

Provisioning VoIP Wireless

Networks with Security

ROLAND DUYVENÉ DE WIT

Dissertation submitted in fulfilment of the requirements for the

MASTERS TECHNOLOGIAE:

INFORMATION TECHNOLOGY

in the

School of Information and CommunicationTechnology

of the

Faculty of Engineering, Information and Communication Technology

at the

Central University of Technology, Free State

Supervisor: Professor J. Kinyua

Bloemfontein

December 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Central University Of Technology Free State - LibraryCUT, South Africa

https://core.ac.uk/display/222966236?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ii

STATEMENT REGARDING INDEPENDENT WORK

The dissertation is the author‟s own work and has not been submitted in any

form or part thereof to any other University for purposes of a degree. All

sources used in this work have been duly acknowledged.

L.R. Duyvené de Wit

 iii

ACKNOWLEDGEMENTS

 I would like to thank my study leader, Professor Johnson Kinyua for

sharing his immense wisdom and continuous support.

 To the four cardinal points of my emotional compass † Dr. Leopold

Jean Duyvené de Wit, Prof. Helene Elma Duyvené de Wit, Jean-

Jacques Duyvené de Wit and Iné van Niekerk, thank you for continued

love and support.

 Finally, I would like to thank my Saviour for blessing me with strength

and the necessary forms of support throughout the duration of this

work.

 iv

SUMMARY

Telecommunication costs in South Africa are among the highest in the world

today [24]. Using VoIP (Voice over Internet Protocol) over wireless networks

offers a feasible alternative, but there are numerous security considerations

that need to be taken into account when deploying VoIP over wireless

networks. This study identifies and addresses some of the issues that arise in

the application layer (the VoIP application itself), as well as some concerns

with wireless network technologies.

The vulnerabilities are studied in terms of what causes the vulnerability, how it

can be exploited and what effect exploitation has. Suggestions to remedy

these potential vulnerabilities are also provided where applicable. The

vulnerabilities investigated include: buffer overflows, bruteforce attacks, SQL

(Structured Query Language) injections, denial of service attacks, encryption

on the application layer, and wireless security.

The study has a strong focus on programming principles, various operating

systems are used in the study, and networking makes out an important part of

the work. Although a working system was developed, the majority of work is

divided into several smaller applications that have been developed to aid in

researching the mentioned vulnerabilities.

Suggestions towards remedying the vulnerabilities are made where

applicable, but it is important to note that vulnerabilities are most often merely

oversight errors. Although the vulnerabilities studied in this work identified the

most common vulnerabilities, great care should be taken when implementing

a secure system. It is crucial to be well aware of what the causes of

vulnerability are in order to develop a secure system.

Field work was also done by driving around in a motor car with a notebook,

and plotting wireless network nodes along with some security information on a

map. Multiple insecure networks have been found which allow for attackers to

 v

further penetrate the systems on the network. Some products do not allow

upgrading of encryption technologies, which leave them vulnerable. There

are, however, methods to enhance security on the networks without replacing

the node; hence suggestions towards securing vulnerable wireless networks

are made where applicable.

 vi

OPSOMMING

Telekommunikasie kostes in Suid-Afirka is van die hoogste ter wêreld op

hede. Om SoIP (Stem oor Internet Protokol) oor koordlose netwerke te

gebruik bied „n effektiewe oplossing, maar daar is heelwat sekeriteits

probleme wat te voorskyn kom wanneer dit so gebruik word. Hierdie studie

identifiseer en spreuk sommige van die probleme aan wat te voorskyn kom in

die applikasie vlak (die SoIP program self), asook moontelike probleme met

die koordlose tegnologie.

Die kwesbaarhede word bestudeer deur te identifiseer wat dit veroorsaak, die

impak van uitbuiting en metodes om dit te verlig. Voorstelle om die moontelike

kwesbaarhede op te los word gemaak waar dit van toepassing is. Die

kwesbaarhede wat bestudeer word sluit in: buffer oorskrywings, brute krag

aanvalle, SQL (“Structured Query Language”) inspuitings, ontneming van

diens aanvalle, enkodeering in die applikasie vlak en koordlose sekuriteit.

Die studie het „n sterk fokus op programmeering metodologie, verskillende

beheerstelsels word gebruik, en netwerke maak „n belangrike deel van die

studie uit. Alhoewel „n werkende sisteem ontwikkel is, is die grootste deel van

die werk verdeel in kleiner programmetjies om die navorsing van die

kwesbaarhede te ondersteun.

Voorstelle om die kwesbaarhede op te los word gemaak, maar dit is belangrik

om in gedagte te hou dat kwesbaarhede hul oorsprong vind in oorsig foute.

Alhoewel die kwesbaarhede wat in die studie bestudeer word meeste

algemene kwesbaarhede identifiseer, moet ontwikkelaars versigtig wees

wanneer „n veilige sisteem onwikkel word. Dit is belangrik om bewus te wees

van die oorsaak van kwesbaarhede alvorens „n sisteem ontwikkel word.

Veld werk was ook gedoen deur met „n skoot rekenaar te ry en koordlose

netwerke te plot op „n kaart saam met verdere sekuriteits inligting. Verskeie

kwesbare netwerke is opgemerk wat aanvallers sal toelaat om die netwerke

 vii

verder te penetreer. Sommige koordlose produkte kan nie opgradeer word

nie, wat dit kwesbaar laat. Daar is tog ander maniere om koordlose netwerke

verder te beveilig sonder om die eenheid te vervang. Voorstelle sal gemaak

word om die probleem om te los.

 viii

TABLE OF CONTENTS

1. INTRODUCTION... 1
1.1 Introduction.. 1
1.2 VoIP, Wireless VoIP and security.. 3
1.3 Statement of the Problem.. 7
1.4 Motivation for the Research... 8
1.5 Research Goals, Objectives and Methodology.. 8
1.6 Organisation of the Dissertation... 11

2. RELATED WORK.. 12
2.1 Introduction... 12
2.2 Wireless Network Security... 14
2.3 Wireless network principles.. 17
2.4 Wireless Network Security Schemes.. 19

3. THE ANATOMY OF A NETWORK ATTACK.. 23
3.1 Information gathering... 23
3.2 Network Probing... 23
3.3 Vulnerability Assessment... 25
3.4 Launching the Attack (Penetration).. 26
3.5 Privilege Escalation... 27
3.6 Maintaining Access.. 28
3.7 Stealth mode - Covering Tracks – (editing logs).. 29
3.8 Radio Network Intrusion... 29

4. SECURITY CONCERNS OF THE VoIP SYSTEM.. 34

4.1 Introduction.. 34
4.2 The Wireless VoIP System... 34
4.3 Vulnerabilities... 36

4.3.1 Buffer Overflows... 36
4.3.2 Brute Force... 42
4.3.3 SQL Injections.. 43
4.3.4 Denial of Service and Distributed Denial of Service....................................... 46
4.3.5 Encryption... 48

4.3.5.1 Sniffing and encryption... 48
 4.3.5.2 Wireless encryption - WEP and WPA...50

5. IMPLEMEPLENTATION AND RESULTS.. 51
5.1 Buffer Overflows...51
5.2 Brute Force.. 55
5.3 SQL Injections.. 57
5.4 Denial of Service and Distributed Denial of Service... 59
5.5 Encryption.. 62

5.5.1 Sniffing and encryption strength... 62
5.5.2 Wireless Security.. 64

5.6 The Applications‟ user interfaces... 69
5.7 Summary.. 72

6. CONCLUSIONS AND FUTURE WORK.. 76
6.1 Conclusions.. 76
6.2 Future Work.. 77

7. REFERENCES... 79

 ix

LIST OF FIGURES

Figure 1.1 A Captain Crunch Whistle……………………………….. 2
Figure 1.2(a) A Sine wave……………………………………………………............................ 4
Figure 1.2(b) Digital representation of a sine wave……………………………………………... 4
Figure 1.3(a) High Jitter…………………………………………………………………………..... 6
Figure 1.3(b) Low Jitter………………………………………………………………................... 6
Figure 1.4 A simplified VoIP interaction model……………………………….......................... 9
Table 2.1 Electromagnetic waves………………………………………………….................... 18
Table 2.2 WEP key sizes…………………………………………………………………........... 21
Table 3.1 Common exploitable software vulnerabilities ………………………………….... 31
Figure 4.1 The VoIP model…………………………………………………............................. 35
Figure 4.2 The constituents of a process……………………………………………................ 36
Figure 4.3 A Buffer Overflow Vulnerability Example Code………………………………........ 38
Figure 4.4 Memory allocation at runtime……………………………………………................ 40
Figure 4.5 SQL injection illustrative sample code……………………………………………… 44
Figure 5.1 Buffer overflow vulnerable code…………………………………………................ 52
Figure 5.2 Text file used as payload…………………………………………………………….. 53
Figure 5.3 Using netcat to attempt overflowing the buffer…………………………............... 54
Figure 5.4 The received popup message…………………………………………................... 55
Figure 5.5 User interface of the brute force demonstration………………………................. 57
Figure 5.6 The SQL injection vulnerable application…………………………………….......... 58
Figure 5.7 Addslashes function……………………………………………………….................59
Figure 5.8 A blocked connection attempt……………………………………………………….. 61
Figure 5.9 An accepted connection attempt……………………………………………………. 61
Figure 5.10 Demonstrating encrypted data…………………………………………………….. 62
Figure 5.11 Encryption example…………………………………………………….................. 63
Figure 5.12 Random number generator………………………………………………………… 63
Figure 5.13 Encryption methodologies used in the gathered data…………….................... 65
Figure 5.15 Google Earth……………………………………………………………………........ 67
Figure 5.16 Google Earth Westdene area………………………………………...................... 68
Figure 5.17 The VoIP application………………………………………………………….......... 69
Figure 5.18 Rootkit…………………………………………………………………..................... 70
Figure 5.18 the Trojan GUI without the hidden functionality…………………….................... 71
Figure 5.19 The Trojan password prompt………………………………………………………. 71
Figure 5.20 The Trojan GUI with hidden functionality………………………………………..... 72
Figure 5.21 Multiple vulnerabilities example code……………………………………………... 73

 x

ABBREVIATIONS

VoIP Voice over Internet Protocol

WEP Wireless Equivalency Privacy

IPv4 Internet Protocol version 4

NAT Network Address Translation

PSTN Public Switched Telephone Network

ADC Analogue Digital Converter

PCM Pulse Code Modulation

UDP User Datagram Protocol

TCP Transmission Control Protocol

Wi-Fi Wireless Fidelity

IEEE Institute of Electrical and Electronics Engineers

MAC Media Access Control

IP Internet Protocol

WPA Wi-Fi Protected Access

NIC Network Interface Card

RFC Request For Comments

SIP Session Initiation Protocol

IETF Internet Engineering Task Force

DHCP Dynamic Host Configuration Protocol

CPU Central Processing Unit

PAN Personal Area Network

UHF Ultra High Frequency

VHF Very High Frequency

SSID Service Set Identifier

RFMON Radio Frequency Monitoring

IV Initiation Vector

SQL Structured Query Language

DNS Domain Name Service

FTP File Transfer Protocol

Suid Super User ID

IDS Intrusion Detection System

 xi

VAS Virtual Address Space

LIFO Last In First Out

SP Stack Pointer

FP Frame Pointer

NOP No Operation

CD Compact Disk

LAN Local Area Network

WAN Wide Area Network

VPN Virtual Private Network

DoS Denial of Service

DDoS Distributed Denial of Service

SSL Secure Sockets Layer

PSK Public Switched Key

DBMS Database Management System

PHP Personal Home Pages

OSI Open Systems Interconnect

XOR Exclusive OR

GPS Global Positioning System

USB Universal Serial Bus

AP Access Point

BSSID Basic Service Set Identification

ESSID Extended Service Set ID

 1

1 INTRODUCTION

1.1 Introduction

Many people might think that hacking is a recent phenomenon. The truth is that

hacking has a long history dating from the end of the 18th century. Although the term

“hacker” was coined later, from its common meaning (gaining unauthorized access

to a computer system) it started with the advent of the telephone system. The

switchboard workers eavesdropped on calls and misdirected some. The term

“hacker” has evolved over time, varying in meaning from someone who knows a

great deal about computers to those who use computers to commit crimes. Another

meaning of the word is someone who forces a system to behave in a manner that

was overlooked or not anticipated by its designer. Today there is a rather large

subculture practising hacking, but there are many different perceptions of what

hacking is and its origins.

