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Opsomming 

 
 
  Die algehele doel van die eksperiment is om 'n intelligente masjien te maak wat 

kan leer uit ondervinding, dus „n nuwe metode moes ontwerp word.  Dit is moontlik 

gemaak, deur 'n program te ontwikkel wat 'n ander program genereer.  Deur die 

gegenereerde program konstant te verander om dit te verbeter, word 'n masjien die 

vermoë gegee om by sy omgewing aan te pas en dus te leer uit ondervinding. 

  Die gegenereerde program moes 'n spesifieke taak verrig.  In die eksperiment is 'n 

program gegenereer vir 'n gesimuleerde PIC mikrobeheerder aanboord 'n 

gesimuleerde robot.  Die doel was dat die robot so na as moonlik aan 'n spesifieke 

punt binne in 'n doolhof moes kom.  Alhoewel slegs die afstand tussen die laaste 

posisie van die robot en die eindbestemming gebruik word as indikasie van hoe 

goed die robot opgetree het, moes die robot nogtans die vermoë toon om 

hindernisse te oorkom.   

  Die program het eksperimente uitgevoer deur na willekeur 'n paar instruksies in 

die huidige gegenereerde program te verander.  Die gegenereerde program is dan 

geëvalueer deur die reaksies van die robot te simuleer.  As die verandering aan die 

gegenereerde program veroorsaak dat die robot nader aan die eindbestemming 

kom, word die veranderde gegenereerde program gehou om later gebruik te word.  

As die verandering 'n minder gewenste resultaat lewer, word die veranderde 

gegenereerde program verwyder en die oorspronklike onveranderde gegenereerde 

program gehou vir toekomstige gebruik.  Die proses is 'n honderd-duisend keer 

herhaal voordat die gegenereerde program as 'n resultaat beskou is.   
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  Omdat 'n geringe kans bestaan het dat die instruksie wat gekies is, voordelig sou 

wees vir die program, was dit nodig om baie veranderinge te maak voordat die 

ideale instruksie en dus die ideale resultaat verkry kon word.  Na elke verandering 

moes die program geëvalueer word deur die robot se reaksies te simuleer.   

  Die aantal veranderinge wat nodig was, kon baie verminder word deur instruksies 

wat moontlik voordelig is 'n hoër kans te gee om gekies te word as moontlik minder 

voordelige instruksies. 

  Omdat die Ewekansige-funksie so baie gebruik word in die eksperiment, het die 

resultate baie van mekaar verskil.  Die probleem is oorkom deur die eksperimente 

baie te herhaal.  'n Enkele program is gegenereer deur 'n honderd-duisend keer die 

instruksies te verander. 

  Die nuwe metode is vergelyk met Genetiese Algoritmes, waar Genetiese Algoritmes 

gebruik was om programme te genereer deur gebruik te maak van dieselfde bronne 

as vir die nuwe metode.  Die nuwe metode het gemaak dat die robot baie vinniger 

aanpas by sy omgewing as wat Genetiese Algoritmes kon.   

  'n Fisiese robot, ooreenstemmend met die gesimuleerde robot, is gebou om te 

bewys dat die gegenereerde programme op 'n fisiese robot sal werk.   

  Daar was baie verskille tussen die gegenereerde programme en die normale manier 

waarop 'n mens 'n program sou skryf.  Vir diè rede, gee die resultate nie net nuwe 

maniere waarop 'n program geskryf kan word nie, maar kan moontlik programme 

ontwikkel wat voorheen nie deur menslike programmeerders gedoen kon word nie. 
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Abstract 

 
 
  The ultimate goal regarding this research was to make an intelligent learning 

machine, thus a new method had to be developed.  This was to be made possible by 

creating a programme that generates another programme.  By constantly changing 

the generated programme to improve itself, the machines are given the ability to 

adapt to there surroundings and, thus, learn from experience.   

  This generated programme had to perform a specific task.  For this experiment the 

programme was generated for a simulated PIC microcontroller aboard a simulated 

robot.  The goal was to get the robot as close to a specific position inside a simulated 

maze as possible.  The robot therefore had to show the ability to avoid obstacles, 

although only the distance to the destination was given as an indication of how well 

the generated programme was performing. 

  The programme performed experiments by randomly changing a number of 

instructions in the current generated programme.  The generated programme was 

evaluated by simulating the reactions of the robot.  If the change to the generated 

programme resulted in getting the robot closer to the destination, then the changed 

generated programme was kept for future use.  If the change resulted in a less 

desired reaction, then the newly generated programme was removed and the 

unchanged programme was kept for future use.  This process was repeated for a 

total of one hundred thousand times before the generated program was considered 

valid. 

  Because there was a very slim chance that the instruction chosen will be 

advantageous to the programme, it will take many changes to get the desired 

instruction and, thus, the desired result.  After each change an evaluation was made 
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through simulation.  The amount of necessary changes to the programme is greatly 

reduced by giving seemingly desirable instructions a higher chance of being chosen 

than the other seemingly unsatisfactory instructions. 

  Due to the extensive use of the random function in this experiment, the results 

differ from one another.  To overcome this barrier, many individual programmes 

had to be generated by simulating and changing an instruction in the generated 

programme a hundred thousand times. 

  This method was compared against Genetic Algorithms, which were used to 

generate a programme for the same simulated robot.  The new method made the 

robot adapt much faster to its surroundings than the Genetic Algorithms. 

  A physical robot, similar to the virtual one, was build to prove that the 

programmes generated could be used on a physical robot. 

  There were quite a number of differences between the generated programmes and 

the way in which a human would generally construct the programme.  Therefore, 

this method not only gives programmers a new perspective, but could also possibly 

do what human programmers have not been able to achieve in the past. 
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1 Introduction 

 

  For thousands of years, man has attempted to imitate the human body by using 

mechanisms.  One example of this is the mechanical arms the ancient Egyptians 

used to attach to their gods. The Greeks and eighteenth century Europeans were 

known to have made moving puppets and statues [1, p.2].  This makes it apparent 

that the idea of a robot, the word meaning “compulsive labour” has been around for 

quite some time [60, p.10]. 

  Maybe the two most interesting phenomena found in nature are intelligence and 

the ability of organisms to adapt to their surroundings.   

  In the seventies, robots revolutionised many industries.  More recently, the use of 

computers has made a significant difference in many fields.   Numerically-

controlled milling machines are not seen as robots, the distinction is in the 

complexity of the programme [10, p.3].  The term robotic has been used whenever a 

device changes its actions in response to an instruction or a change in its 

environment [5, p.1, 4]. 

  The goal of a robot, with the ability to learn, is to let the robot be able to deal with 

unforeseen circumstances, and incomplete information [16].  In the end the robot 

must be able to do more than what it was programmed to do [9].  Up until 1992 only 

a small percentage of automation systems could learn through experience, thus 

there is space for improvement [14, p.19].  A current autonomous mobile robot‟s 

ability to avoid obstacles is much worse than a human‟s ability to steer a vehicle 

when it comes to speed, safety and complexity [15].   It is possible that robots will 

become as important to us as computers are today [6, p.1]. 
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  With this technology it may be possible to program a machine so that it can find 

new ways of doing what it is intended to do.  These may be things that a person has 

not even thought of or considered possible.  It also makes it possible for a machine‟s 

“mind” to adapt to different situations. 

  In this dissertation alternative methods to Genetic Algorithms, as well as a new 

alternative method for generating a programme, will be discussed, analysed and 

evaluated against Genetic Algorithms [8].  It might also be applied for the 

improvement in other types of robots or even just computers. 

  For this experiment, the final result must be an Automated Guided Vehicle (AGV) 

that can change its programme to adapt to its surroundings [4].  Because the AGV 

has to learn, it does not have to be able to do anything when it is first started up.  At 

the end the AGV must be able to move from one specified point to another.  

Between these two points there may be obstacles and the robot must be able to 

avoid them.  The AGV must also be able to follow instructions from a human 

operator. 

  This dissertation has two hypotheses.  Firstly, determine if it is possible to generate 

a programme with an algorithm and give the features of the generated programme.  

Secondly, it should prove how effective Single-Chromosome-Evolution-Algorithms 

are compared to standard Genetic-Algorithms when used to generate a programme. 

 

1.1 Hypothetical Solution 

 

  A simulation is made for the controller of an AGV.  The AGV can then learn to 

adapt to a certain kind of surroundings before it is built in full. 
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  The programme for the “Simulated-Functions-of-the-Microcontroller”, which acts 

as the controller for a virtual AGV, will be generated using two methods.  These two 

methods are incorporated to evaluate the performance of the two methods against 

each other.   The first is to use Genetic Algorithms and the second is to use “Single-

Chromosome-Evolution-Algorithm”.  Single-Chromosome-Evolution-Algorithms are 

explained in chapter four. 

  The position of the destination is altered in accordance with an adjustment to an 

artificial input, thus “teaching” the AGV to go to a specified destination for a 

specified input instruction. 

  The linear distance between the current position of the AGV and the destination 

functions as the current fitness of the Generated Programme. 

  It is possible that, in the past, people have focused too heavily on how genes and 

cells work.  In this dissertation, the emphasis will be more on the mating habits and 

breeding methods of bigger organisms, with the aim of incorporating that into 

Genetic Algorithms. 

  The desired outcome is to have a real AGV, which is controlled by a simulated 

controller.  This controller will have the same instruction set as a PIC micro-

controller.  At first the AGV will be a Simulated AGV in a simulated world.  Single-

Chromosome-Evolution-Algorithms, or Genetic-Algorithms, will generate the 

programme for the simulated controller, which drives the Simulated AGV.  Results 

will be compared to evaluate which method performs the best. 

  If results are favourable, the Generated Programme will be tested on the Physical 

AGV. Using the simulation of the AGV to determine the programme is similar to 

thinking about what can be accomplished in a situation.  Implementing the 
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programme with the use of a Physical AGV resembles doing something after 

thinking about it. 

  An umbilical cord will connect the computer to the Physical AGV so that the 

simulated controller can still do the “thinking”. 

 

1.2 Layout of Dissertation 

 

  Chapter two gives the basic layout of a robot.  Examples of different robots and 

components of a robot are given, with the focus being placed on the controller of a 

robot.  Artificial Intelligence techniques could be in the form of a controller or they 

could act on the controller in some way.  In section 2.7.5, Genetic Algorithms, which 

are Artificial Intelligence techniques, are explained. 

  Chapter three was included to indicate how genetics work in nature.  The emphasis 

was on how multi-cellular organisms, such as chimpanzees, act; what the result of 

this action is and possible explanations for the outcome.  This information is used as 

an explanation for possible reasons as to why Genetic Algorithms act the way they 

do.  Some of these methods can also possibly be used in future experiments. 

  In chapter four, a new programme generating method, called Single-Chromosome-

Evolution-Algorithms, is developed.  Being the alternative to Genetic Algorithms, its 

ability to perform lay in its simplicity.  Like Genetic Algorithms, Single-

Chromosome-Evolution-Algorithms used mutation and fitness and were 

implemented using exactly the same simulation as Genetic Algorithms. 

  Although some hardware could have been designed to generate software, all 

programmes were generated with the use of software.  A hardware version of the 

Automated Guided Vehicle (AGV), the robot that has been chosen for this 
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experiment, has been built for the purpose of testing the programmes.  Chapter five 

shows the layout of this AGV, how it has been built and why it has been built in that 

way.  The emphasis was on making it small, inexpensive and simple.   

  A total of three programmes were written to make this experiment possible.  The 

reason and placement for each is explained in chapter six.  

  The Virtual Programme generates a programme known as the Simulated 

Programme.  The Simulated Programme is later executed on an AGV.  Chapter seven 

gives details on how a simulation of the AGV in a virtual maze is used to determine 

the fitness level of a Simulated Programme.  These fitness levels are used by either 

Genetic Algorithms or by Single-Chromosome-Evolution-Algorithms to generate the 

new generation of Simulated Programmes. 

  In most experiments, only one destination is used.  This is generally in the opposite 

corner when compared to the original position of the AGV in the maze.  When the 

split option is activated, the AGV has to learn how to react to an input from a 

human operator.  The value of a single bit, simulating an input from a user, is 

generated randomly.  The value of the bit determines to which one of the two 

destinations the AGV should go.  In all experiments, the fitness level is equivalent to 

the linear distance between the AGV and the relevant destination. 

  Mutation is used by both Genetic Algorithms and Single-Chromosome-Evolution-

Algorithms.  Chapter eight indicates that it takes time and is not the best option to 

use only mutation to generate a Simulated Programme.  Although all instructions, 

using any operand, could be generated by this new mutation method, instructions 

that are used for obstacle avoidance are inserted more extensively. 

  In chapter nine, the programme that controls the Physical AGV from the laptop is 

shown, while chapter ten shows the working of the programme on the Physical 
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AGV‟s PIC microcontroller.  These programmes communicate with each other via an 

umbilical cord.  This combination makes it possible to determine how well a 

generated programme will act when used on a Physical AGV. 

  The Physical AGV is controlled by an exact copy of the virtual controller, which 

controls the virtual AGV.  The controller, known as the Simulated-Functions-of-the-

Microcontroller, has almost the same layout and instruction set as a PIC 

microcontroller and is explained in chapter eleven. 

  All the resulting levels of fitness of all relevant experiments are given in chapter 

twelve.  The influences the different options have on the fitness values are 

calculated.  Examples of Simulated Programmes that displayed obstacle avoidance 

capabilities are analysed. In section 12.8 the conclusion of the whole experiment is 

given and, thereafter, future recommendations are made. 
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2 Robots 

 

  The following chapter will illustrate the basic layout of most robots as well as 

different types of robots.  First the history of robots is investigated. 

  Mechanical engineering, Electrical engineering, Computer science, Mathematics 

and Physics are all combined to form one discipline called robotics [1, p.10][5, p.1,1].  

The difference between ordinary machines and robots is that robots collect 

information, process this data and then function accordingly as if they were 

intelligent. [5, p.2,13] This is called a closed feedback loop and is described in figure 

2.1.   

   

 

 

 

 

 

Figure 2.1 Representation of a Closed Feedback Loop for Robots 

 

  Sensors installed in the robot itself can collect information from its immediate 

surroundings.  A transducer, in collaboration with an electronic circuit, functions as 

a sensor [1, p.547].  Some sensors can detect things that a human cannot.  Radar for 

example, is a type of sensor. Various sensors were not necessarily invented for 

robotics [50].  For a machine, determining and understanding what is being sensed 

is more difficult than sensing something [34]. The actuator, on the other hand, 
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makes movement possible [5, pp.3,1-3,15 & pp.10,1-10,28].  If the robot does not 

have a body it is not a robot, but some artificial intelligence system [13, p.7]. 

  Some techniques, such as the optimisation technique of Genetic Algorithms, 

cannot be directly implemented between the inputs from the sensors and the 

output to the actuator of the AGV.  A controller has to interface these two parts as 

shown in figure 2.2. [34]. There is another internal part that can be added, this is the 

memory of the AGV and usually forms part of the controller.  This dissertation 

concentrates on the characteristics of the PIC microcontroller as the controller for 

the AGV.  However, this dissertation also includes other types of controllers.   

 

 

Figure 2.2 Insertion of Artificial Intelligence Techniques on a Robot 

 

  The simulated controller interacts with the simulated motors and simulated 

sensors, or with the real motors and real sensors, of the AGV.  The controller forms 

part of the closed feedback loop described in figure 2.1 and it is the part that does 

the “thinking” for the robot. 

 

2.1 Buggies 

 

  Buggies are very simple in design.  Some buggies make use of an umbilical cord to 

connect to a computer.  They have two main wheels in order to propel and steer the 

Inputs Controller Output 

Artificial Intelligence or 
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buggy.  Balancing the buggy is accomplished by a castor wheel or peg. Forwards or 

backwards motion is accomplished by letting the wheels turn in the same direction.  

If the wheels are made to move in opposite directions the buggy will be able to turn.  

Sensors are not always included but can be implemented to give feedback to the 

computer that is controlling the buggy [2, pp.112-113] [3, pp.48-51].  

 

2.2 AGV 

 

  Automated Guided Vehicles (AGV) are used in many factories today to convey a 

number of things.  “There are effectively four key parts to an AGV system.  The 

vehicle, its route – (the path decided upon by the factory or building planners) – the 

AGV‟s controller, and its guidance system.” [4]   

  The guidance is, for example, a painted line on the ground where the AGV senses 

this line and moves on it as though it were a rail.  Another guidance system consists 

of wires imbedded in the floor of the building.  Modern AGV can move away from 

their guide path.  Laser guidance on AGV uses lasers and reflectors to determine its 

position.   With this information it follows a path. 

  Another way is using sensors to avoid obstacles in its path.  Although the AGV is 

three-dimensional, its paths can be described in two dimensions [1, p.401]. A forklift 

can even be utilised as an AGV [4]. 

  Because of its many uses and simplicity, an AGV is going to be used for the purpose 

of this experiment.   The focus is going be on decision-making capabilities, as well as 

the robot‟s capability to adapt to specified conditions.    
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2.3 ROV 

 

  Remotely Operated Vehicles (ROV) are usually used in the inspection and 

maintenance of offshore oil-wells, laying and inspecting of communication cables, 

in geological geophysical surveys of the ocean floor and as underwater salvage 

machines [1, p.45].  More often than not, a human controller controls the ROV from 

a ship at the surface.  A cable is used to link the controller to the ROV.  The 

controller sends signals to the ROV, and the ROV gives the controller feedback from 

its sensors, these sensors mostly include a video camera [20]. 

  A closed-loop is formed in the following way: 

1. The ROV sends information to the controller (which, in this case, is a 

human). 

2. The controller sends signals to the ROV in order for it to be able to move 

something. 

3. This change in situation is picked up by the sensors and transmitted to the 

controller. 

4. Again the controller reacts, and, in this way, a closed-loop control is formed 

[3][20]. 

 

2.4 AUV 

 

  An Autonomous Underwater Vehicle (AUV) also has a closed-loop similar to the 

ROV except that the controller is now, for example, an electronic circuit.  The 

electronic circuit makes the umbilical cord unnecessary for this type of robot.  In 
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the future AUV could be used for recovering “Black Boxes” from aircraft wreckages.  

They could even be made with the ability to communicate with the “black boxes”.  

The aim is to design an AUV such that it will get information from the “black-box” 

therefore making the need to return with the original “black box” redundant [20]. 

 

2.5 Humanoids 

 

  Humanoids are robots that are made to look and act as though they were humans.  

The problem with this type of robot is that it is difficult to make due to its 

complexity.  The Oxford English Dictionary defined a robot as a "mechanical device 

that looks like a human being and works in a similar way."  This is basically the 

oldest form of a robot that was concentrated on.  The first of these robots did not 

have a lot, if any, decision-making capabilities.   Companies like Honda have already 

built a robot that can walk like a human [22]. 

 

2.6 Controllers 

 

  Some sort of controller usually controls a robot; an example of this arrangement is 

an AGV. The controller can be a human, but in most cases it is a processor of some 

kind.  It could even be a mechanical controller [23, pp138-139]. The controller is the 

unit that determines the actions of the robot considering the situation the robot is 

in.  Hence this is the part that is doing the thinking and is therefore the brain of the 

robot.   
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2.6.1 Logic Gates as Controllers 
 

 

  If the AGV does not need any memory, then the controller could be built up by just 

two sets of gates, and each set‟s output is connected to a motor [1].  This, however, 

is only viable if two outputs are used. The inputs to the controller are connected to 

the inputs to the sets of gates. 

  Figure 2.3 is not an actual controller that can be used, but it is drawn to illustrate an 

idea.    A separate programme that uses algorithms can be used to determine the 

connections between the gates and the types of gates that have to be used.  A 

circuit‟s effectiveness is evaluated through the way of simulation.  In an experiment 

conducted on a robot, a chromosome of an evolutionary algorithm determined the 

type of logic element used, if specific connections existed between some logic 

elements and other logic elements, and if specific connections existed between logic 

elements and sensors [17]. 

  If the circuit needs to remember anything then memory could be created by 

connecting some of the outputs to the inputs of the same circuit [24, p.405-414].  

The connections and type of gates are determined in the same way as in the first 

paragraph, but with the additional feedback.  Microprocessors and memory are 

basically built up out of logical gates.  Consequently, if this method were very 

successful, it would be able to build up a computer made especially for a certain 

application.  It could even be a more successful computer or circuit than the ones 

that have been built so far. 
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Figure 2.3 Logic Gates Could Function as a Controller for a Robot 

 

  If a human used this method to simulate or build up a processor it would be 

necessary to first program the internal structure of the processor.  All the relevant 

internal circuits of a normal processor will have to be programmed. 

  The biggest possible problem is that the amount of variables could make this 

method difficult to work with. 

 

2.6.2 PAL as the Controller of a Robot 
 

  If logic gates were used as a controller, where only the connections are changed 

and all of this is placed in a single IC, it would be analogous to a PAL. A PAL, which 

stands for Programmable Array Logic, is made up of AND-gates and OR-gates, where 

the AND-gates‟ outputs are connected to the inputs of the OR-gates, as shown in 

figure 2.4.  The inputs to the AND-gates can come from any input, and can be made 

to be inverted if need be.  Altering the internal connections connected to the inputs 
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of the AND-gates program the PAL.  Unfortunately the connections between the 

AND-gates and the OR-gates cannot be changed [37, p.374-379].  It is possible that 

some algorithm can determine the programme for this integrated circuit. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Example of a PAL Layout 

 

2.6.3 PLC Used as Controller 
 

  Off-the-shelf Programmable Logic Controllers (PLCs) are used to control elements 

of an automation system [14, p.18], and they are designed to replace relay logic.    

Programming is accomplished with ladder diagrams as shown in figure 2.5.   
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Figure 2.5 PLC‟s Ladder Diagram 

 

  The symbols have the following meaning: 

 X1 is an input and acts as a switch.  There are two types of switches, normally 

open and normally closed switches.  More than one switch can be connected to 

a coil.   

 Y0 is an output from the integrated circuit.   

 M0 is either a memory coil or memory switch.  They are connected to each 

other and form a virtual relay.  

 

  By closing all the switches in a ladder, the coil will be energised and this will alter 

the switches that are connected to that coil [25, pp.1-6].  

  A kind of logic gate can be built up in this way.  Envisage that there are two 

switches connected to a coil.  Both switches have to be closed to energise the coil.  It 

is similar to an AND-gate, where both inputs have to be positive in order to create a 

positive output.  The inverse can be simulated be using a normally closed switch. 

  The entire programming process can be accomplished by using an optimisation 

technique and has already been implemented in this way. 

 

X1  M0 

M0 Y0 



 16 

2.6.4 Using Only Memory as the Controller 

 

  A memory chip can be used to replace the logic controller.  The address part acts as 

the input and the data part acts as the output, as shown in figure 2.6.  For any input 

to the controller, any output can be prearranged.  If the information in the memory 

is not changed then the outputs will always remain constant for a specific 

instantaneous input.  The advantage, however is that it can be changed at will.  By 

using extra circuits, or an optimisation technique for generating the programme, 

the information can be changed to adapt to the robot‟s surroundings.  This is 

identical to the Nervous Nets that will be explained later in this chapter.  Of course, 

although memory is used, the controller will act the same as logic gates without 

feedback would.  Thus, it will have no memory of what happened to the robot 

despite the fact that it is made up of memory [26]. 

 

 

 

 

 

Figure 2.6  Memory on its Own Could Function as a controller 

 

  As will be seen in the section 2.7.2, the memory in a memory chip can, and has 

been, changed by a certain technique to make the robot more intelligent or more 

adapted to its surroundings. 
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2.6.5 Memory with Feedback 

 
  As was seen under section 2.6.1, as soon as a circuit is given feedback, it possesses 

memory.  The result is a controller that will not only react to the instantaneous 

input, but will be able to react to a combination of previous inputs, and if need be 

the current input to the controller. 

   The problem with the memory output is that it is possible that not all the outputs 

will change at the same time.  A method of synchronisation is necessary so that the 

output will not be mistaken for something it is not.  In order to do this a latch can be 

used.  The output of the latch is then connected to a part of the memory‟s address 

bus.  The input to the latch is connected to part of the data bus as shown in figure 

2.7.  This method is similar to the logic gates that have been connected back to 

themselves.  The big difference is the latch, which takes a certain amount of time 

before it gives an output and also synchronises the outputs given.   

  In an additional experiment which has been constructed for this dissertation, on 

Artificial Intelligence, a memory chip can be connected as described above.  Only 

one address bit has been left out as an input to the system.  This one bit is used to 

select between one of two addresses and is the least significant bit of the following 

address.  The remainder of the address information for the following address is 

contained in the data bus.   If this input bit is zero, the total address will make up 

one address.  If this bit is set to one, while the rest of the address stays constant, it 

will point to another address.  For example, if the address held in the current data 

part is the following 7 bits: 0101011 and the input bit is made one then the following 

8 bit address will be: 01010111, but if the input is made zero then the following 8 bit 

address will be: 01010110.  With this method it is evident that each address is 
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pointing to two addresses.  All that is needed is the knowledge of what combination 

of ones and zeros makes up the rest of the following address.  All addresses could 

contain the same information in the data part, and thus more than one address 

could be made to have the same couple of following addresses. 

  Extra circuitry is needed to determine the information in the data bus.  Some of 

this information is part of the following address, as explained.  For reading 

applications, an indication if one is allowed to change the input bit into one, and if 

one is allowed to change the bit into a zero, is all contained in the data of the 

memory.  This information is built up by the experience of the robot, thus, if the 

selection bit was a one, a zero or both in earlier identical situations.  As a result not 

all addresses have the option of indicating to two addresses.  It is possible that an 

address will select only one address and that the selection bit can only be a zero for 

that situation. 

 

 

 

 

 

 

  

  

Figure 2.7   Memory Feedback Circuit 

 

  In conclusion, an optimisation technique can be used to change the memory to 

form almost any circuitry function.   
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2.6.6 Computer or Microcontroller 
 

  The most common method is to use a computer or microcontroller of some sort as 

the controller for the robots.  This section evaluates the type of controllers that can 

be used. 

  The PIC microcontroller made by Microchip, when compared to a personal 

computer, is cheap, small, and does not have any moving parts [18, p.5].  For these 

reasons hobbyists like to use the PIC microcontroller [13, p.77].  It is unfortunately 

limited in operational speed; it has a small memory, and does not have functions, 

such as “random”, that are frequently used in these methods. 

  The 80X86 CPU has a lot of instructions, memory peripherals, and operational 

speed.  Another advantage to the personal computer (PC) is the user interface it 

provides and the wide variety of software available [14, p.18].  The disadvantage is 

that it consumes a large area and the moving parts in the form of a storage system, 

for example hard disk, make it susceptible to bumps which can cause serious 

damage. 

  Because the Z80 CPU needs external memory, it is larger than the PIC 

microcontroller and not really more useful. 

  The Motorola 68HCXX is used frequently in robotics [13, p.77].  The Motorola 

MC68000 is not suitable for this application although it has a more feasible 

architecture than the PIC microcontroller. With all its peripherals it is bigger than 

the PIC microcontroller and slower than the 80X86 CPU. 

