with 3DP. Laser usage 

time is the costing basis used when using LS. The reason for this practice is that the laser 

components have a limited lifetime and need to be replaced frequently. 

Many studies on the benefits of direct or indirect RT (Monroe, 2006, Buijs, 2005 & Argrwala 

et al, 2000) seem to indicate that AM of tooling is cheaper than machining. Cost savings of 

50% are often reported by companies offering tooling manufacturing services 

(Rosochowski& Matuszak, 2000). This advantage of AM is likely to be extended to RCT 

over machining. 

Studies have also shown that for a lower number of parts direct manufacturing of mould and 

shell considerably decrease the overall cost of metal casting compared to casting processes 

that require patterns (Ederer, et al, 2005 & Jacobs et al., no date ). RCT has been designed for 

the production of single component and therefore this benefit applies when compared with 

traditional metal casting processes for tooling. 
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4.4.3 Tool quality 

The tool quality refers to the mechanical characteristics, the dimensional accuracy and the 

surface finish of the final metallic tooling. All the RCT steps from CAD to finishing 

operations will influence the tool quality. 

4.4.3.1 Mechanical properties 

The mechanical properties which include ductility, elongation and hardness are all affected 

during the solidification of the casting. The factors that affect the cast structure and 

subsequently the properties are well explained in foundry technology textbooks (Beeley, 

2001& Campbell, 2003). They include the cooling rate, the microstructure, the alloy chemical 

composition, the presence of inclusions and shrinkage porosity, etc.  

The prediction of these defects and the necessary preventive measures to avoid their 

occurrence is made during the casting simulation step of RCT. In particular shrinkage and 

oxide inclusions can be eliminated by proper design of the gating and feeding systems.  

It is possible to produce sound castings of superior mechanical properties making the final 

tooling superior to tooling obtained by direct tooling that generally suffer from porosity 

causing low durability (Song et al, 1997). Machining will generally produce part of superior 

mechanical properties than as-cast part. 

4.4.3.2 Dimensional accuracy 

Dimensional accuracy will depend on solid modelling and the RP steps. In the RCT 

description, it was explained that contraction allowance are included during the solid 

modelling in order to compensate for the metal shrinkage during solidification.  On the other 

hand the accuracy of AM will be a function of the technology used. Studies have been 

conducted to compare LS of sand parts and the 3DP process found that LS was in general 

more accurate than 3DP (Dimitrov et al, 2004). Hence, dimensional accuracy will be 

comparable to RT processes but inferior to machining.  
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4.4.3.3 Surface finish 

The surface finish of the final metallic tooling will be a function of the mould surface 

smoothness. In the study mentioned above (Dimitrov et al, 2004) the surface finish of LS 

parts is compared to that of 3DP parts. It was found that LS produced better surface finish. 

With the use of mould coating, it is possible to improve the surface finish of RP moulds and 

shells and produce a final tool with an improved surface finish compared to a RT part.  

However the surface finish of machining will always be superior. 

4.4.4 Ease of use and learning curve 

The AM process is easy to learn. Once the CAD modelling is completed, the file is sent to the 

RP machine where the part is grown with limited human involvement. RP set-up requires no 

programming. In addition the process is automatic and environmentally friendly. These 

benefits of RCT confer its advantages over CNC machining and ordinary metal casting. 

4.4.5 The overall implementation cost 

Since their introduction a decade ago in most developing countries, the cost of RP processes 

have been in free fall and lower than complete installation of machining centres. As such 

RCT is expected to be cost effective to implement. An additional advantage of RP of 

refractory moulds and shells is that they can also be used for the production of casting, thus 

having a dual role in foundries. 

4.5 Conclusion 

In this paper the RCT framework has been conceptually described, explained and assessed. It 

is made up of a validation stage to determine if a tool can be manufactured by RCT based on 

its chemical composition and its minimum wall thickness. This is followed by the RCT 

process chain itself consisting of five steps including CAD modelling, casting simulation, RP, 

metal casting and finishing operations. The casting produced at the end constitutes the 

metallic tool that can be used in mass production processes of finished goods such as metal 

casting and injection moulding. As such RCT is an alternative tool and die making process 

along with CNC machining and RT. 
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From the theoretical assessment, an appreciable understanding of RCT in terms of factors 

influencing the manufacturing time and cost as well the precision of casting has been gained. 

It was found that RP and metal casting were the two pillars of RCT with profound impact on 

the characteristic of the final tooling. Benefits of these two steps comprising amongst other 

time compression, low manufacturing cost and good quality of parts are extended to the 

entire RCT process chain, thus providing its potential advantages compared to conventional 

tool and die making processes.  In future publications, these advantages will be evaluated 

using experimental case studies. 
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CHAPTER 5 

A CASE STUDY OF ADDITIVE MANUFACTURING 
PROCESS SELECTION FOR A CASTING APPLICATION 
USING THE ANALYTIC HIERARCHY PROCESS  

Abstract  

Purpose – The objective of this paper is to select the more suitable Additive Manufacturing 

(AM) process between two alternatives, namely the Direct Croning process and the Z-Cast 

process. The chosen process is to be used to produce sand moulds for the casting of metallic 

tools and dies.   

Design/ methodology/approach - The Analytic Hierarchy Process (AHP) is used as the 

selection method.  The AHP criteria included four mould requirements that are surface finish, 

dimensional accuracy, manufacturing time and cost.  

Findings - The weights obtained after the ranking of these four criteria were respectively 

42%, 42%, 11% and 5%. The pairwise comparisons of the two AM processes with regards to 

each of the criterion were carried out using available results of recent AM benchmarking 

studies. The Direct Croning process was found to be superior to the Z-Cast process. The 

overall preferences for these two alternatives were respectively calculated at 73% and 27%. 

Originality/ Value – The AHP has proven to be an effective method for the selection of the 

most suitable Additive Manufacturing processes for a specific casting application. 

Keywords - Additive Manufacturing, Direct Croning Process, Z-Cast Process, Analytic 

Hierarchy Process, Benchmarking 

Paper type - Research paper  

Paper status: Published 
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5.1 Introduction  

One of the applications of Additive Manufacturing (AM) processes also known as Rapid 

Prototyping (RP) processes to metal casting is the direct fabrication of sand moulds and shells 

(Lerner et al, 2002). Currently two main technologies are used namely Laser Sintering (LS) 

and the Three Dimensional Printing (3DP). In the LS process, foundry Shell sand is sintered 

with the aid of heat generated by a laser beam. 3DP on the other hand makes use of a 

refractory material that is aggregated by the selective deposition of a chemical binder through 

the nozzles of a printing head. Close to ten commercial processes based on LS or 3DP are 

available on the market and well described in literature (Chua, Leon & Lim, 2003). Many 

technical characteristics such as layer thickness, scan speed, dimensional accuracy, resolution 

and maximum part dimensions differentiate the various systems (Pham & Gault, 1998).
 

Sand moulds and shells obtained by AM processes can be used for several casting 

applications amongst them, the production of metallic tools and dies for manufacturing 

processes such as metal casting and injection moulding. This indirect Rapid Tooling (RT) 

method has attractive potential benefits compared to traditional direct RT and machining 

processes. Depending on the case at hand, advantages include lower manufacturing cost, high 

manufacturing speed and good tool quality defined by dimensional accuracy, surface finish 

and durability.  This tool manufacturing method is currently being studied by researchers at 

the Central University of Technology, Free State in South Africa (Nyembwe, De Beer & 

Bhero, 2010). The proposed manufacturing framework includes a five steps process chain 

comprising CAD modeling of the mould, casting simulation, mould production by AM, 

gravity casting of the tool and finishing operations consisting of minimal machining and heat 

treatment of the tool. 

The initial problem faced in manufacturing tooling by casting in RP sand moulds or shells is 

the choice for a suitable AM process and within a given AM process class the selection of the 

right machine. This challenge is due to the proliferation of commercial AM processes and 

systems on the market (Wolhers, 2009) as well as the large number of technical 

characteristics to take into account for a specific casting application. Even in the case of the 

two locally available AM processes, namely the Direct Croning Process (DCP) and the Z-

Cast process, choosing which one to use is not always easy because each system has 

characteristic strengths and weaknesses. In addition all the system characteristics are often to 
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be evaluated together and may include subjective considerations such as customer service and 

reliability. 

Some researchers have proposed benchmarking testing and expert systems to assist choosing 

the most suitable available AM process (Kim et al, 2008). These methods are however not the 

best for the AM of sand moulds to be used for the casting of metallic tooling. In this case 

characteristics such as excellent dimensional accuracy and surface finish as well as low 

manufacturing cost and short processing time are collectively required from the mould and 

will be transferred to the cast metallic tool. Benchmarking studies fall short because existing 

processes are often compared on the basis of single criteria. Expert systems on the other hand 

have shortcomings of reliance on technical performances provided by manufacturers. 

Specified performance levels are not always achieved in reality. In addition expert systems 

require constant database update to include new AM systems.  

In this paper the use of the Analytic Hierarchy Process (AHP) based on recent benchmarking 

results is proposed for selection of suitable AM processes for a casting application. In some 

way this methodology is a combination of the benchmarking selection technique and expert 

system taking advantage of each of these selection techniques. The methodology is applied 

and illustrated in the case of the manufacturing of tooling in sand mould produced by RP. 

Direct Croning and the Z-Cast processes were compared evaluated. These AM processes are 

based on LS and 3DP respectively. 

The AHP was found to be easy to use and clear. The technique accommodates subjective 

criteria and speed of execution. It is cost effective and has a general applicability in the face 

of the frequent introduction of new RP processes. In addition the use of the AHP can allow a 

better understanding of the AM processes for other casting applications such as the 

production of prototype casting and direct RT. In the next section a brief description of this 

technique is provided after the review of existing selection methods of AM processes in order 

to understand some of their main disadvantages. 
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5.2 Background 
5.2.1 Selection of AM processes 
5.2.1.1 Benchmarking Studies 

Benchmarking studies can be used to select suitable AM processes and equipment (Dinesh, 

Pal, & Ravi, 2007; Gill & Kaplas, 2009). In these studies AM processes and machines are 

compared on various criteria such as mechanical properties, dimensional accuracy, surface 

finish, manufacturing speed and material costs. In one recent benchmark study (Kim & Oh, 

2008); processes and machines that are also used for the manufacturing of sand moulds and 

shells were compared. It was found that the LS process was superior to the 3DP process with 

regard to geometric and dimensional accuracy. Error frequencies in LS parts followed a 

normal distribution with higher number of points coinciding with the original CAD data. The 

3DP process was found to be advantageous in terms manufacturing time and manufacturing 

cost. For the simulation of three different benchmark parts, the 3DP machine used was faster 

in manufacturing compared to the LS machine. In addition the 3DP process is more amenable 

to recycling of raw materials than the LS process and therefore material costs are lowered. 

Recyclable materials are not damaged by the heat as in the case of LS. Some of the data 

obtained in this benchmarking study are presented in Table 5.1. Other comparative studies of 

AM processes including the ones available in South Africa corroborate these results 

concerning the 3DP and LS (Pham et al, 1998). In one of the investigations the surface 

roughness with LS part was found to be less than 20μm (Dimitrov, et al, 2005).  

Table 5.1 Comparison between LS and 3DP 

Part Characteristics LS 3DP 

Dimensional Accuracy 

(Error distributions) [%] 

88 % coincided with CAD 

data within the error range of 

± 0.2mm 

63 % coincided with CAD 

data within the error range of 

± 0.2mm 

Surface Finish 

Average Roughness at 0
0 

inclination (Ra) [μm] 

- 20 

Manufacturing Time 

[hours] 

19 - 55 17- 20 

Material Cost [$]  30 - 300  310 - 860 
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Benchmarking studies reveal the real strength and weaknesses of the AM processes. 