The Hacker’s Manifesto [3] was written in 1986 by Lloyd Blankenship, also known as

“The Mentor”, when he was caught for breaking into a system. Here is an extract

from the writing:

This is our world now ... the world of the electron and the switch, the beauty of the baud.

We make use of a service already existing without paying for what could be dirt-cheap if it

wasn't run by profiteering gluttons, and you call us criminals. We explore... and you call us
criminals. We seek after knowledge ... and you call us criminals.

We exist without skin colour, without nationality, without religious bias ... and you call us

criminals. You build atomic bombs, you wage wars, you murder, cheat, and lie to us and try

to make us believe it's for our own good, yet we're the criminals.

Yes, I am a criminal. My crime is that of curiosity. My crime is that of judging people by what
they say and think, not what they look like. My crime is that of outsmarting you, something

that you will never forgive me for.

I am a hacker, and this is my manifesto. You may stop this individual, but you can't stop us

all ...

 2

When the term “hack” was first coined, it referred to a trick or a way of making

something do something else it was not intended to do. Some time ago a cereal

named “Captain Crunch” had a whistle inside the box intended as a promotional gift:

Figure 1.1 A Captain Crunch Whistle [1]

John Draper, who later became known as “Cap‟n Crunch”, discovered that this

whistle can be used to make free phone calls by blowing the correct pitch (2600 Hz)

and thus simulating money being put into the payphone. Although this does not

involve computers it was referred to as a hack, as something was used in a creative

way to make something do something else it was not intended to do.

Because software is written by humans, it is error prone. A software instruction, or

piece of code, may seem to do something, and it does, but programmers often

overlook the fact that the instruction (under certain conditions) can do something

completely different from what the programmer intended.

IPv4 (Internet Protocol version 4) has many great examples of hacks. The Internet

has grown beyond the expectations of the original architects of Arpanet resulting in

IP (Internet Protocol) addresses depletion and leading to the development of

 3

Network Address Translation (NAT). IP was never intended to be used in such a

way, but its architecture allowed it.

From this viewpoint, a hacker is someone who likes technology and has a desire to

make things work in ways different from originally intended. In this work, the term

hacker will be used from this viewpoint. The term cracker was coined to refer to

people that use their abilities or skills to break the law and often do not really

understand what they are doing and use tools written by hackers to break into

systems. The term “script kiddy” is also used to refer to people who use other

people‟s tools and exploits to accomplish their tasks, often not having much

knowledge of what is being done. The meaning of the term cracker later evolved into

breaking software copy protection so that it can be used free of charge.

Although many hackers prefer not to be categorised, a popular discriminator is

according to their intentions. “Black hat” is used to refer to someone with ill

intentions such as malice or criminal behaviour. “White hats”, on the other hand, are

hackers, who immediately upon discovery of vulnerability inform the vendor of the

software in an attempt to have the vulnerability fixed. Lastly, grey hats release the

exploits they developed, regardless of what it will be used for. Although these terms

are commonly used, their meaning is still highly controversial, even in the computer

industry.

1.2 VoIP, Wireless VoIP and security

Voice over Internet Protocol (VoIP) has become a feasible alternate solution for

telecommunications recently. One of the key advantages of VoIP over the Public

Switched Telephone Network (PSTN) is that long distance calls can be made at very

low costs. Its power can be clearly seen when it is used to phone someone (who

also has Internet access) anywhere in the world free of charge, as opposed to

phoning your next door neighbour (although in some countries local calls are also

free) at a much higher rate.

 4

The following is a brief description of how VoIP operates. Firstly, VoIP works by

having a recording device such as a microphone plugged into a soundcard, which

captures the audible analogue signals in the proximity of both, or every user in the

case of a conference call. This analogue signal, or sound, is then digitized and

stored in a buffer. When the buffer has been filled, it can be manipulated in several

ways including encryption and compression. Thereafter the buffer is sent to the

other host(s) where it is first deciphered if necessary and then played back to the

other user(s) over a playback device such as speakers. Since multiple users can

take part in a conversation, and they can speak simultaneously, the system needs to

make provision for concurrency – which is typically implemented by threads.

Sound naturally exists as analogue waves. These waves can be represented in a

digital form by means of an Analogue Digital Converter (ADC). An ADC uses the

electrical voltages generated by the induced current from the microphone to

generate a series of numbers. These numbers represent the analogue waves‟

amplitudes at a specific time. Figure 1.2(a) and figure 1.2(b) show a sine wave as

well as a digital representation of the wave.

Fig 1.2(a) A Sine wave Fig 1.2(b) Digital representation of a sine wave

As the illustration clearly illustrates, the digital representation (Fig 1.2 (b)) cannot

reproduce the analogue wave exactly. Some of the quality is lost. The digital

representation in the above figure allows only seven possible distinct values (the two

 5

extreme peaks, 0, and two values in the middle for positive and negative) on the y

axis. A typical 16 bit sample would allow for 65 536 distinct values, which is a much

closer representation of the original analogue signal. Another factor influencing the

quality of the sound is how often a sample is made over time. In the example above

13 samples where taken. If the period of the wave was one second, the sampling

rate would be 13 samples per second, and thus require a bandwidth of 208 bytes

per second on monaural and 416 bytes per second for stereo.

Pulse Code Modulation (PCM) is a well-known standard for sampling analogue

signals. It samples the signal 8000 times a second and each sample is 8 bits large.

This results in a 64 kbps bandwidth requirement. Two particularly widely used

techniques are µ-law (which is used in North America and Japan) and A-Law (used

in most other countries).

Various audio compression algorithms have been developed to make transmission

of audio over limited bandwidth networks practical. Audio can be compressed in two

distinct ways. The first being waveform compression, and the second perceptual

encoding. With waveform encoding, the aim is to represent the analogue wave with

as few bits as possible. This can be done by reducing the sample size and/or

sample rate. The trade-off is of course the quality of the sound versus the size of the

encoded data. The other compression technique, perceptual encoding, exploits the

manner the auditory system works. The encoded signal, when played back, sounds

the same to the human ear, but is in fact something different. It is the same thing to

the human ear, as it attempts to only having the elements present that fits the

manner in which humans perceive sound, while the rest is omitted. The PCM

encoded waveform is passed through an algorithm that filters out elements that are

inaudible to the human ear.

For a network to carry VoIP optimally, it requires a great deal of tweaking. Jitter

(when the delay or round trip times of successive packets vary) has a devastating

effect on VoIP. Streaming applications, including VoIP, rely heavily on a constant

 6

transit time. A constant delay time of 10 milliseconds or 500 milliseconds does not

make a large difference in one-way streaming. It only influences the initial delay; the

stream continues to flow correctly (in real time) afterwards. A too large delay of VoIP

is undesirable, as pauses in communication may become awkward and bring forth

interruptions of speakers/users. High jitter, or a large difference in delay, gives an

uneven quality to the streamed media and it may become choppy. The following

figure illustrates high jitter (Fig 1.3(a)) and low jitter (Fig 1.3(b)).

Figure 1.3(a) High Jitter Figure 1.3(b) Low Jitter

TCP (Transmission Control Protocol) can add even further complications on

telephony when jitter is high. Since the input is generated in real time (that is through

speaking into a microphone), sent across the network, received at the other end,

and finally played back in real time (at the same speed recorded), a non-constant

delay will increase the delay over time every time the difference in delay fluctuates.

The User Datagram Protocol (UDP) does not have the same problem. It is an

unreliable protocol and some of the packets may be dropped (when received out of

order), or may never even be received. On the other hand, when TCP is

implemented and the application has been designed not to transmit recorded

“periods of silence”, every time a period of silence occurs, TCP could be used to

implement VoIP, and prevent the delay from continuously growing larger as there

are gaps where the delay could be caught up with. VoIP does not require such a

large amount of bandwidth (if appropriate compression schemes are used), but

other than that, it is a rather expensive and network resource intensive application.

Delay

Amount
of

packets

Delay

Amount
of

packets

 7

The PSTN has a huge advantage in terms of security because it is much more

isolated as opposed to the Internet. Attack vectors are dramatically increased

through operating over the Internet, as it is much more accessible as opposed to the

PSTN with its wired infrastructure, or proprietary wireless protocols and encryption

schemes.

1.3 Statement of the Problem

It is a well known fact that telecommunications costs in South Africa are very high

[24]. The discontent of the general public about the charge rate is also visible

through articles, blogs, forums and movements such as the open source movement.

Since it will be very expensive to lay as many copper lines throughout South Africa

as Telkom has done during its approximate fifty years of existence, an alternative

means of networking is needed. Wireless Fidelity (Wi-Fi) may offer a feasible

solution. Wi-Fi belongs to the 802.11 and 802.11x family of specifications developed

by the Institute of Electrical and Electronics Engineers (IEEE) for wireless LAN

(Local Area Network) technology that specifies an over-the-air interface between a

wireless client and a base station or between two wireless clients.

Wireless technologies used with VoIP exposes several security issues. Many

vulnerabilities exist that can compromise the integrity, availability, accuracy,

authenticity, confidentiality, utility and possession of information. If any of these

characteristics of information are compromised, the information can no longer be

trusted. Since information is an important asset, it is crucial to take security

seriously.

VoIP can be integrated seamlessly on wireless networks, but this introduces several

major security issues. This research will deal with the security issues that arise when

using VoIP over a wireless network, but will address wireless network security and

VoIP security separately.

http://www.webopedia.com/TERM/8/WLAN.html
http://www.webopedia.com/TERM/8/802_11.html

 8

1.4 Motivation for the Research

For the modern business the value of information depends entirely on the

characteristics (integrity, availability, accuracy, authenticity, confidentiality, utility and

possession) it possesses. As with timelines (information loses all value if it is

delivered too late), good information cannot be left without safeguarding these

defining characteristics. Reliable information needs to be stored, processed and

transmitted securely.

Since VoIP and wireless networks are potentially insecure technologies, numerous

vulnerabilities exist. Elevation hacking (exploiting full privileged processes to gain

elevated privileges) can be used to gain full control of a compromised system, which

could in turn leave all information on the compromised system untrustworthy.

Wireless technologies encapsulate much more than the Public Switched Telephone

Network (PSTN). PSTN provides enhanced security in the form of physical location

trace backs (that is each call can be traced back to the physical location of origin

because wires are used). To break into the system, one would have to physically

connect to the wired network. This is another barrier that does not exist with wireless

networks. Conversely, GSM (cellular) networks operate at frequencies for which

tampering devices are not easily unattainable.

1.5 Research Goals, Objectives and Methodology

Security is obviously a crucial factor in protecting information. This study focuses on

mitigating the security risks involved in operating VoIP over a wireless network. The

main objectives of this research are to provide security for both VoIP and the

wireless network segments. The specific objectives of this research are to

investigate what causes vulnerabilities, how they can be exploited, what effect

exploitation has, as well as mechanisms that could mitigate the risks. We do not

 9

seek to implement a system that is free of vulnerabilities, but rather provide

guidelines for designing and implementing a secure system.