  The 8051 is used for a wide variety of things in the automotive industry [13, p.77]. 
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2.7 Artificial Intelligence and Associated Techniques 

 
 

  The aim of the study of Artificial Intelligence is to develop a system that acts 

intelligently.  Most of the time this work is part of computer science but can also 

include the field of psychology, linguistics and mathematics.  Because intelligence is 

such a vague concept it is broken down into the following aspects: understanding 

language, ability to learn, reasoning, solving problems and more   [6, p.290-291]. 

  The only thing that should be represented to an autonomous system is a goal [16].  

For a robot to be able to learn it must be given an indication on how well its 

performance was, thus how close it got to the goal [55].  The following section gives 

an overview of some Artificial Intelligent systems and techniques. 

 

2.7.1 Fuzzy Logic 
 

  In normal Boolean logic, an input or output can only be a one, representing true, or 

a zero, representing false, where as with fuzzy logic there are degrees of being true.  

The degree of being false is just the complementary value of how true something is 

[16]. 

  If a specific aspect of a man has to be described it can be said that it is a tall man.  

The information “man” can be subdivided, for example into tall and short men, as 

illustrated by figure 2.8.  All men are represented by the square.  The circle defines 

all tall men. 

  Figure 2.9 shows two circles.  The second circle shows men that are fat.  The 

overlapping of the two circles is for men that are tall as well as fat.  The question is 
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at what length a man becomes tall.  One can see that there is a point were one would 

not know if a man could be described as tall or not.  Therefore the circles do not 

have sharp edges, as shown.  There is a gradual change from when a man is 

described as not being tall to when a man is described as tall. 

 

 

 

 

 

Figure 2.8   An Explanation of Tall Men in Fuzzy Logic 

 

  In logics, tall would be illustrated as having a value of one and, for not tall, a value 

of zero.  Fuzzy logic has more values and the values are between one and zero.  The 

length of a man is placed in a formula and the result is between one and zero.  So 

the taller the man is the more the man description will move into the circle.  There 

is still a point at which the man is so tall he could only be described as being tall, at 

this point the result of the formula is one.  The same goes for not being tall. 

 

 
 
 
 
 

 

Figure 2.9  An Explanation of Tall and Fat Men in Fuzzy Logic 
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  As with normal logics, fuzzy logic also has the functions of and, or and not.  An 

example of the and function is when a man is tall and fat as shown in figure 2.9.  If 

one looks again at the figure one will see that the area outside the circle and inside 

the square is for men that are not tall.   Points inside any of the two circles, 

including the intersection, are for men that are either tall, fat, or both. 

  To get the inverse value the value calculated can just be subtracted from one.  If 

the and is incorporated, then the lower of the two values calculated is taken, and the 

higher of the two is taken for the or function [27, p.1-48]. 

 

2.7.2 Nervous Nets 

 

  The controller for this method is similar to the memory only controller described 

in section 2.6.4.  The method used to change the memory‟s contents is not 

accomplished with Genetic Algorithms.  Firstly putting random data into the 

memory generates the initial generation.  Then it is tested in much the same way as 

determining fitness for Genetic Algorithms.  This is not determined by simulation 

but by real, live situations.  During the course of the test the information is changed 

and assessed to get the best results.  The advantage is that the control unit is much 

smaller than that of the Genetic Algorithms. [26] 

   

2.7.3 Neural Networks 
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  In a human brain there are a vast number of cells known as neurons.  These 

neurons are used to build up patterns of knowledge in our brains.  Neural Networks 

try to accomplish the same behaviour by simulating the functions of brain cells [28]. 

  Almost all approximation techniques which are in the form of a network can be 

seen as a neural network [29]. Signal enhancement, noise cancellation, classification 

of input patterns, system identification, prediction and control are examples of 

functions that the neural and adaptive systems perform.  These functions are used 

in modems, image-processing, image-recognition systems, speech recognition, 

front-end signal processors, and biomedical instruments [7, p.2].    Types of Neural 

Networks, as well as one way of teaching perceptron, are briefly discussed in the 

following section. 

 

2.7.3.1 Schematic Net 
 

  A person would need a map in order to travel from town to town.  There could be 

more than one correct route to a specific town.  This map will show the towns one 

has to go through to get to a specific town.  This is the basic principle of schematic 

nets as can been seen in figure 2.10 [30, pp.15-21 & 63-79]. 

 

 

 

 

 

 

Figure 2.10   A Map of Towns 
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  This map, to a certain extent, shows the way a person thinks.  In a person‟s brain, 

decisions are made by saying to oneself, if this happens, then one of several results 

could occur.  In figure 2.10, if situation one occurs, then situation two or situation 

three could occur.  If situation three occurred, then situation four or five could 

occur, but if situation two took place then only situation four could occur. 

  An alternative way of illustrating this is with the search tree shown in figure 2.11. 

Loops, such as going from situation one to two, to four to three and back to one, 

have been left out.  This search tree is what is used in Neural Nets.  In much the 

same way as a goal is needed to determine the fitness in Genetic Algorithms, a goal 

is needed here.  Different methods have been used to get a route from the current 

situation to the goal. 
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Figure 2.11  Search Tree Representation of a Map of Towns 

 

2.7.3.2 Single Layer Perceptrons 
 

  This is a computation that is the closest simulation to the activities of a brain cell.  

Each input is multiplied by some value that is called the weight [29]. All the results 

are added together as shown in figure 2.12.  It is then placed in a function, usually a 

function that is similar to the sine or cosine functions.  This produces a single result 

from a single perceptron.  This result can be the next input to another layer of 

perceptrons.  

  Normally perceptrons have a logic input, thus they have a one or a zero as an 

input.  The output of the perceptron is then also a one or a zero.  A threshold 

determines the output.  If the result of the formula is more than the threshold, then 

the output is made one, otherwise it is made a zero [30, p.443 - 489]. 

 

 

 

 

 

 

 

 

Figure 2.12   Simulated Neuron 

 

  Imagine that the threshold is 0.9 and all the weights are 1.  If any of the inputs are 

made to be one, then the sum is more than 0.9 and the result is an output of one.  
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The only time the output will be zero is if all the inputs are zero.  As can be seen, 

this is similar to an OR-gate. 

  If the threshold is made 3.9, then the output will be zero for all inputs unless all the 

inputs are one.  This is again similar to an AND-gate.  A gradual change from one 

function to the next is thus possible by changing the weights. 

  The threshold in the formula could always be made to be the same.  Changing the 

overall threshold is accomplished by a dummy input and weight where the input is 

always one and the weight is changed in the normal way. 

  Change the sketch in figure 2.12 to have one input, and with the additional 

threshold input, the simulated neuron will be similar to the one in figure 2.13.  The 

resulting formula is Y1 = (W * X1) + b, which is a linear expression, thereby making 

the model linear [7, p.8].  Despite the fact that a single neuron is linear, a Neural 

Network can model a non-linear system [16]. 

 

 

 

 

 

 

Figure 2.13   Illustrating the Linear Response of a Simulated Neuron 

 

2.7.3.3 Multi-Layer Perceptrons 
 

  Normally, in logics, the outputs from a number of AND-gates are connected to the 

input of an OR-gate.  Thus, it is necessary to have more than one layer here and 

usually, three layers are used [29]. 
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  As in logics, if one needs more outputs more circuits are required.  The network in 

figure 2.14 has three layers and every output of one layer is connected to all the 

inputs of the next layer.  The circles represent the summations and the lines the 

values that have to be added together.  Each line also represents the input and the 

weight that has to be multiplied with the input.  The amount of perceptrons in each 

layer does not have to be the same. 

 

 

 

 

 

 

 

 

 

 

Figure 2.14   Multi-Layer Perceptron 

 

  As with the logic gates described earlier in this chapter, feedback networks could 

be created to generate memory for a neural net [11, pp.701-711]. 

 

2.7.3.4 Teaching the Perceptron 
 

  Teaching the perceptrons is accomplished by changing the weights [16].  The effect 
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only change the weights of the inputs that have an input of one.  Another option is 

to use the back propagation procedure [29].   

  Look again at figure 2.13.  Because the input to output is linear, a line, as shown in 

figure 2.15, could represent it. The formula for this would be Y1 = (W * X1) + b, as 

was shown.  Each black dot represents what the desired input to output relationship 

must be.  Thus, the goal is to adjust the position of the line to minimize the overall 

distance between the line and all the dots.  This is accomplished by changing the 

values of W and b [7, p.17].   

 

 

 

 

 

 

 

 

Figure 2.15   Graph Showing the Input to Output Relationship of a Perceptron 

 

  If there are two inputs to the perceptron then the formula is changed to Y = (X1 * 

W1) + (X2 * W2) + b.  This is represented by a flat plain with the desired dots all 

around it in a three dimensional graph [7, p.41]. 
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options, a combination of the above methods can be used for various functions.  If 

one looks at the decision-making capabilities of man, then one will see that they are 

governed by neural impulses and genetics that have evolved over millions of years. 

  There are different ways of implementing these combinations.  One way is to fuse 

two or more methods.  An example of this is where Genetic Algorithms change the 

weights of Neural Nets.  Another way is a system where a black-board is 

incorporated.  All the methods are used to work on one problem [31].  

 

2.7.5 Genetic Algorithms 
 
 
  Genetic Algorithms can be defined as many things, including being a potential 

basis of machine learning [8].  “Generic Algorithms (GA) can be used as a direct 

analogy of natural evolution.  Through the genetic evolution method an optimal 

solution can be found and represented by the final winner of the genetic game” [32, 

p.6]. 

  “In the biological world, the fundamental unit of information in the living system 

is the gene.  In general a gene is defined as a portion of a chromosome that 

determines or affects a single character or phenotype (visible property), for 

example eye colour.  It comprises of a segment of deoxyribonucleic acid (DNA), 

commonly packaged into structures called chromosomes” [32, p.1]. 

  “GA presumes that the potential solution of any problem is an individual and can 

be represented by a set of parameters.  These parameters are regarded as the genes 

of a chromosome and can be structured by a string of values in binary form.  A 

positive value, generally known as a fitness value, is used to reflect the degree of 
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“goodness” of the chromosome for the problem, which would be highly related with 

its objective value. 

  Throughout a genetic evolution, the fitter the chromosome the more of a tendency 

it has to yield good-quality offspring, which means a better solution to any problem.  

In a practical GA application, a population pool of chromosomes has to be installed 

and these, initially, can be set randomly.  The size of this population varies from one 

problem to another, although a number of guidelines are given.  In each cycle of 

genetic operation, termed as an evolving process, a subsequent generation is 

created from the chromosomes in the current population.  This can only succeed if a 

group of these chromosomes, generally called “parents” or the collection term 

“mating pool”, is selected via a specific selection routine.  The genes of the parents 

are mixed and recombined for the production of offspring in the next generation. It 

is expected that, from this process of evolution (manipulation of genes), the 

“better” chromosomes will create a larger number of offspring, and thus have a 

higher chance of surviving in the subsequent generation, emulating the “survival-

of-the-fittest” mechanism in nature” [32, pp.6-8]. 

  Instead of setting parameters in advance, neural and adaptive systems use external 

information in order to set their parameters automatically as seen in figure 2.16.  

Performance feedback makes the system “aware” of how close the result is to the 

desired goal [7, pp.2-3].  Adaptive systems do not always build up information from 

scratch; sometimes it is implemented on existing trajectories to change it a little for 

more accurate results [10, p.359].  Figure 2.17 shows the flow of a Genetic 

Algorithm process [16]. 
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Figure 2.16  Adaptive System‟s Layout 
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Figure 2.17   Flow Diagram of Genetic Algorithms Processes 
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  The most common technique being used for proportionate selection is a scheme 

called Roulette Wheel Selection.  A member of the population is chosen.  If the fitness 

of the member is more than the number chosen, then it is used for mating.  This 

ensures that the higher the level of fitness is, the more likely the individual will be 

to reproduce [32, p.8]. After the parents have been used they are removed from the 

population. 

 

2.7.5.2 Generation of Offspring 
 

  In Generic Algorithms two methods can be used simultaneously to produce a new 

chromosome.  The one, and most widely used, is Crossover and the second is 

Mutation.  Crossover is basically the mating of chromosomes.  This is accomplished 

by connecting the first half of one chromosome to the second half of another 

chromosome, as shown in figure 2.18.  This produces a third chromosome.  The 

point where the cut has been made is called the crossover point and is determined 

by a random number [32, p.9].  More than one such crossover point can be used for 

generating one chromosome.  The result is that there is an alteration between the 

parents‟ information each time a crossover point is reached.  The generation of a 

Two Crossover Point offspring is shown in figure 2.19. 

  If one desires the result as shown in figure 2.19 while using only one crossover 

point, it can be accomplished by using the method shown in figure 2.20.  The red 

chromosome is a third chromosome in the population and an extra generation is 

needed.  A half-brother and half-sister mating would yield exactly the same result, 

as in figure 2.18.  More crossover points can be created in the same way if need be. 
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  In some cases it is easy to see why multiple crossover points are used instead of 

single crossover points.  With multiple crossover points fewer chromosomes are 

needed, but, more importantly, fewer generations are needed.  Also, the chance that 

the programme would choose the correct chromosomes is slim.  Of course this is 

similar to inbreeding, which leads to problems, as will be explained in the section 

“Inbreeding Problems using Genetic Algorithms” later in this chapter. 

 

          Parent 1        Parent 2        Offspring 

0100111010001011011  +  101101001000101110111  =  010011001000101110111  

 

Figure 2.18   Single Crossover Performed on a 19 Bit “Program” 

 

0111010111010100001  + 1011010010001111111  = 0111010010001100001 

 

Figure 2.19   Two Crossover Points Performed on a 19 Bit “Program” 

 

 0111010111010100001 + 1011010010001111111 = 0111010010001111111 

 0101101110000101110 + 0111010111010100001 = 0101110111010100001 

 0111010010001111111 + 0101110111010100001 = 0111010010001100001 

 

Figure 2.20   Single Crossover used to Generate Multiple Crossovers 

 

  Mutation is any alteration in a chromosome, as shown in figure 2.21 [32, p.6].  In 

Genetic Algorithms this is mostly brought into being after the crossover has been 

executed.   Normally the changes made must be kept as small as possible because, 

majority of the time mutation has a negative effect on the fitness of a chromosome.  

Subsequently, the bigger the mutation the more negative the effect would be [56, 



 35 

p.71].  It is possible to use mutation on its own without using crossover to produce 

offspring [30, pp.513-516]. 

 

 

 0111010111010100001 => 0111100111010100001 

 

Figure 2.21   Mutation by Changing Bits Randomly 

 

2.7.5.3 Fitness  
 

  The fitness of the population‟s individuals determines the direction in which the 

population is developing.  Determining how close the chromosome is to its goal is 

how the fitness of a chromosome is determined.  Fitness is normally determined 

through simulation, but real life situations can also be used. 

  Not only does the AGV have to be simulated, but the surroundings as well.  A list of 

rules is then set out, and these determine the level of fitness. 

  Majority of the people that have worked with Genetic Algorithms have their own 

set of rules.  The application for which the Genetic Algorithms are used will also 

dictate these rules. 

  By giving the programme too few rules, it is possible that the evolution will not 

even start to develop.  An example of this is when a chromosome has to be very 

specific to do something, such as to take the first step.  If the fitness is determined 

by only the distance to the destination, then the fitness could stay unchanged 

although the chromosome might better itself, and, consequently, could make it very 

hard just to start moving.   
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  In this application the processor has to send a certain output to the motors.  These 

motors can be connected to an extended output.  This means that the chromosome 

(programme in this case) has to go through many hardware configurations to get to 

the correct output. 

  Giving the programme too many rules is similar to programming the AGV.  For 

example, to say that it has to execute a certain test before giving it a higher fitness 

rating is like telling it, it must execute a certain “if .. then” command.   

  Sushill gave higher fitness levels to robots that moved along an obstacle‟s 

boundary [33]. One may question why he did that.  All that is required of the robot is 

to move to the required destination in the least amount of steps without bumping 

into anything.  This is like programming the robot to move along a boundary 

because you know that that method will work.  The reason for this can be as 

described in figure 2.22. 

 

 

 

 

 

 

Figure 2.22  Local Maximum for AGV 

 

2.7.5.4 Previous Implementation of Genetic Algorithms 
 

  The most used implementation of Genetic Algorithms in robotics is in a hybrid 

system were the Genetic Algorithms are used in collaboration with some sort of 

neural net.  In some applications the Genetic Algorithms were used to change the 

Destination 

AGVV 
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weights of the perceptrons [34].  Researchers have tried to train Neural Networks 

for decision making problems using Genetic Algorithms [54].  Because any hidden 

node can react the same way as any other hidden node, there are a lot of 

configurations that will lead to exactly the same result.  Using crossover could lead 

to a copying of some information while another part is ignored.  Some people call 

this the Competing Conventions Problem, whereas others call it Permutation Problems 

[54]. 

  Genetic Algorithms can determine the layout of the controller‟s logic gates and 

associated connections, as shown in the section 2.6.1.  In one experiment two robot 

arms were simulated, the aim of the experiment was to make the two arms avoid 

bumping into each other.  The speed of each link for a certain time is given by a 

formula that contains a graphical output [35]. The form of the graphic is determined 

by Genetic Algorithms, thus Genetic Algorithms change some of the variables in the 

formulas. 

  Many changes and additions have been made to the traditional Genetic Algorithms 

in order to make them perform better.  One such method is to incorporate sexual 

preferences.  In this experiment the individual searches for another individual with 

similar characteristics.  Choosing a mate became just as important as obtaining food 

or avoiding predators.  The addition made the population break up in more than 

one species [36]. 

  One way of overcoming the problems of all the chromosomes concentrating on one 

local maximum is to give more diverse chromosomes higher fitness levels.  The 

difference between two chromosomes is calculated and an additional fitness level is 

determined according to this difference [30, pp.519-523]. 
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 Great results where achieved by giving conventional Robot Control Theory a head 

start.  It was accomplished by giving the robot initial knowledge about the system 

[38, p.364]. 
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2.7.5.5 Inbreeding Problems Using Genetic Algorithms 
 

  A result from many applications of Genetic Algorithms is quite a number of 

identical chromosomes.  Similar chromosomes might have developed as a result of 

the following situation.  A parent has two children.  The first one has the first half of 

the parent‟s chromosome and the second one has the second part of that particular 

parent.  If these two mate it could give an offspring identical to the “grandparent”.  

If these parts (for example from the start to the crossover point) of the original 

parent (grandparent) were big enough, then most “grandchildren” would be the 

same as the “grandparent”.  This process is shown in Figure 2.23.  Of course, if two 

identical chromosomes had to mate, and no mutation took place, it would give an 

offspring that was identical to the parent.  This process, known in nature as 

inbreeding, would force evolution to stand still. 

 

0100110111 + 1010110000 => 0100110000 

 

Figure 2.23   The Grandson is a Replica of the Grandfather 

 

  A method that has been used to overcome this problem is to make sure that there 

is a reasonable difference between the parents.  Another way is by forcing mutation 

onto an offspring that is exactly the same as another chromosome.  In Genetic 

Algorithms, mutation renders, in most cases, a lower fitness level.  Majority of the 

time, in nature, mutation generates deformities. 

  One way of ensuring the next generation is by keeping a part of the old generation.  

The part that is kept is the fitter part of the original population.  The reasoning 

behind this is “Why throw away something that is already working?”  With this 
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method, a chromosome can survive through many generations if its fitness level is 

strong enough.  This situation changes if the average offspring is getting too strong 

in which case it will not survive even if it survived quite a few generations.   

  With this method, the chromosomes that survived can be made to have equal 

opportunity to mate [32, p.8]. 

 

2.8 Advantages and Disadvantages of Simulations 

 

  Brooks and Mataric [9] said that many people weaken the detail in a simulation, 

and even if it was as correct as possible, it would not be very accurate.  They went 

on to say that global information is not available to a real robot, whereas it could be 

available to the simulated one.  In simulation it is sometimes difficult to determine 

how the robot is learning.  In some instances the simulation is harder to work with 

than the real situation [9]. 

  Despite this opinion, simulations are commonly used to test programmes for 

industrial robots before being used on a real robot.  This saves on the time the robot 

would not have been in service.  This is known as offline programming [10, p.15].  It 

seems that there is a big advantage to simulating a robot and its work-cell before 

building it [6, pp.338-340], and this dissertation is not the first example where 

simulations are used in collaboration with evolutionary algorithms for controlling 

robots [17]. 
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2.9 Summary 

 

  Figure 2.24 show some of the options to a robot.  A robot is built out of actuators, 

controllers and sensors.  The sensors pick up information from the world around 

them.  This information is processed by the controller and a message is sent by the 

controller to the actuators who then change the orientation of the robot relative to 

the robots‟ surroundings.  This change is picked up by the sensor and the process is 

repeated.  
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Figure 2.24 Layout of Typical Robot 

  Listed below are some possible forms of a robot: 

 Buggies 

 AGV: or  Automated Guided Vehicles are used to convey things 

 ROV: or Remotely Operated Vehicles are operated by a human and are 

mostly used offshore. 

 AUV: or Autonomous Underwater Vehicles are the same as ROV, except that 

they use an electronic circuit as the controller. 

 Humanoids are robots that are suppose to look like humans. 

 

  Controllers for a robot can be one of the following: 

 Human 

 Mechanical 

 Electrical 

 

  The electrical controller seems to be the most widely used option and can be any 

one, or a combination of the following: 

 A group of logic gates. 

 PAL 

 PLC 

 

  Memory only is an example is RAM, where the sensors are connected to the 

address part and the actuators are connected to the data part. 

Memory with feedback is the same as Memory only, except that some of the outputs 

are looped back to the input.  Timing must be considered for this to work. 
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Computers or Microcontrollers are the most common type used. 

  Enabling the robot to act more intelligently, artificial intelligence techniques are 

incorporated in conjunction, or alone, with the following as possible choices: 

 Fuzzy logic 

 Nervous Nets 

 Neural Networks 

 Intelligent Hybrid System 

 Genetic Algorithms 

 

  Genetic Algorithms are an adaptive algorithm that was inspired by evolution in 

nature.  It uses the following processes, also to be found in nature: 

 Concerning the selection of parents the higher the fitness level of an individual 

is the better the chances of being chosen as a parent. 

 Generation of offspring by using crossover and mutation. 

 Fitness level.   

 

  In this dissertation, Genetic Algorithms generate a programme for a Simulated 

AGV.  Fitness is determined through simulation.  The fitness level is directly 

proportional to the distance between the last position of the AGV and the 

destination. 
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3 Genetics in Nature 

 

  A lot of knowledge can be obtained by observing nature.  Many of the principles 

used in nature may also be used by Genetic Algorithms.  However, it is important to 

note that although these principles might work in nature, it does not necessarily 

mean that they will work in Genetic Algorithms.  Studying nature could result in the 

discovery of new methods or a new way of thinking about an old method.  This 

chapter focuses on the reason behind certain things happening to Genetic 

Algorithms.  It also illustrates what possible future experiments could be performed. 

 

3.1 Man’s Closest Relative 
 

  In nature, Chimpanzees have been proven to be the closest relatives to man.  

Scientists believe that a chimpanzee‟s DNA is 96 to 99 percent the same as human 

DNA [39, p.74].  As a result, the difference in DNA is 4 percent or less.  Although 

there are a lot of similarities between human behaviour and chimpanzee‟s 

behaviour, the chimpanzee has learnt to use primitive tools while humans have 

gone to the moon and built the super computer [40, pp.20&36].  Even birds have 

learnt to use tools [41, p.20]. It is thus possible that a small change in the 

chromosome used in Genetic Algorithms could lead to a big change in the fitness of 

the individual.    

 

3.2 Small Groups in Nature 
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 Gorillas form relatively small groups.  This would normally create problems 

relating to inbreeding, but fortunately males move over from one group to another 

[39, p.74, 136] [42, p.121-124].  George Schaller calls these males‟ Lone Males [42, 

pp.121-124].  Different groups also mingle for a while and separate again at a later 

stage. 

  The smaller the population in Genetic Algorithms, the less complex the 

programme is and the faster it will go through generations.  Small populations lead 

to similar chromosomes being generated.  This problem is overcome by deliberately 

changing a small part of the chromosome to form different chromosomes.  Most of 

the time, these mutations give lower fitness levels and can be seen as problems 

generated by inbreeding [45, p.69][46]. 

  Mimicking nature by making a copy of a randomly chosen individual and later 

using it in a totally new simulation could represent the Lone Male.  Simulating the 

same space in time is accomplished by inserting this Lone Male after the same 

number of generations has past as the number of generations that had past when it 

was “extracted” from the other group.  The smaller the number of Lone Males that 

are inserted into a specific population, the grater the difference will be between the 

Lone Male’s chromosome and the other individuals in the population.  Thus two 

populations exchanging Lone Male’s will probably generate better results than one 

population that has twice as many individuals and is not using Lone Male’s. 

 

3.3 Similarities between Nature and Genetic Algorithms 
 

  A method that is used in Genetic Algorithms is to remove the whole generation and 

replace it with offspring.  This, to some extent, is also done in nature.  The Octopus 
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female dies shortly after she has given birth [43, p.12].  The same thing happens to 

the Praying Mantis where the female eats the male after copulation has occurred.    

She may even begin to eat him before they are done [21].  

   

3.4 Why Use Mutation 

 

  Von Ditfurth said, “The tempo of evolution is dependent on mutations.”  He also 

goes on to say that if the surroundings do not change then less mutations are 

needed [44, pp.227-228]. The results in this dissertation show that mutation is much 

more important than crossover for generation of programmes. 

 

3.5 Inbreeding 

 

  Inbreeding is a term used when the parents of the organism are closely related to 

each other.  Organisms are considered closely related when they are related within 

five generations.  Farmers use inbreeding to get a specific characteristic from a 

particular organism.  An example of this is say a person that breeds with exotic 

birds.  A breeder may like a specific bird and want to “make a copy” so to speak.  

This could be accomplished by taking the child of the bird and mating it with the 

parent, in other words, the bird that comes from this is the child; as well as the 

grandchild, of the first bird.  That is because his father is his mother‟s child.  One 

could continue to take this bird and mate it with the original bird for the same 

result.  It is important to note, however that not all bird species‟ can use this 

method without yielding complications.  Also, this method does not necessarily 
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produce a better one, just a replica of the original.  It is not advisable to use this 

method in Genetic Algorithms because a better result is needed. 

  Although this method has certain advantages, inbreeding mostly leads to 

unwanted results.  When one looks at cows and pigs, the disadvantages that come 

from inbreeding are reduced reproduction, increased mortality, poorer growth rate 

and more.  Van Rensburg said that this might occur because there are hidden 

deformities, which form part of the family bloodline [45, pp.69-73].  When these 

organisms mate, the deformities are added together and it becomes more obvious.  

Section 2.7.5.4 will demonstrate that mutation has to be incorporated in inbreeding 

when used in Genetic Algorithms or else evolution will stop [45, pp.69-73] [46]. 

Mutation may also be why inbreeding causes deformities. 