Characteristics of AM are very often different from technical specifications provided by 

manufacturers. In this respect these comparative studies are very useful. However, a 

limitation is that only one criterion at a time can be assessed. In cases where multiple criteria 

are to be considered together, the comparison becomes difficult. Additional disadvantages of 

benchmarking reported in literature include the time and cost of the studies (Masood & Soo, 

2002). 
 

5.2.1.2 Expert Systems 

Various expert systems have been developed to assist in the selection of suitable AM 

processes and systems. Modern expert systems are based on methodologies such as rule 

based
 
(Masood & Soo, 2002) and fuzzy synthetic evaluation (Lan, Ding & Hong, 2005). A 

rule based system uses cascading procedures based on decisions from if/then scenario in the 

main programming codes to select the suitable process and machines depending on the user 

inputs. The fuzzy synthetic evaluation makes use of complex multi-criteria decision analysis 

algorithms to evaluate several criteria and alternatives in order to suggest a suitable process 

and machine. These computer programs possess database application for storage of 

information on the AM processes, manufacturers, machine models and technical 

specifications. Graphical user interface allows the interaction between the user and the 

program. 

The advantage of computer programs is the speed and the user-friendliness. However they 

regularly require updating of software in order to accommodate new processes, machines and 

manufacturers’ technical specifications. Furthermore these expert systems are often black 

boxes lacking transparency of what is really going on. 

5.2.2 Analytic hierarchy process 

The AHP is a well known Multi-Dimensional Criteria Analysis method that can be used for 

comparison and selection of alternatives when faced with multi-variable considerations. This 

technique has been applied to various fields of manufacturing (Pal, Ravi, & Bhargava, 2007), 

transportation and telecommunication. 
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As a scholarly discipline, AHP is well developed and many manuscripts by Saaty, the 

inventor of this method are dedicated to the subject (Saaty, 2000). The essence of the AHP 

can be summarised as follows: 

i. Modeling of the problem as a hierarchy: The hierarchy contains a goal, the alternatives 

and the criteria for evaluating the alternatives.  

ii. Establishing priorities among the elements of the hierarchy: The pairwise comparisons 

of the criteria. During this comparison the importance of criteria is determined using the 

scale shown in Table 5.2. Intensities are allocated based on the judgments or 

experiences of individuals on a particular topic  

iii. Determination of overall priorities for the hierarchy: The information obtained is 

consolidated in a comparison matrix. 

iv. Consistency checking: Consistency of decisions made in previous steps is determined 

by computing a consistency ratio. This ratio should be less than 10% 

v. Final decision: Based on the normalized principal priority vector (Eigen vector) 

obtained from a comparison as built matrix. 

Computer programs assist in the calculations of step 4 and 5 (Expert choice, 1995).  For a 

small number of variables it is possible to use a simple spreadsheet to perform the AHP, 

which is the case in this paper.  

Table 5.2 The Fundamental Scale for Pairwise Comparisons 

Intensity of 

Importance 

Definition Explanation 

1 Equal importance Two elements are equal  with regards to the 

objectives 

3 Moderate 

importance 

One element is slightly preferred over 

another 

5 Strong importance One element  is strongly prefer over another 

7 Very strong 

importance 

One element is preferred very strongly over 

another. 

9 Extreme importance One element  is dominantly preferred over 

another  

Intensities of 2, 4, 6 and 8 can be used to express intermediate values 
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5.3 Methodology 

A three steps methodology was adopted in this investigation including: 

i. The implementation of the AHP hierarchy and description of criteria 

ii. The pairwise comparison of criteria 

iii. The ranking of alternatives based on results of benchmarking studies and technical 

specifications 

5.3.1 AHP hierarchy 

The AHP hierarchy has been implemented as follows: 

i. The goal: Determination of the most suitable AM process between the DCP and Z-Cast 

process for the manufacturing of sand moulds that will be used for the casting of a 

metallic tool. The assumption in this case is that the tool material can be cast in DCP 

and Z-Cast moulds.  

ii. The criteria: The dimensional accuracy, surface finish, manufacturing time and cost. 

The dimensional accuracy represents the deviations of actual mould dimensions to the 

original CAD dimensions of the mould. The surface finish is the average roughness of 

the sand mould. The manufacturing time is the total duration to grow a mould including 

the pre and post- processing. The manufacturing cost essentially includes the material 

cost for the mould. 

iii. The alternatives: At the time of writing up this paper, the only two types of AM 

processes available in South Africa to produce sand moulds and shell were the DCP at 

the Central University of Technology in Bloemfontein and 3DP at University of 

Johannesburg.  

5.3.2 The Pairwise comparison of criteria 

Table 5.3 shows the criteria pairwise comparison with the accompanying allocation of 

intensity of importance. The surface finish and the dimensional accuracy criteria have equal 

importance higher than the manufacturing time and cost. The manufacturing time is in turn 

more important than the manufacturing cost.  
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An intensity of 7 has been allocated to indicate the very strong preference for the quality of 

the mould compared to its cost. On the other hand an intensity of 5 was given to the mould 

surface finish and dimensional accuracy when compared to the manufacturing time meaning 

that the former mould characteristics is more  strongly favoured than the latter. Mould surface 

finish and dimensional accuracy will be transferred to the metallic tool and therefore are 

crucial properties. An intensity of 3 (representing a moderate intensity importance) is 

allocated to the time criteria compared to the cost. Tool users insist on a quick delivery in 

order to market new products. Therefore they will accept to pay a premium price for the tool 

instead of waiting longer. 

Table 5.3 Pairwise comparison of criteria 

Criteria 

A                                     B 

More Important Intensity 

Surface finish Dimensional accuracy A= B 1 

Surface finish Manufacturing cost A 7 

Surface finish Manufacturing time A 5 

Dimensional accuracy Manufacturing cost A 7 

Dimensional accuracy Manufacturing time A 5 

Manufacturing cost Manufacturing time B 3 

5.3.3 Alternative comparison 

Table 5.4 shows the pairwise comparison between the DCP and the Z-Cast with regard to 

each criterion; surface finish, dimensional accuracy, manufacturing time and cost. Recent 

benchmarking studies mentioned in the Background section of this paper have been used to 

allocate the intensities. The DCP is better than the Z-Cast process with regard to the quality 

of the tool in term of surface finish and dimensional accuracy. An intensity of preference 

equal to 5 has been used to indicate the superiority of the DCP. On the other hand the Z-Cast 

scored higher in terms manufacturing cost and time. For these criteria preference intensity 

equal to 5 was used.  
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Table 5.4 Pairwise comparison of criteria 

Criteria 

Better Process 

Intensity 
DCP Z-Cast  

Surface Finish X  5 

Dimensional Accuracy X  5 

Manufacturing Time  X 5 

Manufacturing Cost  X 5 

 

5.4 Results and Discussion 

Table 5.5 shows the weights of the four criteria considered. Details of weight calculations can 

be found in Appendix 5.1.  The results indicate that 84% of the goal weight is on surface 

finish and dimensional accuracy while the remaining 16% is shared between the 

manufacturing time (11%) and the manufacturing cost (5%). A consistency ratio of 2.8% was 

obtained (http://www.cci-icc.gc.ca/tools/ahp/index_e.asp). 

Table 5.5 Criterion weights 

 A B C D 

Weights 0.42 0.42 0.11 0.05 

A = Surface finish 

B = Dimensional accuracy 

C = Manufacturing time 

D = Manufacturing cost 

Table 5.6 shows the weights of the two alternatives with regards to each criterion. Details of 

the mathematical processing involved are presented in Appendix 5.2. It can be seen that for 

the mould (casting) quality the DCP has a local priority of 83% while the Z-Cast process has 

a weight of 17%. However with regards to manufacturing time and cost it is the opposite 

whereby DCP has a local priority of 17% while the Z-Cast has a weight of 83%. 

 

http://www.cci-icc.gc.ca/tools/ahp/index_e.asp
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Table 5.6 Weights of alternatives 

 DCP  Z-Cast 

Surface Finish 0.83 0.17 

Dimensional Accuracy 0.83 0.17 

Manufacturing cost 0.17 0.83 

Manufacturing time 0.17 0.83 

From the foregoing the overall preferences for the two alternatives have been determined in 

Appendix 5.3. The DCP scored 73% while the Z-Cast process only scored 27%. Figure 5.1 

shows the complete AHP with all the weighted scores of criteria and alternatives. The end 

results indicate that the DCP is better than the Z-Cast process for the casting application at 

hand.  

 

Figure 5.1 AHP with weights of criteria and alternative 
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Two reasons explain the final overall preferences obtained. First is the fact that the 

dimensional accuracy and surface finish were ranked higher than the manufacturing time and 

cost. This ranking is specific to the casting application at hand. These mould characteristics 

are critical requirements in order to obtain a good metallic tool. However, they will not 

necessarily be the dominant factors for other casting application where the mould 

manufacturing time and cost can be more important.   Second the LS scored higher for the 

high ranking criteria compare to the 3DP according to the benchmarking studies used. 

5.5 Conclusion  

In this paper AHP was applied for the selection of two AM processes to produce sand moulds 

to be used for the casting of metallic tooling. The choice was made possible because of the 

mathematical quantification of AM process preferences.   Through this exercise a better 

understanding of the available processes has also been gained in relation to of their strengths 

and weaknesses. Because of its simplicity and transparency as illustrated in this investigation, 

AHP can be used for the selection of AM processes in the cases where various methods can 

be employed for complex metal casting applications. Thus the AHP saves the foundryman 

time and money for conducting experimental trials. However, one of its limitations is that the 

final results very much depend on the human inputs in the rankings of criteria. To that end 

future work will consist in conducting surveys amongst foundrymen in order to obtain 

optimum ranking of criteria. Additional AM processes and systems not available locally are 

also considered for the construction of a bigger AHP hierarchy. 
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Appendices 

Appendix 5.1 Determination of criterion weights 

Table 5.1.1 Preference on criteria  

 Surface finish Dimensional 

accuracy 

Manufacturing 

cost 

Manufacturing 

time 

Surface  finish 1 1 7 5 

Dimensional accuracy 1 1 7 5 

Manufacturing cost 1/7 1/7 1 1/3 

Manufacturing time 1/5 1/5 3 1 

Table 5.1.2 Weights on criteria 

 Surface finish Dimensional 

accuracy 

Manufacturing 

cost 

Manufacturing 

time 

Average 

Surface  finish 0.427 0.427 0.389 0.441 0.421 

Dimensional accuracy 0.427 0.427 0.389 0.441 0.421 

Manufacturing cost 0.061 0.061 0.056 0.029 0.052 

Manufacturing time 0.085 0.085 0.167 0.088 0.106 

Each element in Table 5.1.2 is obtained by dividing the entry in Table 5.1.1 by the sum of the 

column it appears in. For instance the (manufacturing time, manufacturing cost) element in 

Table 5.1.2 is calculated as: 3/ (7+7+1+3) = 0.167. Values in the Average column are 

obtained by averaging values in the different rows. The Average column represents the 

weights of criteria. 
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Appendix 5.2 Determination of alternative weights 

Step 1: Weights of alternatives with regards to each criterion 

Table 5.2.1.1 Comparison of RP processes on surface finish 

 DCP Z-Cast 

DCP 1 5 

Z-Cast 1/5 1 

Table 5.2.1.2. Weights of alternatives with regards to surface finish 

 DCP Z-Cast Average 

DCP 0.833 0.833 0.833 

Z-Cast 0.167 0.167 0.167 

Table 5.2.1.3. Comparison of RP processes on dimensional accuracy 

 DCP Z-Cast 

DCP 1 5 

Z-Cast 1/5 1 

Table 5.2.1.4 Weights of alternatives with regards to dimensional accuracy 

 DCP Z-Cast Average 

DCP 0.833 0.833 0.833 

Z-Cast 0.167 0.167 0.167 

Table 5.2.1.5 Comparison of RP processes on manufacturing time 

 DCP Z-Cast 

DCP 1 1/5 

Z-Cast 5 1 
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Table 5.2.1.6 Weights of alternatives with regards to manufacturing time 