As for wireless vulnerabilities we evaluate WEP and WPA-PSK (Wi-Fi Protected

Access – Public Shared Key). A dedicated host will be set up to detect and attempt

to decrypt public keys. Because wireless access points generally filter only

legitimate traffic from passing through a network, a network interface card (NIC) will

be used to decrypt network keys. The traffic monitoring driver for Windows,

WinPcap, did not yet support wireless devices at the start of this work. Hence a

wireless NIC that is supported by Linux was used to detect and decipher wireless

network encryption. A problem with wireless NICs is that expensive cabling is

required to attach to an antenna and this cabling and connectors introduce signal

loss. We will also do field tests by driving around in a motor vehicle and plotting

every detected network node on a map.

 Client Server

Figure 1.4 A simplified VoIP interaction model

Figure 1.4 shows the simplified version of the methodology with which VoIP works.

The client/server architecture will be on each machine using the VoIP software. The

Send communications
request

Receive packet

Query user to answer
and then acknowledge

Start recording
microphone input

Transmit voice or text
messages to server

Process packets
(voice/text)

Output messages

Request socket
connection

Listen on port and
accept

connections

 10

client of one machine will communicate with the server of another, and that client will

communicate back to the server of the other. It is therefore necessary to spawn new

clients dynamically. This requires a multi-threaded programming environment.

To have practical and usable guidelines and to ensure that VoIP security issues are

successfully avoided, mitigated, transferred or accepted, exploit programmes will

also be implemented where applicable and used to demonstrate certain issues.

They are briefly discussed below:

 Buffer overflows are conditions where the stack is overwritten with user data.

We will develop an application and investigate how these conditions arise.

 SQL injections involve special delimiters, which allows user code to be

inserted into (or injected into) SQL statements. We will develop a vulnerable

application which demonstrates this weakness.

 Denial of service attacks involve a demand of resources which cannot be

satisfied. A mechanism of blocking such users will be implemented.

 We will be investigating encryption on two levels. The first is the encryption

used to prevent unauthorized access to wireless networks, and the second on

a higher level. An application that encrypts and decrypts information sent over

the network will be developed to demonstrate the encrypted messages.

 11

1.6 Organisation of the Dissertation

The organisation of the rest of this dissertation is as follows. In Chapter 2, the

relevant literature will be reviewed. The anatomy of a network attack is presented in

Chapter 3. Security concerns for operating VoIP over wireless networks are

discussed in Chapter 4. The implementations and results are presented in Chapter

5. Conclusions and suggestions of future work are discussed in chapter 6. Chapter 7

contains the references and Chapter 8 the appendices.

 12

2 RELATED WORK

2.1 Introduction

The various well-known security vulnerabilities that arise when using VoIP over

computer networks are discussed briefly below [17]:

 Brute Force / Dictionary attacks (on Usernames and Passwords)

Brute force attacks involve the application of computer and/or network resources

to attempt to try every possible combination of options (characters) of a

password. If the field of possible accounts can be narrowed down, the success

ratio increases significantly. Dictionary attacks can be seen as a specialized form

of a brute force attack. A list of commonly used passwords (known as the

dictionary) is used to guess with, instead of every possible combination.

 Buffer Overflows

Buffer overflow exploits have enjoyed popularity recently. These vulnerabilities

are created by an application error that pushes instructions on the processing

stack when a larger buffer than compensated for is copied onto the buffer. If the

overflow section of the buffer is specially crafted, remote code execution is

possible, but typically results in denial of service.

 Unauthorized access – limited by IP address

With this type of attack an attacker sends information to another host with an

alternate IP address indicating that the message is coming from a trusted host.

Usually IP spoofing is used to gain unauthorized access to information or other

resources.

 Packet sniffing

A sniffer is a device capable of monitoring information travelling across a

network. They are virtually impossible to detect and can theoretically be inserted

 13

anywhere. The only ways to bypass them is to use another protocol or to use

encryption with the communications.

 Timing attacks

Timing attacks include a number of different techniques. They include malicious

third party cookies, interception of cryptographic elements to determine

encryption algorithms and keys as well as monitoring response times on

authorizing messages to determine valid usernames.

 Denial-of-Service attacks

A large number of requests are sent to a target which renders the target unable

to handle these requests, as well as other legitimate ones. Distributed denial of

service attacks involve a number of different systems used together to attack the

target(s).

A number of mechanisms have been developed to mitigate networks (including

wireless networks) against these vulnerabilities. Most of these are summarised

below.

 Encryption

In order to prevent eavesdropping on traffic, encryption plays an important role.

Several different encryption techniques and algorithms exist that can be used.

With wireless networks, the standard is Wired Equivalency Privacy (WEP), which

will be considered in detail in this research. An encryption scheme will also be

implemented through a text messaging application.

 IP Address filtering

A security technique known as IP Address filtering can be used to limit network

access through gateways by allowing only certain IP addresses access. This is a

viable, but not an entirely secure mechanism, as legitimate IP addresses can

become available as soon as a network node shuts down. An attacker can then

 14

adopt a legitimate IP address. A simple application that accepts connections

from a list of IP addresses will be implemented to demonstrate its efficiency.

 Media Access Control (MAC) address filtering

As with IP address filtering, this is another sensible, but flawed mechanism. MAC

addresses are designed to uniquely identify network hardware and therefore

create a barrier which disallows unauthorized nodes to access the network.

However, with the right tools, a MAC address can be changed on a network

device. This means that if an authorized MAC address is known, access can be

gained. The mechanism is exactly the same for IP address filtering, but since it

cannot be changed in some instances (such as some access points) it serves as

a superior means than IP address filtering.

 Wired Equivalency Privacy (WEP) Key strength

WEP uses a key to encrypt and decrypt messages travelling over the network.

This key is needed by every networked node to be allowed on the network. The

complexity of this key determines the security of the encryption from the point of

view of brute force attacks. Obviously (although not always the case), the larger

the key, the longer it takes to decipher.

2.2 Wireless Network Security

In [4] wireless security is addressed from the perspective that limited computational

power, limited bandwidth and a noisy channel are taken into account and important

trade-off decisions are based on that. The proposed security protocol (Point

Coordination Function) with its algorithm supports these theories. Limited bandwidth

forces a small number of messages to be exchanged to provide security for this

model. Limited computational power enforces sophisticated cryptographic methods.

The noisy environment requires provision for suitable retransmissions, which is

incorporated.

 15

As with all network protocols, a need for standardisation is undeniable in order to

support the important issue of compatibility. H.323 [16] was developed in 1996 and

revised in 1998 as a recommendation for VoIP, but was much more of an

architectural overview than a detailed protocol description. Session Initiation

Protocol (SIP), described in Request For Comments (RFC) 3261, was designed by

the Internet Engineering Task Force (IETF) to replace H.323. Unlike H.323, SIP only

handles the setup of a call through a set of primitives, while H.323 is a complete

protocol stack.

The work in [17] discusses VoIP security when deployed in unsafe environments.

When deployed in unsafe environments, the possible attack vectors are numerous.

Vulnerabilities can be found in the underlying network, the transport protocols, the

VoIP devices (for example, servers and gateways), the VoIP application, other

related applications (for example, Dynamic Host Configuration Protocol, DHCP), the

underlying operating systems and more. The PSTN‟s security advantage (physical

character and operation) is also pointed out. Another concern is that voice

conversation flows over many different physical networks with different interception

characteristics.

Elementary security principles are discussed within [4]. A variety of attack vectors

are explained and focus on security in general is applied.

Many concerns for wireless hotspots are discussed in [18]. Although this work is not

aimed at hotspots in particular, an overlap exists with some of the security concerns

hotspots face. WEP, although it has its place, is a flawed security measure and

should not be fully relied upon.

The work described in [19] is mostly concerned with the security issues of mobility.

The considerations encapsulating seamless roaming along and re-establishment of

connections are highlighted. Re-establishment problems of Virtual Private Network

(VPNs) connections are also discussed.

 16

Re-authentication is also discussed in [4] and two protocols are proposed that

provide a clear improvement over Public Key Decryption (PKD). Real time

applications are able to function with IEEE 802.11 networks.

An in depth study is made on operating systems in [20]. The system architecture is

introduced and various CPU registers along with their functions and usage are

explained. As Operating Systems dramatically influence information security, it is an

important basis of the study. Knowledge of assembly language is necessary in order

to resolve some of the targeted security threats.

In [9] the workings of buffer overflow exploits are explained. This article describes

how virtual address space is used, which can be used to achieve remote code

execution by writing a larger amount of data into an array than compensated for.

This overflow allows an attacker to manipulate execution flow and can bring forth

huge bugs.

Novell‟s SUSE Linux 10 has been chosen as an Operating System on which some

sections of this study will be done.

 A Linux tool for configuring wireless network interfaces (iwconfig) is described in

[12]. This utility is helpful in putting a wireless device in the desired mode of

operation. Possible modes include Ad-Hoc (network composed of only one cell and

no Access Point), Managed (node connects to a network of many Access Points,

with roaming), Monitor (the node is not associated with any cell and passively

monitors packets on a channel/frequency), Master (the node is the synchronization

master or acts as an Access Point), Repeater (the node forwards packets between

other wireless nodes), Secondary (the node acts as a backup master/repeater) or

Auto. In order to decipher WEP keys, it is necessary to have the wireless network

interface in monitor mode. This enables the adapter to receive packets from all

 17

networks, not only from the cells it is connected to. When connecting to a network, it

generally has to be in Ad-Hoc, Managed or Master mode.

Airsnort is a WEP key cracking tool which exploits the RC4 scheduling weakness as

discussed by Fluhrer. In [21] usage and installation of the tool is described.

Airsnorts‟ mechanism of cracking WEP will be evaluated against others with

statistical information.

In [2], VNC, a remote desktop administration utility, usage and installation

procedures are documented. Because the Linux machine was running on the roof, it

was difficult to administer it from there. Instead, the freeware edition of VNC was

used to do so over the network. The merit of this application is that it runs cross

platform via a web interface and thus easy to use. The remote host can be

controlled via the network with a mouse and keyboard as if the user was sitting in

front of the remote machine.

Kismet is another WEP key cracking tool with extended functionality. The manual

pages in [22] describe its usage.

2.3 Wireless Network Principles

Wireless networks offer an effective means of networking, especially in rural areas

where terrestrial networking infrastructure is unavailable. VoIP can be operated over

wireless networks at very low costs, but wireless networks are easily penetrable if

proper security measures are not used since they are not as isolated as the PSTN.

This weakness arises because of the way wireless networks operate – over the air.

Wireless signals are difficult to control and often cover a larger range than is often

necessary, making them easily accessible to unauthorized use, because there is

less restriction on physical location.

 18

Wireless technologies make use of electromagnetically induced waves. An important

differentiating characteristic is the frequency of the wave. Different frequencies

attribute different properties to the waves, such as absorption. The following table

shows the widely used names of the electromagnetic radio waves according to their

frequencies. A description of the properties and possible uses of all the other types

of waves can be found in [5].

Table 2.1 Electromagnetic waves

Many implementations of wireless networks exist and examples include: Bluetooth,

Wi-Fi and Infrared. Bluetooth and Infrared networks are typically arranged in

Personal Area Networks (PANs), which cover very limited topographical areas. The

802.11 standard (Developed by the Institute of Electrical and Electronics Engineers -

IEEE) has three distinguishable subsets: a, b and g. Both the 802.11b and the

802.11g standards operate at the 2.4 GHz frequency band, while the 802.11a

standard operates at the 5 GHz frequency. The 802.11b allows up to 11Mbps, while

the 802.11g standard can handle up to 108 Mbps mainly owing to the differences in

their physical layer‟s protocol designs.