  Out-breeding occurs when two unrelated organisms mate.  This is the opposite of 

inbreeding and can be used to neutralise inbreeding. 

 

3.6 Cross-Breeding 

 

  Crossbreeding is when two different breeds mate.  This process creates an 

offspring with a higher fitness level than that of the parents.  An example of this is 

where two races are crossbred to form new individuals.  If these individuals, 

although possibly unrelated, mate, then the offspring‟s fitness level will be less than 

that of the crossbred parents.    

  With every new breed brought into the population the offspring gets fitter.  A 

method called “Rotational crossing” is widely used by pig farmers in many 

countries.  With this method more than one breed is systematically introduced into 

the population [45, p.69-73] [46]. 
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  In Genetic Algorithms, it will thus be expected that with every introduction of a 

totally different chromosome with similar fitness levels to that of the average 

fitness level of the population, the total fitness level of the population will increase. 

 

3.7 Convergence 

 

  The Bluefin Tuna and the Mackerel Shark have features that are very much the 

same.  This is because they had to adapt to situations that are similar [41, p.39]. The 

expected results of different generations of Genetic Algorithms will be similar if the 

conditions to which the Genetic Algorithms are subjected to are similar. 

 

3.8 Good Competition 

 

  In some Genetic Algorithm experiments, a chromosome with a high level of fitness, 

which has been previously generated, has been placed into a new population.  The 

results for this were very good, but is it not expected.  If the chromosome were to be 

placed in a new population, then it would generally have the highest fitness level.  

There will be a very high possibility that it will be used as a parent.   Luckily, all of 

the old generation chromosomes were removed before the next generation.  If this 

removal did not occur the chromosome could have survived for many generations, 

making the descendents more like him with each generation. 

  With the method that was used, a few descendents would have been produced 

using the newcomer.  The offspring with the biggest part of the newcomer would 

probably have had the highest fitness level and would therefore have very good 

chance of being selected as a parent.  Consequently, this population will become 
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more and more like the population where the newcomer was generated and can, in 

some ways, be regarded as just applying more generations to the first population. 

  This is much like the war between the Aztecs and the Spaniards, where 400 

Spaniards killed off a million people because they had more advanced technology.  

Carl Sagan said that if there was to be a war between two alien species, coming from 

different planets where the one specie must have developed more that the other, 

then the one would wipe the other out completely.  This example was taken because 

the two species, like the two populations, had developed totally independently of 

one another [47, pp.342-338]. 

  In conclusion, it is inadvisable to insert an individual with a much higher fitness 

level into a population with a lower average fitness level. 

3.9 Summary 

 

  It is possible that with each different individual, with similar fitness levels, brought 

into the population, the total fitness level of the simulation will improve.  This will 

sort out, amongst other things, inbreeding problems that might exist.  The problem, 

however, is that, because of convergence, this new chromosome might not be that 

different from the other chromosomes in the population.  Inserting a chromosome 

with a higher fitness level than the fitness level of the rest of the population, might 

change the whole population into similar versions of this new chromosome, thus 

not accomplishing anything of significance. 

  A small change in the chromosome could lead to big changes in fitness level. 
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4 Single-Chromosome-Evolution-Algorithms 

 

  This technique is a combination of Nervous Nets and Genetic Algorithms.  Single-

Chromosome-Evolution-Algorithms are comparable to Genetic-Algorithms, where 

one evaluated parent is paired with one of an infinite number of newly generated, 

non-evaluated parents.  These infinite, newly generated, non-evaluated parents are 

not real, but imaginary.  Because it is newly generated, it is random. 

  This is the most straightforward Algorithm of the three used in this dissertation 

and that might be the reason that it has not been used before.  The idea is born out 

of the basic need for a self-generating programme.  It was hoped that the following 

two advantages would be good enough to make up for the disadvantages of the less 

complex algorithm: 

 Only one simulation has to be executed for a generation and this saves time.  

Simulation is, by far, the most time-consuming part of this experiment. 

 Less recourse is needed because only two chromosomes have to be saved. 

 

  It might be possible to use a simulator with a smaller amount of data memory.  

Single-Chromosome-Evolution-Algorithms can use exactly the same methods for 

determining fitness levels, as was used by Genetic Algorithms. 

 

4.1 Generation of a New Chromosome 

 

  Because the population is made up of a single chromosome, the generation of a 

new chromosome is also the generation of a new population.  By implementing 
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mutation on a chromosome, a new chromosome is generated.  Since this 

dissertation deals with the generation of a new programme, a whole instruction has 

to be changed, as will be explained in the section “Special Mutation” in chapter 

seven.  Changing an instruction in a programme is similar to changing a single gene 

in a chromosome. 

  There are two memory positions that contain two chromosomes.  At the start, the 

two chromosomes are totally different because they are randomly generated, but, as 

will be seen, the chromosomes will become similar after the first generation of a 

new chromosome.  An illustration examines the first few generations of the 

evolution. The original fitness value for both chromosomes is made zero, as shown 

in figure 4.1. 

 

Chromosome  Fitness 

Chromosome 1  1010101010  0 

Chromosome 2  0110011001  0 

Figure 4.1   First Population Chromosomes were Randomly Generated 

 

  Only chromosome 1 is evaluated through simulation.  From there the name Single-

Chromosome-Evolution-Algorithms is derived.  The result from the simulation, as in 

the case of Genetic Algorithms, is fitness.    As shown in figure 4.2, the fitness level 

of chromosome 1 has changed to two.   

 

Chromosome Fitness   Chromosome Fitness 

Chromosome 1  1010101010 0  =>   1010101010 2 

Chromosome 2  0110011001 0  =>   0110011001 0 
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Figure 4.2  Only One Chromosome has to be Evaluated 

 
 
  If the evaluated chromosome‟s fitness level, chromosome 1 in this case, is better or 

the same as the other chromosome‟s fitness level, then the evaluated chromosome 

is copied into the other chromosome.  After completion, both memory spaces 

contain a copy of the chromosome with the higher fitness level.  The level of fitness 

does not  

 

have to be determined for the new copy of the chromosome because the new 

chromosome is a copy, and, thus, the earlier determined fitness level can be used.  

In short, the fitness level is also copied.  The reason why only one chromosome has 

to be evaluated for each generation is because the previous determined fitness level, 

which was the highest of all the previously determined levels, acts as the current 

fitness level for chromosome 2. 

 

Chromosome  Fitness   Chromosome Fitness 

Chromosome 1   1010101010 2  =>   1010101010 2 

Chromosome 2   0110011001 0  =>   1010101010  2 

Figure 4.3   Copy Better Chromosome into Both Memory Spaces 

 

  Changes are only made to the chromosome that has to be evaluated, as in figure 

4.4.  As already stated, these changes are similar to normal mutation used in 

Genetic-Algorithms.  The result is a newly generated chromosome, and a new 

population is generated. 

Chromosome Fitness   Chromosome Fitness 

Chromosome 1  1010101010 2  =>   1001101010 2 
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Chromosome 2  1010101010 2  =>   1010101010 2 

Figure 4.4   Random Changes Made to Chromosome that have to be Evaluated 

 
 
   
  Continuing with the second generation, another evaluation of one of the 

chromosomes has to be conducted.  As seen in figure 4.5, the fitness level of 

chromosome 1 has changed from two to one after the evaluation.  The new fitness  

level is due to the change made to the chromosome as highlighted in red.  The 

resulting fitness level is generally worse than previous levels, but as will be evident, 

the change is only remembered when the change produces a better fitness level.  

From now on, the fitness level of the generated programme will not be less than 

two, thus a fitness of two has to be beaten before the resulting chromosome 

changes. 

 

Chromosome Fitness   Chromosome Fitness 

Chromosome 1 1001101010 2  =>   1001101010 1 

Chromosome 2 1010101010 2  =>   1010101010 2 

Figure 4.5   Change Coursed a Lower Fitness Level 

 

  In figure 4.5, the new chromosome has a lower fitness level value than what has 

previously been obtained.  The change was for the worst and, by coping the original 

chromosome back into the evaluated chromosome, it ignores the changes made to it 

as, shown in figure 4.6.   

 

Chromosome Fitness   Chromosome Fitness 

Chromosome 1 1001101010 1  =>   1010101010 2 
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Chromosome 2 1010101010 2  =>   1010101010 2 

Figure 4.6   Copy Old Chromosome Back into Both Memory Spaces 

 

  On the other hand, if the fitness level obtained after the evaluation is better than 

the other, thus the changed chromosome is better, ensuring that changed 

chromosome is kept for the next generation.  Figure 4.7 shows how this is 

accomplished by copying the evaluated chromosome into the other one.   

 

Chromosome Fitness   Chromosome Fitness 

Chromosome 1  1001101010 3  =>   1001101010 3 

Chromosome 2 1010101010 2  =>   1001101010 3 

Figure 4.7 Copy Changed Chromosome as well as the Fitness Value 

 

In figure 4.7, the same result would have been accomplished if the “new” fitness 

level was two or higher.  

 

4.2 Size of Mutation 

 

  Sometimes the changing of only one gene would not be enough.  If a computer 

programme has to be generated, in some cases adding only one of two instructions 

would give a lower fitness level, but because these instructions work together they 

can give a higher fitness level if both instructions are added to the programme  

simultaneously.  The next example will illustrate this. 

  Programme segment 4.1 displays the part of a programme where the AGV walks 

forwards until it hits an obstacle.  It could be walking in the direction of the 
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destination or, in some way, it is accomplishing a fitness level of, for example, 20.  A 

single instruction is added, as in programme segment 4.2. 

  Because of the insertion of the instruction “GOTO Turn”, the programme will 

probably never execute the “GOTO Forwards” instruction, altering the AGV to turn 

in its own tracks [18, p.154].  The result is a lower fitness level.  The Single-

Chromosome-Evolution-Algorithm‟s procedure will see the adding of this 

instruction as weakening the chromosome, ignore the changes made, and go back to 

the previous chromosome. 

 

NOP 

NOP 

GOTO Forwards   

 

Programme Segment 4.1 Single Instruction Added. 

 

NOP 

GOTO Turn 

GOTO Forwards 

 

Programme Segment 4.2 Worst Programme. 

 

  In programme segment 4.3 the “GOTO Turn” instruction is again added to the 

programme shown in programme segment 4.1, except that it is not added alone 

but in collaboration with “BTFSS”, changing the programme into programme 

segment 4.3. 

 

   BTFSS  STATUS, Carry 

   GOTO  Turn 
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   GOTO  Forwards 

 

Programme Segment 4.3 Two Instructions Added Simultaneously. 

 

  In programme segment 4.3, the AGV will go forwards until it reaches an obstacle, 

it will then turn until the obstacle is not in front of the AGV any more and it can 

move forwards again.  The result is a higher fitness level than any previously 

determined ones. 

  The disadvantage of this method is, if the instruction or gene is eight bits in length 

and if only one combination of ones and zeros will give a higher fitness level, then 

the chance that that instruction will be chosen will be one out of 28 = 256, while, if 

two genes are changed at the same time and only one combination will give a 

higher fitness level, then one would have a one out of 216 = 65536 chance of the ones 

and zeros being the correct combination.  This amount will increase rapidly with 

each additional gene.   Consequently, the amount of genes to be replaced at any 

given time should be kept as small as possible.  A high level of mutation in Genetic 

Algorithms is normally seen as an unwanted situation [32, p.6] [56, p.71]. 

 

4.3 Making It Possible to Compare Single-Chromosome-
Evolution-Algorithms with Genetic Algorithms 

 

  When looking at the Virtual Programme, it was observed that the evaluation of a 

single Simulated Programme could take a few minutes, while the time it took to 

generate a new population while using any method, was too fast for a human to 

detect.  Thus, evaluation is, by far, the most time-consuming component of the 

generation of a Simulated Programme. 
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  If a population has ten individuals, then ten evaluations have to be executed for 

one generation.  If ten generations are needed, then a hundred evaluations have to 

be executed. 

  Comparing Single-Chromosome-Evolution-Algorithms to Genetic Algorithms, a 

hundred generations of Single-Chromosome-Evolution-Algorithms have to be 

executed for only ten generations of Genetic-Algorithms.  Counting the amount of 

evaluations in either Genetic-Algorithms or in Single-Chromosome-Evolution-

Algorithms makes it possible to compare the spread of these two methods. 

 

4.4 Summary 

 

  There are three consecutive parts forming a continuous loop that make up Single-

Chromosome-Evolution Algorithms: 

 Evaluate the one chromosome through simulation the result is a fitness 

level.  Exactly the same methods can be used as those used in Genetic-

Algorithms. 

 Copy the chromosome with the higher fitness level of the two into the 

memory space occupied by the chromosome with the lower fitness level.  

Fitness levels as well as the resulting chromosomes are made to be two exact 

copies of the chromosome that possessed the higher fitness level. 

 Mutation changes are only made to the chromosome that is going to be 

evaluated.  After completion, the chromosomes will not be the same and this 

makes it possible to compare the two chromosomes. 
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  Changing more than one gene into a usable combination could be much more 

advantageous than changing only one gene into a usable combination.  

Unfortunately it is so much more unlikely that the programme will change more 

than one gene into a usable combination than it will be to change one gene into a 

usable combination that it is, in most cases, not recommended. 

  Because evaluations take up the most time, the time it would take to accomplish 

something has to do with the amount of evaluations executed.  In order to compare 

Genetic-Algorithms to Single-Chromosome-Evolution-Algorithms, the amount of 

evaluations is counted in each case. 
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5 Physical Layout of the AGV 

 

  Via the umbilical cord power and information is sent to the robot, also known as 

an Automated Guiding Vehicle (AGV), as shown in figure 5.1.  In this way, the 

computer does the computations for the Physical AGV and there are no batteries 

that are liable to run flat. 

 

 

 

Figure 5.1 Photo of the Physical AGV 

 

5.1 Considerations for the AGV 

 

  There are a few considerations that one must take into account when it comes to 

the Physical AGV.  One must remember that the Physical AGV and the Simulated 

AGV must, as far as possible, react in the same way, because it is easy to transform 

the Simulated AGV entirely, whereas it is difficult and more expensive to make any 

change to the Physical AGV. In most cases, the Physical AGV influences the form 

and design of the Simulated AGV, but in some cases it is the other way around.  The  
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following considerations are to be discussed later in these chapters: 

 Size of Physical AGV 

 Speed and strength of Physical AGV 

 

5.1.1 Size and Shape of the Physical AGV 
 

  The smaller the AGV, the better it will be at going though small spaces and it will, 

of course, be more portable.  If being used in a maze, the maze‟s size will be 

determined by the size of the AGV, thus the bigger the Physical AGV is the less 

space it will have to move in.  If a small AGV is needed, everything on the AGV must 

be as small as possible. 

  If the AGV were square and it turned around its own axel, the corners of the AGV 

would have bumped into an obstacle if it were to close to the AGV.  This problem is 

avoided by making the AGV octagonal in shape, as shown in figure 5.2.  It could 

have been made round, but making round electrical tracks and fitting rectangular 

components on such a PCB is more complex. 

 

 

 

Figure 5.2 Photo Showing Octagonal Shape of Physical AGV 
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  Once these methods are proven to work, the AGV could be made in a wide variety 

of sizes and thus it might be possible to use it in a wide variety of fields. 

 

5.1.2 Motors of Physical AGV 
 

  The perception exists that the faster the AGV is, the better it will perform.  

Although speed does have its advantages, when it comes to this application it is not 

entirely true.  Take, for example, when the AGV is at a position ten centimetres 

from a wall.  The time it takes for the generated Simulated Programme to react to 

an input from the sensors is two seconds.  The programme dictates that when the 

AGV is five centimetres from the wall or closer it must turn away from the wall.  If 

the AGV is running at ten centimetres a second, the AGV will run into the wall 

before it has time to react, but if it is running at a mere centimetre a second, it will 

have enough time to react and turn away from the wall. 

  Small electronic motors run in the vicinity of 7000 revolutions per minute [19, p.3]. 

Lowering the voltage will slow down the motor, but the motor will not operate at a 

voltage lower than half the voltage specified for the motor [12, p.85].  Between the 

wheel and the motor a gearbox can be inserted to slow down the revolutions.  In the 

gearbox a small gear is connected to the motor, which in turn turns a larger gear.  If 

the small gear has twelve teeth and the big gear has forty-eight, then the small gear 

has to turn four times before the larger gear has turned only once.  The velocity of 

the bigger gear is, as a result, a quarter of the velocity of the smaller gear.  By 

connecting the larger gear‟s axel to another smaller gear, and again this smaller 
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gear is turning a larger gear, the revolutions are brought down again.  A 

combination of gears like this one is called a gear train [49, p.728]. 

  Another way of determining the ratio of the gears is with the radiuses of the two 

discs.  The velocity of a particle at the outermost part of a disc can be determined by 

the distance of the outline of the disc, multiplied by the revolutions per minute of 

the disc: 

     V = 2 ∏ R N 

Where   V = Velocity of particle 

    R = radius of circle 

    N = revolutions per second of the circle 

  If two discs are touching one another, then the peripheral velocity of the two discs 

is identical [48, p.45-49]: 

    2 ∏ R1 N1 = 2 ∏ R2 N2 

    => R1 N1 = R2 N2  

    => N1 / N2 = R2 / R1                 (5.1) 

  Formula one gives the ratio of the velocity of the two gears.  Moment is defined as 

distance times the force that is applied at right angles to the measurement of 

distance [49, pp.64 & 65].  Not counting the friction in the gears, the force of the 

touching teeth is the same [49, pp.709–729].   

    M = F X R 

    => F = M / R 

    => M1 / R1 = M2 / R2 

    => M1 / M2 = R1 / R2                (5.2)   

  As can be seen from the two formulas, (5.1) and (5.2), torque is inversely 

proportional to speed [13, p.8].  The higher the moment is, the higher the 
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acceleration will be [49, p.709–729].  Figure 5.3 is not actual calculations and was 

created in order to illustrate an idea.  The red line in the left hand graph illustrates 

an AGV with low acceleration and a high maximum velocity.  If acceleration were 

ignored, as is the case in the Virtual Programme, then the shape of the curve would 

be like the one in the right hand graph.  The lower the maximum speed, the less 

time the AGV will take to get to the maximum speed, as shown by the green line. 

  The stronger the output from a gearbox, the faster the acceleration of the AGV and 

the less time it takes to get to the maximum speed as shown by the blue line.  This 

fast acceleration, in collaboration with a low maximum velocity, will lead to a 

shortening in time for the Physical AGV to get to the maximum velocity.  This 

makes it possible to ignore the acceleration of the AGV in the simulations and, thus, 

simplify and shorten the simulation time. 

 

 

Figure 5.3 (a) Physical Acceleration of AGV  (b) Ideal Acceleration of AGV 

 

  With strong motors and gearbox combinations the motors can be pulsated to slow 

down the AGV and still have enough strength to move it.  Modified servomotors, 

normally used for radio control aeroplanes, are used for the movement of this AGV 

[13, p.9]. 

(a) (b) 
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5.2 Components of the AGV 

 

  This AGV consists of the following components: 

 Infrared-Sensors 

 Physical-Controller 

 Servomotors 

 Controller-to-Motor Interface 

 

5.2.1 Infrared Sensors and Whiskers 
 

  It is necessary to determine the distance to an obstacle to be able to avoid bumping 

into the obstacle.    Distance sensors are, therefore, very important.   

  The distance sensors do not have to be calibrated.  Drift must be small or else it will 

be difficult for the controller to adapt to the changing values.   

  Some distance sensors cannot determine distance if an object is too close to the 

sensor [51]. A scenario is given where the AGV is in the middle of two obstacles.  If 

the obstacles are to close to each other then the sensors will not be able to detect 

either one of the two, as in figure 5.4.  Thus, the minimum distance sensed by a 

sensor must be as small as possible to be able to move up close to an obstacle 

without touching it. 

  Gordon McComb (1987) said that the more sensors are used in a robot, the better it 

will be able to interact with its environment [12, p.12].  Because the AGV has eight 

sides, a sensor can be placed on each side of the AGV, where each sensor will face in 

its own direction. 
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Figure 5.4   The Obstacles are too Close to the Sensors to be Sensed 

 

  A widely used method for determining distance in robotics is to use ultrasonic 

sensors, although, for smaller distances, infrared sensors can be used [50].  Infrared 

sensors are also small and, thus, make the whole AGV smaller [51]. 

  An infrared sensor of the AGV is made up of an infrared transmitter and receivers 

shown in figure 5.5.  Before sensing the transmitter is turned on, the intensity of 

the received light is used to determine the distance to a white obstacle.  This 

analogue value is measured by an Analogue-to-Digital-Converter inside the PIC 

microcontroller.   

 

 

 

Figure 5.5  Photo of Infrared Transmitter and Receiver 

 

Obstacle 1 Obstacle 2 

AGV 

Receiver 

Transmitte
r 
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This method of sensing with a PIC microcontroller is small, cheap and easy to 

implement.  However, the disadvantages are: 

 The signal is not linear.  The closer the object gets to the sensor, the higher 

the value generated by the Analogue-to-Digital-Converter, and the more 

rapidly the readings generated by the Analogue-to-Digital-Converter 

change. Thus, to calibrate the reading of the Simulated AGV to correspond as 

closely as possible to the Physical AGV, extra calculations are needed in the 

simulation. 

 The receivers do not distinguish between reflected light from the 

transmitter and other light in the same frequency band.  Therefore, the light 

in the room will influence the resulting distance values generated by the 

Analogue-to-Digital-Converter.   This causes a constant, random change in 

the output value generated.  It is difficult for the controller to adapt to this 

constant change, as will be seen in the results of chapter 11. 

 If the distance between the obstacle and the sensor is long, the intensity of 

the light being reflected from an obstacle is low and the influence of other 

light sources has a greater influence on the readings.  This leads to the 

programme been unable to distinguish between the reflected light and other 

influences.  As a result, the maximum distance that can be sensed is about 

60cm under ideal conditions. 

 The maximum output value is reached when the sensor is about 60 mm away 

from the nearest obstacle.  This results in a large maze.  Reducing the 

intensity of the transmitters light can reduce this minimum distance that 

can be sensed.  Unfortunately it changes the maximum distance that can be 

sensed more dramatically. 
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 Specular reflection occurs when a light hits a mirror and all the light is 

channelled in one direction, whereas diffused reflection lets light reflect in 

all directions, such as when light hits a white wall [57, pp.98-99].  During 

calibration, it was found that, when it came to infrared light, the white 

obstacle adopted both types of reflections, thus resulting in higher readings 

when a sensor was at right angles to the obstacles surface. 

  Because infrared is not visible to the human eye, the colour of the obstacle, 

as seen by a human, has less influence on the results than one might think 

but still has an influence on the amount of light being reflected off of an 

obstacle.  White obstacles are preferred. [51] 

  By changing the resistor that is in series with the infrared transmitter, the 

maximum and minimum distance that can be sensed can be changed.  Because the 

front sensors have to sense a larger distance than the other sensors, the front 

sensors have a 22 ohm resistor, instead of a 100-ohm resistor, in series with the 

infrared transmitter.  These values were determined through experimentation. 

  Basically, Whiskers are made of a ring with a wire going through it that does not 

touch the ring, as shown in figure 5.6.  When the wire is moved in any way, it 

touches the ring and current can therefore pass through the wire to the ring.   

  Instead of sending through more information, the registers from all the Distance 

Sensors, being eight bits in length, gave a maximum value of 255, thus emulating 

bumps from all the Distance Sensors simultaneously when any one of the whiskers 

are touched. 
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Figure 5.6 Photo of Whisker Touch Sensors 

 

5.2.2 Physical Microcontroller 
 

  A small controller leads to a small AGV.  Due to the size, low cost and simplicity, a 

normal buggy was used for the body and motors. 

  It was decided to use a PIC microcontroller as the controller for the AGV.  It is small 

and does not have a hard disc and/or moving parts.  The disadvantage is that 

functions resembling the random function, a function that is frequently used in 

algorithms of this type, is not part of the instruction set of the PIC.  A procedure can 

be written to generate the random function, but it is not a perfect random 

generator and it takes up space in the programme [58]. Writing programmes for a 

computer with the aid of a higher level language is easier than writing a programme 

for a PIC.  The speed of the PIC microprocessor, as well as the memory size, might 

not be sufficient for implementing Genetic Algorithms.   
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5.2.3 Controller Interface 
 

  This interface mostly consists of amplifiers to make it possible for the PIC 

microcontroller to drive the motors and to make the motors turn in both directions.  

To save on power, and because the infrared transmitters cannot handle the high 

current required for long periods of time, the transmitters are only turned on when 

it is needed [51]. Amplifiers are also needed to generate this high, controlled 

current.   Because of the relatively small size of the AGV, care must be taken in the 

PC-board design.   

  Making it possible for the motors to turn in both directions, an H-Bridge 

configuration is used in collaboration with normal PNP and NPN transistors, as 

shown in figure 5.7 [13, p.43-46]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7   H-Bridge Lets the Motor Turn in Both Directions 
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Input for 
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motion 

Input for 
reversed 
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5.3 Umbilical Cord 

 
 
  The use of the umbilical cord between the personal computer and the AGV has the 

following advantages: 

 The processing power of a Pentium computer is much more than that of, for 

example, a PIC.   

 An exact replica of the Simulated-Functions-of-the-Microcontroller can be 

used on both the virtual and Physical AGV.  This can eliminate problems that 

might arise from not only the slight differences between the Simulated-

Functions-of-the-Microcontroller and a physical PIC, but it can also 

eliminate problems with overheads that are not needed for the Simulated-

Functions-of-the-Microcontroller. 

 The power is fed through the cord, which makes the use of batteries on the 

AGV unnecessary. It is easier to make changes to the high-level-language 

than the assembler used to program the PIC.  Even testing the hardware by 

changing the programme on the PC is easier than writing a new programme 

and programming the physical PIC. 

 Loading the Simulated-Functions-of-the-Microcontroller with a newly 

generated Simulated Programme can be accomplished with the push of a 

button, instead of taking the PIC out of the circuit, placing it in a 

programmer and so on. 

 

  The biggest disadvantage of an umbilical cord is that it gets twisted when the AGV 

rotates.  A radio-frequency link could eliminate the problem with twists but then an 

onboard battery is needed, as well as extra space for the transmitter and receiver. 
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  Genetic Algorithms are time consuming.  Unlike in this experiment, D. Floreano 

implemented Genetic Algorithms directly on a robot and not on a simulation, thus 

necessitating a power supply that could make a robot run for long periods of time 

[34].  This is an example of where batteries were insufficient.  Instead, an umbilical 

cord was mostly used for power purposes.  For future use of this AGV, it was decided 

to also use an umbilical cord. 

 

5.4  The Physical AGV Used 

 

  The Physical AGV is built to evaluate the algorithms generated by the Simulated 

AGV.  The design of the AGV is based on M. Barratt‟s Wall Follower [51] [51]. The 

differences between the Wall Follower and the AGV are: 

 No onboard batteries are used. 

 An umbilical cord is connecting the robot to a computer and power supply. 