 DCP Z-Cast Average 

DCP 0.167 0.167 0.167 

Z-Cast 0.833 0.833 0.833 

Table 5.2.1.7 Comparison of RP processes on manufacturing cost 

 DCP Z-Cast 

DCP 1 1/5 

Z-Cast 5 1 

Table 5.2.1.8 Weights of alternatives with regards to manufacturing cost 

 DCP Z-Cast Average 

DCP 0.167 0.167 0.167 

Z-Cast 0.833 0.833 0.833 

Step 2 Weights of alternatives  

Table 5.2.2.1 Weights of Alternatives* 

 DCP Z-Cast 

Surface  

Finish 

0.833 0.167 

Dimensional 

Accuracy 

0.833 0.167 

Manufacturing 

cost 

0.167 0.833 

Manufacturing 

time 

0.167 0.833 

* Values in Table 5.2.2.1 rows are obtained from Average column in tables above 
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Appendix 5.3 Determination of overall weights  

Table 5.3.1 Determination of overall weights of alternatives 

Appendix 5.1 

data Appendix 5.2 data   

A B C D E F 

Criterion 

Weights Alternative Weights   

  DCP Z-Cast DCP Z-Cast 

0.421 Surface  Finish 0.833 0.167 0.349 0.071 

0.421 

Dimensional 

Accuracy 0.833 0.167 0.349 0.071 

0.052 

Manufacturing 

cost 0.167 0.833 0.009 0.042 

0.106 

Manufacturing 

time 0.167 0.833 0.018 0.088 

    0.726 0.274 

The results of columns E and F are obtained by multiplying A by C and A by D respectively. 

The overall weights are summing values in columns E and F 
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CHAPTER 6 

A CASE STUDY OF TOOL MANUFACTURING BY METAL 
CASTING IN SAND MOULDS PRODUCED THROUGH 
RAPID PROTOTYPING 

Abstract 

Purpose - The objective of this paper is the practical implementation of the Rapid Casting for 

Tooling (RCT) concept using local Computer-Aided Design (CAD) and casting simulation 

software as well as casting technologies. RCT is a tool making process chain essentially 

consisting of metal casting in sand moulds produced by Rapid Prototyping. 

Design/ methodology / Approach - The production of a sand casting pattern for a high 

pressure moulding machine is the selected case study used for the implementation of RCT.  

Technologies employed for the RCT steps include Pro-Engineer software for CAD modeling, 

Magmasoft software for the casting simulation, Electro Optical Systems (EOS) Laser 

Sintering for the growing of sand moulds and gravity casting as the metal casting method. 

The final cast tool was visually examined for casting defects. 

Findings – The success of the practical implementation of RCT and the related known-how 

are closely associated with the casting simulation step on one hand as well as the elimination 

of exogenous factors linked to workmanship on the other hand. 

Originality/ Value – The application of RCT to the production of foundry tooling. 

Keywords – RCT, Metal casting, Rapid Prototyping, Sand casting pattern  

Paper Type: Case study 

Paper status: Prepared 
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6.1 Introduction 

Rapid Tooling (RT) is the application of Rapid Prototyping (Additive Manufacturing) to 

produce tools and dies used in mass production processes such as metal casting, forging and 

injection moulding. Several RT processes have been proposed and are well documented in 

literature (Altan et al, 2001). The advantages of these processes when compared to the 

traditional tool making by Computer Numerical Control (CNC) machining include short 

manufacturing time and low cost of production.  

Rapid Casting for Tooling (RCT) is one of the RT process chains proposed for manufacturing 

metallic tools (Nyembwe et al, 2010). It consists of five steps that include Computer-Aided 

Design (CAD), casting simulation, Additive Manufacturing (AM), metal casting and 

finishing operations. In this process, the tool or die is basically obtained by casting a suitable 

metallic alloy in a sand mould produced through an AM process such as Laser Sintering (LS) 

or Three Dimensional Printing. Potential advantages of RCT over CNC machining comprise 

an easy learning curve, suitability for producing foundry tooling and low overall processing 

cost. A study (Nyembwe et al, 2011) conducted on the selection of the best AM system 

available using the Analytic Hierarchy Process (AHP) shows that the LS process is the best 

process for RCT when considering four criteria that were manufacturing cost, manufacturing 

time, dimensional accuracy and surface finish. 

This paper investigates a practical implementation of RCT concept using a real case study 

obtained from the local foundry industry. No experimental trial of RCT has been published so 

far therefore tool and die makers do not know the technical challenges involved and how to 

resolve them. For example, the types of defects that are typical in the tool due to casting in 

sand moulds produced by AM. Thus, the study contributes to the initial development of 

knowhow and the building of knowledge around RCT.  
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6.2 Methodology and preliminary considerations 

In this section, the case study used for the RCT trial is presented. The experimental procedure 

of RCT implementation is also described. 

6.2.1 Case study 

The case study was provided by a local foundry and involved the manufacturing  of a sand 

casting pattern for moulding with a DISAMATIC machine. The pattern layout is shown in 

Appendix 6.1. This tool will be used as one of the two DISAMATIC machine plates for 

making greensand moulds for a steel engineering bonnet shown in Figure 6.1. DISAMATIC 

moulding machines are very popular in South African greensand foundry industry for the 

production of small to medium size castings. These machines achieve sand compaction by 

blowing followed by squeezing of the sand between two metallic pattern plates. The resulting 

sand block is then pushed onto a moving belt for casting (Beeley, 2001). 

The pattern material is SG 60 ductile cast iron. Its minimum thickness is 7.8mm which is 

higher than the recommended 3.2 – 6.3mm minimum wall thickness for cast iron in sand 

moulds (Beeley, 2001). In addition detrimental metallurgical segregation is generally not a 

problem in SG cast iron. The plate was therefore suitable to be produced by RCT as its 

validation conditions on minimum thickness and chemical composition were satisfied. 

The maximum dimension of the DISAMATIC pattern plate is 600mm. The mould parts (cope 

and drag) were too large to be grown as single components on most commercial AM systems. 

It therefore required partitioning of the mould components. The flat geometry of the tool also 

required careful design of the gating system and provision for venting to allow complete 

filling of the mould and escape of the gases. Finally the size and weight of the plate 

necessitated a strong mould to prevent mould wall movement and loss of casting dimensional 

accuracy.  
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Figure 6.1 Two dimensional drawing of the steel bonnet to be produced using the pattern to 

be manufactured by RCT 

6.2.2 Experimental procedure 

The experimental procedure followed in the casting trial of the sand casting pattern is 

summarised in Table 6.1. The entire mould is made of four sand parts that were grown using 

an EOSINT S700 LS machine at the Centre for Rapid Prototyping Manufacturing (CRPM) at 

the Central University of Technology, Free State in Bloemfontein. The various sand parts 

were glued together to form the cope and the drag. The internal cavity of the mould was spray 

coated to improve the surface finish of the final casting (Figure 6.2). Before pouring the 

molten metal, the mould was placed in a frame filled with sand and weights were placed on 

top as shown in Figure 6.3. This was done in order for the mould to withstand the 

metallostatic pressure of the liquid metal. Gravity casting using a manually operated ladle 

was employed to cast the metal in the mould. 
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Table 6.1 Software, equipments and casting parameters used in the casting trial of the 

sand casting pattern 

RCT Steps Experimental parameters 

CAD Modeling 

(Pro Engineering software: 

Wildfire II) 

- Filleting of designs (default setting of the casting 

toolbox software) 

- Shrinkage allowance factor: 1.10  

- 10mm machining allowance added 

Casting simulation 

(Magmasoft software) 

 

- Objectives: complete filling of the mould and escape of 

air during pouring 

- Iterations: 3 

Rapid Prototyping 

(LS EOSINT S 700 machine) 

- Standard operating parameters 

- Curing of mould parts at 75
0
 C 

- Shell sand (silica) 

Metal Casting 

(Gravity casting) 

- Charge: Pig iron + steel scrap   

- Induction melting 

- George Fisher inoculation (Magnesium treatment) 

- Pouring temperature: 1400
0
 C 

Finishing operation 

 

- Sand blasting followed by fettling for the plate 

 

 

Figure 6.2 Drag component of the mould with the internal cavity of the tool to be cast. 
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Figure 6.3 Assembled mould with weights and required inclination (see magnetic angle 

finder tool) ready to be poured. 

6.3 Results 

Figure 6.4 and 6.5 show the casting simulation results in terms of methoding design and fluid 

flow. An inclination of 15 degree was recommended. Vents were also included. The 

dimensions of the running, vents and feeding system are shown in Appendix 6.2. Other 

simulation results on air entrapment, shrinkage and hardness are shown in Appendix 6.3 

predicting a sound final casting.  

 

Figure 6.4 Casting methoding design suggested after simulation 

 

Magnetic 

Angle finder 
Tool 
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Figure 6.5 Mould filling results 
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Figure 6.6 shows the front view of final sand casting plate. The finishing operations included 

sand blasting and fettling to remove the casting runners. No machining of the cast pattern was 

performed.  The picture shows the features of the component to be produced as well as the 

gating and feeding system.  The casting picture also shows evidence of defects including: 

1. Cold lap mainly visible in the top half of the casting 

2. Shrinkage porosity in top right region 

3. Vertical alignment fault in the middle of the casting  

 

Figure 6.6 Final casting exhibiting some defects 

6.4 Discussion 

Due to the flat geometry of the casting, the simulation results suggest that the mould should 

be inclined to allow its complete filling. The metal will fill the bottom part of the mould by 

gravity and as it rises the air escapes from the vents located in the upper section of the mould. 

Fluid flow results indicate that with such methoding design, it is possible to prevent gas 

defects due to air entrapment in the casting, shaping faults caused by slow filling due to poor 

fluidity or inadequate gating system design.  
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With regards to the final casting, the details of the drawings have been transferred through 

RCT from the first step CAD to the last step that is casting and finishing operations. 

Although the transfer involved AM and metal forming by solidification, it is fairly accurate in 

revealing the intended features that appear on the final cast pattern. The details of the part to 

be produced were well formed and considered adequate for sand casting. 

An unfortunate mould leak occurred during the casting trial. It was due to poor joining of the 

sand parts during the mould assembly. The leak explains the various defects appearing on the 

cast tool. The top section was subsequently filled with cold metal, thus the presence of cold 

lap defect. The feeding system reservoirs could not be adequately filled with molten metal 

hence the occurrence of shrinkage defects. Finally the poor joining is responsible for the 

vertical misalignment. The cast tool could be salvaged during machining without losing 

dimensional accuracy since 10mm machining allowance was provided. 

6.5 Conclusions and recommendations 

The case study illustrates the practical implementation of RCT using the locally available 

technologies that included CAD, casting simulation, AM and casting that are combined to 

constitute an alternative manufacturing of metallic tooling.  

Although casting simulation predicts that the casting will be free of defects, this case study 

has shown that the RCT success also depends on exogenous factors such good workmanship 

during mould assembly and casting. These stages were found to be the most challenging.  

Future work will involve a less complex case study which will investigate in depth economic 

and quality aspects of tools produced by RCT.  
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Appendices 

Appendix 6.1 2D Layout and 3D model of the plate to be cast 
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Appendix 6.2 Dimensions of the running, vents and feeding system 

 

 
Figure 1, left view 

 
Figure 2, front view 

Shell mould 

line upper 

surface 

Ǿ 78 mm 

Ǿ 81 mm 

6 mm 

35 mm 
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Figure 3, isometric view 

 

 

Casting Method instructions 

 

 Grennsand mould: Total box size: 890 x 740 x 350 mm. Cope height: 160 mm 

 

 Feeder size: Kalpur 6/7 with Dia50 x 22mm 10ppi Sedex filter 

 Wedge vents to be placed at top of casting as in Figure 1 and 3. Placement of feeder 

in centre of casting.  