Electromagnetic Radio Wave Frequency

Extremely high frequency (Microwaves) 30 GHz – 300 GHz

Super high frequency (Microwaves) 3 GHz – 30 GHz

Ultra high frequency 300 MHz – 3 GHz

Very high frequency 30 MHz – 300 MHz

High frequency 3 MHz – 30 MHz

Medium frequency 300 kHz – 3 MHz

Low frequency 30 kHz – 300 kHz

Very low frequency 300 Hz - 3 kHz

Voice frequency 30 Hz – 300 Hz

Extremely low frequency 3 Hz – 30 Hz

 19

A noteworthy characteristic of electromagnetic waves is that the higher the

frequency becomes, the higher the level of absorption, and the greater the need for

line of sight between the antennae. Microwave frequencies, where Wi-Fi operates,

are higher frequencies and require a clear line of sight if the network spans over

considerable distances. Since 802.11a operates at 5 GHz, which is in the Super

High Frequency (SHF) band, as opposed to the 2.4GHz 802.11b/g at the Ultra High

Frequency (UHF) band, while the 802.11a is much more dependent on a clear line

of sight.

Another important difference between the 802.11a and 802.11b/g standards is their

channel allocations. The 802.11a standard has 16 non-overlapping channels

ranging from 5170 MHz to 5805 MHz, while the 802.11b/g standards have 14

channels with an overlap to adjacent channels ranging from 2412 MHz to 2482 MHz.

Since some countries have different regulations on which parts of the frequency

spectrum may be used as well as different regulations on their gain, the

manufacturers of the equipment tend to manufacture for the most widely used

specifications. In most countries the 2.4 GHz band is unregulated and can be used

without a license. Unfortunately, South Africa is an exception. The intentional

broadcasting of signals over public areas, such as roads, is illegal. Of course,

signals are hard to control and isolate from spanning across a road. For example,

the South African law prohibits two devices from communicating when the signal

spans across multiple properties or public property.

2.4 Wireless Network Security Schemes

The well known proverb that a chain is only as strong as its weakest link is

especially valid for networks with integrated wireless components. Probably the

largest problem is that whenever a wireless device becomes part of (or associates

with) a network, it leaks out data over the air, which can easily be intercepted. If a

highly confidential VoIP conversation, using only Pulse Code Modulation (PCM) was

to be operated over a wireless network only the wireless encryption would need to

 20

be broken for the whole conversation to be played back in its entirety. It is therefore

much more secure to add more layers of encryption, for example, encrypting the

digitised sound at the application layer as well as the wireless network‟s

communications layer. The digitized voice could for example be encrypted using

public key cryptography, as it needs to be deciphered at the receiving end as well.

There are currently two widely used encryption schemes for the 802.11x standard,

namely Wired Equivalent Privacy (WEP) and Wi-Fi Protected Access (WPA).

Since wireless networks operate over the air and it is difficult to restrict their

coverage to a single physical location, it is necessary to encrypt all the data that is

sent. The first solution was Wired Equivalency Privacy (WEP) and was supported by

most of the first generation wireless WEP devices, but this scheme has already

been compromised. The problem with WEP is that the encryption key used is static.

(A WEP key as well as a Network Name or Service Set Identifier (SSID) is required

to connect to a WEP encrypted wireless network). WEP uses a special type of prefix

(a three-byte array) that is appended to almost every packet. This prefix is called an

Initiation Vector (IV) and if enough packets are captured, it is easy to determine the

key through statistical mathematics.

Wireless and wired sniffing are largely the same, interception being easier with

wireless networks. Sniffing is referred to as a passive attack, as the attacking host

does not (need to) communicate with the remote host. The remote host does not

know of the sniffer‟s intention or presence. A few tools have already been written to

crack wireless networks. Some of the most popular ones are: Airsnort, Kismet and

Aircrack. Although Kismet can crack WEP, it is more often used as a detection

and/or site surveying tool. Wireless sniffing is very hardware dependent. The

wireless Network Interface Card (NIC) needs to support RFMON (Radio Frequency

Monitoring) mode, or monitor mode. It can be a lengthy process to crack WEP as

several hundred thousand weak keys or IVs need to be captured before the key can

be deciphered. A tool named Aireplay has been developed to speed up this

process. It captures packets in the air that created weak IVs (typically an

 21

association) and resubmits them again, as if it was legitimately sent by the original

host. This results in faster IV collection and ultimately faster cracking of the key.

Depending on the type of encryption and some other factors, it can take as little as

five minutes to crack a WEP key with this type of attack.

The cracking of WEP keys is not an exact science. Sometimes, using Aircrack, with

sufficient keys can break the key within one second. In some cases, with additional

IVs, it can take even longer. Any estimate is therefore a rough estimate of how long

it should take to decipher the key. Below is a table that indicates widely used key

lengths for WEP encryption.

WEP Encryption Name Hexadecimal Characters Data Byte Length

64 bit (40 bits) 10 5

128 bit (104 bits) 26 13

176 bit (152 bits) 38 19

256 bit (232 bits) 58 29

Table 2.2 WEP key sizes

As a general rule the larger the encryption key, the more secure the traffic. This is

often not the case when other factors come into play such as key strength. Humans

often want to use easily remembered keys in order to easily enter them on other

hosts requiring the keys. Another possible problem is found when the key is

randomly generated by the computer and carried around on a flash stick. The

weakness lies within limitations of randomness on the generation algorithm. If such

limitations are exposed one can decrease the possible combinations and thus

improve chances of successfully brute forcing the key.

History has proven that security should not be supported through obscurity. Secret

information tends to leak out. It is therefore best practice, with cryptography, to make

the encryption algorithm publicly available, but to protect the private key. Both WEP

and WPA-PSK are vulnerable to their keys being discovered. The details on what

 22

makes them vulnerable will be discussed in detail later, but for now it will suffice to

know that cracking the key involves capturing packets. Initiation Vectors (IVs) are

special packets that are communicated amongst nodes of a wireless network in

order to associate with each other as an authentication requisite. These packets are

necessary to break the encryption and a large number of them are required. Since

wireless networks can operate on several channels, which are at different

frequencies, many prewritten cracking utilities offer collection of packets from all the

networks across the channels. Many of them also offer locking to a single channel.

This increases the collection process for a single network at a single channel, as

some weak IV might pass by undetected, while the NIC monitors at other

frequencies.

As soon as an attacker has access to the network, (if the WEP key was deciphered,

for example) there are several noteworthy attack vectors that will be discussed in the

next chapter.

 23

3 THE ANATOMY OF A NETWORK ATTACK

A basic layout of the methodology an attacker may follow, which is commonly

referred to as the anatomy of an attack, is required before we move on to the

systems design. This is intended as a guide to aid the understanding of attack

vectors and should not be used under any circumstances to break into any system

without authority. It needs to be emphasized that the process is not unrivalled, but is

only a rough outline with some finer details where applicable. There are many

additional techniques that can be used for each of the steps, but only a few will be

discussed to the discretionary of the author.

3.1 Information gathering

During information gathering as much information as possible is collected. At first

the information is gathered without regard as to how it is going to be used or how

it should be structured, but as the attacker gains experience, a feel for what kind

of information is important is developed. This information includes everything

related to the target. If the target was a company, for example, information

ranges from employee details, to the domain name of the company, to the

external service providers they use. Potentially knowledge about the target could

be useful, thus one step can often be iterated after reaching a dead end in

another step.

3.2 Network Probing

If the target is going to be attacked over the Internet (or over any network),

probing can reveal much of additional useful information. IP scanning, port

scanning, WHOIS, DNS lookups, Operating System fingerprinting, retrieving

information from corporate web sites, sniffing, and service identification are only

some of the most popular methods. A quick discussion of some of these

methods, along with a practical example, follows.

 24

There are many free port and IP scanners available on the Internet. The basic

function of an IP scanner is to identify additional hosts on the network. Many of

these IP scanners follow different techniques to discover hosts. The main

function of Port scanners is to identify what network services are running, and

not blocked by a firewall or other device or measure, on each of the identified

hosts. Nmap [6] is probably the most popular IP and port scanner utility available

for UNIX-like systems designed specifically to be effective in scanning large

networks, but it works fine on single hosts as well. Nmap, which is free and open

source, can also be used for operating system fingerprinting. It makes an

educated guess on the basis of how packets are treated and the reaction of the

remote host‟ to certain types of packets.

The following command will launch a SYN port scan on the 192.168.0 subnet

and even show what type of services were found, as well as the version of the

programme (if it is detectable and known).

$ nmap –sS –T4 –F 192.168.0.0/24

The parameters‟ meaning can be found in nmap‟s documentation (unlike many

open source applications nmap is well documented). The /24 annotation merely

means that all addresses (1 to 254) will be scanned in the 192.168.0 network

with a subnet of 255.255.255.0. This annotation is derived from the number of

bits. As IP addresses are composed of four blocks of eight bit values, the /24

annotation means that the first 3 blocks of the subnet mask have values of 255

(8 x 3 = 24).

Netcat and telnet are two other noteworthy tools. It should be noted that we are

discussing the telnet client, not the protocol. Netcat is well known as the

“hacker‟s Swiss army knife”, for its power and diversity of usage. It has been

observed that netcat is to networks as cat is to files, with some extra functionality

added. Telnet and netcat can be used to manually communicate with a service.

 25

The protocol‟s commands can be typed in (if the protocol is text based) through

the utility. Arguably, the most important and powerful feature for attackers, of

netcat is its ability to spawn a shell for remote control of the host. Telnet is

actually a largely deprecated service (because it had plaintext authentication)

intended for remote control and replaced with the more secure ssh, but its client

is often included with Operating Systems to aid troubleshooting. The following

netcat command listens for a connection on port 23 and gives a shell to the

connecting host, which means that one can work on a remote machine as if

sitting in front of it by telnetting to the socket.

$ nc –e “/bin/sh” –l –p 23

DNS lookups are used to identify more target hosts related to the target. WHOIS

[7] is a tool that queries a publicly accessible database of registered domain

names. It can reveal information such as the organization‟s location, its domain

name, contact persons along with their contact details, and the subnet of the

organization. Although this might sound somewhat useless at first, this can be

very helpful to attackers who find themselves at a dead-end with usernames and

passwords.

Alternatively, there are some security auditing tools such as Nessus and GFI

Languard that combine this step along with the following step (Vulnerability

Assessment). It then creates a report of all vulnerabilities found and suggests

solutions on how to fix them. Almost needless to say, the trade-off between

manual scanning and these assessment tools are convenience versus

thoroughness (if the auditor is competent in doing so).

3.3 Vulnerability Assessment

Once the attacker has sufficient information about the target and probed its

network, he can start identifying weaknesses, or possible entry points. This

depends on what the attacker wants to accomplish. If, for instance the attacker

 26

wants to deface the web site, it would probably be best to first look for

vulnerabilities within the web service. If an administrator login page is available

along with an SQL injection vulnerability (SQL injections are explained in chapter

4), the task is straightforward. One can even use search engines for this

purpose. When searching for “Admin” “Login” on Google, many hits are found

and it is shocking how many of these web pages are not protected against SQL

injections. On the other hand, if the attacker is after sensitive data, he might want

to try and guess, or use brute force to attack the username and password of an

FTP account.

This is where the information obtained during information gathering comes into

use. Some employees may use their own names as usernames and some other

phrase as their password, such as their date of birth, or their child‟s first name.

This practice is quite common, even though password strength is repeatedly

emphasized in at companies with sensitive data. Creative attackers may even

go through the garbage of a company in order to obtain some useful information.

If the attacker is not after sensitive data, or defacing the company home page, he

might want to obtain complete control over the system, and maybe escalate the

attack to other systems on the network as well. This is usually done by looking

for additional weaknesses in the services running on the target hosts. After

identifying the services, an attacker can further identify the service version, and

check whether there are known vulnerabilities of the service. Alternatively, many

programmes are open source, which means that the source code is available for

inspection by the attacker. The attacker then needs to obtain a copy of the code,

read it, find a vulnerable piece of code, and exploit it. After the vulnerabilities are

known, the attacker can try to penetrate the vulnerable systems.