 All instructions for the AGV come from the computer, and the physical PIC 

on the AGV basically functions as a MUX, thus, the parallel information from 

the sensors are sent through serially, as well as the serial information from 

the PC, which is made parallel is sent to the interface of the motors. 

 The Distance Sensors show in four directions all placed ninety degrees apart. 

 In addition to the Distance Sensors, whiskers were added at the corners of 

the AGV. 

 Because of their strength and slow speed, modified servomotors are used as 

motors to move and steer the AGV. 
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5.5 Protocol between AGV and Computer 

 

  The distance between a sensor on the AGV, and the nearest obstacle to the sensor 

are determined by the onboard PIC microcontroller.  This numeric digital 

information is directly sent to the Personal Computer through the umbilical cord as 

shown in figure 5.8.  

   

Figure 5.8 Sensor Information to Personal Computer 

 

The information from the sensors is then fed into a virtual PIC processor inside the 

Personal Computer.  This virtual PIC processor processes this information as if it 

was a physical PIC onboard the AGV.  The resulting information from the virtual PIC 

is then sent through the umbilical cord to the AGV and ends up at the motors as 

shown in figure 5.9. 

  There are three links between the robot and the computer:   

 Link one is to transmit commands so that they end up at the motors.   

 Link two receives readings captured by the sensors.  

 And the third is a clock signal from the PC to the AGV to synchronise the 

sending and reading of the individual bits.  The rate at which the bits are 

sent though can easily be changed by adjusting the programme on the PC. 

Sensor 

AGV 
PC 

Virtual PIC 

Umbilical cord 
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Figure 5.9   Information from Personal Computer to Motors. 

 

  Although the clock signal does not determine which bit is sent and received, it is 

responsible for determining when a bit is sent and received.  Without this common 

clock signal, the PC and PIC microcontroller‟s internal clock timing has to be as 

close as possible to each other, and it has to be brought into sync, using a certain 

method, as many times as possible.  By using a common clock signal, the tempo of 

throughput of bits could easily be changed.  Therefore, using the common clock 

signal simplifies the system. 

  There are two reasons for making the PC responsible for the clock signal.  Firstly, 

because the PC has to do many more calculations, it is mostly slower at sending 

through bits than the PIC is.  Secondly, the rate at which the bits are sent through 

can be altered on the PC if needed and, thus, makes it more user-friendly.  Both the 

rising and the falling edge of the clock signal are used as an indication that a new bit 

is sent and received. 

  The frame the PIC is sending out consists of forty bits.  When a bit is received by 

the PC, one must question which bit it is and from which sensor is it coming.  The 

first eight bits of the frame coming from the PIC are always the same and are known 

AGV 
PC 

Motor Virtual PIC 
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as the Header.  The PC waits until it recognises this specific pattern.  During this 

time no information is sent from the PC to the PIC. 

  The PIC sends out the bit following the Header as the most significant bit of the 

sensor known as Sensor One.  The PC receives this bit and, because it has received the 

frame word, knows that this must be the most significant bit of sensor one.  The PC 

places this bit‟s information in the most significant position of a register, known as 

“Sensor 1”.  At the same time the PC sends out a bit to the PIC.  The PIC places this 

bit in a receiving register.   

  Following the most significant bit, the PIC sends out the second most significant 

bit.  The PC knows the bit to follow must be the second most significant bit of Sensor 

One and places the information in the second most significant position of register 

“Sensor 1”.  This process is repeated until all eight bits of Sensor One have been 

placed in the register “Sensor 1” inside the PC.  During this time, three more bits are 

sent in the opposite direction to the PIC.  For the last four clock-pulses, the PIC 

ignores the incoming data. 

  The bit to follow is the most significant bit of Sensor Two.  The same procedure that 

was followed for Sensor One was then followed for Sensor Two.  After Sensor Two, 

Sensor Three and Sensor Four follow.  In the opposite direction, the PIC is ignoring all 

incoming data from the PC. 

  After the completion of Sensor Four and, thus, the whole frame, the PC starts 

waiting for the Header again.  The wait will not be long because the PIC will directly 

follow with the exact same Header as before. The whole process is repeated.   

  This Header (the first 8 bits) must always be “01011010”.  The first header that was 

tested was “01010101”, but the computer confused it with the clock signal when 

there was a fault on the AGV.  The next 8 bits is “channel one” and contain the 
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information for the first sensor.  The four channels, one for each sensor, and the 

header, all consisting of 8 bits, make up the forty bits. 

  A single variable is used in both the computer and the PIC to determine which bit 

is being transmitted and received.  For example, if the variable in the computer is 

24, then the value in the variable of the PIC has to be 24 and the bit, sent in both 

directions, must be the 24th bit.  If these two variables are in sync because of the 

Header of just one direction, then just one Header is needed to put both directions 

in sync.  The only information going to the PIC on the AGV from the personal 

computer is four bits.  These four bits are used to indicate how the motors must 

react.  If the PC and PIC are in sync, all that is needed is to send these bits at the 

right time. 

  The frames are as follows: 

01011010AAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD from PIC to PC 

XXXXXXXXXXEEEEXXXXXXXXXXXXXXXXXXXXXXX from PC to PIC 

 A:   Distance indication from Sensor One. 

 B:   Distance indication from Sensor Two. 

 C:   Distance indication form Sensor Three. 

 D:   Distance indication from Sensor Four. 

E:   Information coming from the PC to ultimately control the motors of the 

AGV. 

 X:   The PIC ignores these bits. 
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5.6 Summary 

 
   
  The Physical AGV is built to prove that the programme generated by Genetic 

Algorithms can be used on a physical AGV.  It is also built for future use on other 

experiments.  For this reason, an umbilical cord gives power to the AGV.  Having 

previously been used for power, this cord also connects the AGV to the laptop in 

order to communicate with the AGV.  All the “thinking” is done by the laptop, while 

the AGV mostly acts as a slave. 

  Because of its small size, simplicity and low cost, infrared sensors are used.  The 

disadvantage is that the output is not linear to the distance it is detecting. 

  Modified servomotors, normally used in remote-controlled model aircraft, are used 

as motors that turn the wheels.  They are relatively small, strong and have a slow 

maximum speed.  These qualities provide short time delays from standstill up to 

maximum speed.  The slow speed gives the controller, in association with the 

umbilical cord, more time to react. 

  The controller is not the laptop, but a virtual controller programmed into the 

laptop.  This is an exact replica of the virtual controller used in the Simulated AGV.  

This controller, known as the Simulated-Functions-of-the-Microcontroller is 

explained in greater detail in chapter 11. 
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6 Overall Software Design 

 

Three programmes were written: 

 Virtual Programme for generation of a Simulated Programme through 

simulation of the AGV‟s movement. 

 Connection Programme, which utilises the Simulated Programme in order to 

control the Physical AGV.  This programme, which is written for a PC, 

communicates with the Physical PIC via an umbilical cord and a set protocol. 

 The programme for the PIC Microcontroller onboard the AGV is responsible 

for controlling the motors, getting information from the sensors and 

communicating with the PC. 

 

  In some of the applications, DOS was the better operating system and, in other 

applications, Windows was better, necessitating the use of both as operating 

systems for different applications. The programme written in C++ for Windows was 

more the simulator and the programme generator and the programme written in 

C++ for DOS was used to control the Physical AGV.   

  To save on computational time, as few procedures or functions were included as 

possible.  This will lessen the overheads.  This, however, is not without 

disadvantages as it makes the programming more difficult.    

  The Simulated-Functions-of-the-Microcontroller is controlling the Simulated AGV, 

as well as the Physical AGV. 
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6.1 Comparing DOS to Windows for this Application 

 

  All programmes were executed on a Pentium II computer.  As an experiment, two 

programmes were written.  The one was written in Turbo C++, using DOS as the 

operating system, and the other was written in Turbo C++, using Windows as the 

operating system.  The programme written for the DOS domain was reacting in real 

time, while the programme written using Windows as the operating system was 

tested and the maximum speed that was accomplished was more than two seconds 

to send through one frame in one direction.  This was accomplished when two bits 

were sent through before the screen was updated once.  The bits had to be spaced 

some time apart because they were too close together to be able to connect to the 

Physical AGV.       

  In another attempt two programmes were running simultaneously, where the one 

was supposed to send information, via some means, to the other. The one 

programme was written using Windows as the operating system and the other was 

written using DOS as the operating system.  These simultaneously running 

programmes were slowing each other down so much that it was the worst results of 

all the experiments conducted. 

  The best results would be to either do everything in the DOS domain or to save the 

results determined using Windows as the operating system and then use those 

results in the programme running in the DOS domain.  The latter is used in this 

dissertation. 
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6.2 Summary 

 

  Three programmes had to be written: 

 Virtual Programme generates the Simulated Programme. 

 Connection Programme controls the AGV from the laptop. 

 The programme of the PIC microcontroller onboard the Physical AGV. 

 

  Because of its user-friendliness, the Virtual Programme was written in C++ Builder 

for Windows, while C++ in the DOS domain gave a higher throughput to the parallel 

port and, thus, was used for the Connection Programme. 
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7 Virtual Programme 

 

  In the following chapter, the layout of the Virtual Programme will be discussed.  

This chapter will show how the simulation was made, that includes the 

surroundings as well as the moving Simulated AGV.  This shows the way in which 

Simulated Programmes were generated.  The flowcharts of the Virtual Programme 

are included. 

  The complete layout of the Virtual Programme is shown in figure 7.1.  The result 

generated by the Virtual Programme is a Simulated Programme that can be saved as 

a text file.  This text file can be read by the Connection Programme to test it on the 

Physical AGV.  The programme is written in C++, with Windows as an operating 

system, to utilise the graphics interface and user acquaintance with the milieu.  The 

programme consists of the following segments: 

 An evaluation of the predetermined Simulated Programme is made by 

simulating the AGV and its surroundings.  The result is the fitness level of 

the Simulated Programme. 

 The Programme Generator generates the programme for the AGV that has to 

be evaluated.  The fitness level is used in the transformation of the current 

Simulated Programmes into new Simulated Programmes. 

 

  The Virtual Programme alternates between the Programme Generator and the 

Evaluator.  An information loop is formed, not only because of the alternations, but 

also because of the flow of information, as shown in figure 7.2. 
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Figure 7.1  The Total Layout of the Virtual Programme 

 

 

 

 

 

 

Figure 7.2   Interaction between Programme Generator and Evaluator 
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 The fitness level in the Virtual Programme is set to the inverse of the shortest 

linear distance between the AGV‟s current position and the destination.  In other 

words, the distance the “crow would fly”. 

 

7.1  Evaluation of the Simulated Programme 

 

 The evaluation of the Simulated Programme consists of the following segments: 

 A Simulation of the AGV is made up out of the same components as the 

Physical AGV. 

 The surroundings are different types of two-dimensional mazes. 

 

  The only connection between the surroundings and the Simulated AGV is the input 

though the Distance Sensors.   The readings from the sensors are altered by 

changing the placement of the AGV with reference to the surroundings, as shown in 

figure 7.3. 

 

 

 

 

 

 

 

Figure 7.3 Interaction between Distance Sensors and the Surroundings 
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  Because the Physical AGV moves in only two dimensions (forwards, backwards, left 

and right but not upwards or downwards), the Simulated AGV is placed in a two-

dimensional virtual space. The evaluation is incorporated to determine the fitness 

of a chromosome or Simulated Programme. The AGV‟s movements are simulated in 

different situations with the maze and evaluated according to the Simulated 

Programmes performance.  The evaluation is accomplished at the execution point 

of the Simulated Programme in the Virtual Programme.  For the purpose of testing 

the Evaluator part of the Virtual Programme, a Simulated Programme was written 

for the AGV, whereby the effectiveness of the Evaluator, as well as the generated 

Simulated Programme, proved to be satisfactory.   

 

7.1.1 AGV 

 

  The objective is to have the same characteristics for both the Simulated AGV as 

well as the Physical AGV.  Before hardware was built, a software simulation was 

created.  This was implemented to test theories and to make changes to the 

programme that would lead to changes in the Physical AGV.  This process saved a 

lot of money and time.  The Simulated AGV‟s procedure was written in the same 

consecutive order that the Physical AGV was built in.   

 

7.1.1.1 Movement of AGV 
 

  The AGV reacts to a four-bit word coming from the procedure that simulates the 

functions of the microcontroller, as described in table 7.1. 
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  The motors do not have to be simulated.  The output from the Simulated-

Functions-of-the-Microcontroller just has to make the AGV react in the same way it 

would in the real world. 

Table 7.1   Binary Code Movement Buggy 

 

Binary Decimal Movement Classification 

0000 0 No movement No movement (no wheel is turning) 

1010 10 Forwards Wheels are moving in the same 

direction (Wheels are turning in the 

same direction) 0101 5 Backwards 

0110 6 Turing left Revolving AGV (Wheels move in 

opposite directions) 1001 9 Turing right 

0001 1 Right and backwards 
Moving forwards or backwards 

while turning  (One Wheel is 

turning and the other is standing 

still) 

0010 2 Left and forwards 

0100 4 Left and backwards 

1000 8 Right and forwards 

0011 3 Illegal operation 

Illegal operation 

0111 7 Illegal operation 

1011 11 Illegal operation 

1100 12 Illegal operation 

1101 13 Illegal operation 

1110 14 Illegal operation 

1111 15 Illegal operation 
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  Two bits can be used per motor.  The illegal operation, shown in table 7.1, where 

both bits of a motor are one, can be changed to the high-speed forward motion by 

changing the current through the motors.  However, this is not implemented 

because of the following reasons: 

 This alteration in speed can also be accomplished by pulsing the input 

current to the motors.  The Simulated Programme can adapt on its own to 

pulse the input to the motors, thus changing the current is not necessary. 

 AGV exist that are equally comfortable going “forwards” or “backwards” 

[59].  The AGV will not react in the same way for forwards and backwards 

motion, when one changes the forward velocity by changing the current to 

the motors. 

 It makes the circuits of the Physical AGV more complex.  This also leads to a 

bigger Physical AGV and, thus, a bigger Simulated AGV with its own set of 

problems, as explained in section 5.1.1. 

 

  The procedure that simulates the movement of the virtual AGV is split into two 

sections: 

 Moving Graphics - this makes any change in graphics possible 

 Reaction to Input - this part decodes the information coming in from the 

procedure Simulated-Functions-of-the-Microcontroller (the part that 

functions as the controller) to make different movements possible for the 

AGV 

 



 87 

  Both parts interact with one another, and are placed in series with each other, in 

one procedure. 

  Moving Graphics was the first part that was completed for the Virtual Programme 

and represents all virtual objects.  It is the foundation of the whole Virtual 

Programme. 

   In the process of generating a programme of this sort, many aspects had to be 

simulated.  If the graphics are less complex, the whole process would be faster, thus 

only a moving line representing the axel of the AGV is drawn.   

  Making the graphics move is accomplished in the same way as accomplishing 

movement in the cinemas or on television.  For example, a line is drawn, erased, and 

then redrawn a little higher, as in figure 7.4.  If this process is performed at a fast 

pace, the result is a line that looks as though it is moving upwards.  This explains, 

the need for a new drawing each time the screen was cleared, as shown in figure 

7.5. 

 

 

 

 

 

 

Figure 7.4   Simulating Movement (a) First Position (b) Second Position 

 

  The sequence has to be placed in such a way so as to let the calculations be 

executed while the graphics are on the screen, as shown in figure 7.5.  If the 

calculations followed the clearing of the screen, the screen would be blank for a 

longer amount of time leading to more flickering of the screen.   

(a) (b) 
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  Three variables, one for the X-axis, one for the Y-axis, and one describing the 

direction of the object, are necessary to describe the position of an object in a two-

dimensional space.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.5   Flowchart for Moving Graphics 

 

  A line, representing the AGV, is drawn between two points.  Each point has two 

coordinates thus creating the need for four variables that depict the line.  The X-

position, Y-position and the direction of the AGV, have to be represented by these 

four variables. Consequently, the last four variables have to be used by the drawing 

procedure as well as the calculating functions, and, thus, were declared global, 

which means that it must be accessible to all sub-procedures. 
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  Figure 7.6 shows the axle of the AGV, its current reference position and the next 

reference position of the AGV.  Angle (a) is the angle at which the AGV is displaced 

from virtual north, where virtual north is straight up.  (AB) is half the distance 

between point (C) and (B).  D is the distance of one step forward.  The following 

formulas determine the positions of point C and B so a line, that represents the axle 

of  
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the AGV, can be drawn: 

 X coordinate of B = Current X position + AB x cos (a) 

 Y coordinate of B = Current Y position + AB x sin (a) 

 X coordinate of C = Current X position – AB x cos (a) 

 Y coordinate of C = Current Y position – AB x sin (a) 

 
 

 

 

 

 

 

 

 

 

Figure 7.6   Calculations of Next Position of AGV 

 

  Forward movement is in right angle to the line that forms the axle of the AGV.  The 

X and Y coordinates of the next position are needed to make the AGV move forward.  

Multiplying the distance of one step (D), the distance travelled while one instruction 

is executed with the cosine and sin, with regard to the direction of the AGV (A), 

makes the AGV go in the direction it is facing in, as shown in figure 7.6.  The next 

position of the AGV, if it was to move forward by one step, is calculated as follows: 

 Next X position = Current X position + D x sin (a) 

 Next Y position = Current Y position – D x cos (a) 
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  It is cosine and sin for the same angle, as was needed to draw the line; the positions 

of cosine and sin just have to be changed with respect to the X-axis and Y-axis. If 

the signs are not changed in the correct way, the AGV will turn in the opposite 

direction than what was intended.  A line, temporarily drawn at right angle to the 

axle of the AGV, will show the direction the AGV must move in and a point on the 

line can be seen as the next coordinate of the AGV, if the AGV was to move forward.  

  Functions in the vein of sine and cosine are very complex and must therefore take 

a lot of time to compute.  By computing it once, and using it many times, the total 

amount of computations can be lessened.  All that is needed is extra variables that 

will house the temporary results of the cosine and sin calculations.  These variables 

only have to be used in the sub-procedure that does these calculations, so it can be 

local.   

  Backwards motion is accomplished by inverting the signs of the calculations for 

forward motion. 

  Changing the reference angle of the AGV will turn it.  The smaller the distance 

between the wheels of the AGV, the more the AGV will rotate for a specific angle 

turn of the wheels. 

  When turning while moving forward, the angle turn and the distance of one step is 

not the same as when the AGV is rotating or when it is just moving forwards.    It is 

not possible to synchronise the wheels of this AGV with the wheels of the real AGV 

if one does not know what the dimensions of the real AGV are.  One of the biggest 

problems is that the angle at which the AGV turns is dependent on the distance of 

one step and the distance between the wheels, as already stated. The turn is 

supposed to look like the example in figure 7.7(a) or (c).  
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  In all the sketches in figure 7.7, (B) is the distance of one step and (A) is the 

distance between the wheels.  As can be seen in figure 7.7, triangle (d) is closer to 

arc (c) than triangle (b) is to arc (a). Thus, the smaller the step (B) is in relation to 

the wheelbase (A), the more the result resembles a triangle. 

 

 

Figure 7.7 The AGV, While Turning, Could Use Either Triangles or Circles 

 

  The distance of the step is much smaller than the distance between the wheels, so 

one can use a triangle, as featured in figure 7.7(d).  All that is needed is to divide the 

distance of the step by the distance between the wheels and then to get the arc tan 

of that result as follows: 

 Angle of rotation = Arc tan (B/A)               (7.1) 

 

  The calculation could even be made easier, and more correct, with fewer 

computations.  The radial angle is defined as the distance of the round edge divided 

by the radius of the circle, as evident in figure 7.7(c).  Formula (7.1) is now changed 

to: 

 Angle of rotation = B/A  
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  When the AGV is rotating, the length of the radius would be half that of the 

distance between the wheels.  If the one wheel is standing still and the other is 

moving, then the AGV will move forward while turning.  The radius for determining 

the angle will be the same as the total distance between the wheels.  The two 

triangles in figure 7.8 are identical except for their difference in sizes, thus, the 

following formula can be incorporated: 

  a/A  =  b/B 

But  b   =  B/2 

  a/A  =  (B/2)/B = 1/2  

  a   =  A/2 

Where: 

  a   =  Distance of one step when turning. 

  A   =  Distance one wheel travels for execution of one instruction.  The 

distance   is the same as when the AGV moves forward during the execution of 

one step. 

  B   =  Distance between wheels 

  b   =  Distance from one wheel to the middle of the AGV. 

  The forward motion while turning would be approximately half that of forward 

motion while the AGV is not supposed to turn, as shown in figure 7.8.   

  Although the ideal is that the AGV moves forward while turning, it can be 

simulated by first letting the AGV move forward for a while and, thereafter, letting 

it turn without moving forward.  The AGV, when moving forward and, thereafter, 

turning (Figure 7.9 (b)), does not give exactly the same results as when the AGV is 

turning whilst moving forward (figure 7.9 (a) and table 7.1).  The smaller the steps 

are (figure 7.9 (c)), the closer the result is to the ideal (figure 7.9 (a)). 
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Figure 7.8   Calculating the Amount of Forwards Motion when Turning 

 
 

 

 

 

 

 

 

 

 

Figure 7.9 (a) Ideal Options when One Wheel Standing Still (b) Move Forward and then Turn  (c) 
Smaller Steps Forward and then Turn 

 

  Calibrating the Physical AGV with the Simulated AGV is accomplished by turning 

the Physical AGV around on its own axle for two or more full rounds and then 

counting the amount of instructions executed during that time.  It is then a simple 
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division calculation that determines the angle the Simulated AGV has to turn for 

each instruction executed. 

 

7.1.1.2 Distance Sensors 
 
 

    The calculation of distance is important for two reasons.  The one is to let the 

Simulated-Functions-of-the-Microcontroller know more about the AGV‟s 

surroundings so the AGV will know how to react.  Secondly, the Programme 

Generator uses the sensors to determine if the AGV has collided with something in 

order to let the next Simulated Programme be evaluated, or to let a new generation 

of Simulated Programmes be generated.  The results from the Distance Sensors are 

placed directly into the following registers of the Simulated-Functions-of-the-

Microcontroller: 

 The sensor facing forwards‟ results are placed in register five. 

 The sensor facing backwards‟ results are placed in register six. 

 The sensor facing right‟s results are placed in register seven. 

 The sensor facing left‟s results are placed in register eight. 

 

  The simulated Distance Sensors and the physical infrared sensors characteristics 

have to, as far as possible, be the same to be able to give the best results.  

Accomplishing this sometimes requires more that just calibration.  In this 

dissertation, the linear readings from the virtual world have to be changed to a non-

linear status to correspond with the real world readings.   

  Four aspects have to be considered: 

 Placement of the Simulated Sensors 
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 Determining the Distance to an Obstacle 

 Changing Linear into Non-Linear 

 Uploading and Downloading Times 

 

  The placement of these sensors with respect to the surroundings shows not only in 

which direction the sensors are facing but also the starting point from where the 

distance is calculated. 

  From the reference point of the AGV, a sensor is displaced by an angle, as shown in 

figure 7.10.  To be able to determine the angle of the sensor with reference to 

Virtual North, one must add the reference angle of the AGV to the displacement 

angle of the sensor with respect to the AGV.  The displacement angle of the sensor, 

with respect to the AGV, is fixed because the sensor is mounted in a fixed position 

on the Physical AGV.  Although the displacement angle of the sensor, with regards 

to Virtual North, is not the same as the Reference Angle of the AGV, it will change 

by the same amount, and in the same direction, as the reference angle of the AGV. 

. 

 

Figure 7.10 Determining Position of Sensor 
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  The total distance between the reference point of the AGV and the sensor is 

multiplied by sin and cosine of the angle of the sensor, with reference to Virtual 

North, to get the X and Y coordinates of the sensor with respect to the reference 

point of the AGV.  The X and Y values of the AGV‟s reference point just have to be 

added to the X and Y values of the sensor to determine where the sensor is in the 

maze.  Any point on the AGV can be determined in this way and, thus, one can draw 

the AGV in any form that one wants, if need be. 

  The angle the sensor is facing in might not be the same as the angle the sensor is 

displaced by, with reference to the AGV, as shown in figure 7.11.  This constant 

difference can be added to, or subtracted from the displacement angle of the sensor, 

with reference to Virtual North.  The result is the angle the sensor is facing in with 

reference to Virtual North.  Computations can be lessened by making the 

displacement angle of the sensor, and the angle the sensor is facing in, the same. 

 

 

 

 

 

 

 

 

Figure 7.11 Determining the Direction the Sensor Should Face 

 

  When these two angles are the same, as is the case in this experiment, an 

imaginary point can be calculated directly from the AGV‟s reference point, as can be 
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seen in figure 7.12.  The distance from the reference point of the AGV to the sensor 

(A) just has to be subtracted from the input value obtained from the virtual sensor 

(B). 

  Calculations could be made even less complex by using the cosine and sine already 

determined for the drawing and forward motion of the AGV.  Preceding a single step 

of the AGV, exactly the same calculation as the calculations performed to determine 

the next position of the AGV if it is moving forward, is performed to determine an 

imaginary point some distance directly in front of the AGV.  If this imaginary point 

is not inside an obstacle, the distance is made larger and a second imaginary point is 

determined.  This process is repeated until an obstacle is registered or until the 

distance becomes too far.  This simulates a single sensor in the middle of the AGV‟s 

front, facing directly forwards.   

 

 

 

Figure 7.12  Less Computations Option for Sensors 

 

  A backwards sensor can be simulated by simply inverting the signs of the 

calculations, as was implemented for the front sensor, or made to be similar in 

nature to backwards motion.  The calculations for drawing the line that simulates 
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the axle correspond to the calculations needed for the sensors facing to the right 

and left of the AGV.  The imaginary sensory points are the same as the points 

needed to draw the line making up the axle if the line was to be made longer. 

  A loop in the programme is used, where a few tests are performed with every cycle.  

Firstly a point is determined.  These tests will check to see if the point determined is 

inside one of the obstacles and each obstacle has its own test. 

  A loop can be programmed for each sensor.  The result will be that the 

multiplication with sin and cosine will have to be performed for every sensor 

whenever distance is determined.  Instead, one programme loop can be used.  The 

calculations have to be executed once for a specific distance.  The detection of an 

object will be like a circle moving outwards from the AGV. 

  However, the disadvantage of this method is that, if one looks at a single sensor, 

tests have to be carried out after the sensor has sensed an obstacle to make it 

possible for the other sensors to also determine distance.  To overcome this, an “IF” 

function can be incorporated to do a test and see if it is necessary to execute all 

these tests again for a specific sensor.  These tests also depend on the amount, as 

well as the complexity, of the obstacles.  This makes the programmes execution 

time longer, and even worse than that is that it is in a programme loop, so the test 

will be executed again and again. 

  If only one loop is used, one must make sure that all the sensors‟ results have been 

met as well.  For this, an extra test has to be performed.  If one considers all the tests 

that have to be executed versus two single multiplications that have to be executed, 

then it seems that the best option would be to use a loop for every sensor. 
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  The results showed that the AGV bumped into obstacles when only one forward-

facing sensor was incorporated.  A method to overcome this might be to use more 

sensors or to change the existing sensor‟s placement on the AGV.  There are two  
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options available: 

 Parallel Simulated Sensors can be placed at the corners of the AGV which 

faces forwards.  Only an obstacle sensed that is the closest between the two 

will be forwarded to the processor.  An addition and multiplication 

calculation of the original calculated cosine and sine vectors makes up these 

vectors as shown in figure 7.13 (a).  This method is used in this dissertation. 