 

 Vent dimensions on casting surface (lower mould surface): 35 x 6 mm (profile is 

constant) 

 

 Riser dimension on mould upper surface = 78 mm 

 Riser dimension on lower mould surface = 81 mm 

 

 Pouring temperature 1390 - 1400°C 
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Appendix 6.3 Selected results of casting solidification simulation 
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CHAPTER 7 

AN ANALYSIS OF THE MANUFACTURING TIME AND COST 

OF TOOL AND DIE MAKING BY METAL CASTING IN RAPID 

PROTOTYPING SAND MOULDS 

Abstract 

Purpose – The objective of this paper is to assess the manufacturing time and cost 

parameters of tool production by metal casting in additive manufactured sand moulds.   

Design / Methodology/ Approach – Foundry tools including a aluminium die for lost wax 

patterns and a sand casting pattern for a high pressure moulding machine  were manufactured 

according to a five steps process chain including Computer Aided Design (CAD) modelling, 

casting simulation, Rapid Prototyping, metal casting and finishing operations. The 

methodology is referred to as Rapid Casting for Tooling (RCT). Duration and cost of each 

step were recorded and aggregated.  

Finding – The paper shows that the Additive Manufacturing (AM) of sand moulds is the cost 

driver as well as the rate determining step of RCT. In addition it was found that RCT was 

faster but more expensive than machining and investment casting. 

Originality/ Value – Controlling AM of moulds step will go a long way in making the RCT 

process chain more competitive compared to existing metallic tooling manufacturing 

processes including machining and the Paris process. 

Key words – Tooling, Metal Casting, Rapid Prototyping, CNC Machining, Laser Sintering, 

Three Dimensional Printing 

Paper type – Research paper 

Paper status: Submitted 
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7.1 Introduction 

Investment casting is occasionally employed for the manufacturing of metallic tooling. The 

literature mentions applications of the Paris and Shaw processes for the production of cast 

dies used for die casting, forging, drawing and extrusion processes (Beeley, 2001). Sand 

casting process on the other hand is traditionally not considered for the production of metallic 

tooling. The limitations of this metal casting method in relation to Tool and Die 

Manufacturing (TDM) mainly stem from the need for a pattern, the fabrication of which is 

notoriously cost and time consuming. In addition sand cast tools are of relatively poor quality 

in terms of surface finish, dimensional accuracy and durability compared to processes such as 

precision casting, machining and Rapid Tooling 

In recent times, significant progress has been achieved in sand casting to alleviate some of its 

shortcomings. Amongst these advances is the use of casting simulation software to predict the 

properties of the final casting and to prevent defects (Sakuragi, 2005; Fu, et al, 2009). In 

addition the application of rapid prototyping (RP) or additive manufacturing (AM) processes 

such as Laser Sintering (LS) and Three Dimensional Printing (3DP) to produce sand moulds 

directly from Computer Aided Design (CAD) files without the need for a pattern is also an 

important development in sand casting (Lerner, et al, 2002; Klocke, et al, 2003; Ederer, 2005; 

Hahn, et al, 2005). 

In the LS process a laser beam is used to selectively fuse pre-coated foundry sand particles 

into a solid part that will become a component of the mould or shell. In 3-DP, the principle is 

similar to ink printing on a piece of paper from an ink-jet printer. In this case, in a layer-by-

layer fashion, a printing head selectively deposits or “prints” binder fluid that fuses the 

powder particles together in desired areas (Palm, 2002; Chua et al, 2003) 

Taking into account the above development sand casting has been conceptually revisited by 

some researchers as an alternative method for the manufacturing of metallic tools (Figure7.1). 

In this instance metallic tooling are produced by metal casting in sand moulds obtained by RP 

processes. The method is referred to as Rapid Casting for Tooling (RCT). It is made of five 

steps including computer aided design, casting simulation, and rapid prototyping, metal 

casting and finishing operations The process chain makes provision for a validation stage to 

determine if a tool is suitable for RCT manufacturing based on its minimum wall thickness 

and chemical composition. 
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Figure 7.1 RCT process chain (Nyembwe et al, 2010) 

At the present moment, the characteristics of RCT process chain in terms of manufacturing 

time and cost have not been investigated and assessed. It is well known that time and cost 

determine the economic viability of a tool making processes (Altan, 2001). The 

manufacturing time should be as short as possible in order to allow quick turnaround to 

market new products. Tool manufacturing cost needs to be as low as possible so as to 

increase the profit margin of mass production processes of finished goods that use the tools.  

In this paper the time and cost parameters of producing metallic tooling in RP sand moulds 

are assessed by means of case studies. Time and cost of AM processes are also compared to 

the ones of conventional tool making processes such as CNC machining and investment 

casting (Paris Process). As such the study intends to provide a preliminary understanding on 

the competitiveness of RCT 

7.2 Methodology 

The methodology followed in this investigation was made up of the following tasks:  
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i. Obtaining suitable case studies  

ii. Conducting casting trials using RCT process chain 

iii. Recording manufacturing time and cost of the tool produced 

Details of each task are provided below. 

7.2.1 Case studies 

The case studies consisted of the replication of existing tools using the route of casting in RP 

sand moulds. This approach made it possible to compare experimental cost with the actual 

ones. The two different case studies were selected on technical grounds including the size, the 

minimum wall thickness, the range of shape complexity and the material specifications of the 

tool that had to be suitable for RCT manufacturing and compatible with the available local 

RP machines and the gravity sand casting possibilities (Table 7.1).Shape complexity is 

calculated taking into account the volume, the surface area and number of cores required. 

Details of the mathematical expression and explanation can be found in literature (Ravi, 

2005). 

Table 7.1 Technical characteristics of tool used for the case studies 

 Material 

specifications 

Minimum 

thickness [mm] 

Maximum 

dimension [mm] 

Complexity 

[-] 

Wax pattern 

die 

Al 6082 4.6 203 0.11 

Sand 

casting plate 

SG 60 7.8 600 0.25 

The case studies were obtained from local foundries. The first case study deals with the 

manufacturing of an aluminium die for investment casting wax patterns and the second case 

study was the production of a cast iron sand casting pattern for a DISAMATIC moulding 

machine 

7.2.1.1 Wax pattern die 

This tool is used for the production of a wax pattern for the investment casting of a steel 

automotive bracket (Appendix 7.1). The production die was manufactured by CNC 

machining in a local tool room. Its actual manufacturing time and cost provided by the 
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foundry are respectively 40 hours and 14 000 Rands. The cheapest local quotation obtained to 

produce the same tool by investment casting (Paris process) was 10 000 Rands in 120 hours. 

7.2.1.2 Sand Casting plate 

The pattern is used for the production of sand moulds on a DISAMATIC moulding machine 

for the casting of a steel engineering bonnet (Appendix 7.2). The production plate was 

manufactured by CNC machining and assembly at the foundry. The actual manufacturing 

time is 80 hours at a cost of 20 000 Rand.  The cheapest local quotation to manufacture this 

plate by investment casting (Paris process) was 8 000 Rand in 240 hours. 

7.2.2 RCT casting trials 

The tool manufacturing trials followed the Rapid Casting for Tooling (RCT) process chain. 

The latter comprises five sequential steps described below: Local companies assisted in 

conducting the various steps of the casting experiments. These companies were selected on 

the basis of the cheapest price and shortest time to execute a task. The best proposal was in 

the case of CAD, casting and finishing operation selected from three quotations. For the 

casting simulation step only one quote was obtained because the market is still monopolistic 

in South Africa dominated by Magmasoft. The Metal Casting Technology Station at the 

University of Johannesburg and the Centre for Rapid Prototyping and Manufacturing at the 

Central University of Technology, Free State are the only two institutions offering RP 

technologies in 3DP and LS respectively.  

In total three casting experiments were conducted. The first two produced the aluminium dies 

using two different RP technologies: 3DP and LS. The third experiment produced the plate 

by casting in a LS RP mould. Additional experimental conditions are summarised in 

Appendix 7.3.  

7.2.3 Manufacturing time and cost 

The manufacturing time is the actual working time devoted to a specific step and recorded 

during the execution. The manufacturing cost is the invoiced price a particular step provided 

at its completion. 
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7.3 Results  

The manufacturing time and cost results of RCT steps for the three experiments are 

respectively shown in Table 7.2 and Table 7.3. Proportions in percentage of the total time and 

cost of the manufacturing time and cost of each RCT step are shown in Figures 7.2 and 7.3. It 

can straight away be seen from these tables and figures the importance of the RP step with 

regard to its contribution to the total time and cost.  

Table 7.2 Experimental manufacturing time results 

Casting 

Experiments 

CAD 

Modelling 

Casting 

Simulation RP Casting 

Finishing 

Operation 

Total 

[hour] 

Wax Pattern Die 

(SLS) 5.5 5 24 1 1 36.5 

Wax Pattern Die 

(3DP) 5.5 5 16 1 1 28.5 

Sand Casting Plate 6.5 9 48 2 2 67.5 

Table 7.3 Experimental manufacturing cost 

Casting Experiments 

CAD 

Modelling 

Casting 

Simulation RP Casting 

Total 

[Rand] 

Wax Pattern Die 

(SLS) 790 2280 12000 2000 17070 

Wax Pattern Die 

(3DP) 790 2280 8000 2000 13070 

Sand Casting Pattern 910 5700 40000 3032 49642 

7.4 Discussion 

7.4.1 RCT manufacturing time and cost 

The growing of the sand mould by RP is the slowest step and therefore RCT rate determining 

step (Figure 7.2). This step contributed 54% to 73% of the total RCT time respectively for the 

die manufacturing using the Spectrum 510 printer and the sand casting plate using the 

EOSINT LS machine. In the case studies conducted layer-by-layer manufacturing is slower 

possibly because of the processes technical limitations.  
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Furthermore in all cases the manufacturing of sand moulds by RP is the most expensive step 

therefore RCT cost driver.  This step contributed 61% to 78% of the total RCT cost 

respectively for the die manufacturing using the Spectrum 510 printer and the sand casting 

plate using the EOSINT LS machine. A possible reason for the expensiveness of the RP step 

is the newness of the AM processes and the lack of competition with regards to providing RP 

services locally. 
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Figure 7.2 Contribution of RCT steps to the final manufacturing time 
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Figure 7.3 Contribution of RCT steps to the final manufacturing cost 



 93 

7.4.2 Comparison of RCT with casting and machining 

Figure 7.4 shows the comparison in terms of manufacturing time of RCT process chain 

versus machining and metal casting for the case studies conducted.  RCT is the fastest 

process chain. A manufacturing time improvement of 68% to 72% can be obtained compared 

to metal casting and 6% to 18% versus machining. Casting was the slowest process chain 

because of the required manufacture of a pattern prior to casting. On the other hand 

machining was slower than RCT possibly because of the intricacy of the case study tools.  

Figure 7.5 shows the comparison of manufacturing cost of RCT process chain versus 

machining and metal casting for the case studies conducted. It can be seen that RCT is most 

expensive when compared with casting and machining. RCT was respectively 124% to 453% 

and 60% to 176% more expensive than metal casting and machining.  The possible reason for 

this finding is the expensiveness of RP processes as mentioned earlier. Manufacturing of 

tooling by metal casting appeared to be extremely undervalued. 
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Figure 7.4 Manufacturing time comparison between RCT and other tool manufacturing 

processes 
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Figure 7.5 Manufacturing cost comparison between RCT and other tool manufacturing 

processes 

7.5 Conclusion 

In this investigation, three casting trials were carried out to understand the manufacturing 

time and cost of producing metallic tooling in RP sand moulds. Two main findings were 

obtained from these experiments using locally available technologies: 

1) The manufacturing of sand moulds by RP was found to be the rate determining and cost 

driver step.  