3.4 Launching the Attack (Penetration)

It will be more efficient to first check on the Internet whether there are already

existing exploits that the attacker may use to accomplish his task. Two of the

best databases are the metasploit framework and milworm. The metasploit

 27

framework is a framework designed to aid the research of exploits. Contributors

make their exploits available to others in the hope that they will be educational.

Millworm is another such database, but in contrast to metasplot, it is not a

framework, and more of a host for source code of exploits written in natural

programming or scripting languages.

The main difference between the two is that metasploit has its own „language‟

and „modules‟. Often, attackers may find that there is no full disclosure or proof of

concept available on the Internet for the sought vulnerability. It is often here that

the difference between the hacker and the script novice becomes apparent. In

order to be dubbed an “elite hacker”, one needs to have extraordinary

programming skills additional to the preceding knowledge. In Chapter 4, we

discuss buffer overflows in detail where it will become clear that quite extensive

knowledge is needed in order to successfully exploit this type of vulnerability.

3.5 Privilege Escalation

It has become common over recent years for operating systems to support

several user accounts all of which have their own predefined privileges. When a

service has been exploited, and typically this involves having remote access to a

command prompt, the privileges of the attacker are that of the user account

running the service. It has therefore become a common security practice to run

services with limited privileges. This does not necessarily prevent the attacker

from gaining full privileges, but it creates an additional barrier and is therefore

justifiable. Gaining elevated privileges is not limited to what is discussed here, for

example, two of the most common methods are to try and recover, or break

usernames and passwords, and to exploit another weakness. An example of the

latter in UNIX-like systems would be to overflow the buffer of a programme that

takes a parameter value with the SUID (Super User ID) flag set. These

programmes are common in the UNIX environment. In Windows XP, a possible

command would be:

 28

C:\> at 13:00 /interactive cmd

This spawns an interactive command terminal with System privileges and a title

of svchost.exe, the highest privilege in the Windows environment, even higher

than Administrator, at the specified time. It is therefore wise to specify the time

one minute into the future of the compromised machine. Since the “at” command

is owned by the System user the newly launched scheduled task still belongs to

System. Again, a simple side-effect was overlooked. If a remote desktop service

is available and logged into, this can be used in to run the graphical mode with

System privileges as well simply by opening the Task Manager, ending the

explorer.exe process, and running explorer.exe again within the svchost.exe

shell.

After successful privilege escalation, the attacker is free to do with the system as

he pleases. If the attacker is malicious, this could severely impact the victim,

from disclosure of sensitive data, sabotage, to losing all the data on the

compromised system.

3.6 Maintaining Access

Good security principles not only suggest, but demand that systems must be

kept up to date by applying appropriate patches and updates on a regular basis.

If an attacker needs to stay in control of a compromised system, they usually set

up a backdoor or make use of a rootkit to maintain access to the host. These

programmes can also be present with phenomenal stealth, so much so that the

user or antivirus software may be completely unaware of its presence. It is thus

wise to manually check from time to time for the presence of such software. The

methodology to do so however is beyond the scope of this research. Useful

information can be found in [8] and [23].

 29

3.7 Stealth mode - Covering Tracks – (editing logs)

Since the attacker needs to connect to the compromised system, and probably

generates much traffic, especially in the case of a brute force attack, chances are

that his activities might have been logged in several different ways. One of these

methods might be an intrusion detection system (IDS). Another method might be

as close as the command prompt. The Linux bash shell logs all the commands

issued. This is useful for many reasons, including pressing the up arrow to

traverse through previously executed commands. As usual there are ways

around this for the attacker, such as editing his log entries. Linux commonly

stores bash‟s logs in /root/.bash_history as plain text. It is thus easy for the

attacker to simply delete the lines of the commands he issued when he is done,

leaving it exactly as it was for the user. Specialized log cleaners also exist to

automate these tasks. When network traffic is logged, there are also a few other

work arounds, such as making use of an anonymous proxy, which hides the IP

address of the attacker from the logging systems of the victim.

3.8 Radio Network Intrusion

The problems with wireless security have already been discussed, but it has not

yet been properly put into perspective in terms of where it fits in. How to retrieve

a WEP or WPA-PSK key has already been discussed. This step could actually

have been added to the top, for getting on the corporate network, but it is

discussed here as it is not the only method to gain access to the network, and

not all corporations employ (vulnerable) networks. When an attacker successfully

compromises the wireless network‟s encryption, there may again be many

additional fortification layers. Probably one of the largest benefits for an attacker

being able to break into a system from the wireless network is the added

anonymity. If the attacker faked the MAC address of his NIC prior to breaking

into the system, the logs generated by his actions do not uniquely identify the

attacker, or the hardware that was used. In order to identify the culprit, the

attacker needs to be either recorded by means of surveillance or physically

caught while he is in the act. The attacker may be sitting in a building across the

 30

street, or more than a block away, which almost completely rules out both

methods. It is thus extremely difficult to obtain incriminating evidence to an attack

from this vector.

Table 3.1 depicts some of the common exploitable software vulnerabilities with a

short description of each.

 31

Weakness Description

Buffer Overflow Buffer overflows have recently become very popular. Buffer

overflows are caused by writing a larger piece of data into an

array or buffer than was provided for, leading to memory

corruption. The main problem with preventing buffer overflows

from happening is that array bounds need to be checked at

runtime, which is a performance drawback.

Format Strings Very similar to SQL injections, this vulnerability is produced

through unexpected special characters input by a user. A

typical C programme may read in a string to a character array

from the user and print it out to standard output. If the user

was to type in some special characters, the programme will

treat them as the tokens they represent, for example if “%s”

was input, another string will be expected as parameter in the

printf statement.

Race Conditions A case where the order of instructions or events, and in the

majority of cases as a side-effect of improper file locks, can be

exploited to behave in a non-anticipated way. A common

exploitation example (with file locks) is to gain access to other

user‟s accounts through the passwd programme in UNIX-

systems by using symbolic links. Semaphores address this

problem produced by the introduction of multitasking in

Operating System design by implementing a critical region.

Integer Overflow Although integer overflows are much more difficult to

successfully exploit and almost requires a special case to be

useful, it is a noteworthy vulnerability found in popular

language implementations. The main concern is what value is

assigned to a variable when the value to be assigned is larger

than allocated for an integer whether it is 16 bit, 32 bit or 64

bit, or whatever size. An unsigned 16 bit integer can hold no

 32

larger value than 65535 for example.

Cross-site scripting Typically found in web applications, attackers exploit a web

server that does not limit pages‟ elements to the local server.

This remote page, which might include malicious code, is then

viewed by users visiting the site. The intent is usually phishing

that is, pretending to be someone else, and using the

gathered data input from the user (which might be a

username and password of a user‟s bank details) malignantly.

SQL injection SQL injections involve a special character (the single quote)

being input by an attacker to confuse the parsing of arbitrary

code as SQL statements. SQL injections are most commonly

used to gain unauthorized access to administrative consoles

of websites. SQL injections as well as format string attacks

can be categorized under code injection exploits.

Table 3.1 Common exploitable software vulnerabilities

 33

 The explanation of the anatomy of an attack is important because it makes it

easier to explore the different countermeasures that may be devised to mitigate

against attacks in the next chapter. It is important to note that security measures

should be seen as trade-offs between cost and the level of security. Risk

analysis should therefore be conducted in order to assure that the security level

matches the company profile. It is senseless to secure a system with the latest

technology when that level of security is not necessary at that cost, and vice

versa.

 34

4 SECURITY CONCERNS OF THE WIRELESS VOIP SYSTEM

4.1 Introduction

In this chapter we discuss some of the common vulnerabilities that are possible in

our system that is presented in Figure 4.1. It is crucial to first fully understand the

cause of the vulnerabilities; the effect exploitation has as well as the solutions to

them, because as was stated earlier, vulnerabilities are often oversight errors or

unanticipated special cases. The attack vectors and security measures investigated

include buffer overflows, brute force attacks, SQL injections, denial of service

attacks, sniffing and encryption techniques. With wireless encryption, two different

encryption techniques that are widely used in practice, namely WEP and WPA are

investigated. Demonstrational exploitable applications were developed in order to

demonstrate the different types of vulnerabilities (they are available on the disk

attached to the back cover of this dissertation). The design flaws of these vulnerable

programmes, or code snippets, are discussed in this chapter and the results are

presented in the next chapter by showing their exploitation.

4.2 The Wireless VoIP System

Figure 4.1 depicts the workings of each node of the VoIP System. Although the

system is medium independent and can be operated over both wired and wireless

networks, a wireless network, which could be penetrated, is assumed.

 35

 Client Server

Figure 4.1 The VoIP model

The system has both a client and a server, which connects to the other hosts

with which a conversation is in progress. Figure 4.1 (included again for

readability) best describes a conversation to the local host. The server section

(which runs in its own thread to allow concurrency and multiple calls) listens on a

port, awaiting a client to connect to it.

When the server detects that a client has connected to the network socket, it

accepts the connection and network communication may commence. The client

detects that the connection is established and sends a request to the server to

initiate a voice call. Upon receiving this request, the server prompts the user to

take the call.

If the user declines the call, the client is notified and the connection is terminated

to free up resources. If, however, the user decides to take the call, the server

spawns a new client that will record microphone input and send the speech to

the server on the other node, and acknowledge to the client that the call may

Send communications

request

Receive packet

Query user to answer
and then acknowledge

Start recording

microphone input

Transmit voice or text

messages to server

Process packets

(voice/text)

Output messages

Request socket

connection

Listen on port and
accept

connections

 36

proceed. When the newly spawned client connects to the server of the remote

machine it detects that it is already in conversation with the other host and this

prevents it from spawning a new client again and causes an infinite loop. The

server merely accepts the connection (without prompting the user again to

accept the connection).

Both clients thereafter start recording and buffering microphone input. The

encoded voice is then sent to the remote server which decodes it and plays back

the speech over the speakers.

4.3 Vulnerabilities

4.3.1 Buffer Overflows

Buffer overflows, although limited to the C and C++ programming languages, are

important to consider as current and future VoIP implementations may be written

in this popular language and buffer overflows are probably the most exploited

vulnerability. It is important to note how a process, or an application, is organised

in memory, before we delve into the details of buffer overflows.

Text region

 Data region

Stack region

Figure 4.2 The constituents of a process

 37

There are three major distinguishable parts of a process map as shown in Figure

4.2: the text region, the data region, and the stack region. We describe the first two

parts and a description of the last part is given later. The text region contains the

instructions compiled by the compiler. This region is fixed, and any attempt to

overwrite it will interrupt execution and raise a segmentation fault. The data region

on the other hand contains static variables, which are writeable. Details of memory

management and the Virtual Address Space (VAS) are described in [9]. A stack is a

very popular data structure used in programmes supporting several operations,

including PUSH, POP and PEEK. Stacks follow the “Last In First Out” (LIFO)

scheme. The stack expands and collapses at runtime as execution of the

programme continues. Most high-level programming languages have support for

functions, which temporarily alter the flow of control by executing a different set of

instructions located at another memory address, and thereafter returns control to the

instruction following the function call. This flow of execution is implemented at a low

level by means of the stack, although it is not the only function of the stack.

The processor contains registers, which is an important aspect of this discussion.