 Diagonal Simulated Sensors facing forwards, as the ones on figure 7.13 (b), 

need extra angle calculations, thus cosine and sine have to be calculated for 

each angle.  Adding vectors to each other takes up less time than calculating 

cosine and sine for vectors facing in new directions. 

 

 

 

 

 

Figure 7.13   Options in Placement of Sensors on the AGV (a) Parallel Sensors (b) Diagonal Sensors 

 

   Out of the preceding parts, it can be seen that determining a distance with a linear 

result is easier than determining distance with a non-linear result.  To make the 

simulated sensor output values non-linear, thus more like the physical sensors 

output, a formula had to be incorporated.    The formula has to be something 

resembling the following: 

  Y = A/X 

  A: Some predetermined constant value. 

  X: distance from the obstacle. 

(a) (b) 
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  Y: value generated by the sensor. 

 

  The output graph has to be moved with relationship to the X and Y-axes, so a value 

has to be added to the X, and to the Y, value in the formula.  The formula, thus, has 

to  

look as follows: 

  Y = A/(X + B) + C 

  Y: Value generated by the Analogue-to-Digital-Converter. 

  A: This constant determines how steep the climb of the formula is. 

  X: Distance to the obstacle in pixels. 

  B: A constant determining the displacement on the X axis. 

  C: A constant determining the displacement on the Y axis. 

 

  As an experimental set-up, four measurements are taken using the Physical AGV.  

The readings are taken while the obstacle is at an angle to the robot so that the 

specular reflection is not made part of the results [57, p.98-99].  For the forward 

facing sensors, the readings were as follows: 

   249 =>  13.5 cm 

   126 =>  19.0 cm 

   15  =>  66.5 cm 

   54  =>  30.5 cm 

 

  Because there are three unknown constant values that have to be determined, only 

three of the four values are used in substitution.  The two outermost values and the 

most central value are used.  Firstly, 249 is substituted in Y and 13.5 in X, as shown  
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in the next example: 

   Y = A / (X+B) + C 

   249 = A / (13.5 + B) + C 

   249 – C = A / (13.5 + B) 

   (249 – C)(13.5 + B) = A 

   A = 3361.5 + 249B – 13.5C – BC             (7.2) 

 

  In the same way, 15 and 54 are substituted in Y and 66.5 and 30.5 are substituted 

into X: 

   15 = A / (66.5 + B) + C 

   A = (15 – C)(66.5 + B) 

   A = 997.5 + 15B – 66.5C – BC              (7.3) 

   54 = A / (30.5 + B) + C 

   A = 1647 + 54B – 30.5C – BC              (7.4) 

 

 Because A is constant, formula (7.2) could be made equal to formula (7.3): 

   3361.5 + 249B – 13.5C – BC = 997.5 + 15B –66.5C –BC 

   2364 + 234B +53C = 0 

   53C = -2364 – 234B 

   C = - (234B + 2364) / 53                (7.5) 

  Formula (7.2) is now made equal to formula (7.4): 

   3361.6 +249B – 13.5C –BC = 1647 + 54B – 30.5C – BC 

   17C = - (1714.5 + 195B) 

   C = - (1714.5 + 195B) / 17                (7.6) 
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  Because C is a constant value, formula (7.5) and formula (7.6) can be made equal to 

one another: 

   - (234B + 2364) / 53 = - (1714.5 + 195B) / 17 

   (234B + 2364) * 17 = (195B + 1714.5) * 53 

   3978B + 40188 = 10335B + 90868.5 

   -6357B = 50680.5 

   B = -7.97239 

 

  By substituting the value of B into formula (7.6), the value of C can be determined: 

   C = - (1714.5 + 195B) / 17 

   C = - (1714.5 + 195(-7.97239) / 17 

   C = - 9.404 

 

  Both the values of B and C are needed in formula (7.2) to determine the value of A: 

   A = (249 – C) (13.5 + B) 

   A = (249 + 9.404) (13.5 –7.97239) 

   A = 1428.3 

 

  All these values are now inserted into the initial formula in order to get the 

formula that changes the linear value into a non-linear value that is calibrated with 

the real AGV‟s sensors: 

   Y = 1428 / (X – 7.97) – 9.4 
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The fourth reading is used to prove how accurate the formula is. 

   126 = 1428/(X – 7.97) – 9.4 

   135.4 = 1428/(X – 7.97) 

   X – 7.97 = 10.546 

X = 18.516 cm, where it should have been 19.0 cm.  It is a 2.6% error. 

 

  The width of Maze 1 and 2 is 600 pixels.  Making the maze small enough 

accommodate a car, it was decided that if the maze was physically constructed, it 

had to be two meters in length. Thus, a distance of 3 pixels represents one 

centimetre. Because X was made 3 times as big as it was before, the value of 1428 

and the value of 7.97 both have to be multiplied by 3 to get the same results from 

the formula.  External influences make the generated output value from the 

Analogue-to-Digital-Converter drift by a reading of approximately 3, so the addition 

of a random number of 3 simulates “noise” and is added to the total formula.  The 

formula has to be altered accordingly: 

   Y = 4284 / (X – 24) – 9 + random (3) 

  The formula for the other sensors is determined in the same way and is as follows: 

   Y = 1511/(X – 25) – 11 + random (3) 

 

 The values in the two formulae are so similar that, if it was not for the difference 

between the value 4284 and 1511, the two formulae could have been identical.  

Reading errors could have caused the small changes in the varying values.  The 

resistor, in series with the transmitter, thus influences the 4284 and 1511 values the 

most.  Making sure the most accurate results are gathered, the formulae are not 

made to be more similar, but are used just as they are in the programme. 
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  It is easy to see that, for a formula like Y = 1511/(X-25) – 11, the value of X must not 

be allowed to be a distance of 25 pixels, because it would cause Y to be infinitely big.  

If the value of X was a length of, for example, 26 pixels the resulting value generated 

by the distance sensor would be 1500.  The result was that the value was more than 

255, and it was assumed that the Simulated AGV had run into an obstacle. 

  A problem arose when the AGV suddenly came very close to an obstacle.  It was so 

close that the value of X was lower than 25 pixels.  For illustration purposes, the 

value of X is made 17 pixels.  The resulting value was –200, which was significantly 

less than 255, and the controller of the AGV accepted the obstacle to be far away.  To 

overcome this problem, the obstacle hit was registered when the X value was 25 

pixels or less than 25 pixels away from an obstacle. 

  The following resisters in the data array are loaded with the indicated sensors 

information: 

 Register five is loaded with information from the sensor facing forward. 

 Register six is loaded with information from the sensor facing backwards. 

 Register seven is loaded with information from the sensor facing to the right 

of the AGV. 

 Register eight is loaded with information from the sensor facing to the left of 

the AGV. 

 

  The connection between the Physical AGV and the computer is slow.  During the 

virtual evaluation, the sensors can determine the distance to an obstacle in the time 

it takes to execute only one instruction.  To make the simulation more realistic, the 

sensors must react as if there was an umbilical cord, which would slow down the 

communication between the Physical AGV and the personal computer.  In chapter 



 107 

five, it was seen that in order for all the sensors information to be updated only 

once, forty instructions had to be executed.  Simulation of the slow connection is 

accomplished by updating the values of the sensors only once after the execution of 

forty instructions. 

  With this slow communication, the motors again are more problematic than the 

sensors, because even if the Simulation-of-the-Functions-of-the-Microcontroller 

intend for a motor to change its motion, the AGV must still continue in the same 

fashion.  Simulating this, two variables are used.  The one is holding the information 

generated by the Simulated-Functions-of-the-Microcontroller, and the other is the 

information to let the “motors” keep on doing what they have been doing.  For 

example, if the AGV is moving forward.  The instruction coming from the 

Simulated-Functions-of-the-Microcontroller is to start turning.  The AGV will have 

to keep on moving forward, because that is the information that is still in the one 

variable.  This will keep on happening until the forty instructions are complete and 

the instruction to turn is loaded into the other register.  The AGV will then start 

turning. 

  The reading of the sensors and the loading of the new data into the register for the 

“motors” occur in the same cycle or at almost the same time.  This however, does 

not mean that when the Simulated-Functions-of-the-Microcontroller changes the 

output to the motors that it will have to wait for forty cycles.  It simply means that 

the output to the motors, as well as the reading of the sensors, can only take place 

at specific times.  These specific times are forty instructions or forty cycles apart. 

  With the Physical AGV, the information is not changed instantaneously, but takes 

forty instructions to change.  Thus, the change happens “systematically”.  The 

simulations are not totally correct, but adhere to the uploading times and 
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downloading times more stringently and gave good results on the Physical AGV.  It 

could even yield better results than the ones that would have occurred if the 

simulation were more correct.  It will force the Simulated Programmes to adapt to 

foresee what will happen and react predicatively. Hopefully the Simulated-

Functions-of-the-Microcontroller will react directly after the forty instructions 

have been completed, and not during. 

 

7.1.1.3 Extra Destination Input 
 

    The instruction from the user comes in the form of a single bit.  With this option 

activated, the AGV has to go to one of two destinations.  If the value is one, the AGV 

has to go to the one destination and when the value in the bit is zero, the AGV has to 

go to the other. 

  In the simulation, a simulated input is randomly generated before each simulation 

and is placed in the first bit of register fifteen.  The input also influences the fitness 

function, as the fitness levels are made directly proportional to the distance 

between the last position of the AGV, and one of two destinations in opposite 

corners of the maze, dictated by the input.  The value of the simulated input 

determines which destination is used for that simulation.  

  When the user chooses the only one destination option, the user is given an extra 

option.  This option, when activated, uses the first bit in register fifteen to indicate 

if the destination is to the right or the left of the Simulated AGV.  The same bit is 

used to simplify the generation of the Simulated Programme. 
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7.1.1.4 Surroundings 
 

  The surroundings are not designed to represent any real life situation; they are 

simply intended to give a medium for testing the ability of the various learning 

methods.  The surroundings play an important role in that they determine the level 

of complexity that must be overcome.  The simulated world has a wall surrounding 

it and obstacles inside of it.  The surroundings would not exist if it were not for the 

Distance Sensors that have to react to the surroundings.  It is possible that the AGV 

can go through the obstacle course without using any sensors and without bumping 

into any obstacle.  This is similar to a person walking in the dark.  He knows how 

many steps to take and in which direction to take them.  The problem is, to be able 

to “teach” the AGV, it has to bump into obstacles, and these bumps are registered by 

the AGV‟s sensors.  The interaction between Distance Sensors and the surroundings 

was explained in section 7.1.1.2. 

  Although other forms can be incorporated, rectangles are used as obstacles 

because of their simplicity.  The calculations take less time with rectangles and, 

thus, the simulation in total takes less time.  Luckily, there are a lot of options 

available when using rectangles. 

  It was decided that a maximum of 10 obstacles would be used in the maze.  As will 

be seen, the width of the passages and walls were factors.  It proved itself to be an 

adequate amount as in some mazes only eight obstacles were needed. 

  Each obstacle needs four variables.  These values are the most left X value, the 

most right X value, the upper Y value and the lower Y value. Matrixes with ten 

variables are used for each.  For visual purposes only, a drawing of the obstacle 

course is made.  The drawing of the surroundings is easy to do, as rectangles and 
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lines are very easily drawn in C++.  The biggest problem is when it must be drawn, or 

redrawn, as shown under section 7.1.1.1. 

  These ten obstacles are placed in different forms at different positions.    It is up to 

the user to change the obstacle course into one of the given options.  Some of these 

options are obstacles that change in position and form, while others are set mazes.  

In all the simulations, the line represents the AGV, and the cross is the destination. 

  The reason for incorporating different obstacle courses was to determine what 

problems the AGV could overcome.  The mazes also evolved to get a better quality 

maze.  In the end, it was seen that the AGV could not adapt to changing obstacle 

courses and that the best option was to use maze 2 for all experiments.   The options  

in obstacle courses were: 

 Maze 1 is a fixed option 

 Maze 2 is a fixed option 

 Sliding Columns changes in form 

 Moving Holes changes in form 

 The Random option changes randomly between all the earlier mentioned 

options 

 

  An extra option was given in order to choose whether the obstacle course must 

change for every simulation or only after every generation had been evaluated.  

  Drawing a wall in a two dimensional space is accomplished by making the length of 

a rectangle much more than the width.  Maze 1, as shown in figure 7.14, consists out 

of nine of the ten rectangles.  In section 7.1.1.2, it was seen that a distance of three 

pixels simulates a length of one centimetre.  The passages in the maze are a 

hundred pixels wide, and the walls are ten pixels wide.  Maze 1 was the first maze 
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constructed, and the walls width was enlarged to ensure that the sensors would be 

able to sense the walls.  The mazes‟ passages are thus equivalent to a width of 333 

mm and the walls are equivalent to a thickness of 33mm.  The sketch shown is an 

actual copy of the maze, and, as can be seen, there are only two routes that the AGV 

can take to get to the destination. 

 

 

 

Figure 7.14   Maze One has Two Possible Routes to the Destination 

 

  Because of the small passages and thick walls of Maze 1, Maze 2 was developed.  In 

the section “Distance Sensors”, it can be seen that the passages must be wider than 

a certain specified width that was determined by the Distance Sensors. It was not 

possible to determine distance if the object was closer than thirteen centimetres.  

Thus, any obstacle thirteen centimetres and closer is seen as being collided with. 

  Physical walls of 33mm in thickness, if one can get hold of it, will be expensive and 

it will obviously be heavy.  Even in the simulation, the wall took up space, where if it 

were thinner the passages could be made wider. 

  Instead of having two possible routes to the destination, as in Maze 1, there are 

three possible routes to the destination in Maze 2 that were created.  The AGV could 

also walk in wide circles in Maze 2, as shown in figure 7.15. 
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Figure 7.15   Maze Two has Wider Passages, Thinner Walls and Three Routes 

 

  The obstacle course “Sliding-Blocks”, shown in figure 7.16, are made out of equally 

large, almost square, rectangles.  The size and form of all the obstacles is the same.  

Their individual Y coordinates are determined randomly.  Avoiding the obstacles‟ 

overlapping and being in one place, each obstacle has been given its own “Column” 

or, in other words, X coordinate that is fixed.  This method also ensures that the 

Simulated AGV is not isolated from the destination.  If all the obstacles were placed 

in such a way as to form a line, there would still be a gap big enough to let the AGV 

though.  As can be seen, this obstacle course changes into a different form after 

each evaluation. 

 

 

 

Origin  

Destination 
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Figure 7.16  Sliding Blocks Obstacle Course 

 

  The “Moving Gaps”, shown in figure 7.17, obstacle course is basically the opposite 

of the “Sliding Blocks” obstacle course.  Instead of having obstacles that move “up 

and down”, there are gaps in a wall that move “up and down”.  Thus, the placing of 

a hole is determined randomly. 

  Two obstacles make up one wall.  The one obstacle is to the right-hand side and the 

other is to the left-hand side of the gap.  To make the alleys wide enough, only four 

walls (eight obstacles) are used. 

 

 

 

Figure 7.17   Moving Gaps Obstacle Course 

 

  It was decided to make the gaps bigger at the start and then let them become 

gradually smaller as the AGV got closer to the destination.  The passages would also 

become narrower.  This was introduced to allow the AGV to attempt overcoming 

bigger challenges the more it advanced within the experiment. 

  The final option is a random choice between all the previous obstacle courses.  It is 

not an individual obstacle course, as with the previous ones.  It is just an extra 

option. 

 

Origin  

Destination 
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7.2 Programme Generator 
 

  The Simulation-of-the-Functions-of-the-Microcontroller operates from a 

programme, as a normal processor would do. This programme has to be generated 

by some means.  A human programmer could write the programme.  Although a 

human programmed Simulated Programme was also incorporated here to prove 

that the simulator works, Simulated Programmes were mostly generated by 

algorithms.   

  Three methods of generating Simulated Programmes are introduced.  These 

methods have overlapping qualities, and are an altered simulation of evolution in 

nature.  The quality that all these methods use is mutation and they all need a 

fitness level.    Different options are given to the user in order to make it possible to 

evaluate the processes against each other.  These options are: 

 Genetic Algorithms, with crossover, for generating Simulated Programmes 

 Genetic Algorithms without crossover, where mutation is the only way 

whereby a new Simulated Programme is generated. 

 Implementing Single-Chromosome-Evolution-Algorithms (SCEA). 

 

  After the completion of the evaluation of every single Simulated Programme, the 

Programme Generator‟s procedure is executed.  Although Genetic Algorithms 

require the whole population to first be simulated before generating a new 

generation, the Virtual Programme was written in such a way as to accommodate 

the Single-Chromosome-Evolution-Algorithms. 

  Because Single-Chromosome-Evolution-Algorithms are new, they will mostly be 

evaluated and compared to the other options. 
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7.2.1 Determining the Current Fitness Level of the Simulated 
Programme 

 

  The current X position of the AGV is subtracted from the X position of the 

destination.  The same subtraction is implemented for the Y coordinate.  With these 

two resulting pieces of information, the linear distance between the AGV and the 

destination is determined.  This linear distance is then subtracted from the initial 

distance between the AGV and the destination to get the fitness level of the AGV.  In 

short, the closer the AGV gets to the destination, the higher the fitness level will be.  

This method is used in this programme because of its simplicity. 

  Another alternative to the problem is as follows: In section 2.7.5.3, it was shown 

that the AGV had to go to a position that was farther away from the destination 

than where it was presently at, in order to get to the destination.  Therefore, if 

distance is used as an indication of fitness, then the AGV is more than likely not 

going to get to the destination, if the obstacle course used is similar to the example 

in section 2.7.5.3. 

  Imagine, for example, that the robot or AGV does not know where the destination 

is.  The more the robot moves around, the more likely it will be to get to its 

destination.  So the longer the distance traveled, the higher the fitness level must 

be.  If it does succeed in getting to the destination, it must have done so in the least 

amount of steps.  Consequently, if the destination is found, the distance travelled 

must be as small as possible, as this would save time and energy.  It is now difficult 

to determine what the fitness level of a chromosome must be.  The question is what 

the formula must be: higher fitness level for more steps taken or a lower fitness 

level for more steps taken? 
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  There must be some change when the AGV has reached its destination.  If the robot 

has already reached the destination, then it can change a variable into a different 

form, for example, from false to true.  This can then force the programme to use a 

different formula to determine the fitness level.  The problem, however, is to 

compare the results of these two formulas.  To be able to compare the formula 

before the destination is reached with the formula for when the destination is 

reached, the formulas must have the same properties.  This might be accomplished 

by extending the one formula to form the next formula, but how can one extend a 

formula in this way?  One way is to say that the one formula is just the amount of 

steps taken.  The next formula is the amount of steps taken minus two times the 

steps taken.  The second formula is, therefore, just minus the steps taken.  So, the 

one formula‟s results are going to be positive and the other‟s is going to be negative.  

However, one can see that this method will not work.    

  A method can be used where, in the case of the second formula, the amount of 

steps taken is subtracted from a fixed amount if the destination was reached.  The 

problem, however, is what the value must be.  The bigger the maze the higher the 

value must be because the AGV would have to take more “steps” in order to get to 

its destination.  The second problem is that a robot that has not yet reached the 

destination, but has moved in circles for a hundred times or so, might have a higher 

fitness level than the one that has actually reached the destination in only a few 

steps. 

  The value that was referred to earlier can, therefore, become rather large.  This 

means that the AGV that has found the destination has a much higher fitness level 

than the rest.  A sudden jump in fitness will occur.  This can be useful if the method 

of choosing a parent is where part of the population all had the same chance of been 
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chosen.  If the roulette-wheel-parent-selection method is used, then the ones that 

have reached the goal will have a much higher fitness level than the rest.  This 

fitness level might be so high that the rest will, more than likely, not be chosen as a 

parent.  This can make the problem of inbreeding prevalent, because only a small 

part of the population is used.   

  The maximum amount of steps taken by any AGV can be seen as the lowest fitness 

level a chromosome, that has reached the destination, can have.  The amount of 

steps taken by the AGV that has reached its goal cannot be subtracted from this 

value because that could make this chromosome less fit than chromosomes that 

have not reached the destination. 

  The chromosome that has reached the destination must have a minimum fitness 

level of at least one more that the chromosome that has taken the most steps 

overall.  The chromosome with the highest fitness level must be the one with the 

lowest amount of steps taken to reach the destination.  The difference in the 

amount of steps taken by the one with the most steps and the one with the least 

amount of steps, when both have reached the destination, has to be added to the 

most steps taken by any AGV.   

The formula is described in formula (7.7). 

 A =  Resulting fitness level of a chromosome that has reached the destination 

 B =  The most steps taken by any chromosome 

 C =  The most steps taken by a chromosome that has reached the destination 

D =  The least amount of steps taken by a chromosome that has reached the 

destination 

E =  The amount of steps taken by the individual that has reached the 

destination 
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   A = B + (C – D) + 1 – E                  (7.7) 

 

  Although it is difficult to give a specific fitness level value to a chromosome, it is 

easy to compare two chromosomes.  The chromosome that has reached the 

destination as a higher fitness level than the chromosome that has not reached the 

destination.  The amount of steps taken has already been explained. 

  With this information, one can determine which chromosome is the fittest, and 

which one is the second fittest.  It is similar to a race, giving a person a position 

instead of a time.  For instance, if there are ten chromosomes, then the fitness level 

of the chromosomes must be from one through to ten.  Of course a special 

procedure has to be written to determine the fitness level (places, if it were a race).  

This is something that would not be needed if a mathematical formula was used. 

 

7.2.2 Genetic Algorithms for Generating Simulated Programmes 
 

  Unlike the standard Roulette-Wheel-Parent-Selection, the parents could survive to 

the subsequent generation [32, p.8-11] [56, p.10-13].  In the same way as choosing a 

“More-Fit” chromosome as a parent, by changing the Roulette-Wheel-Parent-

Selection in a small way, a “Less-Fit” chromosome (or Simulated Programme in this 

case) is chosen and then replaced with a newly generated chromosome, as will be 

seen in the following paragraphs. 

  Because the procedure for implementing Genetic Algorithms with crossover and 

the procedure for implementing Genetic Algorithms without crossover are so 

similar, they are imbedded into the same procedure in the Virtual Programme.  The 
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procedure, when implementing Genetic Algorithms, is broken up into two 

consecutive parts: 

 Simulate the Whole Population.  Because the Programme Generator‟s 

procedure is accessed after each and every evaluation, this part of the 

Programme Generator has to make sure the whole population of twenty 

Simulated Programmes is simulated to determine their fitness levels before a 

single new offspring is generated. 

 Acquire Ten Siblings.  The population is twenty, thus the “better” half of the 

old generation remains while the other half is replaced by siblings of the 

previous population.  

 

7.2.2.1 Evaluate the Whole Population 
 
 
  The sub procedure shown in figure 7.18 is the framework for the procedure that 

generates a Simulated Programme through both Genetic Algorithm methods used in 

this research.  Imbedded within this procedure is the “Acquire Ten Siblings” 

procedure, which generates the new Simulated Programmes. 
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Figure 7.18   Flowchart of Procedure “Evaluate Whole Population” 

  As with the rest of the Virtual Programme, the variable “prog-num” in this 

procedure, which is an abbreviation for programme-number, indicates which 

Simulated Programme is evaluated. This part makes sure all the Simulated 

Programmes are evaluated before generating a new generation. 

 

7.2.2.2 Generation of Offspring 
 
 
  After each evaluation, the Simulated-Functions-of-the-Microcontroller is reset. 

This has to be incorporated; otherwise, the simulations are not identical to the 

previous simulations.  This includes the array with the name DATA, which simulates 

the Data Registers of the microcontroller.  Therefore, these individual variables of 

the DATA array can be temporarily accessed and used for other purposes, before it 

is reset.  To save on the total amount of variables that are used by this programme, 

they are used by the functions in the following section. 

  The whole process of getting offspring is repeated ten times in order to get ten 

siblings.  It is a basic “for” loop used in C++.  It was decided that the count of the 

amount of siblings that have been generated is kept in the second variable in the 

DATA array, thus in variable “DATA[2]”.  The process is shown in the figure 7.19. 

  The highest fitness level obtained out of all the individuals in the previous 

evaluation of the whole population is needed in the sub-procedures “Choosing a 

„Less Fit‟ Simulated Programme” and “Choosing a „More Fit‟ Simulated Programme”.  
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It precedes the whole of the generation of new siblings‟ procedures. The actual part 

of the programme that determines the highest fitness level is shown in Programme 

Segment 7.1.  This procedure is illustrated as a flowchart in figure 7.20. 

 

For ( prog_num = 0; prog_num < 20; prog_num++ ) 

  { 

   if ( fitness [ prog_num ] > DATA[1] ) DATA[1] = fitness [ prog_num ] ; 

  } 

 

Programme Segment 7.1 Determine Highest Fitness Level. 
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Figure 7.19   Flowchart of Procedure “Acquiring Ten Siblings” 

 

  Two variables are used in the programme to determine the highest fitness level.  

The one variable is the “prog_num” variable that is temporarily used because it is 

going to be changed into something specific afterwards.  In the end, the highest 

fitness level will be contained in the variable with the name and number “DATA[1]”. 
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Figure 7.20   Procedure to Determine the Highest Fitness Value 
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Figure 7.21   Flowchart Showing How a New Sibling is Generated 

 

  As was explained in section 2.7.5.2 Genetic Algorithms can be implemented with, or 

without, crossover [30, pp.513-516]. Here both options are implemented and are 

placed in one procedure.  The flowchart of the procedure is shown in figure 7.21.  

First, the “weaker” Simulated Programme, that has to be replaced, and one 

“stronger” Simulated Programme that is going to replace the “weaker one”, is 

determined.  For Genetic Algorithms, that includes crossover, a second randomly 

chosen Simulated Programme is chosen to replace the “weaker” Simulated 

programme. 
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Figure 7.22   Choosing “Less Fit” Simulated Programme 

 

  The Simulated Programme that is going to be replaced by a sibling is known as the 

“Less Fit” Simulated Programme.  The worse a Simulated Programme‟s fitness level 

is, the better the chances for that Simulated Programme to be chosen as a “Less Fit” 

Simulated Programme.  This part of the procedure is shown as a flowchart in figure 

7.22.  After completion of this procedure, a number identifying a Simulated 

Programme that has to be replaced is chosen, and that value is placed in the register 

“prog_num”. 
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Figure 7.23   Choosing “More Fit” Simulated Programme 

 

  Although most of the “Less Fit” Simulated Programmes have lower fitness levels 

than the average, any Simulated Programme can be chosen.  This process is much 

like the Roulette-Wheel-Parent-Selection method.  The only difference is that in this 

case the “weaker” programme is chosen instead of the “stronger” one.  As already 

stated, the value of the highest fitness level is contained in the variable “DATA[1]”. 