2) The proposed tooling manufacturing was found to be faster than machining and metal 

casting (Paris process) but more expensive.  

In the present situation these results are important for future optimisation work to make the 

manufacturing of tooling in sand moulds produced by RP processes faster and cheaper than 

other tool manufacturing processes such as machining. This will be achieved by 

concentrating the effort to minimise the cost and time of the AM of sand mould step as it is 

the one that has been identified as strongly controlling the cost and delivery time of the final 

tool. 
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Appendices  

Appendix 7.1 2D drawing of steel bracket  
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Appendix 7.2 2D drawing of steel bonnet 
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Appendix 7.3 Technical characteristics of RCT steps during tooling 
manufacturing trials 

RCT Steps Experimental conditions 

CAD Modelling 

(Pro Engineering 

software: wildfire II) 

- Filleting of designs 

- Al and SG contractions added 

- 1mm machining allowance added 

Casting simulation 

(Magmasoft software: 

Frontier) 

- Aluminium die: 

- Objectives: minimise shrinkage and oxidation during 

filling 

- Iterations: 5 

- DISA plate: 

- Objectives: complete filling of mould 

- Iterations: 3 

Rapid Prototyping 

(LS EOSINT S 550 and 

3DP Spectrum 510 RP 

machines) 

- EOSINT S 550: 

- Standard operating parameters 

- Curing of mould parts at 750 
0
C 

- - Shell sand (silica) 

- Spectrum 510: 

- Standard operating parameters 

- No curing of moulds 

- Synthetic sand 

Metal Casting 

(Gravity casting) 

- Aluminium die: 

- Charge: LM 4 

- Resistance furnace 

- Nitrogen degassing 

- Pouring temperature: 7500 C 

- Kalpur direct pouring device 

- DISA plate: 

- Charge: Pig iron + steel scrap 

- Induction melting 

- George Fisher inoculation 

- Pouring temperature: 14000 C 

- Kalpur direct pouring device 

Finishing operation 

 

Sand blasting  
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CHAPTER 8 

ASSESSMENT OF SURFACE FINISH AND DIMENSIONAL 
ACCURACY OF TOOL MANUFACTURED BY METAL 
CASTING IN RAPID PROTOTYPING SAND MOULDS 

Abstract 

Purpose – The objective of this paper is to assess the surface finish and dimensional 

accuracy of tools produced by metal casting in additive manufactured sand moulds. 

Design/ methodology/ approach – Aluminium dies were produced by metal casting in 

laser sintered sand moulds. Modern techniques including surface roughness analysis and 

three dimensional scanning were used to assess the surface finish and dimensional accuracy 

of the dies.  

Findings – The best surface finish obtained for the cast die had Ra and Rz respectively 

equal to 3.23 µm and 11.38 µm. In terms of dimensional accuracy, 82% of cast die points 

coincided with die Computer Aided Design (CAD) data which is within the typical 

tolerances of sand cast products. The investigation showed that mould coating contributed 

slightly to the improvement of the cast tool surface finish. The study also found that the 

additive manufacturing of the sand mould was the chief factor responsible for the loss of 

dimensional accuracy. 

Originality/ Value – Modern techniques for the determination of surface finish and 

dimensional accuracy of additive manufactured moulds and cast tools were used. An in 

depth understanding of factors that govern the quality of tools manufactured by casting in 

additive manufactured sand mould has been gained. 

Keywords - Metal Casting, Rapid Prototyping, Sand Moulds, Dimensional Accuracy, 

Surface Finish. 

Paper type – Published 
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Paper status: Published 

8.1 Introduction 

Rapid prototyping (RP) or additive manufacturing processes for the fabrication of sand 

moulds include laser sintering (LS) and three dimensional printing (3DP) (Lerner et al., 

2002). In LS, resin coated sand grains are sintered together by means of the heat generated by 

a laser beam. 3DP technology on the other hand makes use of selective deposition of foundry 

resin on sand grains to achieve their agglomeration into solid parts.  In both systems, post-

treatment of the mould is required in order to obtain optimal strength of the parts. This is 

achieved through curing of the mould in a furnace. The two RP systems locally available in 

South Africa are the Direct Croning Casting Process (DCCP) based on LS and the Z-Cast 

process based on 3DP (Chua et al., 2003). 

RP processes for sand moulds do not require pattern making that is time consuming and 

costly. They are therefore extensively employed especially in the automotive foundry 

industry for the production of casting prototypes used for design and metallurgical evaluation 

prior to mass production. As such RP processes decrease the lead casting design time and 

accelerate introduction of new components.  

Recent technological developments of these RP processes include short manufacturing time 

with the advent on the market of large machines capable of producing several moulds in a 

few hours. The S Max machine from ProMetal-RCT Company is an example of an 

equipment based on 3DP (ProMetalRCT, 2011). Another modern trend is in the use of RP 

sand moulds for the manufacturing of aerospace components. This has already started taking 

place locally with the production of the Adept light craft engine block from laser sintered 

moulds (Adept, 2011). Internationally, Prometal-RCT Metal recently signed an agreement 

with the Fonderie Messier, a French aluminium and magnesium foundry, to produce casting 

parts for aerospace applications in RP sand moulds (ProMetalRCT, 2011). 

Considering the above applications, some researchers have gone one step beyond to propose 

the manufacturing of metallic tooling by casting in RP sand moulds. This alternative tool- 

making process is referred to as Rapid Casting for Tooling (RCT) (Nyembwe et al., 2010).  It 

is a contribution to the ongoing search for improved and innovative tool manufacturing 

processes to meet the stringent customer requirements for quality and economics (Peres & 
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Mafokhami, 2001; Jiang et al., 2005). RCT is an addition to the plethora of indirect rapid 

tooling methods that are continuing to be developed and diversified since their appearance in 

the last 15 to 20 years (Wolhers, 2009).  

RCT essentially consists of five steps including Computer Assisted Design (CAD), casting 

simulation, RP, casting and finishing operations (Figure 8.1). The authors claimed that RCT 

offers potential advantages over traditional tool making processes such as machining and 

existing rapid tooling, namely near net shape, quick manufacturing and low cost of 

production. 

In a theoretical study comparing locally available RP processes using the Analytical 

Hierarchy Process (AHP) technique, it was found that DCCP is more suitable than Z-Cast 

process with regard to their application for RCT (Nyembwe et al., 2011). According to this 

study, tools obtained from DCCP moulds would have better surface finish and dimensional 

accuracy. On the other hand, tools produced by the Z-Cast process would be cost efficient 

and quicker to produce. The study was based on results of several benchmarking studies 

(Pham & Gault, 1998; Dimitrov et al., 2003; Dimitrov et al., 2005; Kim et al., 2008) in which 

parts from various RP processes were compared on characteristics such as surface finish, 

dimensional accuracy, manufacturing time and cost amongst others. 

However, at this stage it is not known how RCT tools will score in practice based on the 

above tool characteristics. It is also important to investigate the effects of the various RCT 

steps on these characteristics.  In this paper, only the surface finish and dimensional accuracy 

of RCT tools are examined with the aid of a case study. These tool characteristics are 

amongst the most crucial with regard to tool usability. 
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Figure 8.1 RCT process chain (Nyembwe et al., 2010) 
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8.2 Methodology 

The study methodology consists of three elements namely: 

i. The manufacturing of  tools by casting in RP sand moulds   

ii. The measurement of  the mould and tool surface finish 

iii. The assessment of the mould and tool dimensional accuracy 

8.2.1 Manufacturing of tools by casting in rapid prototyping sand moulds  

The tool that was manufactured in this investigation was an aluminium die for the 

production of wax patterns used in the investment casting of a steel bracket. The 2D 

drawings of this steel component are shown in Appendix 1. The die parts were produced 

following the RCT process chain as shown in Figure 8.1. The casting modelling of sand 

moulds were done using Pro-Engineering software. A snapshot of the 3D model of the 

bottom part of the die is shown in Figure 8.2 (a). Magmasoft software was used to conduct a 

casting simulation of the part to be cast. The objective of casting simulation was to produce 

a defect free casting and in particular to prevent metal oxidation during mould filling due to 

poor gating system. A top gating system through a Foseco Kalpur device was used.  An 

EOSINT S 700 RP machine was used to grow the sand mould for cast dies shown in Figure 

8.2 (b). This machine is based on LS of foundry sand. One of the sand moulds produced 

was brush coated with Foseco’s ISOMOL 185. ISOMOL coatings are flammable, solvent-

based mold and core coatings. The principle refractory medium contained in these coatings 

is a high-purity zircon. ISOMOL coatings are recommended for use in the casting of iron, 

steel and non-ferrous alloys amongst them aluminium alloys. These coatings can be used 

through a wide range of metal casting sections. ISOMOL coatings provide excellent casting 

surface quality (Foseco, 2005). Gravity casting was used to produce the final tool. 

Aluminium silicon alloy (LM4) was melted in an electric furnace at 750
0
 C and the liquid 

metal degassed prior to casting. The final cast die components are shown in Figure 8.2 (c). 
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Figure 8.2 (a) CAD of the lower part of the die, (b) DCP mould, (c) RCT die as-cast before 

finishing operations 

8.2.2 Measurement of the mould and tool surface roughness 

The surface finish or surface roughness was determined using a portable surface roughness 

tester (TIME model TR 110). This instrument provides two roughness parameters namely the 

(c) 

(b) 

(a) 
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Arithmetic Average Roughness (Ra) and the Mean Average Roughness (Rz) that characterise 

the surface profile of the mould and casting. Ra reflects the average height of irregularities of 

the component from a mean line. Rz, on the other hand, is the average distance between the 

highest peak and the deepest valley in five sampling lengths, or cutoffs. Rz is in general more 

sensitive then Ra to changes in surface finish because maximum profile heights, and not the 

averages, are examined. Schematic representations of Ra and Rz are shown in Figure 8.3. The 

mould surface roughness was obtained as the average of the surface roughness of 18 points, 

shown in Figure 8.4. Corresponding points on the cast die were considered to determine its 

overall surface finish.  

Surface roughness was measured on the following: 

i. Uncoated RP mould 

ii. Coated RP mould 

iii. Casting produced from uncoated mould 

iv. Casting produced from coated mould 

 

Figure 8.3 Variety of surface roughness indicators and typical calculations (JISB0031, 1994) 
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Figure 8.4 Points used to determine average surface roughness of the mould 

8.2.3  Assessment of the mould and tool dimensional accuracy 

A two-step process, shown in Figure 8.5 was followed to measure and assess the dimensional 

accuracy of moulds and cast tools. A VIVID 910 3D non-contact digitizer from Konica 

Minolta was used to produce the 3-D scanned data from the parts. The 3-D scanned data were 

then compared to the original CAD data during the merging step using Geomagic Qualify 

software. Dimensional accuracy results consist of 3-D comparison and deviation distribution 

of dimensions. Table 8.1 shows the dimensional tolerances used for the merging of sand 

moulds and castings. These tolerances have been informed by literature reporting on the 

dimensional accuracy of LS and shell casting processes (Groover, 2006; Kim et al., 2008).  