Registers vary from manufacturer to manufacturer as well as model to model. For

this work a 32bit Intel-x86 processor is assumed. Processors contain user-

accessible registers, which are addressable during application programming, and

programme inaccessible registers, which cannot be addressed directly, but may be

addressed indirectly through system programming. Some registers are general-

purpose while others are used for special purposes. 8-bit, 16-bit, and 32-bit registers

are allowed to be referenced. The 8-bit ones are AL, AH, BL, BH, CL, CH, DL and

DH (The L indicates the “Low” and the H the “High” order bits. A through to D are

sequential numbers to distinguish between the registers). The 16-bit registers are

AX, BX, CX, DX, SP, BP, DI, SI, IP, FLAGS, CS, DS, ES, SS, FS, and GS. Finally,

the extended 32-bit registers are EAX, EBX, ECX, EDX, ESP, EBP, EDI, ESI, EIP

and EFLAGS (the “E” prefix indicates that it is a 32-bit register). The noteworthy

registers are the general purpose registers (EAX through to EDX), EBP, which are

 38

often used to point to a memory location for data transfers, and EDI, which is often

used to point to the destination address of an operation. The important special

purpose registers are EIP, which is used to point to the next instruction (within the

instruction segment) to be executed, and ESP which is used to point to the stack.

There are two important registers we need to consider with respect to stack

operations: the Stack Pointer (SP), which points to the top of the stack, and the

Frame Pointer (FP) (EBP on 32-bit Intel architectures), which points to a fixed

location in a frame. The FP is used by many compilers to keep track local variables‟

and function parameters‟ memory addresses, as the relative distance between FP

and the variable is not influenced by PUSH and POP stack operations.. The base of

the stack (where the remaining firstly pushed element is located) is at a fixed

memory address. Depending on the implementation, the stack expands (as

elements are pushed onto the stack), and therefore changes the value of SP, either

downwards (towards lower addresses) or upwards. On the Intel processor, the stack

expands downwards, therefore the demonstrations in this work are presented in

such a way. Multiple instructions are executed both during a function call, and during

its return. A simple stack example follows in Figure 4.3, which is similar to the self-

exploiting demonstration “bof.c” included on the disc.

Figure 4.3 A Buffer Overflow Vulnerability Example Code

vovoid calledFunction(string param) {
 char arrString[3];
 strcpy(param, arrString);
}}}
}
}

vovoid Main() {
 string x = “xyz”;
 calledFunction(x);
 printf(“x = %s“, x);}
}}}

 39

The assembly code for the above listed programme is then compiled. Details of the

assembly code will not be discussed here, but it is important to note that when

calling the function (calledFunction) that the value of the FP (EBP) is PUSHed onto

the stack. Thereafter, the value of the SP is copied into the FP, rendering the current

top of the stack as the FP value. Additional space for local variables is then

allocated by first determining the required size. This is done by taking their size and

subtracting (for downward expansion of the stack, added for upward expansion) it

from the SP.

It is important to note that the word size plays a crucial role in addressing memory,

as it can only be addressed in multiples of the word size. A 32 bit or 4 byte

architecture was used for this work. Since the 32 bit (four byte) architecture was

used, the buffer sizes will be in multiples of 4 bytes. For example, a 16 byte buffer

will take up 16 bytes of memory (4 x 4 bytes), a 32 byte variable 32 bytes and so on.

It is important to note, however, that a 5 byte buffer (or a 5 element array) will

actually take up 8 bytes in memory, when using a 4 byte (32 bit) architecture since

this is the smallest possible buffer size in a 32 bit (or 4 byte) architecture that can

accommodate 5 bytes. The following allocated variable will start at the next multiple

of the 4 byte offset. A sketch of the example code is shown in Figure 4.4.

 40

parameter3

parameter2

parameter1

The address where execution should resume on return

Saved FP which was PUSHed onto the stack

buffer2

buffer1

Figure 4.4 Memory allocation at runtime

A question that one may ask is: “Why not simply send a large amount of junk that

will overflow the buffer?” This is indeed a valid question. If the buffer is simply over-

flown without taking care what is overwritten, the programme will most probably

crash and make a core dump. On the other hand, if a buffer overflow is done in a

very precise and calculated way, it becomes possible to execute arbitrary code,

which is not even inside the programme. What an attacker usually does is to craft a

special payload, also known as shellcode, which is sent to the application (possibly

over the network) and which overflows the buffer. Since the targeted buffer is of a

certain size, and also a specific number of bits away from the return address, which

is the target to be overwritten, the payload needs to be extremely precise.

It should be noted that the payload will stretch from the overflowing buffer‟s address

up to the return address, and that this block should be viewed as a contiguous

Address top

Address bottom
Stack top

Stack bottom

 41

memory section, although it is actually allocated to several variables. In this case the

shellcode will consist of a continuous series of NOP (no operation) instructions (also

referred to as a NOP slide), the instructions to be executed, as well as a guess at

the wanted return address (which should point somewhere inside the NOP slide).

The NOP slide is a series of no-operation instructions deliberately added to the

shellcode in order to make it easy to guess the correct return address. The

overwritten return address can point to any region from within the first NOP

instruction, up to the last one, just before the first arbitrary instruction. The content of

the section in between the last instruction, which is usually an exit call, does not

really matter, only the size matters, so that the exact address of the return address

can be overwritten effectively, pointing it towards the arbitrary instructions.

Although shellcode is a very important part of exploiting a buffer overflow, it will not

be discussed further, since information regarding shellcode is abundantly available

on the web. Some even include pre-compiled shellcode which can be used on

various platforms. A tutorial on writing shellcode can be found in [9].

We developed a sample programme with a buffer overflow vulnerability that exploits

itself and is included as “bof.c” on the disk. Consider the code in Appendix A for the

following discussion of this programme. The global variable shellcode is used to

store the instructions to spawn a shell ($/bin/sh), which was obtained from

metasploit. The main() function is invoked as soon as the programme starts

executing. Thereafter the function named function() is called. As was mentioned

earlier, the important thing to note is that at a lower level, a return address is pushed

onto the stack telling the processor where to return execution flow when the function

is completed (which is at the line below the function call and, in this case, the end of

the programme). As execution is passed to the called function, two character arrays

are declared as well as an integer pointer named *ret. This pointer will be used to

get a handle to the return address and ultimately change its value. We get the return

address‟s location in memory by some simple math. Because we have addressable

locations in memory (the arrays‟ addresses), and we know that the return address is

 42

stored in a location within a certain offset from the function‟s local variables, we can

assign the pointer to point to the address of the return address and ultimately

change its value to whatever we want. In our example we simply set its value to the

address of the shellcode variable, so that execution is passed to that address when

the function terminates. This spawns the shell by issuing the command contained

within the shellcode variable ($/bin/sh).

Most other languages avoid this issue by bounds checking memory transactions.

Whenever a read/write attempt to an illegal memory location is detected the

application‟s execution is terminated. As this needs to be done at runtime, it is of

course a performance trade-off.

4.3.2 Brute Force

Although we did not devise and implement strategies to mitigate against brute force

attacks, it is a commonly used attack and therefore deserves to be investigated what

it is and how attacks are expected to be launched. Brute force attacks are mainly

concerned with guessing correct usernames and passwords. An attacker would

most likely write a small programme that understands the authentication section of

the relevant protocol. The programme will automatically cycle through username and

password combinations until the correct one is guessed and then log in using this

correctly guessed username and password. There is a tool named Brutus [10],

which supports a large variety of protocols that can be used to make a brute force

attack against supported protocols. These attacks often take on specialised forms

such as wordlists or dictionary attacks where the attacker cycles through popular

username and password combinations rather than trying every possible key

combination. This drastically scales down the number of attempts and therefore the

time it will take to break the authentication (assuming the username and password

combination is on the list).

 43

Strong passwords are an alternative solution attempting to solve the problem by

leaving the burden of remembering a difficult password with the user. Although it

might seem like a reasonable solution, users who are told not to base their

usernames and passwords on English words and that they should contain numerals

as well as alphabetical characters, usually use some name (typically their own or

their spouse‟s) and a concatenation of numerals such as “1234”. This can indeed

result in strong passwords, if the attacker is using an English dictionary, for example,

to crack the username and password.

Mutnick‟s book “The art of deception”, which has a strong focus on social

engineering suggests that the user is the weakest link in the security of most

systems [11]. They are easily deceived into entrusting an unauthorised person with

classified information such as a username and password. It would therefore be best

for a user to have as little as possible to do with authentication. This in turn can be

solved through storing this information on the user‟s computer, but it is unfortunately

at the cost of mobility. It is therefore desirable to suggest, or perhaps even enforce,

a sensible password policy by forcing the user to specify a password based on a

secure regular expression. Care should be taken with such an expression, as a

single wildcard out of place can drastically influence the possible number of

combinations or produce other detrimental effects that compromise security. Since

the SIP standard is implemented, and no central server has been implemented, a

temporary workaround which will store user credentials has been made for purposes

of completeness of our VoIP application. It is completely unacceptable practice to

store others‟ usernames and passwords on potentially distrusted sources (that is on

an unencrypted local file on the client‟s PC).

4.3.3 SQL Injections

To illustrate how common SQL injection vulnerabilities are, one can search for the

string: „inurl:.co.za “Administrator” “Login”‟, excluding the single quotes, with Google

and it will return all the hits of Administrative login consoles with a “.co.za” extension

 44

indexed by Google. The results returned will contain a listing of all South African

business domains‟ web login consoles. One can then try to just insert a single quote

into either the username or password fields, and when this generates an error

relating to a SQL query, the chances are that the site is vulnerable to an SQL

injection. This is one of the most common methodologies for defacing websites. It is

surprising how many vulnerable sites there are on the Internet, as a company‟s

homepage contributes largely to its public image.

Imagine a web site development company whose website was defaced. One would

not entrust such an organization with your own website if they are unable to uphold

their own. It is far from uncommon to see defaced web design websites, which again

points to oversight errors. This may be one of the greatest reasons companies tend

to be secretive about their security status. Many reports have shown that

organizations deny that their websites were defaced, as they are only interested in

resuming business rather than bringing the culprits to justice.

Consider the pseudo code in Figure 4.5.

recordSet result;

result = SQLobj.execute(“SELECT * FROM USERS WHERE USERNAME = „ ” +

user_supplied_username + “‟ ;”);

If (!result.isEmpty()) {

 call LoggedIn();

}

else {

 call accessDenied();

}

Figure 4.5 SQL injection illustrative sample code

 45

Firstly, an SQL query is executed against a database and the record set of all the

records are stored in the recordset variable. Since the “USERNAME” field in the

“USERS” table in our example is the primary key of the table, the record set will

either contain one entry or be empty. After execution of the SQL statement, the

result is evaluated for being empty. Thereafter the appropriate function is called to

either notify the user that he is logged in, or that access is denied. In this example

“user_supplied_username” is a string which was typed in by a user wishing to log

into the system. If the user supplied a string such as

anything‟ OR ‟1 ‟ = ‟1

for the username, the SQL query‟s semantics drastically changes. The query will

read as follows: (note that the “user_supplied_username” was replaced by its value.

It is highlighted below to clarify.)

“SELECT * FROM USERS WHERE USERNAME = „ ” + “anything‟ OR ‟1‟ = ‟1 ” + “‟ ;”

And now the statement is given as it is passed to the database management

system:

“SELECT * FROM USERS WHERE USERNAME = ‟anything‟ OR ‟1 ‟ = ‟1‟ ;”

What happened was that the SQL code was injected into the statement – hence the

name SQL injection. Since the OR operator needs only one of its operands to

evaluate to “true” in order to execute its command (selecting a username, which is

done in a loop), the query successfully executes, listing every “USERNAME” in the

“USER” table, because 1 is always equal to 1. Furthermore, the evaluation of the

recordset being empty thus takes a different route. Rather than being empty – for an

incorrect username supplied it holds a whole set of records. It thus satisfies the

evaluation of not being empty and passes execution onwards to the successful

login.

 46

Apart from an attacker using SQL injections to log into a system, other arbitrary code

can be executed in conjunction. If another semicolon was injected to delimit the end

of one statement and the beginning of another, a whole different dimension of

attacks against the database opens. A malicious attacker could inject a drop table,

or drop schema statement, or replace important data with garbage, corrupting the

database.