   There is a slight difference between choosing a “More Fit” Simulated Programme 

and choosing a “Less-Fit” Simulated Programme”, as can be seen when comparing 

figure 7.22 and figure 7.23.  The only differences are that the result is kept in the 

register “DATA[3]” and the “Yes-No” options of the test are turned around. 

 

7.2.3 Implementing Single-Chromosome-Evolution-Algorithms 
 

  This is a separate procedure to that of the two Genetic Algorithm methods.  As 

illustrated in figure 7.24, the programme is much smaller and less complex than 

Genetic Algorithms. 
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Figure 7.24   Flowchart of Single-Chromosome-Evolution-Algorithms 

 

  When implementing Single-Chromosome-Evolution-Algorithms, all that is needed 

is a programme similar to the one shown in figure 7.24 and the Evaluator. 

 

7.2.4 Copying One Simulated Programme into Another 
 

  The method of copying one Simulated Programme into another is used by Single-

Chromosome-Evolution-Algorithms as well as Genetic-Algorithms that only make 

use of mutation.  The old version of the Simulated Programme is removed and 

replaced by a new one.  At the completion of this function, there will be two 

identical Simulated Programmes.     

  As will be explained later, the crossover in Genetic Algorithms is similar to this. As 

an illustration, the flow diagram of the copy method of the Mutation-Only-Genetic-

Algorithms in figure 7.25 will be used.  The way in which it is used in the 

programme is shown in programme segment 7.2. 

 

      for(DATA[4]=0;DATA[4]<50;DATA[4]++) 

      { 

       programme[prog_num][DATA[4]] = programme[DATA[3]][DATA[4]]; 

      } 

 

Programme Segment 7.2 Copying Simulated Programme. 
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  In the Mutation-Only-Genetic-Algorithm, a “Less Fit” Simulated Programme has to 

be replaced by a “More Fit” Simulated Programme. An instruction, as well as its 

operands, occupy a single register in memory and it possesses a single address [18, 

p.19&147]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.25   Procedure to Copy a Simulated Programme 
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“DATA[4]” of Simulated Programme “DATA[1]” 
into the address shown to by register 
“DATA[4]” of Simulated Programme 

“prog_num”. 

Add one to the value in register “DATA[4]” to 
indicate that the next instruction in both 

Simulated Programmes have to be accessed. 

Is the 
 value contained in 

 register DATA[4] more than 
fifty, in other words, have all 

the instructions been 
replaced? 

Return to rest of programme 

No 

Yes 

Copy one Simulated 
Programme into another 
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  The information in all of the registers of the “More Fit” Simulated Programme has 

to be copied, one by one, to the corresponding address‟ registers of the “Less Fit” 

Simulated Programme.  A software loop, which goes through all the addresses in the 

Simulated Programmes, is needed.  A variable is needed to keep hold of the 

instruction address that has to be copied at that instance.  It was decided that this 

value would be kept in the “DATA[4]” register.  Because there are fifty instructions 

in each Simulated Programme, this value has to go though all fifty addresses. 

 

7.2.5 Crossover for Simulated Programmes 
 

  Crossover is the same as two “Copying One Simulated Programme into Another” 

procedures.  Firstly, a crossover point is randomly determined, as shown in figure 

7.26.  Programme segment 7.3 shows the part of the actual programme that is 

performing the crossover. 

 

 

 

 

 

 

 

 

 

 

Crossover for Simulated Programme 

Place random number in the 
variable “DATA[6]” 

Copy instructions in address zero to address 
“DATA[6]” from the first “More Fit” Simulated 

Programme into address zero to address “DATA[6]” 
of “Less Fit” Simulated Programme. 

Copy instructions in address “DATA[6] to address 
fifty from the second “More Fit” Simulated 

Programme into address “DATA[6]” to address fifty 
of “Less Fit” Simulated Programme. 

Continue with the rest of the 
programme 
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Figure 7.26  Implementing Crossover on Simulated Programme 

 

  Because there are fifty instructions in a Simulated Programme, the crossover point 

is a number between zero and forty-nine.  As shown on figure 7.21 earlier in this 

chapter, before crossover is performed, two “More Fit” Simulated Programmes 

already had to be determined. 

 

     DATA [6] = random (49); 

      For ( DATA [4] = 0 ; DATA [4] < DATA [6] ; DATA [4] ++) 

      { 

       programme [prog_num] [DATA[4]] = programme [DATA [3] ] [DATA [4] ] ; 

      } 

      for ( DATA [4] = DATA [6] ; DATA [4] < 50 ; DATA [4] ++) 

      { 

      programme [prog_num] [DATA [4] ] = programme [DATA [5] ] [DATA [4] ]; 

      } 

 

Programme Segment 7.3 Crossover for Simulated Programme. 

 

  From the address of the first instruction, up to the crossover point, each 

instruction of the first “More Fit” Simulated Programme, with its operands, is 

copied, one by one, into the “Less Fit” Simulated Programme memory position with 

the same address.  Then, from the crossover point, up to address forty-nine, the 

instructions, and their operands, of the second “More Fit” Simulated Programme 

are copied one by one into the memory position with the same address of the “Less 
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Fit” Simulated Programme.  The result is a Simulated Programme where the first 

few instructions are exactly the same as the first few instructions of the first “More 

Fit” Simulated Programme, and the rest of the instructions are exactly the same as 

the second “More Fit” Simulated Programmes instructions. 

 

7.3 Starting and Stopping the Evaluation 

 

  As was shown at the introduction to this chapter in figure 7.2, there is an 

alteration between the Programme Generator and the Evaluator.  It is easy to see 

when the next Evaluation must start; it is directly after the creation of the new 

generation is complete.  The problem is determining when the evaluation is 

finished.  The following four reasons for stopping the evaluation will to be 

discussed: 

 Detecting an error in the Simulated Programme 

 The Simulated AGV has collided with something 

 A timeout occurred 

 The user has stopped the programme 

 

  The timeout termination was brought in because the Simulated-Functions-of-the-

Microcontroller might not run errors, the AGV is not moving or is running around 

in circles, and as a result, does not collide with any walls.  If it were not for the 

timeout termination, it would have been possible for the evaluation to continue 

without ever accomplishing anything. 
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7.3.1 Detecting an Error in the Simulated Programme 
 

  The following errors lead to termination of the current evaluation: 

 The Simulated-Functions-of-the-Microcontroller wants to access an 

instruction at an address higher than fifty.  As will be stated in section 11.1, 

the memory size of one Simulated Programme is only fifty instructions in 

length.   

 The Simulated-Functions-of-the-Microcontroller wants to access data in a 

register with an address higher than fifty.  Although there is only one set of 

data memory, there are also just fifty registers. 

 The Stack is overrun.  It was decided that, in order to compare the 

Simulated-Functions-of-the-Microcontroller with a physical PIC 

microcontroller, only ten stacks would be used. 

  

7.3.2 AGV Collides with an Obstacle 
 

  The detection of a collision is made part of the Distance Sensor procedures.  If the 

distance to the nearest obstacle is closer than a fixed amount, it is presumed that a 

collision has occurred.  The two AGV in figure 7.27 are about the same distance 

from the obstacle, although the AGV on the left has registered a collision while the 

one on the right has not.  Thus, it is possible that an obstacle can be closer to the 

AGV than what is allowed and not be sensed as a collision.   

 

 

 

 

Obstacle 

AGV 
AGV 
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Figure 7.27  Rotation Influences Collision Detection 

 

  Two scenarios happen before a collision is registered.  If the AGV systematically 

gets closer, so as to reduce the distance sensed by the Distance Sensors, it can be 

sensed as a collision.  The bump will also be sensed as soon as the Simulated AGV 

turns, so as to let one of the sensors sense the obstacle more directly, as shown in 

figure 7.27. 

7.3.3 A Timeout Occurrence  
 

  The timeout is accomplished by inserting a global variable into the programme.  

This variable counts the amount of instructions executed and, if the amount of 

instructions executed is more than a specified amount, a timeout occurs.  Through 

examination, this amount was changed until the seemingly best results were met. 

  This maximum amount of instructions can influence the speed of the simulation 

and, if it is made too short, can influence the final fitness level of each Simulated 

Programme.  This happens because, if this maximum amount is made too long, the 

AGV will take up a lot of time doing nothing, and if it is too short then the AGV will 

not be able to do enough steps to get to the destination. 

    Having too short a timeout will have a hidden advantage in that the AGV will look 

for the shortest way to the destination.  This happens due to the fact that, if it were 

to choose the path that was not the shortest, then the timeout would occur when 

the AGV was further away than it would have been if it had taken a shorter route. 

  With all the options in mazes, it is difficult to determine what the maximum 

amount of instructions must be if they had to be just enough to get to the 

destination. 
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  The following method can be incorporated to get short timeouts, if they are 

required, while giving timeouts that last long enough to get the AGV to the 

destination when it is able to reach it.  The mazes can be divided into blocks.  The 

AGV must not exceed the time allocated for it to enter a block that is closer to the 

destination, otherwise a timeout will occur.  If the block entered is further away 

from the destination than the previous block, then the timeout must occur more 

quickly because the AGV has taken the wrong turn. 

  If these blocks were made infinitely small, then a continuous formula can be 

incorporated.  The fitness level already indicates the difference in linear distance 

between the AGV and the destination.    In this dissertation, a formula is used to 

determine the maximum amount of instructions that a Simulated Programme is 

allowed to execute for a given situation.  If the AGV has not moved for some time, 

then a timeout will occur.  The more steps the AGV takes in the direction of the 

destination, the more time must be allowed for the AGV to get to the destination. 

  It seems that the biggest problem when the AGV start moving is that it runs into 

walls instead of simply doing nothing.  The AGV will, most of the time, not be able to 

walk to the destination in a straight line, as is one of the characteristics of the 

fitness calculation in this dissertation.  Extra time for avoiding obstacles is added to 

the maximum amount of allowable instructions that may be executed.  The formula 

for the maximum allowable instructions is: 

  Timeout   =  A + B * Fitness. 

  Fitness  :  Current fitness level of Simulated Programme 

  A : Maximum amount of instructions allowed to be executed when the AGV 

   is not moving, or extra time to avoid obstacles 
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  B : The distance the AGV travels while one instruction is      

    executed plus extra time to avoid obstacles 

     

7.3.4 User Stopping Programme 
 

  There are two ways for the user to stop the programme.  Everything has to come to 

an end.  By pressing the “ESC” button the Virtual Programme is terminated.  One 

can also pause the programme in order to see a graph of the results.  Because the 

evaluation is the most time-consuming part of the programme, it will seem as 

though the evaluation is always being interrupted.  However, theoretically, it is 

possible to stop the programme during the Programme Generation stage. Unlike the 

other options, generating a new generation of Simulated Programmes will not 

necessarily be executed after the programme has been stopped in this way.  The 

programme will either be terminated or will continue from where it was originally 

stopped. 

 

7.4 Summary 

 

  A Simulated Programme is evaluated by executing it using a simulation of the AGV 

in a simulated environment.  The result from the evaluation is a fitness level.  Each 

Simulated Programme is evaluated individually and each is assigned its own fitness 

level. These fitness levels and their respective Simulated Programmes are used in 

the generation of new, hopefully better, Simulated Programmes. 

  The “sensors” and the “motors” of the Simulated AGV have to be calibrated with 

the physical infrared sensors, and modified servomotors on the Physical AGV.  The 
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surroundings are in the form of different mazes and only the sensors react to the 

obstacles in these mazes.  The controller of the Simulated AGV is the Simulated-

Functions-of-the-Microcontroller, and is explained in chapter 11.  

  The generation of a new Simulated Programme is accomplished by using Mutation 

Only Genetic Algorithms, Genetic Algorithms that use mutation and crossover, or 

through Single-Chromosome-Evolution-Algorithms.  The user has to choose 

between one of these three options. 

  The evaluation of an individual is complete when the AGV has collided with a wall, 

a timeout has occurred or an error has been detected in the programme.  The user 

can temporarily stop the programme, or the user can terminate the programme. 

  Crossover is accomplished by connecting the first part of a “More Fit” Simulated 

Programme to the last part of another “More Fit” Simulated Programme.  Mutation 

of the Simulated Programmes is accomplished by using the methods explained in 

chapter 8.  The resulting Simulated Programme replaces a “Less fit” one.  When 10 

of the 20 Simulated Programmes have been replaced, the evaluation of all the 

Simulated Programmes starts again. 
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8 Special Mutation 

 

  In this dissertation, mutation is a way of altering instructions in a Simulated 

Programme, in order to turn it into a new Simulated Programme.  All three-

programme generation methods use mutation.  As will be illustrated in this 

segment, Special Mutation is different to normal mutation in that it speeds up the 

generation of Simulated Programmes with a high level of fitness. 

  An instruction is a combination of ones and zeros.  This combination makes up an 

equivalent decimal number.  In the PIC microcontroller, being either real or 

simulated, this single number contains the opcode as well as the operand [18, p.147].  

It is possible that, if a change is made to a single bit, for example a zero has to be 

turned into a one, the result will be that the operand can be changed by a certain 

amount.  On the other hand, if another bit is changed in the same combination of 

ones and zeros, the opcode can be altered, thus, changing the function of the 

instruction.  This change to the instruction can dramatically alter the course of the 

whole Simulated Programme. 

  Some instruction opcodes, like the instruction “CALL”, are just three bits in length, 

thus, changing one bit could change this instruction into only one of three other 

instructions.  In total, it is better to change the whole instruction so that it is 

possible to change the instruction into any other instruction. 
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8.1 Disadvantages of Normal Mutation when Generating 
Programmes 

 

   Randomly choosing an instruction and its operand makes it possible for the 

mutation to add any instruction to the Simulated Programme.  This seems to be the 

only advantage to randomly choosing an instruction and its operand.  Adding this as 

an additional option while giving it a small chance of being chosen, gives the Special 

Mutation procedure this advantage, as will be seen later in this chapter.  The 

disadvantages are investigated in the following section. 

 

8.1.1 Unequal Chance of Being Chosen 
 

  Not all instructions have an equal chance of being chosen.  All instructions of the 

PIC are fourteen bits in length.  The OPCODE for the PIC‟s “CALL” instruction is 

made up out of four bits; the rest is the operand, which points out the address of the 

next instruction to be executed [18, pp.147, 151].   There are 2 14bits – 4bits = 210bits = 1024 

possible operands which could point to 1024 different addresses.  Thus, the “CALL” 

OPCODE, plus the operand, make up 1024 total possible combinations of ones and 

zeros, all executing a “CALL” instruction.  The OPCODE for the “RETURN” 

instruction takes up the whole fourteen bits, thus, there is only one combination of 

ones and zeros that makes a “RETURN” instruction.  In order to not overrun the 

stack, every “CALL” instruction must have a RETURN instruction in a programme.  If 

a random number were chosen to determine the total instruction, then the “CALL” 

instruction would have 1024 times more chance of being chosen than the “RETURN” 

instruction. 
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8.1.2 Simulation Time to Get Correct Instruction 
 

  One of the functions most frequently used by the test programmes is the function 

to make the AGV move forward.  As can be seen from table 7.1, the number ten had 

to be loaded into the output register to make the buggy move forward. Two 

instructions had to be executed one after the other.  The first instruction loaded the 

W-register with the number ten.  The second instruction loaded the information 

that was in the W-register, which was ten at that stage, into the ninth data register, 

that functioned as the output to the motors.  These instructions could not be 

altered.  If one was lucky enough to get these instructions in the right sequence 

then there was a one out of  

2 14bits + 14bits = 268 435 460 chance of these instructions being chosen.  That means that, 

over an average of 268 435 460 simulations, the Simulated AGV will start moving, 

thus taking a lot of processing time. 

 

8.2  Focused Mutation 

  

   To better the odds, instructions commonly used in the test-programmes were 

favoured.  The sequence in which the instructions were executed was also a 

consideration.  Different options as to how many instructions must be updated at 

one time were made available to the user to determine which mutation size makes 

learning possible, and which option was the most ideal. 

  In the experiments, it was seen that the bigger the amount of instructions inserted 

at one time, the faster the generation of the Simulated Programme.  The question 
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“why not just update the whole Simulated Programme with a single prewritten 

Simulated Programme?” arose.  As can be seen, this takes away the self-generation 

properties of the programme.  The ideal is, thus, to have a generator that changes 

only one instruction per simulation.  The option is given to the user to insert one, 

two or four instructions per mutation. 

  The Simulated Programme is divided into Blocks.  Each block acts as a gene in a 

chromosome, and the blocks are made up of either four instructions, two 

instructions or only one instruction. 

  There are three levels of decisions the Virtual Programme goes through to get one 

mutation.  The first decision is the amount of instructions that must be changed for 

one mutation and is given as an option to the user.  Although the user can change 

the amount of instructions any time, it is recommended that it must stay constant 

throughout the whole evolution process. 

  The second decision is which block or group of instructions to use.  If the first 

decision was four instructions per mutation, then those four instructions would 

work together to do some specific task.  Each time the mutation procedure is called 

up, thus almost each time a new Simulated Programme is generated, a different 

decision is made as to which group of instructions to use.  Although this choice is 

made randomly, not all the different types of blocks have the same chance of being 

chosen. 

  The last decision is to generate the operands‟ values.  Most of these values are 

generated directly by the random function.  For example, the operand can be one of 

255 values, and the random function will only choose one of these.  Other operands 

are more specific, like, for instance, when the operand for the “GOTO” command 

has to be determined.  As an example, it is assumed that the user has chosen four 
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instructions that have to be changed per mutation.  As always, the total amount of 

instructions in a Simulated Programme is fifty.   Therefore, the total amount of 

blocks can only be 50/4 = 12 blocks.  A number between zero and eleven is randomly 

chosen to decide which block to go to.  Four is multiplied with the chosen block‟s 

number to get the address for that specific block‟s first instruction. 

 

8.2.1 Inside the Blocks 
 
 

  Address OPCODE Operand 

 1000  MOVLW distance_before_turning 

 1001  SUBWF  sensor1,0 

 1002  BTFSS  STATUS , Carrie 

 1003  GOTO  Alternative address 

 

Programme Segment 8.1 Decision-making Procedure in Simulated Programme. 

 

  When the user has chosen to change four instructions per mutation, then the 

second choice is between one of the following options. 

 This block is precisely identical to the procedure in programme segment 

8.1; four instructions are needed to make a complete test of an input.  The 

information on which the tests are performed mostly comes from the 

simulated sensors.  Depending on the result, the programme can either 

execute the next block of four instructions or it can go to any block of four 

instructions in the programme.  It is decided that this programme block 

must have the biggest chance of being chosen, because information from 

more than one sensor might be needed for only one reaction.  
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 Only two instructions are needed to load information into the data registers, 

which can act as the output to the “motors” of the AGV.  As already 

explained, the “GOTO” command in the previous section can only point to 

the beginning of a block made out of four instructions.  Two more 

instructions are needed to fill the gap.  The other two instructions that made 

up the block were the “NOP” instructions.  The “NOP” instructions do 

nothing but waist time [18, p.157]. 

 All four instructions are determined randomly.  So, any of the four addresses 

in the block can contain any instruction, and the operand can be any amount 

allowable.  This kind of block had the least chance of being chosen. 

  Each block is a working unit and it does not matter if, for example, one test leads to 

another, so it is less sensitive to the sequence. 

  The user then chooses to update two instructions per mutation, and the second 

decision is one of the following: 

 The information in the registers, mostly the information coming from the 

sensors, is compared to a value.  A flag bit is changed after these instructions 

are executed [18, p.161].  The flag will indicate the relationship between the 

two values that have been compared.  These instructions are similar to the 

first two instructions in programme segment 8.1.  The chance that this 

option will be chosen is very high. 

 Splitting the Simulated Programme is performed by testing the information 

in the flag register.  If the results in the flags are some specific information, 

the programme will continue with the next block.  If not, then the 

programme will execute any block specified.  These instructions are similar 

to the last two instructions in programme segment 8.1.  Unlike the operand 
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for the four instructions where it chooses one of the four-instruction blocks, 

this option chooses any of the two-instruction blocks, thus, the Programme 

Generator could make mistakes more easily because the sequence in not 

necessarily correct.    It has very high chance of being chosen as an option. 

 This option is exactly the same as option two, where four instructions are 

updated, except that the two “NOP” instructions are not needed.  It has a 

lower chance of being chosen than the first two options. 

 Both instructions and their operands are chosen randomly.  This option has 

the smallest chance of being chosen. 

 

  When the user has chosen the option that one instruction must be changed for one 

call to the mutation procedure, the mutation procedure must choose one of the 

following instructions: 

 The “MOVLW” instruction loads information into the W-Register.  This 

information is random.  This is similar to the first instruction in programme 

segment 8.1 and stands a very good chance of being chosen. 

 The “SUBWF” instruction acts as a function for comparing two values.  It 

mostly acts on the registers that contain the information from the sensors.  

After this instruction is executed, the flags are altered to indicate the 

relationship between the information in the registers chosen, for example 

the relationship between the inputs from the sensors, and the value in the 

W-register.  It has a very high chance of being chosen and is similar to the 

second instruction in programme segment 8.1. 

  The “BTFSS” instruction is used to test the flags.  Normally it is used to test 

any bit in any data register, but in this case the operands are inserted is such 
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a way as to concentrates on the flag bits. So, it is a big advantage to give this 

a higher chance of being chosen than simply using random instructions.  If 

the bit pointed to by the operand is one then the next instruction is skipped, 

if not then the next instruction is executed [18, p.151].  This instruction 

stands a very good chance of being chosen and is similar to instruction three 

in programme segment 8.1. 

 The “GOTO” instruction makes the programme jump to any address in the 

programme.  It is hoped that this instruction will follow the “BTFSS” 

instruction.  This will split the programme so that the part of it that needs to 

be executed is executed.  It can also force the programme into a loop so that 

the programme does not finish.   

 Although this instruction is also a “MOVLW” instruction, as with the first 

option, it differs in that the information that can be loaded into the W-

register is information mostly needed by the “motors” of the AGV.  It makes 

up the first half of option three, when two instructions are updated at one 

time.  It has less of a chance of being chosen than the first four options. 

 The information in the W-register is loaded into the register that acts as the 

output.  It forms the second half of option three, where two instructions are 

updated at once. 

 Any instruction and its operand are chosen randomly.  This instruction has 

the smallest chance of being chosen. 

 

  In all three options, four, two or one instructions change per mutation, the option 

where the instructions and the operands are changed totally randomly is the 

biggest source of lower fitness levels, but it could give the Simulated Programme 
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what might be needed and cannot be generated in any other way.  It also gives the 

programme certain uniqueness. 
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8.3 Summary 

 

  Changing one bit in a Simulated Programme changes an instruction into only a 

small amount of other instructions, depending on the length of the original 

instructions OPCODE, thus, it is better to change the whole instruction [18, p.147]. 

  The next scenario is to randomly change the whole instruction.  The bigger the 

OPCODE of an instruction is, the less chance there will be that an instruction with 

that OPCODE will be chosen. 

  To obtain the correct instruction or combination of instructions could be a lengthy 

process, as much time could be wasted on instructions that will not work.  It could 

take an average of more than two hundred million simulations for the AGV to just 

start moving. 

  These two problems are overcome by using focused mutation, where instructions 

that were used by a human programmer were given a higher chance of being 

chosen.  For experimental purposes, the user is given the option to change one, two 

or four instructions per mutation.  These instructions normally follow each other, 

like, for instance, “BTFSS” followed by “GOTO” or “MOVLW” followed by “MOVWF”. 
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9 Connection Programme 

  This programme‟s primary function is to make it possible to implement the 

Simulated Programme on the Physical AGV.  This programme only forms half of the 

total programmes that are needed to execute a Simulated Programme for the 

Physical AGV.  The other half is the programme on the Physical PIC.  This whole 

combination of hardware and software has the same function as the Evaluator in 

the Virtual Programme.  The Connection Programme written using DOS as the 

operating system was broken up into the following segments: 

 The Communication Section replaces, or does the same work as the 

simulated part in the Virtual Programme.  It generates half the protocol that 

communicates with the Physical AGV 

 The Simulated-Functions-of-the-Microcontroller for the Physical AGV part is 

identical to the Simulated-Functions-of-the-Microcontroller used in the 

Virtual Programme. 

 

  Because it is not easy to tell the distance to a destination in the physical world, 

Simulated Programmes are not generated by the Communication Programme.  They 

are already generated by the Virtual Programme in any case, so why would one 

want to do it again? 

 

9.1 PC to AGV Communication 

 

  The Communication Section is a gateway to controlling the Physical AGV.  In the 

end, a value inside a variable has to be copied from the computer or laptop to the 
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Physical PIC in order to control the motors or from the Physical PIC to the PC to get 

the readings coming from the sensors copied to a variable in the PC.  The whole 

connection between the AGV and the computer is explained in the section “Protocol 

between Computer and AGV”. 

  Instead of coming from a simulated sensor, information is coming from the 

Physical Sensors.   The information is going through the communication parts of 

both the computer and the Physical PIC.  Thus, in other words, the values come 

from the communication component of the computer, and the information 

generated is not going to a Simulated AGV but, instead, is going to the 

communication part.  From there, it is transported to end up influencing the 

Physical Motors. 

 

9.2 Summary 

 

  The function of the Connection Programme is to implement the newly-generated 

Simulated Programme in the Physical AGV.  It is comparable to the Virtual 

Programme except that here, one makes use not of a simulation, but the Physical 

AGV.  Evaluation also does not take place, as the distance between the destination 

and the AGV cannot be determined by the AGV. 

  The programme is broken up into two parts: 

 PC to AGV communication section that controls the tempo of throughput of 

information, as well as sends and receives information from and to the PIC 

onboard the Physical AGV. 



 149 

 Simulated-Functions-of-the-Microcontroller, as already stated, is an exact 

copy of the controller for the Simulated AGV and is discussed in detail in 

chapter 11. 

All information that flows through the PC to AGV communication section is either 

generated by, or is available for use by the Simulated-Functions-of-the-

Microcontroller.  
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10 Programme for the Physical PIC 

 

  Information from the sensors is gathered and sent to the computer via the 

umbilical cord.  Information from the computer is, in return, sent to the motors via 

the Amplifiers-H-bridge configuration, as shown in figure 5.3 in chapter 5.  The 

Physical AGV is under total command of the PC.  The AGV is made to react as if it 

has a PC onboard, while in actual fact there is not enough room on the AGV for a PC.    

  The programme is broken up into three parts: 

 Sensor Interface 

 Communication Interface 

 Output to Motors 

 

  The three parts are intertwined and timing is of utmost importance in order to get 

the highest transmission via the umbilical cord. 

 

10.1 Sensor Interface 

 

  As was seen in section 5.2.1, the intensity of the received light is used for 

determining the distance to the obstacle.  This electrical analogue value is turned 

into a digital value by the PIC‟s onboard Analogue-to-Digital Converter. 

  Information is not read from all the sensors at the same time.  To save on power, 

and because the transmitters are not made to handle such high currents, the 

transmitters are only turned on when the sensor applicable to that transmitter is 
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read from.  In the programme, that is accomplished by simply setting the correct bit 

in the data registers.  The added advantage of only turning on the specific 

transmitter is that only light coming from that specific transmitter is read. 