The dimensional accuracy was determined for the following objects: 

i. Uncoated RP mould 

ii. Coated RP mould 

iii. Casting produced from uncoated mould 
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Figure 8.5 Process flow diagram for the assessment of dimensional accuracy 

Table 8. 1Tolerance used in the merging process 

Tolerances [mm] Sand Mould Cast tool 

 Max. Critical  2.0 2.0 

 Max. Nominal  0.2 0.5 

 Min. Nominal  -0.2 -0.5 

 Min. Critical  -2.0 -2.0 

8.3 Results 

8.3.1 Surface roughness 

Figure 8.6 shows the average values of surface roughness for the various parts. The coated 

mould has a better surface finish than the uncoated mould. The difference in roughness 

shown by the Ra and Rz parameters of the uncoated mould were respectively 2.5 and 1.8 

times larger than the same parameters for the coated mould.  On the other hand, the RCT tool 

obtained from the coated mould had an overall smoother surface finish than the cast tool 

produced from the uncoated mould. The best surface finish obtained for the cast die had Ra 

and Rz equal to 3.23 µm and 11.38 µm respectively. 
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Figure 8.6 Average roughness for the RP moulds and the RCT tool 

8.3.2 Dimensional accuracy 
8.3.2.1 3-D comparison 

The 3-D comparisons of scanned data with reference CAD data are shown in Figure 8.7. The 

green areas represent points that have dimensions within the nominal tolerances defined in 

Table 8.1. The blue areas represent points below the dimensions of the reference part. The 

yellow and red areas represent points above the dimensions of the reference part. It appears 

that the coated mould has a better overall dimensional accuracy than the uncoated mould and 

the cast die from the coated mould. 

Figure 8.8 represents the quantified geometric and dimensional accuracy obtained after 

merging. About 82% accuracy was achieved for the cast die within the nominal tolerances 

of ±0.5 mm. The coated mould appears to exhibit a better accuracy than the uncoated mould 

with 90% point clouds coinciding with the original CAD data within an error range of ±0.2 

mm in the former case compared to 82% in the latter case. 
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8.3.2.2 Deviation distribution of dimensions 

The deviation distribution graphs from the comparison of scanned data with reference CAD 

data are shown in Figure 8.9. The following general observations can be made from these 

graphs: 

i. Data are missing in the central part of the graphs.  

ii. 70 to 80% of the points lie on the right hand side of the graphs.  

iii. A pattern emerges as one progress from Figure 8.9 (a) to Figure 8.9(d). The left-hand side 

bars are continuously truncated, while the right-hand bars increase in heights. Figure 8.10 

conveys the same message. 

8.4 Discussion 

8.4.1 Surface finish 

The coated mould exhibited a better surface finish compared to the uncoated mould (Figure 

8.6). The coating applied on the mould before casting, filled up the interstices of the uncoated 

mould’s surface created by the granular structure of the sand grains and the layer-by-layer 

manufacturing of the mould. This improvement in surface finish on the coated mould was 

transferred to the cast tool. The RCT tool produced from the coated mould had an overall 

better surface finish than the one produced from an uncoated mould. However, the difference 

of tool surface roughness between the casting from the uncoated mould and the one from the 

coated mould was not very significant since Ra and Rz parameters were close. Possible 

reasons include the particle size of the moulding sand, the pouring temperature of the cast 

alloy and the wetting properties of the aluminium-silicon alloy.  

The LS process for the sand mould is similar to the Shell sand process characterised by the 

use of very fine sand with an AFS number higher than 60 in order to improve the surface 

finish of a casting (Beeley, 2001). It appears that in this instance, the application of a coating 

had a reduced effect in improving the casting surface finish. The other possible reason is the 

relatively low pouring temperature of 750
0
C of the cast alloy used in this investigation in 

comparison with the sintering temperature of silica sand of 1450
0 

C. At this temperature it is 

unlikely that sand-burn defect can occur, thus explaining the limited effect of the coating in 

improving the surface finish.  Finally if the alloy does not sufficiently wet the mould surface 

then its irregularities will not be transmitted to the casting. 
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The average Ra and Rz for the cast tool produced from the coated mould were respectively 

3.23 and 11.38 μm. These values are still much higher than those of machined part with 

values of Ra between 1.6 and 0.1 μm (Dergarmo et al., 2003). This confirms the need for 

light machining as the final operation steps of the RCT in order for RCT tools to meet the 

standard specification of tools for surface finish. 

8.4.2 Dimensional accuracy 

The application of a coating layer to the sand mould cavity seemed to have compensated for 

the errors of the uncoated mould, thus making the coated mould appearing to have a better 

overall geometric and dimensional accuracy of the moulds. Considering the RCT steps, the 

most probable source of the dimensional errors on the uncoated mould would be the AM step 

by laser sintering. This step involves the layer-by-layer growing of the mould followed by 

strengthening by means of curing in an oven at 220
0
C for 200 minutes. It is possible that 

during curing mould expansion and deformation occur. This phenomenon was observed with 

larger RP mould and still has to be fully investigated. 

On the other hand, the cast die seemed to have lost the dimensional accuracy of the coated 

sand mould as shown in Figure 8.8. Figures 8.7(c) and 8.9(c) suggest that the cast die had 

expanded as shown by dimensions. The expansion could be attributed to mould wall 

movement during casting. The displacement of sand mould walls is generally caused by the 

metallostatic pressure exercised on the walls by the molten metal entering the mould cavity.  

Factors such as the low strength of the mould and the loose closing of the mould accentuate 

the mould wall movements to the extent that the expansion of the casting might possibly 

surpass the contraction associated with the casting solidification, resulting in loss of 

dimensional accuracy. Figures 8.7 (e) and 8.9 (e) corroborates the explanation of possible 

mould wall movement during casting 
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Figure 8.7 3D comparison of scanned parts with original CAD data. (a) Uncoated mould, (b) coated mould, (c) coated casting, (d) coated 

casting vs. coated mould, (e) Coated mould vs. uncoated mould
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Figure 8.8 Geometric and dimensional accuracy of RP moulds and cast die 

Two phenomena, including sagging during mould curing and mould wall movement during 

casting could be at play in determining the final dimensional accuracy of the RCT tools. It 

appears that the most important step resulting in the loss of dimensional accuracy was Rapid 

Prototyping. 

8.5 Conclusion 

In this study an initial assessment of the surface finish and dimensional accuracy of RCT 

tools was conducted. The investigation showed that mould coating contributes slightly to the 

improvement of the cast tool surface finish. With regard to the dimensional accuracy of the 

cast tool, incremental contribution of the RP step and metal casting led to the final cast die 

being larger than what was aimed for during the casting modelling. The biggest contributor to 

the loss of dimensional accuracy was the RP stage, possibly during the post treatment of the 

mould by curing in a furnace.  Because of the above, machining will always be required to 

improved the surface finish and the dimensional accuracy of the cast tool. 
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Figure 8.9 Deviation distributions.  (a) Uncoated mould, (b) coated mould, (c) coated casting 
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Figure 8 10 Deviation distributions. (a) coated casting vs. coated mould, (b) Coated mould vs. uncoated mould 
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Appendix 8.1 2 D drawings of steel bracket  
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CHAPTER 9 

COMPARISON OF ADDITIVE MANUFACTURING 
PROCESSES FOR RAPID CASTING FOR TOOLING 
APPLICATION USING THE ANALYTIC HIERARCHY 
PROCESS (AHP) 

ABSTRACT 

Purpose – This paper has two objectives. Firstly the durability of cast tools produced in 

Additive Manufacturing (AM) sand moulds is assessed. Secondly cast tools obtained from 

sand moulds produced by Direct Croning (DC) and Z-Cast processes are compared. The 

comparison takes into account the tool durability characteristic in addition to previously 

considered criteria such as manufacturing time and cost, surface finish and dimensional 

accuracy of cast tools.  

Design/ methodology/approach – The tool durability is empirically inferred from the 

mechanical properties and metallographic analysis of castings. The comparison of cast tools 

obtained in various AM sand moulds is conducted using the Analytic Hierarchy Process 

(AHP).  

Findings – Merit of durability figures of 0.048 to 0.152 were obtained for the cast tools. It 

was found that tools obtained from DC moulds have merit of durability figures three times 

higher than the tools produced from Z-Cast moulds. The application of AHP mathematical 

calculation resulted in a 52% preference for the DC versus 48% preference for Z-Cast thus 

indicating a marginal superiority of the Laser Sintering process compared to the Three 

Dimensional process.  

Originality/ Value – In this study experimental data of cast tool characteristics are used to 

conduct an investigation on the preference of existing AM processes for the production of 

sand moulds using a multi-dimensional criteria analysis technique.  

Key Words – Additive Manufacturing; Analytic Hierarchy Process; Direct Croning Process; 

Durability; Z-Cast Process   
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9.1 Introduction 

Rapid Casting for Tooling (RCT) has been proposed as tool and die manufacturing method 

(Nyembwe, et al, 2010). Through RCT, tools and dies are essentially produced by metal 

casting in sand moulds obtained by Additive Manufacturing (AM) processes. Figure 9.1 

illustrates the RCT process chain that comprises five steps and a validation stage to determine 

if a tool can be manufactured by RCT. The AM processes that can be used include the Direct 

Croning (DC)   and Z-Cast processes. 

 

Figure 9.1 RCT process chain (Nyembwe et al, 2010) 

The DC process is based on the Laser Sintering (LS) process. In this instance, a laser beam is 

used to selectively fuse pre-coated foundry sand particles into a solid part that will become a 



 121 

component of the sand mould (Chua et al, 2010). On the other hand the Z-Cast process is 

based on three dimensional printing (3DP) technique. In this case, an ink-jet head selectively 

deposits or “prints” resin binder fluid that glues the sand particles together to form a mould 

that can be used for metal casting (Palm, 2002).  

LS and 3DP have been compared in several investigations (Pham et al, 1998; Dimitrov et al, 

2003; Dimitrov et al, 2005; Kim et al, 2008) From these studies, it transpire that LS provides 

parts with better surface finish and dimensional accuracy compared to 3DP that excels with 

regards to manufacturing speed and cost efficiency. Although the parts were not sand mould 

components to use for metal casting, it is generally accepted that the results obtained from the 

benchmark studies will apply to the DC and Z-Cast processes.   

A recent theoretical study (Nyembwe et al, 2012) focused on the selection of the most 

suitable AM process between DC and Z-Cast specifically for RCT applications using the 

Analytic Hierarchy Process (AHP). AHP is well a known multi-dimensional criteria analysis 

that uses intensities assigned to comparison criteria and alternatives to derive mathematically 

overall preferences of alternatives. The study indicated that the DC process was better than 

the Z-Cast process. The DC and Z-Cast processes were respectively implemented by using 

EOSINT S 700 and Z-Corporation 510 Spectrum machines. The overall preferences for these 

two alternatives were respectively calculated at 73% and 27%. 

Although the above study provided valuable understanding on the overall performance of DC 

and Z-cast with regards to the manufacturing of sand moulds for RCT applications, it had two 

quite relevant limitations: 

i. Theoretical pairwise comparisons of AM processes were based on the results of general 

benchmark studies on LS and Three Dimensional Printing (3DP) (Pham et al, 1998; 

Dimitrov et al, 2003; Dimitrov et al, 2005; Kim et al, 2008). No experimental work using 

DC and Z-Cast was carried out to generate specific data for the allocation of AHP 

intensities required in such an endeavour. 

ii. The durability of cast tools was not considered amongst the selection criteria that 

included the manufacturing time and cost, surface finish and dimensional accuracy. It 

was assumed that the durability was independent of the AM process used to produce sand 

moulds. 
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Broadly speaking, the durability of a tool represents its resistance to abrasion wear during 

normal service conditions. It is an important characteristic since it determines the tool life 

based essentially on the criterion of dimensional degradation. Tool durability generally 

depends on metallurgical factors such as the alloy type, composition and microstructure. The 

latter factor is a function of the tool solidification mode. Thus, the different AM moulds in 

terms of their refractory base sand types could possibly impact on the RCT tool solidification 

mode and consequently the tool durability.  