A sample programme named “SQL.exe”, written in Visual Basic 6, was included on

the CD to demonstrate the effect of SQL injections. We refer to the code in Appendix

B in reading the following discussion of the code. The sample depicts a typical user

login example where the user is presented with a prompt to supply a username and

password to log into the system. The problem with the programme is that it fails to

check for and take appropriate action against a delimiter. When a single quote is

given somewhere in either the username or password fields, the input afterwards is

treated as SQL code. This will most likely lead to a malformed SQL statement, but if

care is taken to inject the correct code, a positive login is possible without a valid

username and password. We can remedy this issue by searching for and handling

special delimiters such as single quotes before concatenating user-input to SQL

statements passed to the DBMS.

4.3.4 Denial of Service and Distributed Denial of Service (DoS and DDoS)

As with bruteforce attacks, no measure is implemented as a part of this work, but we

attempt to broadly outline the concerns faced with DoS and DDos attacks. Denial of

service attacks encompasses a large number of requests sent to a target which

renders the target unable to handle these requests, as well as other legitimate ones.

An attacker executing this type of attack is generally interested in having the remote

server deny service to everyone else, including legitimate traffic, and may use a

wide variety of techniques to keep the server application/thread too busy to respond

to any other queries. These methodologies may range from making a connection

 47

and immediately dropping it in a loop, sending large amounts of junk that must be

processed, or even keeping the user busy with senseless conversation so that the

user is unable to take any other calls (which is more of a social engineering and

denial of service combination). In order to identify a denial of service attack, one

needs to monitor some variable being repetitively changed, while some other criteria

that make it associated with the same attack remains the same.

Devising defence mechanisms for this type of attack poses major challenges. For

example, limiting the number of connections in a specific time frame from a certain

IP address is a possibility, but unfortunately only as long as the attacker does not

know that it is his IP address that has been blocked. An attacker could create a

script that opens a connection, closes it and then changes his IP address, all in an

infinite loop, rendering this solution ineffective. The same principle is applicable to

MAC addresses and any other variable the attacker can alter. It is therefore

problematic to link several connections to a single attacker and properly block the

attack attempts.

The situation outlined above is hypothetical, though everything mentioned is

possible when operating over a LAN. Changing an IP address on the Internet is

much more troublesome (depending on the method by which one is connected to

the Internet). Virtual private networking (VPN) is another possible solution, which

excludes unauthorized parties from gaining access to the application layer. If the

attacker is not “on the same network as the target”, he cannot launch an attack.

Also, the connection speed (especially over the Internet in South Africa) may be very

low, ruling out the possibility of the processor becoming too busy, but the bandwidth

resource will still be in jeopardy from such an attack.

Access controls, from the perspective of this research does not fall in the application

layer of the TCP/IP reference model and is thus beyond the scope of this work. The

problem with access controls, specifically in the case of VoIP, is that one would like

to be reachable by anyone on the Internet (the public). VPNs and other access

 48

controls serve their purpose well for business applications stretching across large

geographical areas where only some parties should have access. Although filtering,

or rather temporarily blacklisting, MAC addresses is not a sufficient solution for

VoIP, it could easily, and efficiently be implemented as the connection could be

dropped with very little resources going to waste. A combination of some criteria

such as MAC address, IP address, etcetera, would offer a much more secure

solution, or an even better one - that randomly changes the combination of filtering

criteria. One should, however, take great care not to deny service to legitimate users

as a side effect of mitigating against these kinds of attacks. Such a setting would in

itself produce a denial of service situation.

4.3.5 Encryption

4.3.5.1 Sniffing and encryption

A sniffer is a device, or piece of software capable of monitoring information travelling

across a network. They are virtually impossible to detect and can theoretically be

inserted anywhere. The only two methods to prevent information from being

intercepted is to use a protocol the sniffer does not understand; using IPX instead of

TCP, for example, or to make use of encryption. Packet sniffers may also be used

by attackers on a compromised machine. Its purpose could be to collect sensitive

data that is sent out over the network, or retrieve usernames and passwords of all

incoming logins to a server.

Many authentication protocols make use of a process where the plaintext is hashed

by the client, sent over the network, and each entry in the database is retrieved by

the server and also hashed. The two hashes are then compared one-by-one with

each other to validate authenticity as un-hashing would take far too long. VoIP‟s

digitised data transmission can unfortunately not rely on the digitized voice being

compared with a table, as the data can have far too many combinations to be

efficient; it is not feasible to store this data in a table. It is therefore necessary to be

 49

able to decipher the encrypted audio when it is received by the remote host. VoIP

therefore requires that the only secret is the key. The algorithm may be known, but

each session needs to have a secret key, which if compromised would unfortunately

compromise the secrecy of the conversation.

Sniffers are especially effective with protocols that use clear text such as the File

Transfer Protocol‟s (FTP) since the username and password can be read off the

sniffer‟s logs.

A sample application has been written in C# which allows two users to connect to

each other and send text messages to each other. The user has an option to encrypt

the data that is sent over the network or not. If the data is chosen to be encrypted,

the user needs to specify a key with which the data is to be encrypted and

decrypted. If the users are not using the same key, all the received messages are

illegible. This is also true for someone using a sniffer. If the person using the sniffer

does not know the algorithm and the key, he will not be able to understand the

messages.

As far as the encryption scheme‟s key generator is concerned, another well known

weakness exists with random number generation. If for instance a key of 40-bits was

to be generated by a random number generator, the randomness is often limited,

and thus less secure than the length of the key itself suggests. 40 bits is supposed

to generate 1099511627775 possible combinations for a key.

The generator may be flawed in such a way that it actually is only capable of

generating say only 100000000000 unique numbers. With this hypothetical case

there are only 37 bits of randomness and the key strength is limited to that level of

encryption strength. An estimate was that the average 128-bit session key for

Secure Sockets Layer (SSL) contained only 47-bits of randomness. As the strength

of the encryption is exponentially dependant on the (effective) key size, the status

quo of decryption methodologies poses a severe threat to such flaws. For example,

 50

an 11-bit key is twice as hard to break as a 10-bit key and a 20-bit key around one

thousand times as difficult to break.

A sample application was written in Java that selects a random number between 1

and 10. The application generates 1000 random numbers and calculates how many

times each number (between 1 and 10) was selected. In theory, each number

should be selected 100 times (1000 / 10), but as the generator is random, one will

have different results every time, but the closer the number is to 100, the better.

4.3.5.2 Wireless encryption - WEP and WPA

In [14] the vulnerabilities of commonly used wireless encryption technologies are

discussed. The WPA-PSK (public switched key) protocol was found to be

“crackable” on November 4, 2003. The method, as opposed to cracking WEP, is

active rather than passive and is more easily detected.

Different perceptions exist on how wireless devices should function. Two popular

schools of thought are that wireless systems, especially access points, are devices

with very limited computational power, (temporary) storage and bandwidth, and the

contrary. These different perceptions‟ implementations will need different designs in

order to perform optimally. This is especially true from a security viewpoint and the

encryption strength.

Tanenbaum noted in [13] that in the race between computation and networking,

networking is far in the lead. The bottle neck is when the signals are converted

(computation) from light to electricity and vice versa. Although this was said with

fibre optics in mind, laser is also used in wireless applications with a transmission of

the speed of light as well.

 51

5 IMPLEMENTATION AND RESULTS

Microsoft Access was used as a Database Management System (DBMS) for storing

and querying all types of necessary data, as it is a flat file and not resource

intensive. Java was used as the programming language, as it has built in support for

the JET engine required to connect with the Microsoft Access database, and Java is

designed with security and stability in mind. Buffer overflows are automatically ruled

out when using Java, as runtime bounds checking is implemented into Java. Java is

also widely supported across platforms. All the required libraries and data structures,

such as linked list objects, are natively available in Java, except for a proper means

of implementing a tray icon. JDIC (a binary distribution of a tray icon interface) [15] is

freely available and is based on Swing, which is also native Java for the purpose of

the tray icon.

In the previous chapter, we investigated what causes all the vulnerabilities in the

scope of this work, how they can be exploited, and what effect exploitation has. In

this chapter we investigate possible measures which can be used to mitigate the

risks regarding these vulnerabilities and we present the results of the wireless

protocols investigated. It is important to emphasize that it is an absurd statement to

advocate that a piece of software as completely secure as vulnerabilities derive from

oversights, which is simply a flaw that was not anticipated. The software developed

in this work is therefore designed with security in mind, but can under no

circumstances be labelled as completely secure.

5.1 Buffer Overflows

Although Java has built-in support for preventing buffer overflows from occurring,

it is crucial to point out what operations enable the overflowing of buffers in the C

language, as buffer overflows are one of the most exploited vulnerabilities in

practice. Several library functions are known to ignore bounds checking arrays

(primarily because it is a performance trade-off) such as strcpy() and sprintf().

Additionally to avoiding the use of these functions, one should be careful as to

 52

what operations are executed on buffers (as well as regular variables along with

the usage of pointers) within the application. The following code snippet copies

one array onto another, character by character, without bound checking the

target array (it only checks for a delimiter in the source string which is used by

the C language to terminate strings), which results in the buffer overflow

vulnerability.

while(*ptrBuff1 != ‘ \0’)

{

 *ptrBuff2 = *ptrBuff1;

 ptrBuff1++;

 ptrBuff2++;

}

Figure 5.1 Buffer overflow vulnerable code

Both the client and server sockets of the previously implemented VoIP system

have been tested for handling abruptly large buffers with the intent to overrun

them, but because Java is interpreted, and does bounds checking at runtime, it

did not disrupt the programme from normal execution. Upon receiving the large

buffer, an error was raised, the overflow of the buffer was ignored and normal

execution resumed. The following figures show the results obtained.

 53

Figure 5.2 Text file used as payload

Firstly, the above text file was created to overflow the buffer. This file starts with

the string “/dlg”, which is interpreted by the VoIP application as a text message

that should be displayed in a popup window and the end of the text file is

delimited with “xyz---”, which will be used as proof that the payload is indeed

larger than the buffer, and that it should overflow if the vulnerability exists. We

used the Windows port of netcat (nc.exe) to pipe the contents of the text file to

the socket of the VoIP application by issuing the command in Figure 5.3 below:

 54

Figure 5.3 Using netcat to attempt overflowing the buffer

As can be seen in Figure 5.3, no segmentation fault occurred when the payload

was sent to the application. Fig 5.4 below shows the popup window that was

output by sending the payload, which proves that a larger payload was sent to

the application, as the terminating string from the text file ended in “xyz---”, but

the popup message ended in “xyz-”. The last two characters of the payload (“--”)

were simply truncated without causing a segmentation violation.

 55

Figure 5.4 The received popup message

When receiving a larger packet than compensated for, the default mechanism of

the DatagramPacket class constructor is to truncate everything after the offset

specified by its length parameter.

5.2 Brute Force

An effective and a widely used solution could be to set timeouts on usernames. If

a user wishes to log in, for example, but specifies an incorrect password, the

user‟s account is temporarily disabled. Obviously, the longer the period of the

disabling, the longer an attacker would take to successfully brute force the

username and password, but one should take into consideration that humans are

error prone and might enter their usernames and passwords incorrectly, and lock

out their own accounts. Alternatively, a malicious user could enter wrong

passwords for a known username on purpose to have the account locked out.

 56

This is why the time which an account is locked out should be decided on very

carefully.

Let us consider a scenario where a malignant attacker knows the username of

someone, and wants to brute force his account. Let us say that the attacker

knows that the password consists of a single alphabetical character (a through to

z), as the hypothetical password policy is enforced this way. Knowing this, the

attacker may narrow down the number of possible passwords to 26. If the

scenario (processor speed and network resource availability) allowed him to

attempt one password per second, he would be able to crack any password

under half a minute. If, however, the system decides to disable the account for

one minute after each incorrect attempt, the attacker would in the worst case be

able to crack it just under half an hour. This effect is exponentially more visible as

the time which the account is disabled increases as well as better password

policies are enforced. This solution could render brute force attacks completely

unfeasible.