 Each “Sensor” is dedicated to its own register in the data array.  After completion of 

a standard procedure to change analogue voltage values into digital values, the 

result is copied into one of these registers.  A fifth register, containing the Header, 

will be accessed in exactly the same way as the registers containing the information 

coming from the sensors. 

 

10.2 Communication Interface 

 

  The PC communicates with the PC-to-AGV-Communication section in the 

Connection Programme.  To understand it better, refer back to section 5.5 “Protocol 

between Computer and AGV”. 

  Many times during the procedure that is accomplishing analogue-to-digital 

transformation, the polling procedure is called up.  The metal link between the PC 

and the AGV, containing the clock pulses, is constantly polled by the PIC 

microcontroller to check if the voltage on it, respective to ground, has changed 

from positive to negative or visa versa.  Determining if the clock has changed is 

accomplished by comparing it with a bit in a register, where the last bit was made to 

have the same value as the clocks, as shown in figure 10.1.  Although polling might 

not seem to be the best method, it has proved itself to be sufficient for 

communication between the PC and PIC microcontroller. 
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  The information transmitted from the PIC microcontroller to the PC always comes 

from the same register in the PIC microcontroller.  Although the received 

information is placed in another register in the PIC microcontroller, the received 

information is also, initially, always placed in the same register.  The two variables 

in these two registers rotate with every clock pulse that is received; so all the bits in 

a register are moved to the right.  Looking at the variable that contains the 

transmitted information, the least significant bit is sent out for each change to the 

clock input.  The received bit is inserted into the other register before the rotation 

takes place.   
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Figure 10.1   Polling Performed to Detect Clock Pulse 

 

  The current frame‟s number of bits that have been transmitted and received are 

kept in another register.  After eight bits have been sent, the register that contains 

the information to be transmitted is loaded with information coming from another 

register that is either one of the sensors‟ information or the Header. 

  Received information from the Communication Interface is placed directly on a 

physical bus of the PIC microcontroller.  From there it is amplified and sent to the 

motors to move and steer the Physical AGV. 

 

10.3 Summary 

 

  The PIC microcontroller onboard the Physical AGV acts as a slave.  Its only function 

is to capture data from the sensors, transmit it to the PC and then to take 

information coming from the PC and give it to the interface of the modified 

servomotors. 

  This programme changes the analogue voltage values from the infrared sensors 

into digital values by using the onboard Analogue to Digital Converter inside the PIC 

microcontroller onboard the Physical AGV. 

  Polling is used to determine when the clock signal from the PC has changed in 

order for the next bit to be transmitted and received, and was consequently found 

to be adequate. 



 154 

  Parallel to serial transition for information from the sensors, and serial to parallel 

transition for information going to the motors is made possible by rotating the 

registers and then sending or receiving only one bit of the register.   
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11 Simulated-Functions-of-the-Microcontroller 

 

  Simulated-Functions-of-the-Microcontroller can basically be defined as “controller 

of all”.  The instruction set is based on the PIC-Microcontrollers. 

  Information coming from the sensors is placed in a variable.  This information is 

used and the resulting value is placed in a variable that is used by the AGV to move 

and steer.   

   The only difference between the Simulated-Functions-of-the-Microcontroller for 

the virtual Programme and the Simulated-Functions-of-the-Microcontroller of the 

Physical AGV is the source of the information that has to be used and the 

destination of the information generated. 

  The simulated controller does not have to be exactly the same as the real one, but 

if it was made as close as possible, the Simulated Programme could be tested on a 

physical PIC.    

  It is possible to simulate every transistor in a processor but was not implemented 

in this research because of the unnecessary level of complexity.  Instead, the 

processor reads from programme memory, data memory and inputs.  It then 

changes part of data memory or an output, as can be seen in figure 11.1.  Only the 

functions have to be executed.  For example, if the instruction “Move” is in the 

programme memory, it is not necessary to simulate all the registers, adders and 

gates it has to go through.  All that is needed is to make a copy of some part of the 

memory and place it in another part.  In the same way adding can be executed.  It is 

not necessary to simulate an adder; all that is needed is to add two pieces of 

information and save it in the data memory.  It is easy to see that this will apply to 

all instructions that have to be carried out. 
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Figure 11.1   Architecture of the Simulated-Functions-of-the-Microcontroller 

 

  The time it takes to execute an instruction by the Simulated-Functions-of-the-

Microcontroller depends on the time it takes to execute an instruction by the PC 

used to simulate the Simulated-Functions-of-the-Microcontroller. 

 

11.1 Simulated Programme Memory 

 

  For the PIC microcontroller, the programme memory is not the same as the data 

memory [18, pp.19-20].  The advantage of having two sets of memory is that the 

data cannot overwrite the programme memory, as in the case of the Z80 [53, pp.20-

21 & 46-47 & 42-43].  This array will be called “programme” for short.   
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  Out of a Simulated Programme viewpoint, if Genetic Algorithms are used, it does 

not matter if all the AGV are simulated at once or individually, because all the 

programmes have to be in memory and the PC has a variable for each instruction.  

Each instruction has its own unique address and, in the simulation, the registers are 

replaced by variables. 

  Due to the fact that more than one programme is kept in the memory of the PC, the 

programme array will need two variables to indicate which instruction, out of all 

the instructions present in all the programmes, is accessed. Table 11.1 shows a two-

dimensional example of the variables‟ layout.  The first variable will indicate the 

position or address of the instruction in the programme.  There are only fifty 

instructions for each programme, thus this number cannot be higher than fifty.  The 

address of the instruction that has to be executed for that specific programme is 

held in the Programme Counter, which is part of the Simulated-Functions-of-the-

Microcontroller‟s registers, as will be explained in section 11.2. 

 

Table 11.1   Instruction Layout 
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  The second variable will indicate the current programme that is evaluated.  Each 

Simulated Programme will have its own number.  The only place where this number 

is changed is in the Programme Generator procedure.   

 

11.2  Simulated Registers 

 

  In the PIC microcontroller the data memory, output ports, input ports and the 

registers are basically the same thing [18, pp.19-38 & 43-55].  A matrix is drawn up 

where every possible entry functions as a register or data memory.  In some PIC‟s, 

registers five to nine are used as inputs or outputs.  In four of the five variables, the 

sensor‟s input values will be placed.  The fifth register is used as the output and is 

then used to control the movement of the AGV.  Because the word register is an 

instruction in C++, it is better to use the word data for this matrix.  The information 

in the ninth register will be the same as the information described in table 7.1. 

  In a physical PIC microcontroller, even the Programme Counter, a register that 

determines which address the processor is reading from in the Simulated 

Programme, is in this register array or data memory part.  This particular register is 

divided into two.  The lower part is in register two and the higher part is in register 

0Ah, or the tenth register.  With each instruction the Programme Counter is 

incremented by one, unless there is a jump instruction of some sort, in which case 

the information in the Programme Counter will be changed to that location. 

  The same layout is applicable here but because there are only fifty instructions in 

one Simulated Programme, there is no need to use register 0Ah.  As one can 

understand, the Programme Counter has to be reset before a new Simulated 

Programme can be evaluated. 
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  The W-register and stack-pointer are not part of these registers and have to be 

simulated by adding extra variables.  In the programme, the variables maintain 

their names.  Also, the stack, which is a memory array much like programme or data 

memory, has to be simulated and this is done in the same way as, for example, data 

memory, only much smaller.  Ten registers are necessary.   

  If a lot of AGV are all simulated at the same time, then there has to be a data 

memory, a stack, a stack pointer, and a W-register for each.  If the AGV are 

simulated one after the other, as they are implemented in this dissertation, then 

there is only need for one data memory array, stack array, stack-pointer, and W-

register which are then reused for every “new” AGV.  Only programme memory is 

needed for each AGV. 

 

11.3 Instruction Decoder 

 

  The Instruction Decoder determines which instruction should be executed by the 

Simulated-Functions-of-the-Microcontroller.  In the memory, most of the PIC‟s 

encoded instructions are divided into two parts [18, p.147].  The first part is the 

instruction, shown as yellow in the sketch below, and the second is a quantity or 

operand, shown as green in the sketch.  As an example, the instruction “MOVLW” is 

examined.  It normally moves a literal value into the W-register [18, p.154].  

Although the encoded instruction is always fourteen bits in length, the size of the 

operand, and the size of the instruction part, is not constant for each instruction. 

 

OPCODE      Operand   

        110010101010101010 



 160 

 

  Getting part of the encoded instruction is accomplished by using the “AND” 

function in C++ in collaboration with a constant.  With the “AND” function, 

whenever there is a one in both registers, the resulting bit would be a one.  Other 

than that the output would be zero.  It is thus possible to activate a bit by placing a 

one in the place where one wants the input bit in the other register to be the same 

as the output bit.  If a zero is placed in the position, it is similar to deactivating the 

bit because the output of that bit will be zero no matter what the value in the other 

register is at that particular bit‟s position. 

  The example of the “MOVLW” instruction is used again. The first four bits of the 

total instruction in programme memory are used to indicate that the instruction is 

“MOVLW”.  Therefore, the incoming instruction has to be “AND” with the binary 

code 11110000000000 (15360 decimal). 

 

    110010101010101010  AND  11110000000000  =>  11000000000000 

   12970           AND    15360            =>     12288 

 

  In the sketch, the green part has been thrown away.  The first four bits‟ weights are 

8192 for bit 14, 4096 for bit 13, 2048 for bit 12 and 1024 for bit 11.  All these weights 

have to be added to get the decimal value of the binary value shown.  The incoming 

instruction has to be “AND”, with a decimal value of 15360. 

  With the first four bits removed from the incoming instruction, it has to be tested 

to see if it corresponds with the instruction 1100, which is the binary value of 12288 

for the “MOVLW” instruction. 
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  Many tests have to be performed on the extracted binary code, and each test is 

there to test for one particular instruction.  That is why the “case” function in C++ is 

used rather than the “if” function.   

  Testing for instructions that are more than four bits in length is accomplished by 

performing another “and” and “case” function in C++.  The bit-test functions and 

the jump instructions of the Simulated-Functions-of-the-Microcontroller change 

the information in the Programme Counter.  These instructions must be handled 

with caution.  Assume a jump has to occur to address ten, the Programme Counter is 

currently at address five, and all the instructions have not been tested for by the 

Virtual Programme.  The next test for instructions, in this cycle, will then be on an 

instruction coming from address ten when it should be on an instruction coming 

from address five.  The change in the Simulated-Functions-of-the-Microcontroller‟s 

Programme Counter‟s information must be performed when no further instruction 

tests are going to be performed.  One would think that this change has to be 

incorporated at the end of the test, but there are other ways of doing this.  It could 

be changed before all the tests, but it must not change during the decoding 

procedure. 

  A combination of ones and zeros can only signify one instruction.  It is thus 

unnecessary to test for more than one instruction in a cycle.  There are advantages 

to testing only once for an instruction and if an instruction is carried out, no more 

testing  

is executed.  The advantages are as follows:   

 It saves time  

 The Programme Counter‟s information can be changed at any time during 

the cycle if being dictated to by the Simulated Programme. 
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  The “switch” command in C++, in association with the “break” command, will only 

test until the instruction is identified.  The problem exists that, because the sizes of 

the OPCODE instruction part are not the same for all instructions, there is more 

than one “switch” command necessary [18, p.147].  The programme will go through 

some or all of the tests in the first “switch” section, depending on if it has identified 

a Simulated Programme instruction or not.  It does not matter if a Simulated 

Programme instruction was identified or not, the second “switch” will go through 

some or all of its tests again.  This is a problem if there was an identification of an 

instruction in the first “switch” section, because it is then not necessary to do the 

second “switch” section.  This test to identify the current instruction, after the 

current instruction has already been identified, is an unnecessary waste of time. 

  The “switch” command can also be used in association with the “default” 

command.   The “default” section will only be executed whenever there is no earlier 

identification in the “switch” section.  It is almost similar to the “else” function that 

follows the “if” function.  By placing the whole second “switch” section in the 

“default” section of the first “switch” section, the second “switch” section will only 

be executed if the first “switch” section did not execute any instruction.  If 

necessary, a third and fourth “switch” instruction can be added in the same way. 

  In the Simulated-Functions-of-the-Microcontroller, the “BTFSS” instruction, tests 

a bit to see if it is a one or a zero.  If it is one then the processor skips the next 

instruction.  If not, it executes the next instruction.  For this function, two operands 

are needed.  The first is to show in which register the bit is and the next indicates 

the bit in the register.  Therefore, the “AND“ function in C++ is used three times in 

this function.     
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  The operand that determines the bit that has to be tested is in the middle of the 

total instruction.  To save time, this part is not moved to the least significant part of 

the register so as to make its value between zero and seven.  Its value is calculated 

for what it should be when in that position, an “IF” command in C++ is then used, in 

conjunction with this value, to execute a test on a specific bit in that register. 

  In the case where there is only a fixed amount of instructions that all have to be 

tested, it will not be necessary to test for the last one.  If all had been tested except 

for the last one, there can only be one correct component, thereby allowing one to 

use the “default” instruction. 

  If an instruction is executed at the beginning of the testing part, the cycle will not 

take long to execute an instruction.  The problem is when the instruction that has to 

be executed is at the end of the decoding procedure.  The following method can be 

used to overcome this problem. 

  The most significant bit in the instruction can only be a one or a zero.  The 

simulator can be programmed to first test this bit.  If the bit is one, then half of the 

instructions have to be tested, thus, all instructions beginning with a one.  The same 

method is followed when the first bit is zero.  Thus, by adding one test to the 

procedure, the amount of tests is halved.  The second most significant bit can also 

only be a one or a zero.  For each of the two results, a second test can be executed.  

These tests split the total amount of instructions into four, as illustrated in figure 

11.2.  There are three tests.  The first test tests the most significant bit.  The second 

and third both test the second most significant bit.  The second test is only executed 

when the first bit is a zero and the third test is only executed when the most 

significant bit is a one.   
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  Although there are three test sections, only two are executed at any given stage.  

With the addition of only one more test, the number of tests that still have to be 

executed is again halved, so only a quarter of the tests, plus two more, have to be 

performed to determine what the instructions is. 

 

 

 

 

 

 

 

 

 

Figure 11.2   The Instruction Decoder forms a “Decoding Tree” 

 

  Every bit that indicates the instruction but not the operand can be tested for in 

this way.  The Instruction Decoder, dictated by an instruction, is sort of directing 

the programme to the wanted sub-procedure.   

 

11.4 Executing an Instruction 

 

  As explained in the intro section of this chapter, the “MOVE” instructions are easy 

to execute.  The function “MOVF” influences the zero status bit.  The result can be 

placed in one of two places depending on the eighth bit in the encoded instruction.  

The results have to be tested by the Virtual Programme to see if the result is zero.   

Test one 

Test two 

Test 
three 
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  As on the PIC microcontroller, the zero bit of the Simulated-Functions-of-the-

Microcontroller is placed on bit two, the third bit in the Status Register.  It is easy to 

change a bit in a register providing that it does not matter what the other bits in the 

register have to be.  It gets to be more complicated if the other bits in the register 

must not be changed.    By using the “AND” function in collaboration with the 

binary value of 11111011, the zero bit will be changed into zero.  This must happen 

when the result from the executed Simulated Programme‟s instruction is not zero. 

  Changing the zero flag into a one without changing the rest of the binary code 

00000100 can be accomplished by the “OR” function.  As can be seen, the two codes 

are inverts of one another.  This is the method that will be used to change any single 

bit in any register.  More than one bit can also be changed in this way if the bits 

altered are changed to the same status. 

  The “ADDLW” function affects not only the zero flag in the status register but also 

the carry and DC flags.  The DC bit is set if a carry has occurred between bit four and 

bit five and the carry bit is set when the result does not fit in eight bits. 

  This can be accomplished by using one of two methods. 

 One must first concentrate on the least significant four bits of the operand 

or value that is going to be used.  To get this, the “AND” function is used 

again.  This has to be implemented to both the values that have to be added 

together.  If the result is more than fifteen, then a carry occurs and the DC 

bit has to be set, sixteen has to be subtracted from the temporary result, and, 

in the future, one has to be added to the higher four bits.  The same steps 

have to be performed on the most significant four bits, but before one can do 

that the four bits do not only have to be removed from the original, but also 

have to be moved to be the least significant four bits in the register.  This is 
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accomplished by dividing it by sixteen.  Except for maybe a one that has to 

be added to the result if a DC carry occurred, the calculations are the same as 

for the least significant four bits.  After all that, the result still has to be 

moved back to the most significant four bit position before being added to 

the least significant four bits. 

 In the second method, to register that a carry has occurred, the two values 

are added together.  If the value is more than 255, the most that an eight bit 

bus can carry, then 256 is subtracted, and the carry bit is set.  The 

subtraction takes place to make the amount fit into the eight bits.  This will 

give the result in a single procedure.  The DC can be calculated in the same 

way as in method one and has to be executed before the result is calculated, 

because the result is placed in the “W_register”, which is used in the 

beginning as an input register.  The second method has fewer computations 

and is easier to construct. Sometimes sixteen has to be subtracted from the 

result, although the maximum number a four bit digit can hold is only 

fifteen.  This process is used because, if one is added to fifteen, then the four 

least significant bits must contain zero and not one. 

 

  The “GOTO” command is an easy command to construct.  The information given is 

just loaded into the Programme Counter.  The only problem is that, with each cycle, 

the Programme Counter is incremented by one to point to the next address if a 

jump was not made.  Therefore, to go to the required address, one must subtract 

one from the given address to get to the correct address. 

  An important function for the PIC, and other processors, is the command that does 

the subtraction.  It is used to calculate the difference between two values or pieces 
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of information.  Flags bits are to be cleared or set according to this relationship 

between the two initial values.  In the PIC‟s case, the Flag bits are part of the third 

register known as the STATUS register.  By using the “BTFSS” and the “BTFSC” 

instructions to determine the status of the specific Flag bits, the Simulated 

Programme can alter its course. 

  The bits that are influenced by the subtraction instructions are the Carry bit and 

the Zero bit [18, p.160-161].  If the Carry bit is set, then the result is positive or zero, 

if the carry bit is cleared the result is negative.  The Zero bit is only set if the result 

is zero. 

  If a result of a calculation is smaller than Zero, then the result must be the 2‟s-

compliment.  To get the 2‟s-compliment, the result must be subtracted from 256.  If 

no flags are considered in a processor and just an eight-bit bus is used, then two-

hundred-and-fifty-six is the same as zero.  

  The “CALL” command is one of the most complicated commands.  In the case of the 

PIC it is the only instruction, except for “RETURN”, which uses the Stack registers 

and the Stack Pointer. 

  Every time a “call” is made, the current address of the “CALL” instruction is placed 

in one of the registers in the Stack array.  If a “RETURN” instruction is executed, 

then the information in the register in the Stack is placed back in the Programme 

Counter.  The difference between the “GOTO” instruction, the “CALL” and the 

“RETURN” instruction is, with the “GOTO” instruction, the Simulated Programme 

always goes to the address specified, whereas when the “RETURN” instruction is 

executed, the Simulated Programme will go to the address following the address 

where the “CALL” instruction was executed. 
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  A “CALL” can build up a procedure.  This procedure can be used in a programme in 

the same way as one would an instruction.  The difference is that the programmer 

develops this “instruction”. 

  The parts where the execution of the call is made, the part in front of the 

“RETURN” instruction, is called a procedure or sub procedure.  A “call” can be made 

within a sub procedure.  To do this, more than one variable in the Stack is needed.  

After the “CALL” instruction has placed the address on Stack, the Stack-Pointer is 

incremented by one to show to the next stack position.  When the next “CALL” is 

executed, the address will be placed in the next register pointed to by the Stack 

Pointer before it is incremented again. 

  To get back the correct address, when a “RETURN” instruction is executed, the 

Stack-Pointer must be decremented by one.  This will cancel out the increment that 

has been brought about by the “CALL” instruction. 

  All the instructions that increment and decrement a register have to be changed to 

zero when attempting to go over 255, and to 256 when attempting to go below zero. 

 

11.5 Summary 

 

  The Simulated-Functions-of-the-Microcontroller has the same instruction set at 

the PIC microcontroller and, thus, a programme generated by the Virtual 

Programme will most probably work on a physical PIC microcontroller.  

  Instructions are stored in a Simulated Programme.  It was decided to have a 

population of twenty, thus, there is a total of twenty Simulated Programmes within 

the Virtual Programme.  Each Simulated Programme is made up of fifty instructions.  

All instructions are kept in an array that has a length of fifty and a width of twenty. 
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  Because there is only a one dimensional register array, each Simulated Programme 

has to be executed individually.  As with the PIC microcontroller, the second 

register contains the address of the instruction that has to be executed.  This 

information, with the number of the individual in the population that has to be 

executed, is inserted into the instruction array to determine the current instruction 

that has to be executed. 

  The instruction decoder determines which combination of C++ instructions has to 

be executed to simulate the execution of the instruction coming from the Simulated 

Programme.  In order to save time, the instruction decoder is made in a tree 

configuration.  The execution of an instruction either tests, or makes changes to 

some part of the register array.  The change in some of the registers eventually 

changes the movement of the motors. 
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12 Results 

 

  In this chapter the resulting fitness levels will be given and investigated.  

Observations and possible reasons for the outcome are made.  Examples of 

Simulated Programmes that were generated by different means, illustrating 

obstacle avoidance abilities, are analysed and an example of a Simulated 

Programme that did reach the destination will be looked at.  The hardware and the 

software that was developed, and their future abilities, will be illustrated.  The 

conclusion indicates the effectiveness of Single-Chromosome-Evolution-Algorithms, 

compared to Genetic Algorithms, for generating a programme.   

 

12.1 Resulting Fitness Levels 

 

  Because the use of the random function affects the results, it is not possible to 

predict how long it will take to accomplish a specific function or what the outcome 

will be.  It is not even possible to determine if the required result will be met.  For 

this reason, a lot of simulations were executed to get an average for some option. 

  All the values in the tables below have to be multiplied by a hundred to indicate 

how many simulations it has taken to get to the specified fitness level.  It is much 

more difficult for the Simulated Programmes to adapt to randomly changing mazes 

than to adapt to static mazes. Therefore, it was decided not to use changing mazes 

in the results.  Maze 2 revealed itself to be the better of the two static mazes and, 

thus, it was used to determine the results. 
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    To avoid wasting time, while still getting a good result, it was decided to execute 

100 000 simulations to generate one Simulated Programme.  During the generation 

of the first Simulated Programme, the AGV stood still for a while at the following 

fitness levels: 42, 96 and 290.  These fitness levels were then used as beacons for the 

following results.  Additional beacons of 400, 500, 600, and 700 were added, but 

because the fitness level of 500 was only exceeded in 34.7% of the simulations, only 

the beacon 400 is shown here.  In the tables, Start shows how many simulations it 

took before the AGV started moving, and it functions as the first beacon. 

  Method indicates what kind of method was used to generate the programme.  SCEA, 

in the table, shows that Single-Chromosome-Evolution-Algorithms were used; 

Mutate is for Genetic Algorithms that use only mutation and Cross indicates that 

Genetic Algorithms, that implement mutation as well as crossover, were used. 

  If Environment is made yes, then the simulation of changes in the environment‟s 

light intensity has been activated.  As already stated, the programme has to learn 

how to execute an instruction from a user.  When Split is made yes in the table, it 

indicates that the AGV was trying to learn to react to an input from a user.  A single 

bit indicates which one of the two destinations the AGV should go to.  On analysing 

the results, the observation was that the results seem to split when the split option 

was activated.  The programme was then changed to reveal what the individual 

results were for the AGV attempting to go to each destination.  Amount of Instructions 

indicate how many instructions are updated for each mutation. 

  Although Identification Trees are not used in the experiments, a modified version 

is used here to analyse the results [30, p.423-442].  As with Identification Trees, the 

simulation options were randomly executed.  Because Single-Chromosome-
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Evolution-Algorithms are to be evaluated against Genetic Algorithms, the most 

simulations were executed to show the difference between these two options. 

   All relevant options had to be simulated at least once.  As already stated, the AGV 

is suppose to be most flexible when only one instruction is updated per mutation, 

thus, most results were determined using one instruction update per mutation.  

Majority of the results generated are shown in table 12.1.  

 

Table 12.1   Resulting Fitness Levels   

Metho

d 

Environmen

t 
Split 

Number 

of 

Instructions 

Star

t 
42 96 290 400 

Maximum 

Fitness 

Level 

Comment 

SCEA Yes No 1 3 4 4 4 78 468  

SCEA Yes No 1 12 12 13 13 52 510  

SCEA Yes No 1 18 29 35 93 NA 296  

SCEA Yes No 1 11 12 12 14 68 501  

SCEA Yes No 1 4 122 125 NA NA 169  

SCEA No No 1 12 15 28 42 58 477  

SCEA No No 1 3 3 3 94 NA 361  

SCEA No No 1 4 4 5 19 NA 337  

SCEA No No 1 3 4 6 6 NA 367  

SCEA No No 1 4 12 12 20 236 499  

SCEA No No 1 4 5 11 16 160 453  

SCEA Yes No 2 3 4 4 8 45 510  

SCEA Yes No 2 2 3 3 14 14 742  
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Table 12.1 Resulting Fitness Levels (Continued) 
  

Metho

d 

Environmen

t 
Split 

Number 

of 

Instructions 

Star

t 
42 96 290 400 

Maximum 

Fitness 

Level 

Comment 

SCEA No No 2 1 2 2 6 23 699  

SCEA Yes No 4 2 2 2 2 4 749  

SCEA No No 4 2 2 28 37 93 545  

SCEA Yes Yes 1 
1 

15 

15 

15 

19 

209 

279 

NA 
NA 

182 

49 

Lower 

fitness level 

SCEA No Yes 1 
1 

3 

7 

16 

7 

19 

928 

NA 
NA 

39 

 311 
Register 

Cross Yes No 1 150 150 152 348 NA 316  

Cross Yes No 1 228 234 241 291 323 466  

Cross Yes No 1 80 150 442 NA NA 101  

Cross Yes No 1 207 208 218 242 NA 295  

Cross Yes No 1 391 391 391 405 440 313 
Lower 

fitness level 

Cross Yes No 1 324 475 478 482 NA 327 
Non 

constant 

Cross Yes No 1 134 144 144 226 NA 325  

Cross Yes No 1 133 195 219 220 224 458  

Cross Yes No 1 107 113 113 128 NA 309 Slow 

Cross No No 1 153 175 175 NA NA 208  

Cross No No 1 184 188 190 578 NA 331  

 



 174 

 
Table 12.1 Resulting Fitness Levels (Continued) 

 

Method Environment Split 

Number 

of 

Instructions 

Start 42 96 290 400 

Maximum 

Fitness 

Level 

Comment 

Cross No No 1 241 244 244 820 NA 300 
Lower 

fitness level 

Cross No No 1 104 107 107 292 NA 328 
Lower 

fitness level 

Cross No No 1 155 155 155 159 NA 332 
Lower 

fitness level 

Cross No No 1 97 98 157 354 NA 327  

Cross No No 1 46 208 211 305 NA 366  

Cross No No 1 326 327 333 370 NA 318 Slow 

Cross Yes No 2 40 40 69 196 NA 386  

Cross No No 2 49 65 65 65 747 474  

Cross Yes No 4 32 32 32 58 91 506  

Cross No No 4 19 20 20 20 134 457  

Cross Yes Yes 1 
46 

78 

82 

102 

93 

294 

118 

NA 

NA 

NA 

100 

247 

Not 

registered 

Cross No Yes 1 
85 

108 

88 

119 

105 

124 

634 

790 

NA 

NA 

197 

316 
Registered 

Mutate Yes No 1 91 97 165 175 NA 298  

Mutate Yes No 1 93 97 118 142 168 480  

Mutate Yes No 1 176 291 339 741 NA 331  
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Table 12.1 Resulting Fitness Levels (Continued) 
 

Metho

d 

Environmen

t 
Split 

Number 

of 

Instructions 

Star

t 
42 96 290 400 

Maximum 

Fitness 

Level 

Comment 

Mutate Yes No 1 51 51 51 149 NA 373  

Mutate Yes No 1 76 105 281 293 NA 176 Backwards 

Mutate No No 1 59 60 60 71 946 331 
Lower 

fitness level 

Mutate No No 1 109 569 619 690 965 456  

Mutate No No 1 78 78 79 NA NA 361  

Mutate Yes No 2 30 30 30 76 193 508  

Mutate No No 2 54 54 54 84 222 510  

Mutate No No 2 24 24 36 139 908 465 Slow 

Mutate Yes No 4 11 16 18 104 NA 350  

Mutate No No 4 14 21 24 32 169 654 Second best 

Mutate Yes Yes 1 12 
51 

51 

140 

266 

267 

NA 

NA 

NA 

176 

279 

Registered 

instruction 

Mutate Yes Yes 1 
24 

78 

131 

133 

135 

182 

486 

NA 

NA 

NA 

238 

98 

Not 

registered 

Mutate No Yes 1 
47 

47 

152 

185 

211 

211 

235 

NA 

NA 

NA 

312 

196 

Register 

instruction 

Mutate No Yes 1 
42 

130 

222 

226 

388 

NA 

NA 

NA 

NA 

NA 

179 

21 

Registered 

instruction 

 



 176 

In the comment field, the following comments have the following meaning: 

 “Lower fitness level” means that the population had a higher fitness level 

than that of the end result. 