In the present work, DC and Z-Cast processes are compared using AHP with regards to the 

production of RCT tools. The comparison criteria include the manufacturing time and cost, 

surface finish, dimensional accuracy and durability of tools. Experimental results on DC and 

Z-Cast tools are used for the pairwise comparison of the two AM processes and the 

determination of intensities. The aim of this study is to assess the influence of using a 

comprehensive set of experimental data of tool characteristics on the overall preferences of 

DC and Z-Cast for RCT application.  

9.2 Methodology 

A three steps methodology was followed in the present investigation:  

i. Production of RCT tools using DC and Z-Cast processes for the production of sand 

moulds 

ii. Characterisation of  RCT tools 

iii. Application of AHP 

9.2.1 Production of RCT Tools 

A case study consisting of the manufacturing of an A356.0 aluminium alloy die to be used for 

the lost wax casting of a steel bracket shown in Figure 9.2 was used in this undertaking. RCT 

experimental conditions are summarised in Appendix 1. It can be noted that DC and Z-Cast 

are the two types of AM processes used in this study. At the time of conducting this work, 

these were the only two types of AM processes locally available for the production of sand 

moulds.   Figure 9.3 illustrates the CAD of the lower part of the die, the LS mould 

components as well as the as-cast RCT die. 
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At the end of this step, the manufacturing time and cost of cast dies were determined. The 

tool manufacturing time represents the sum of actual working times devoted to each RCT 

step. Likewise the tool manufacturing cost represents the total of partial costs of each RCT 

step.   

 

Figure 9.2 2D drawing and 3D view of the steel bracket 

 



 124 

 

 

 

Figure 9.3 (a) CAD of the lower part of the die, (b) DC mould, (c) RCT die before finishing 

operations 

(b) 

(a) 

(c) 
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9.2.2 Characterisation of tools 

The cast dies were characterised in terms of dimensional accuracy, surface finish and 

durability. 

9.2.2.1 Dimensional accuracy 

Three dimensional scanning of RCT tools was performed using a VIVID 910 3D non-contact 

digitizer from Konica Minolta. The scan data were then compared to the ones of the CAD die 

to generate deviation distribution curves. Geomagic Qualify software was used for the 

merging process of these various data. Table 9.1 shows the dimensional tolerances used for 

the merging of sand moulds and castings (Groover, 2006; Kim et al, 2008).  

Table 9. 1 Tolerance used in the merging process 

 

Tolerances [mm] Sand Mould Cast tool 

 Max. Critical  2.0 2.0 

 Max. Nominal  0.2 0.5 

 Min. Nominal  -0.2 -0.5 

 Min. Critical  -2.0 -2.0 

9.2.2.2 Surface finish 

The arithmetic average roughness (Ra) and mean average roughness (Rz) of the RCT die 

surfaces were measured using a portable surface roughness tester type TIME model TR 110. 

9.2.2.3 Durability 

Referring essentially to the dimensional degradation as failure criterion, the durability of a 

RCT tool could be reflected by its resistance to abrasion wear. Considering such durability 

metric for the RCT tool, it has to be stressed that abrasion wear can be expressed 

quantitatively by Eq (1) (Rabinowicz, 1965). 

H

LFk
V snw

           (1) 
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where V is the volume of tool material worn away, kw the wear coefficient, Fn the force 

normal to the sliding interface, Ls the distance slid, and H the hardness of the tool. 

The resistance of a tool material to abrasion wear is likely to increase with hardness. 

However, if its surface finish is not free from imperfections and irregularities such as 

microcracks, scratches, dents etc., from which cracks can originate, this influence of high 

hardness on resistance to abrasion wear might not be effective. This influence of high 

hardness on resistance to abrasion wear would also not be effective if inter-grain bonding is 

weak (Xiao, 1990). 

Furthermore, the resistance of a tool material to abrasion wear can be improved by reducing 

its grain size. It can also be improved by inducing residual compressive stresses in the top 

layers during the final step of manufacturing (Tonshoff, 1991). 

Based on the details above mentioned, the following figure of merit (Eq. (2)) was used to 

measure the durability of RCT tools. 

z

CV

Rd

HK
D

.

.
           (2) 

where D is the figure of merit of durability of the RCT tool, KCV, H and d respectively the 

impact toughness, hardness and grain size of the tool material, and Rz the surface finish 

(mean average roughness) of the RCT tool. 

Thus, the durability of RCT tools was determined from the measurements of impact 

toughness, hardness, grain size (primary dendrite spacing) of the tool material and surface 

finish of the RCT tool. 

The impact toughness was measured with a Tinius Olsen pendulum impact tester. The 

hardness was measured with a Zwick/Roell Indentec ZHV Vickers hardness tester under a 

load of 1 kg and a dwell time of 10 s. The grain size was measured from Scanning Electron 

Microscope (SEM) micrographs using Analysis5
®
 image analysis software. A Tescan 

Vega3M SEM was used for the acquisition of SEM images in back scattered electron (BSE) 

imaging mode. The measurement of the mean average roughness was described earlier in the 

section. 
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9.2.3 Application of AHP 

The AHP hierarchy has been implemented as follows: 

i. The goal: Determination of the most suitable AM process for RCT application between 

the DC and Z-Cast process. 

ii. The five AHP criteria included manufacturing time and manufacturing cost, dimensional 

accuracy, surface finish and durability. 

iii. The two alternative AM processes were DC and Z-Cast.  

iv. Results obtained in Section 2.1 and 2.2 were used to allocate the various intensities 

during the pairwise comparisons of criteria and alternatives. Table 9.2 shows the 

fundamental scale for pairwise comparison used in this study. 

Table 9.2 The fundamental scale for pairwise comparisons 

 

Intensity of Importance Definition Explanation 

1 Equal importance Two elements are equal  

with regards to the 

objectives 

3 Moderate importance One element is slightly 

preferred over another 

5 Strong importance One element  is strongly 

prefer over another 

7 Very strong importance One element is preferred 

very strongly over another. 

9 Extreme importance One element  is dominantly 

preferred over another  

Intensities of 2, 4, 6 and 8 can be used to express intermediate values 

9.3 Results 

9.3.1 Manufacturing time and cost 

Table 9.3 presents the results of manufacturing time for the dies obtained from DC and Z-cast 

moulds. It emerges that AM is the time-determining step. It can also been seen that the RCT 

process chain using Z-cast was 28 % faster than RCT using DC. 



 128 

Table 9.4 presents the results of manufacturing cost for the dies obtained from DC and Z-cast 

moulds. It emerges once again that RP is the cost-determining step. In addition it transpires 

from the table that RCT using the Z-cast process was 23% cheaper than RCT using DC. 

Table 9.3 Manufacturing time 

 

RCT Tool 

Time [hour] 

CAD 

Modelling 

Casting 

Simulation 
AM Casting 

Finishing 

Operation 
Total 

DC  5.5 5 24 1 1 36.5 

Z-Cast 5.5 5 16 1 1 28.5 

 

Table 9.4 Experimental manufacturing cost 

 

RCT Tool 

Cost [Rand] 

CAD 

Modelling 

Casting 

Simulation 
AM Casting Total 

DCP 790 2280 12000 2000 17070 

Z-Cast 790 2280 8000 2000 13070 

9.3.2 RCT tool characteristics 
9.3.2.1 Dimensional Accuracy 

Figure 9.4 shows the deviation distributions of dies obtained from DC and Z-Cast moulds. It 

appears that the Z-Cast die exhibits a better dimensional accuracy than the DC die. In the 

case of the Z-Cast die, close to 88% of points were found to be in tolerances [-0.5 to 

+0.5 mm] compared to only 80% in the case of the DC die. 
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Figure 9.4 Deviation distributions (a) Die from DC mould, (b) Die from Z-Cast mould 

 

9.3.2.2 Surface Finish 

Figure 9.5 presents the surface roughness values for the dies obtained from two types of 

moulds. It emerges that the DC- RCT die had a better surface finish as the corresponding 

values of Ra and Rz were  the lowest.   
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Figure 9.5 Surface Roughness 
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9.3.2.3 Durability 

The typical microstructures of the RCT tools for which the chemical composition is presented 

in Table 9.5, are shown in Figure 9.6. The impact toughness, Vickers hardness, grain size and 

mean average roughness of the RCT tools as well as the figure of merit of durability derived 

thereof are presented in Table 9.6. LS RCT tools appeared to be slightly tougher and stronger 

than 3DP RCT tools. However, it emerged that the surface finish was the parameter which 

impacted the most on the difference of durability between LS and 3DP RCT tools. LS RCT 

tool emerged as more durable. 

Table 9.5 Chemical composition of the RCT tool material 

 

Element Si Fe Cu Mn Mg Zn Pb Sr Al 

Weight % 5.965 1.126 3.068 0.379 0.143 0.445 0.05 0.0010 Balance 

 

Table 9.6 Impact toughness, Vickers hardness, grain size and mean average roughness 

of  the RCT tools as well as the figure of merit of durability derived thereof 

 

RCT Tool KCV, [J] HV1 d, [µm] Rz, [µm] D 

LS 2 78.2 141.74 7.25 0.152 

3DP 1.83 74 116.80 24.07 0.048 
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Figure 9.6 Microstructure of the RCT tools, 0.1 g/l NaOH etching, BSE, SEM image, (a) LS 

tool (b) 3DP tool 

(a) 

(b) 
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9.3.3 AHP Results 

Table 9.7 shows the results of pair wise comparison of the five criteria with the 

corresponding intensity allocations. In terms of criteria importance, the following hierarchy 

was adopted: Surface finish and dimensional accuracy followed by durability followed by 

manufacturing time followed by manufacturing cost. It is crucial that the die first meets the 

quality requirements in terms of dimensional accuracy and surface finish that will be 

transferred to the final production part. The RCT tool should have a high durability figure of 

merit in order to last in service. Moreover, the RCT die should also be quickly delivered. A 

premium price would therefore have to be paid to meet all the above conditions. 

Table 9.7 Pairwise comparison of criteria 

 

Criteria 

A                                B 

More 

Important 
Intensity 

Surface finish Dimensional 

accuracy 
A= B 1 

Surface finish Manufacturing 

cost 
A 7 

Surface finish Manufacturing 

time 
A 5 

Surface Finish Durability A 4 

Dimensional 

accuracy 

Manufacturing 

cost 
A 7 

Dimensional 

accuracy 

Manufacturing 

time 
A 5 

Dimensional 

Accuracy  

Durability 
A 4 

Manufacturing 

cost 

Manufacturing 

time 
B 3 

Manufacturing 

cost 

Durability 
B 5 

Durability Manufacturing 

Time 
A 3 
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Table 9.8 shows the weights of the five criteria considered using the intensity allocations of 

Table 9.7 (Appendix 9.2). The consistency factor was found to be equal to 2.8% 

Table 9.8 Criterion weights 

 

 A B C D E 

Weights 0.37 0.37 0.08 0.04 0.14 

A = Surface finish 

B = Dimensional accuracy 

C = Manufacturing time 

D = Manufacturing cost 

E = Durability 

Table 9.9 shows the pairwise comparison between the DC and Z-Cast processes with regard 

to each criterion. Results obtained in Section 3.1 and 3.2 have been used to allocate the 

intensities. These data suggest that for the surface finish and durability, the superiority of the 

LS process is very strong justifying intensities of 7. On the other hand for the dimensional 

accuracy, manufacturing time and cost the superiority of the 3DP process is stronger hence 

intensities of 5 and 7 have been allocated. 

Table 9.9 Pairwise comparison of alternative with respect to each criterion 

 

Criteria 
Better Process 

Intensity 
DC Z-Cast 

Surface Finish X  7 

Dimensional 

Accuracy 
 X 5 

Manufacturing 

Time 
 X 7 

Manufacturing 

Cost 
 X 7 

Durability X  7 
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Table 9.10 shows the resulting weight of alternative AM processes with regards to the 

various criteria (Appendix 9.3). From Tables 9.8 and 9.9, the overall preferences of the two 

AM processes were determined and found to be equal to 52% for DC and 48 % for Z-Cast 

(Appendix 9.4). Compared to the previous comparison study mentioned in Section 1, the 

preference for LS process decreased while the one for the 3DP process increased by 21 % 

point. 

Table 9.10 Weights of alternatives 

 

 DC Z-Cast 

Surface Finish 0.88 0.13 

Dimensional 

Accuracy 
0.17 0.83 

Manufacturing 

cost 
0.13 0.88 

Manufacturing 

time 
0.13 0.88 

Durability 0.88 0.13 

9.4 Discussion 

9.4.1 Manufacturing time and cost, RCT tool characteristics 

The experimental results obtained on the surface finish, manufacturing time and cost 

confirmed the trends obtained in the previous benchmark studies that compared LS machines 

with 3DP machines ((Pham et al, 1998; Dimitrov et al, 2003; Dimitrov et al, 2005; Kim et al, 

2008). The 3DP process is known to be faster and more cost efficient compared to the LS 

process. From the experimental results, an intensity of 7 was used to indicate the superiority 

of Z-Cast compared to DC.  

With regards to the dimensional accuracy, the experimental results obtained contradicted the 

previous benchmark study results (Pham et al, 1998; Dimitrov et al, 2003; Dimitrov et al, 

2005; Kim et al, 2008). It was found that the Z-Cast die was geometrically and dimensionally 

more accurate compared to the DC die. A possible explanation to this disagreement of results 

is that in the previous benchmark studies, the accuracy measurements were performed from 

the parts produced by LS and 3DP processes not from the castings obtained from LS and 3DP 
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moulds. During metal casting several phenomenon take place including mould-metal 

interactions, solidification, and contraction that could have impacted on the final results of 

dimensional accuracy. In addition, the refractory powders (Z501 and silica sand) used in this 

study are different from the ones used in the previous benchmark studies.   

Incidentally the durability figure of merit (Eq (2)), the DC process was also found to be 

superior to the Z-Cast process with regards to the durability of the tools produced from the 

respective moulds. The difference between the durability of two AM processes could 

possibly be due to the effect of the mould material that influence metal mould reactions, 

surface finish and casting cooling. Shell moulds produced in the DC process are made of 

silica sand while Z-Cast moulds produced on the Spectrum 510 are made of proprietary 

synthetic sand (Z Cast 501). These materials have different thermal conductivity, fineness 

and chemical reactivity with the aluminium alloy leading to marked different durability of the 

cast dies and therefore justifying the allocation of an intensity of 7 during the pairwise 

comparison of the DC to the Z-cast process. 

9.4.2 AHP results 

Overall the two processes seem to reach equilibrium. The DC is superior on to two criteria 

that ranked very high in importance while the Z-Cast is better with regard to the other three 

criteria that ranked slighter lower in importance. Applying AHP mathematical calculation 

results in a 52 % preference for DC versus 48% preference for Z-Cast.  

9.5 Conclusion 

Merit of durability figures were inferred by mechanical properties and SEM analysis indicate 

that DC tools have a better wear resistance than Z-Cast tools in their applications for mass 

production processes such as sand casting or injection moulding. The use of experimental 

data of manufacturing time and cost and various tool characteristics including surface finish, 

dimensional accuracy and durability has allowed the authors to reliably allocate priorities and 

intensities during the comparison of DC and Z-Cast for RCT application using the AHP 

technique. New preference values different from the ones obtained in previous studies were 

obtained for the LS and 3DP processes. They show that DC is marginally more suitable than 

Z-Cast for RCT application. 
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Appendices 

Appendix 9 1Technical characteristics of RCT steps during die manufacturing 
trials 

RCT Steps Experimental conditions 

CAD Modelling 

(Pro Engineering 

software: wildfire II) 

- Filleting of designs 

- Al contractions added 

- 1mm machining allowance added 

Casting simulation 

(Magmasoft software) 

- Aluminium die: 

- Objectives: minimise shrinkage and oxidation 

during filling 

- Iterations: 5 

Rapid Prototyping 

(LS EOSINT S 700 and 

3DP Spectrum 510 RP 

machines) 

- DCP: EOSINT S700: 

- Standard operating parameters 

- Curing of mould parts at 750
 0
C 

- Shell sand (silica) 

- Z-Cast: Spectrum 510: 

- Standard operating parameters 

- No curing of moulds 

 

Metal Casting 

(Gravity casting) 

- Aluminium die: 

- Charge: LM 4 

- Resistance furnace 

- Nitrogen degassing 

- Pouring temperature: 750
0
 C 

- Kalpur direct pouring device 

Finishing operation 

 

As Cast  
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Appendix 9.2 Determination of criterion weights 

Table 9.2.1 Preference on criteria  

 Surface finish Dimensional 

accuracy 

Manufacturing 

time 

Manufacturing 

cost 

Durability 

Surface  finish 1 1 5 7 4 

Dimensional accuracy 1 1 5 7 4 

Manufacturing time 1/5 1/5 1 3 1/3 

Manufacturing cost 1/7 1/7 1/3 1 1/3 

Durability 1/4 1/4 3 5 1 

Table 9.2.2 Weights on criteria 

 Surface finish Dimensional 

accuracy 

Manufacturing 

time 

Manufacturing 

cost 

Durability Average 

Surface  finish 0.39 0.39 0.35 0.30 0.41 0.37 

Dimensional 

accuracy 

0.39 0.39 0.35 0.30 0.41 0.37 

Manufacturing 

time 

0.08 0.08 0.07 0.13 0.03 0.08 

Manufacturing 

cost 

0.06 0.06 0.02 0.02 0.03 0.04 

Durability 0.10 0.10 0.21 0.22 0.10 0.14 

Each element in Table 9.2.2 is obtained by dividing the entry in Table 9.2.1 by the sum of the 

column it appears in. For instance the (manufacturing time, manufacturing cost) element in 

Table 9.2.2 is calculated as: 3/ (7+7+3+1+5) = 0.13. Values in the Average column are 

obtained by averaging values in the different rows. The Average column represents the 

weights of criteria. 
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Appendix 9.3 Determination of alternative weights 

Step 1: Weights of alternatives with regards to each criterion 

Table 9.3.1.1 Comparison of RP processes on surface finish/ durability 

 EOSINT 

Z510 

Spectrum 

EOSINT 1 7 

Z510 

Spectrum 

1/7 1 

Table 9.3.1.2. Weights of alternatives with regards to surface finish/ durability 

 

EOSINT Z510 

Spectrum 

Average 

EOSINT 0.88 0.88 0.88 

Z510 

Spectrum 

0.13 0.13 0.13 

Table 9.3.1.3. Comparison of RP processes on dimensional accuracy 

 EOSINT 

Z510 

Spectrum 

EOSINT 1 1/5 

Z510 

Spectrum 

5 1 

Table 9.3.1.4 Weights of alternatives with regards to dimensional accuracy 

 

EOSINT Z510 

Spectrum 

Average 

EOSINT 0.17 0.17 0.17 

Z510 

Spectrum 

0.83 0.83 0.83 

 

Table 9.3.1.5 Comparison of RP processes on manufacturing time/ manufacturing cost 
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 EOSINT 

Z510 

Spectrum 

EOSINT 1 1/7 

Z510 

Spectrum 

7 1 

Table 9.3.1.6 Weights of alternatives with regards to manufacturing time/ 

manufacturing cost 

 

EOSINT Z510 

Spectrum 

Average 

EOSINT 0.13 0.13 0.13 

Z510 

Spectrum 

0.88 0.88 0.88 

Step 2 Weights of alternatives  

Table 9.3.2.1 Weights of Alternatives* 

 EOSINT 

Z510 

Spectrum 

Surface  Finish 0.88 0.13 

Dimensional 

Accuracy 

0.17 0.83 

Manufacturing 

cost 

0.13 0.88 

Manufacturing 

time 

0.13 0.88 

Durability 0.88 0.13 

* Values in Table 9.3.2.1 rows are obtained from Average column in tables above 
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Appendix 9.4 Determination of overall weights  

Table 9.4.1 Determination of overall weights of alternatives 

Appendix 9.1 

data Appendix 9.2 data   

A B C D E F 

Criterion 

Weights Alternative Weights   

  EOSINT 

Z510 

Spectrum EOSINT 

Z510 

Spectrum 

0.37 Surface Finish 0.88 0.13 0.32 0.05 

0.37 

Dimensional 

Accuracy 0.17 0.83 0.06 0.31 

0.08 

Manufacturing 

cost 0.13 0.88 0.01 0.07 

0.04 

Manufacturing 

time 0.13 0.88 0.01 0.04 

0.14 Durability 0.88 0.13 0.13 0.02 

    0.52 0.47 

The results of columns E and F are obtained by multiplying A by C and A by D respectively. 

The overall weights are summing values in columns E and F 
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CHAPTER 10 

CONCLUSIONS AND RECOMMENDATIONS  

10.1 Conclusions 

This study investigated the possibilities of manufacturing tools by metal casting in sand 

moulds essentially produced by Additive Manufacturing (AM) processes. Several features of 

this attempt were examined in order to gain an integrated understanding of this 

manufacturing route in terms of its relevance and performance. The following conclusions 

emerged from this endeavor: 

i. Rapid Tooling (RT) processes are leading the group of tool manufacturing processes 

that could be suggested as alternatives to the traditional machining. 

ii. Modern developments and trends of AM processes for the production of sand moulds 

make it possible to revisit metal casting as a viable route for tool manufacturing among 

the indirect RT processes existing so far. 

iii. By combining modern metal casting processes and design tools together with AM of 

sand moulds, it is possible to develop a process chain that optimises the production of 

cast tools. 

iv. The Analytic Hierarchy Process has proven to be an effective method for the selection 

of the most suitable AM processes to be implemented in the Rapid Casting for Tooling 

(RCT) process chain. Using such a multi-dimensional criteria analysis technique, the 

overall difference between EOS laser sintering and Z-Corporation three dimensional 

printing was quantified in the particular context of RCT. It was shown that laser 

sintering was the more suitable AM process for RCT compared to three dimensional 

printing. 

v. The success of the practical implementation of RCT and the related known-how are 

dependent on the casting simulation step on one hand and the elimination of exogenous 

factors linked to workmanship on the other hand. 

vi. The AM of sand moulds is the cost driver as well as the rate determining step of RCT. 

Controlling this step will go a long way in making the RCT process chain more 

competitive compared to machining. 
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vii. Overall, the manufacturing of metallic tooling by casting in sand moulds produced by 

AM processes is a viable alternative. The method presents benefits of lower 

manufacturing cost and shorter processing time. However the as cast tool quality with 

regard to dimensional accuracy and surface finish are still not comparable to machining. 

RCT will inevitably require some minimal machining. 

viii. RCT tools obtained from DC moulds will resist better to abrasion wear than the ones 

produced from Z-Cast moulds with regards to their applications for mass production 

processes such as sand casting or injection moulding. 

10.2 Recommendations 

New challenges were encountered during the undertaking of this project and need to be 

addressed together with some others features which were not covered in the current study. In 

this regards future work may include: 

i. The broadening of RCT applications to the manufacturing of tooling used in other mass 

production processes such as injection molding, die casting and forging.  

ii. An in depth investigation of tool design, material and geometry suitable for RCT. 

iii. The economic and quality assessment of RCT tools that have been subjected to 

finishing operations such as machining and heat treatment. 

iv. A study of RCT process learning curve and acceptance by local tool rooms as an 

alternative method for practical use 

v. An investigation of centralized procurement of manufacturing technology to obviate the 

high capital cost by an individual foundry. 