 “Register” means that the Simulated Programme was able to register an 

instruction from a user. 

 “Not registered” means the Simulated Programme that was developed was 

unable to register an instruction from a user. 

 “Non-Constant” means that the fitness level of the population fluctuates. 

 “Slow” means that the current AGV moved through the maze, at a much 

slower speed than what the other results, on average, accomplished. 

 “Backwards” means that the AGV was moving in a backwards direction. 

 “Second best” indicates that the Simulated Programme achieved a high level 

of fitness. 

 

  The AGV that moved backwards rendered a worse result than that of the average 

results.  Slow AGV made the whole simulation much slower and did not necessarily 

produce a better fitness. 

  Table 12.2 shows the average results for each option.  As an example, the 

difference between Single-Chromosome-Evolution-Algorithms and Mutation only 

Genetic Algorithms is calculated.  The goal is to calculate the influence that each 

individual option has on the results.  The average of all the options that use Single-

Chromosome-Evolution-Algorithms is determined, as shown in table 12.3.  In the 

same way, the average for the rest of the options is calculated, as shown in table 

12.3. 
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Table 12.2   Average Specific Option 

Metho

d 

Environmen

t 

Spli

t 

Number of 

Instruction

s 

Star

t 
42 96 290 

Maximum 

Fitness 

Level 

SCEA Yes No 1 10 36 38 >225 388 

SCEA No No 1 5 7 11 32 416 

SCEA Yes No 2 3 4 4 12 626 

SCEA No No 2 1 2 2 6 699 

SCEA Yes No 4 2 2 2 2 749 

SCEA No No 4 2 2 28 37 545 

SCEA Yes Yes 1 
1 

15 

15 

15 

19 

209 

NA 

NA 

182 

49 

SCEA No Yes 1 
1 

3 

7 

16 

7 

19 

928 

NA 

39 

311 

Cross Yes No 1 195 229 269 >371 323 

Cross No No 1 163 187 197 >485 314 

Cross Yes No 2 40 40 69 196 386 

Cross No No 2 49 65 65 65 474 

Cross Yes No 4 32 32 32 58 506 

Cross No No 4 19 20 20 20 457 

Cross Yes Yes 1 
46 

78 

82 

102 

93 

294 

118 

NA 

100 

247 

Cross No Yes 1 85 88 105 634 197 
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108 119 124 790 316 
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Table 12.2 Average Specific Option (continued) 
 

Metho

d 

Environmen

t 

Spli

t 

Number 

of 

Instruction

s 

Star

t 
42 96 290 

Maximum 

Fitness 

Level 

Mutate Yes No 1 97 128 190 300 332 

Mutate No No 1 82 236 253 >587 383 

Mutate Yes No 2 30 30 30 76 508 

Mutate No No 2 39 39 45 112 488 

Mutate Yes No 4 11 16 18 104 350 

Mutate No No 4 14 21 24 32 654 

Mutate Yes Yes 1 
18 

45 

91 

92 

138 

224 

377 

NA 

137 

259 

Mutate No Yes 1 
45 

89 

187 

206 

300 

>606 

>618 

NA 

246 

109 

 

 

Table 12.3   Influences Different Options 

Option Start 42 96 290 
Maximum 

Fitness Level 

SCEA 4 9 14 >52 571 

Cross 83 96 109 >199 410 

Mutate 46 78 93 >202 453 

1 instruction 92 137 160 >333 359 
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2 instruction 27 30 36 78 530 

Table 12.3 Influences Different Options (continued) 

Option Start 42 96 290 
Maximum 

Fitness Level 

4 instruction 13 15 21 42 544 

Environment 

included 
47 57 102 >149 413 

Environment 

not included 
42 64 72 >153 492 

 

  The similarity between two values is determined by dividing the smaller of the two 

values by the bigger.  Multiplying the result by a hundred gives a percentage which 

indicates the similarity in fitness results between the two options, as in table 12.4.  

Table 12.4 cannot show which one of the two is better, but it can show the 

similarity in results when an option is changed.  The more dissimilar the results are 

when changing a single option, the bigger the influence of the specific change in the 

option was.  To determine which option gave the better result, revert back to table 

12.3. 

  Using crossover to generate a new offspring gives worse results than when it is not 

used for the generation of a programme, although it does not change the final 

fitness level a great deal.  The change in fitness level caused by two instructions 

versus four instructions was also not too significant.   

  Looking at table 12.3, it can be seen that Single-Chromosome-Evolution-

Algorithms gave better results than any other option, except where four 

instructions were used to get a fitness level higher than two-hundred-and-ninety.  
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The problem is that an input from the user was not registered in one of the 

Simulated Programmes generated by the Single-Chromosome-Evolution-Algorithm, 

while it was registered when both methods of Genetic-Algorithms were used. 

 

Table 12.4  

 Percentage Similarity 

 

 

 

 

 

 

 

 

 

 

Method Start 42 96 290 
Maximum 

Fitness Level 

SCEA – Cross 4.8 9.4 12.8 26.1 71.8 

SCEA – Mutate 8.6 11.5 15.0 25.7 79.3 

Cross - Mutate 55.4 81.3 85.3 98.5 90.5 

1 – 2 instructions 29.3 21.9 22.5 23.4 67.7 

2 – 4 instructions 48.2 50.0 58.3 53.8 97.4 

1 – 4 instructions 14.1 10.9 13.1 12.6 66.0 

Environmental 

changes 
89.4 89.0 70.5 97.4 83.9 
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  With this in mind, a change was made to the Virtual Programme where a third  

fitness level was brought in.  The first fitness level was used when the AGV was 

going to the first destination, the second was for the second destination, and the 

third was for the result of the Simulated Programme that was evaluated.  With this 

method, the AGV was, at times able to register an instruction from a user. 

    Biewald said that the autonomous mobile vehicle is vulnerable to inaccuracies in 

sensors and actuators [15]. The inclusion of simulated, uneven environmental 

conditions did not change the results a great deal, although it did give slightly 

better results when environmental conditions were not included. 

 

12.2 Influences on Results 

 

  During the simulation, it was found that some behaviour influenced the outcome 

of the results. 

 

12.2.1  Simulation Time 

 

  It was seen, from the simulations, that the better the results were the slower the 

simulation was.  This made sense, since the timeout component had been written in 

such a way as to give the simulation a specific time to reach a specific fitness level. 

  Although the fitness level of the current Simulated Programme is comparable to 

the time it takes to evaluate, it was not an exact calculation, as with the AGV which, 
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at times, stood still for some time before continuing.  A second influence on the 

time was that the AGV had to go around bends, whereas the fitness level is 

calculated directly towards the destination. 

 

12.2.1.1 Comparing Chromosomes on the Same Obstacle Course 
 

  One of the problems experienced with the use of the simulator was that some of 

the obstacle courses changed into different forms during the same generation.  As 

an illustration, Single-Chromosome-Evolution-Algorithms are used.  The original, or 

in other words, the unchanged chromosome, was not evaluated on the same 

obstacle course as the changed chromosome.  In some cases, the unchanged 

chromosome has been trapped in some way by the obstacle course at hand.  The 

changed chromosome has not been trapped by its obstacle configuration.  Although 

the original chromosome is overall “better”, it will currently have the lower fitness 

level of the two.   The changed chromosome is kept and, thus, the resulting 

chromosome is worse than the original.  A way to overcome this problem is to 

change the obstacle course only once during a generation, and that is how it has 

been implemented in this programme. 

 

12.2.2 Extinction 
 

  In one of the experiments, the one obstacle course‟s wall was so close to the AGV 

that it was terminated before it started.  At this stage, the obstacle course was only 

changed once a new generation was generated.  Genetic Algorithms were used to 

generate the new generation.   
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  The whole generations‟ individuals had a fitness level of zero, thus leading to 

changes being made to chromosomes or generated programmes that did not need to 

change.  The result was that the overall fitness level did not get off the ground.  By 

simply slightly changing the initial direction of the virtual AGV this problem was 

overcome. 

 

12.3 Analysing the Generated Programme 
 

  All the programmes shown in this section are programmes that were generated, in 

one way or another, by the Virtual Programme.  They showed the ability to avoid 

obstacles.  The different colours in the programme segments have the following  

 

 

meanings: 

 Blue represents instructions that were only executed once 

 Green represents instructions that were executed more than once 

 Black represents instructions that were not executed 

 

  As can be seen, only the green instructions were responsible for the outcome.  The 

blue instructions ensured the green instructions were executed; however, the blue 

and black instructions have no effect on the programme. 

  The programme in programme segment 12.1 built up a fitness level of 500 in less 

than 21800 simulations, making it one of the best results generated using these 

options.  It was generated using the following options: 

 Only one instruction is updated per mutation 
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 Genetic Algorithms, with crossover, are used 

 Environmental changes are not included 

 It is not made to detect an instruction from a user 

 

  The instructions at addresses 30, 31 and 33, load information into the W-register.  

It is then reloaded with a new value by the instruction at address 35 [18, p.156].  This 

loading of the W-register is never used.  It also does not affect the status registers, 

and thus, although it is executed, does not affect anything in the programme. 

  Instructions at address‟ 4, 5, 6 and 7 simply change the result in the W-register, 

where it is, in any case, changed into a constant at address 42 afterwards.  The 

difference is that the instruction at address 7 changes the Flags in the status 

register, while the instruction at address 42 does not change the Flags.  This change 

in the Flags changes what the instruction at address 43 will do.  At this stage, the W-

register is loaded with 9 by the instruction at address 42.  By skipping the 

instruction at address 44, the value of 9 is sent out to the motors by the instruction 

at address 45.  The reaction of the AGV is to turn to the right. 

 

 Address   OPCODE    Operand Address   OPCODE    Operand 
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Programme Segment 12.1 Only One Instruction has been changed 

 

  If the instruction at address 44 is executed, then the W-register will be reloaded 

with the value of 10, before being written out to the motors.  This will make the AGV 

move forwards. 

  In section 7.1.1.2, it was seen that register 5 contains the information of the sensor 

that is facing forwards, and that register 7 contains the information of the sensor 

facing to the right.  In this programme, the combined values of three times the 

value of the information coming from the sensor facing forwards and one times the 

value of the information coming from the sensor facing to the right of the AGV are 

subtracted from the value 139.  The instructions from address 29 up to address 40 do 

not seem to have much of a function. 

  The Simulated Programme in programme segment 12.2 reached a fitness level of 

412 in less than 4700 simulations.  It was generated using the following options: 



 187 

 Two instructions were updated for one mutation 

 Mutation Only Genetic Algorithms were used to generate this programme 

 A simulation of the changes in the infrared light intensity of the 

surroundings was included 

 It was not made to detect an instruction from an external user 

 

  Clearly the instructions at address‟ 20 and 22 have no function, as they always 

cause the programme to skip the next instruction.  The instruction at address 26 

always allows the next instruction to be executed, thus, it too is accomplishing 

nothing.  The instruction at address 14 and 15 changed the values in the W-register 

as well as the flags in the status register.  Without being used, the value in the W-

register was again changed into 6 at address 16.  The instruction at address 19 

changed the flags before it was used, thus, the instructions at address 14 and 15 

were not influencing the programme. 

  As explained in section 7.1.1.2, it takes 40 instructions to give an output to the 

motors.  The instructions at address‟ 8 and 9 attempted to make the AGV move 

forward.  Directly following these instructions, the instructions at address‟ 10 and 

11, were instructions that attempted to make the AGV turn right.  From one output 

attempt to the next, it took just two instruction cycles.  In short, although the 

instructions at address‟ 8 and 9 would ensure that the AGV, in normal 

circumstances, would move forward, in this case it does little if anything. 

 

 Address   OPCODE    Operand  Address   Instruction 
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Programme Segment 12.2 Simulated Programme for Two Instruction Change 

 

 

  There are eight instruction cycles between address‟s 16 and 17, and address‟s 24 

and 25.  There were no “turnoffs” between the two sets of address.  The instructions 

at address‟ 16 and 17 were also unable to have any influence as the output is again 

changed before 40 instructions have elapsed. 

  In section 7.1.1.3, it was seen that the first bit in register 15 acts as an input, either 

from a user or to indicate on which side of the AGV the destination is.  Because the 

split option was not activated when the programme in programme segment 12.2 

was generated, this bit was used to indicate on which side of the AGV the 
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destination was.  The testing of this bit in this programme was performed at 

address‟ 6 and 7.   

  The instruction at address 12 will only cause the programme to skip the “GOTO” 

instruction at address 13 once every two-hundred-and-fifty-six time it is executed. 

  Figure 12.1 shows the equivalent flowchart for the Simulated Programme in 

programme segment 12.2.  The loop formed by testing the directional bit lets the 

AGV continue with its current operation until the destination is at the desired side 

of the AGV. 

  The Simulated Programme in programme segment 12.3 has reached a fitness 

level of 506 using the following options: 

 Four instructions were updated for every mutation performed 

 Genetic Algorithms, using mutation as well as crossover to generate the 

offspring, were used to generate this programme 

 A simulation of the changes in the infrared light intensity of the 

surroundings was included 

 It was not made to detect an instruction from an external user 

 

  Because some functional blocks only use two instructions, the other instructions of 

the four instructions were converted into “NOP” instructions that have no purpose 

other than to delay the process.  The flowchart of the Simulated Programme shown 

in programme segment 12.3 is shown in figure 12.2. 

 

 

 

  . 

Forward 
sensor 

Directional 

Far from 
obstacle 

Close to 
obstacle 
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Figure 12.1   Simulated Programme Generated, Two Instructions are Updated 

 

   When two instructions and four instructions are updated per mutation, the 

Programme Generator does not reveal the ability to generate a programme where 

more than one subtraction is executed on one value, as was accomplished when one 

instruction was updated per mutation.  In the first Simulated Programme, the  

 

 

“BTFSS” instruction was directly followed by “MOVLW” instruction, both 

instructions making sensing and reacting to an obstacle possible.  When more than 

one instruction is used per mutation, the “BTFSS” instruction is always followed by 
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a “GOTO” command.  This is the proof that the option of updating one instruction 

per mutation is more flexible than the other two options. 

 

 

 

Programme Segment 12.3 Simulated Programme for Four Instructions Change 

 

  The sequence of instructions that is executed is also not what one might expect.  It 

seems that jumps occur from any address in the Simulated Programme to any other 

address.  In conclusion, the instructions used in the programme are intertwined 

between the instructions not used. 

 

 

 

 

 Address OPCODE   Operand  Address   OPCODE    Operand 
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Figure 12.2   Flowchart of Simulated Programme when Four Instructions are Changed 

 

  Some of the instructions that have been altered within the programme do not have 

any effect on the result.  The Programme Generator is written is such a way that if 

the fitness level stays the same, or if the fitness level is higher, the change is kept.  
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This means that these instructions are changing all the time, although the fitness is 

not necessarily changing.  It is possible that, at some point, an instruction that is 

used is changed in such a way as to make some of these unused instructions start 

affecting the simulation.  Therefore, a procedure can be a sudden advantage or 

disadvantage to the whole simulation.  Changing only one instruction can activate a 

“whole new programme” or “procedure in the programme”. Because many 

instructions will have to be one hundred percent correct, the chance of this being 

an asset is unlikely, but possible, and the more simulations executed the more 

chances there will be that it is an advantage. 

 
 

12.4 Results on Single Chromosome Evolution Algorithms 
 

  Getting a worse result when environmental conditions are included indicates that 

the more difficult the task is, the worse the result will be.  Because Single-

Chromosome-Evolution-Algorithms “learn” faster than Genetic-Algorithms, they 

can be seen as more “intelligent” for a specific condition.  However its inability to 

react to an input from a user indicates that it is less “intelligent” in some 

applications. 

  Within a changing environment, for instance, if the obstacle course changed 

regularly, the Single-Chromosome-Evolution-Algorithms seem to wait for the ideal 

situation.  An example of this is when the obstacle course is changed regularly.  The 

results will only have a high fitness level if one specific obstacle course is used 

during the simulation.  Because the fitness level is mostly made higher when that 

obstacle course is simulated, it only adapts to that specific course.  This fault can be 

overcome by simulating the AGV in different options and getting an average of the 
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fitness level before the chromosome is changed.  That will lead to more simulations 

and one may question why one would use it as opposed to using normal Genetic 

Algorithms. 

  Strangely enough, the AGV was able to, at times, overcome local maximum 

problems when using Single-Chromosome-Evolution-Algorithms.  The reason for 

this might be in the generation of a programme, as some parts of the programme 

can suddenly be made active, after being changed in many forms while staying 

inactive, as was seen in section 12.3.  

 

12.5 Reaching the Destination 

 

  Figure 12.3 was generated with the aid of Single-Chromosome-Evolution-

Algorithms.  At first, the Simulated AGV ran into a specific wall.  It seemed that the 

AGV would not ever be able to do any better, and then suddenly a huge jump in the 

fitness level occurred.  The AGV almost reached the destination.  At the end, it 

avoided one wall and ran into another.  At this stage, the AGV was almost directly 

on top of the destination. 

  Things must have been easier in this simulation, because environmental changes 

were not included.  In other simulations, were Genetic Algorithms with crossover 

were used, a fitness level of this magnitude never occurred, not even if 

environmental changes were not included.  

  Figure 12.4 shows the fitness level versus the amount of simulations for the result 

obtained in figure 12.3.  The values below the graph have to be multiplied by a 

hundred to show the amount of simulations executed. 
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Figure 12.3  Route of AGV when Destination has been Reached 

 

 

 

Figure 12.4  Fitness Levels for Best Result 

 

  As can be seen, the fitness level has suddenly improved by quite an amount.  The 

value before the improvement must be the value of the fitness level when the AGV 
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had only reached the local maximum.  The higher value was reached when the AGV 

suddenly turned around after reaching the local maximum to find another route to 

the destination. 

 

12.6  Developments 

 

  A software simulator was developed that was able to simulate the Physical AGV.  A 

simulation of most of the AGV‟s individual parts was needed.  The simulated sensors 

were not only calibrated to the physical sensors, but were also made to give out 

non-linear results.  The instruction set of the simulated robot controller is the same 

as the instruction set of the PIC.  Different virtual mazes were developed for the 

Simulated AGV.  By writing a programme for the Simulated AGV, the whole 

simulation was proven to function correctly. 

  Using the simulation and Genetic Algorithms, or Single-Chromosome-Evolution-

Algorithms, a programme was generated for the simulated controller.  To save time, 

mutation was changed to favor instructions used when a human programmer wrote 

a programme for the controller.   In future this programme could be changed as 

desired.  For example, if a totally different controller was needed, it could be 

simulated here. 

  A Physical AGV was built to prove that the generated programmes could be used 

on a Physical AGV.  The AGV was built as small as possible to make it portable and 

easy to use.  Incorporating the umbilical cord for power purposes instead of 

batteries makes the AGV acceptable to a variety of future Genetic Algorithm 

experiments [34]. 
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  Although this AGV is too small to carry anything, a replica of the controller could 

be utilised on a much bigger AGV, making it suitable for use in industry. 

  A human written programme and a generated programme were individually tested 

on the Physical AGV.  Although not tested within a maze, the AGV reacted more 

favorably to avoiding obstacles when executing the generated programme than 

when it was executing the human written programme. 

 

12.7 Findings 

 

  If one looks at the learning process of the perceptron through back-propagation, 

the one question that comes up is how will the perceptron know what the outcome 

is and, thus, how the change is made if it was, for example, in a human brain?  A 

transistor, or even a gate such as the NAND gate, does not change anything internal 

and has no memory.  Only the information going through it changes.  Take the 

example of the NAND gate.  If it was placed in a circuit containing other gates (the 

same type or different) then it could be made to store a one or a zero, thus making 

the whole circuit able to remember or learn a small piece of information.  It is 

possible that part of the organic brain functions much like a computer, where the 

logic gates are replaced by neurons, whose function is comparable to the function of 

logic gates in a computer. 

  Although it is possible that the perceptron does not change during the lifetime of 

the “organism”, it is possible to change through evolution.  That is why the 

perceptrons working in a hybrid system, where the weights are changed through 

Genetic Algorithms, gave good results [33]. 
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  To make an “organism” learn during its lifetime, one can use search trees or 

schematic trees.  A branch in a tree can be like a neuron.  The difference between 

this type of neuron and the perceptron is the direction of the flow of information.  

The perceptron (and logic gates) have multiple inputs and only one output, while 

the search tree‟s branch, or the whole search tree, has one starting point and 

multiple endpoints. 

  In the organic brain, the function of a search tree must be accomplished in either 

one of two methods: 

 A specific type of neuron does the function of a branch in the search tree 

 The function of the search tree is built up by neurons just as logic gates can 

build up the function in a logic circuit 

 

  The final goal of any organism is to survive.  Any dog-lover will tell you that 

although the dog‟s survivals depend on humans, the hunter‟s instinct is still visible 

when playing, they will even, on occasion catch small prey.  While the main goal is 

survival, hunting is a sub-goal that has become a goal.  The sub-goal of the 

organism‟s brain must have been developed by evolution using “survival of the 

fittest” as the goal.  Evolution can also give “goals” or, in other words, instincts that 

do not directly improve the fitness level but, indirectly, can improve it.  An example 

of this is the human‟s desire to think and build. 

  The final robot brain must have some units, like the perceptrons, in which the 

placing, connection to others, and the weights of the unit are changed through 

evolution.  A schematic tree must also be included.  It is possible that the 

perceptrons will, in any case, build up a schematic tree.  The goals for the schematic 

tree are determined by evolution.  These goals could also be built up by perceptrons. 
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  The schematic tree and the goals can be inserted into the robot in a more direct 

way where the placement, type, connections and size of the neurons are all 

determined by evolution.  In the end, the robot‟s brain must be able to learn in one 

lifetime, as well as change through evolution. 

  Irrespective of the method used, most of the goals that were set for the learning 

robot were met.  To build a more intelligent robot is to have the robot achieve more 

difficult tasks.  The robot has already been able to walk through a maze, go to a 

certain location to get recharged, avoid obstacles and predators or to catch prey.  

The further question and this is the question on which this entire dissertation is 

based, is “what is the next level of complexity the robot has to contemplate?”  The 

answer might be in the words, “desire to think” or “philosophy”.  

 

12.8 Conclusion 

 

  Although Single-Chromosome-Evolution-Algorithms gave results much more 

quickly, they were not able to make radical changes in movement as the result of 

change to the input, as would be instructed by an input from a user.  Including an 

extra fitness variable for an extra input option made registering an input possible.  

The problem was that, for each desired reaction, a fitness value would be needed.   

  Changing one instruction per mutation makes the AGV take a longer amount of 

time to generate a result, but when analysing the Simulated Programmes it was 

found to be much more flexible in that almost any instructions sequence was 

implemented.   
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  Although a simulation of environmental changes influenced the fitness level in a 

negative way, they did not seem to influence the outcome as much as most of the 

options did. 
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12.9 Recommendations 

 

  Because of the favourable results generated by the Single-Chromosome-Evolution-

Algorithms, one tends to wonder where else it could be used.  The reason for the 

favourable results may be due to the fact that a change to a single instruction can 

change the function of the Simulated Programme into a totally new function.   

  It is unlikely that back-propagation will work on neurons with feedback.  Similar to 

self-generated programmes, a circuit with feedback might not use all the parts at 

any given time, where these currently unused parts can be activated and/or 

deactivated by changing a small part.  In total, Single-Chromosome-Evolution-

Algorithms might be an alternative method to make something like neurons with 

feedback work. 

  The whole of chapter 3 is basically conveying the following, which would 

theoretically improve the performance of Genetic Algorithms if implemented: 

 By inserting a different chromosome, with similar fitness levels to that of the 

average fitness of a population, into that population, it will probably give a 

better fitness level average to the population in the end. 

 Because of convergence, a different chromosome might not be easy to 

obtain. 

 

  In section 2.7.5.4, it was seen that, in the sexual preference experiment, the more 

similar the chromosomes were, the higher the fitness levels given to those 

chromosomes were.  However, in the experiment on diversity, the more dissimilar 

the chromosomes were, the higher the fitness level that was given to them was. 
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  Although these two experiments seem to be opposites, it is possible that both could 

be correct.  It has been said that opposites attract.  That might be true, but both 

parties must still be from the same species to give good offspring.  It all depends on 

which section of the chromosome has to be similar and which has to be dissimilar.  

Obviously, determining which part has to be similar and which part has to be 

dissimilar cannot be determined beforehand.  One way to determine this is through 

a separate use of Genetic Algorithms thus, an additional chromosome will have to be 

connected, in some way, to each of the original chromosomes. 

  One method is to generate a programme by using a schematic tree.  This method 

can then refrain from making the same mistake more than once. 
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