An alternative mechanism for dealing with brute force attacks was implemented

by tweaking the SQL injection demonstration programme. Figure 5.5 shows a

screenshot of the example.

 57

Figure 5.5 User interface of the brute force demonstration

The system keeps track of every unsuccessful attempt made to guess the password

of the given username (“Username”). When the number of unsuccessful attempts is

more than a preset number (in this case 3), logging into the specific user‟s account

is disabled until the value representing the number attempts is changed to a number

lower than 3. As was stated earlier some field is monitored to be repetitive, while

another changes. In this case the account is locked on the grounds that a specific

account (based on a username) has numerous password attempts.

5.3 SQL Injections

As for code injections, and particularly SQL injections, all possible input from the

user, including, but not limited to all information arriving over the network, should

 58

be scrutinised for special delimiters such as single quotes for SQL injections and

appropriate countermeasures should be taken. Since these special characters

may appear naturally and validly in some cases, especially in the digitized audio

as well as conversational text messages, the policy should be refined to fit the

purpose of the input. There is no sense in delimiting special characters that are

not evaluated in databases or which may not form part of an SQL query (such as

usernames and passwords) to the database.

An application was written in Visual Basic 6, to demonstrate SQL injection

vulnerability. The application presents a typical login screen with a username and

password field. The application fails to remove, or delimit, special characters

such as the single quote („). It is possible to successfully log into the application

without knowing the username and password.

Figure 5.6 The SQL injection vulnerable application

 59

The following pseudo-function is suggested to make the application invulnerable

to SQL injections:

void Addslashes(string var)

{

 foreach (char character in var)

 if (character == “‟ ”)

 character = “\‟ ”;

}

Figure 5.7 Addslashes function

Whenever a single quote is identified, the character is delimited by a “\”. SQL

injections were thus eliminated at the obvious level. As most vulnerabilities are

unintended errors, and overlooked, we cannot say that the implemented system

is completely immune against SQL injections. This is even more important when

other vulnerabilities are discovered and exploited in a combination to

successfully accomplish the desired exploitation result. The suggested method is

a common methodology to handle SQL injections in web applications and

particularly PHP (although there is no official full name for PHP, a common one

is “Professional Home Pages”) applications before adding the string to an

executed SQL statement. This effectively includes the single quote in the data,

without having it be parsed as a string separation token.

5.4 Denial of Service and Distributed Denial of Service (DoS and DDoS)

Preventing or recovering from a distributed denial of service attack is a complex

issue, as it is difficult to distinguish between the perpetrators and legitimate

users, which may require manual intervention. Best practice suggests tearing

down the connection and freeing up resources as soon as it has been

determined that a malignant attack is taking place. New TCP/UDP connections

could be rejected, even before the three way handshake has taken place to

ensure that as few as possible resources are devoted to the culprits. A serious

 60

problem with this approach is that the grounds on which the user is blacklisted

(as in username, IP address, MAC address, etcetera) may prevent legitimate

users from making use of the service.

Denial of service as well as distributed denial of service attacks are difficult to

automatically detect and is often best solved by manual intervention [25]. An

administrator would typically search for a pattern (such as every computer in the

distributed denial of service attack is downloading the same file, which makes it

relatively safe to assume that everyone downloading the file are involved) which

is often difficult to anticipate. Anticipation of certain patterns is an insufficient

measure, as security should not be enforced through obscurity, which leaves the

attacker free to search for any unanticipated pattern. In the event of a distributed

denial of service attack, an administrator may typically prevent all IPs involved

from routing to the source of contention. Such a solution does not lie in a single

layer of the OSI model, and cannot be handled most efficiently in the application

layer, as lower layers would save more resources.

To demonstrate an IP address filtering scheme, the DoS.exe programme was

developed. The results are presented in Figure 5.8 and 5.9.

 61

Figure 5.8 A blocked connection attempt

Figure 5.9 An accepted connection attempt

 62

The first screenshot shows a blocked connection attempt. The server (DoS.exe)

was listening on port 1000 and 127.0.0.1 (which is the IP address for localhost)

was blocked. When a telnet connection was made to the server socket, it was

immediately disconnected, as the server detected that the connection request

was coming from the IP address being blocked.

In Figure 5.9, however, the connection attempt was accepted, as the IP address

being blocked by the server was not equal to the source of the connection

request (127.0.0.1).

5.5 Encryption

5.5.1 Sniffing and encryption strength

Encryption was not implemented into the VoIP application, and was separated

from this as the encryption demonstration was implemented as a separate stand

alone C# application. Here is an intercepted message, as well as its plaintext

counterpart:

Intercepted data (string representation) Plaintext Message

�?,!t0&i.>a6<'*8&.l%2=&t40:<1&6j This is an example text message.

Figure 5.10 Demonstrating encrypted data

This application uses a simple method of encryption. The XOR operator is simply

used on the payload along with a key. Although unintelligible, there are much

stronger algorithms for encryption that should be used. From this data it is clear

that when encryption is enabled, the messages are unintelligible. The digitized

audio should also be encrypted, although it is difficult to illustrate it as text, as

they are byte arrays. Figure 5.11 demonstrates the user interface of the

encryption example:

 63

Figure 5.11 Encryption example

Keys are usually based on random number generators, which as was said earlier

may influence the key strength. The randomness of the random number

generator has been tested (which will be discussed below) and is given in Fig

5.12:

Value 1 2 3 4 5 6 7 8 9 10

Frequency 959 1013 989 999 1073 934 1082 1023 980 948

Figure 5.12 Random number generator

The data in Figure 5.12 was gathered from having chosen a random number

between 1 and 10 for 10 000 iterations. The frequency denotes how many times

the specific number (between 1 and 10) was chosen. It is evident from the data

above that the numbers are fairly random. Although not precisely divided into

each value, the frequency a number was randomly generated is roughly equal.

Take note that the data generated differs when the application is executed again,

 64

or a new set of data is generated. The range of possible values (1-10) should be

increased radically, desirably to fit the size of the key that will be used.

5.5.2 Wireless Security

The wireless protocol‟s security has been evaluated by driving around in the

cities of Bloemfontein, Johannesburg and Kimberley with a Senao 802.11 b/g

PCMCIA with a built in Antenna, probing for networks as well as their attributes

and plotting them on a map. The security levels of WEP and WPA have already

been found to be insufficient [26]. Although security can be enforced (more

effectively) at other layers, it is better to apply secure practice in as many layers

as possible. By taking into account the small amount of administrative work

involved in applying encryption to a wireless network, it is well worth it, even if it

can be broken into within five minutes.

Many of the discovered nodes have default settings applied to them. Some

manufacturers attempted to lighten the burden of setting up their equipment, in

particular access points, for users by having defaults that work out of the box.

From a support point of view, this is valuable, but from a security viewpoint, it is

very bad practice. Users tend to accept defaults, and happily accept their

circumstances when the device is working. Malicious attackers knowing this

could easily compromise these devices. Some of the SSIDS one should look out

for are the ones that are named after the manufacturer‟s name such as Linksys,

Netgear, Gigabyte and 3com. Marconi is another frequently detected SSID in

South Africa. They are (by default) routers bundled by Telkom with ADSL

Internet subscriptions. Apart from most often being on default settings, they are

vulnerable to other attacks. These routers are even accessible from the Internet,

which means that an attacker could easily get access to many of these if an

attack was launched against Telkom‟s whole IP range. Apparently, after some

abuse, Telkom fixed the problem with their new routers and also prevented

administrative access to the router from the wireless side. Although this

 65

weakness was mostly exploited to gain additional bandwidth as Internet

expenses are very high in South Africa, the problem could have been much

worse as these since prime locations to insert data loggers as all traffic passes

through the routers. Sensitive information such as banking details could have

been acquired in the masses.

The table below depicts the total amount of wireless nodes found, the number

using no encryption at all, the number which uses WEP, the number that uses

WPA and the number that use WPA2 in Bloemfontein, Kimberley and Pretoria.

The total number of wireless nodes found in each city does not reflect the entire

population. Kimberley and Pretoria, especially have fewer nodes, as much less

time was spent scanning for nodes.

 Total Open WEP WPA WPA2

Bloemfontein 326 161 127 4 34

Kimberley 105 57 43 0 5

Pretoria 141 69 58 1 13

Figure 5.13 Encryption methodologies used in the gathered data

The method and further details used to gather the above information is given

below:

As mentioned, the wireless card used was a Senao High Speed PCMCIA

Adapter - b/g - 108Mbps, which is based on the Atheros chipset and has good

Linux device driver support (manual installation is however required for free

software such as openSuSe as a result of licensing issues). Although the 108

Mbps is overrated, as it can only be accomplished with two cards joined together

as one. Omni directional antennae generally work better than directional

antennae; unfortunately the card with the built in antenna was all that was

available for the tests. The November release of the Back Track 2 Public Beta

Live CD (a CD bootable Linux distribution designed for penetration testing and

 66

based on Slackware Linux) was attempted to be used on a Sony Vaio VGN-

FE38GP laptop. Unfortunately, there was an issue with the built in wireless

network card, and the operating system did not boot up. In order to determine the

geographic location of the wireless networks and ultimately plot them on a map,

a Garmin GPSmap 60 Global Positioning System (GPS) device was used. The

GPSmap60 was used primarily for its ease of use and support of the NMEA

protocol, which is a prerequisite for most GPS devices to communicate properly

with gpsd (a daemon interfacing with GPS devices and making the

communications available through a network socket). Unfortunately, only after

the acquisition of the device did it become apparent that the NMEA protocol only

operates over the device‟s serial cable interface, not over Universal Serial Bus

(USB). Since the notebook in use neither has a serial adapter nor does the GPS

device come with its serial cable packaged, much time was spent getting the

device to work in conjunction with gpsd over the USB cable. The only solution

that worked was to use SuSe Linux 10.0 along with kismet and gpsd. Apparently

it is a not-so-well-known bug that gpsd does not work too well with the

combination of USB devices and newer kernels (the exact same packages of

gpsd and kismet where used with open SuSe 10.2 with no success). It is said

that the problem lies in the way USB devices are handled with newer kernels

(/dev/ttyUSB).

Kismet is an application that has the capability of monitoring wireless networks

by logging many of the wireless networks‟ properties and attributes such as

signal strength, location, SSID, Number of clients, etc. See the kismet homepage

(www.kismet-wireless.org) for more information. By having the wireless NIC in

monitor mode, Kismet collects information of all the wireless networks in its

presence, such as ESSID, BSSID, the channel used, whether it is cloaked or not,

the type of encryption used, whether it has been decrypted yet, and some GPS

information to describe each node‟s location. This information, along with some

additional information, which will be described in detail later, is then stored in log

files. These logs can be converted to a Google Earth compatible format by using

http://www.kismet-wireless.org/

 67

KNSgem. Thereafter, the nodes are displayed on the satellite photos of Google

Earth. Unfortunately, some sections of Google Earth’s maps are obtained from

different organisations. This, along with some sort of flaw with the pattern

matching software Google Earth uses, makes sections of the map inaccurate.

For example, the southern centre landmark can be seen twice on the map. The

Google Earth compatible files (.kml) are included on the disk. One can, after

installing Google Earth, open Google Earth and simply double click the

“_Knsgem_Master.kml” file. Google Earth will “fly to” for an overview of the

Bloemfontein area and a yellow dot will be located more or less towards the

centre of the screen. Thereafter, one can right-click on the dot (see Figure 5.15)

and select the log (sorted by date) to be opened. The screenshot below shows

the yellow dot on the map:

Figure 5.15 Google Earth

The image below (Figure 5.16) shows a section of the Westdene area which is

rich in small businesses with some of the plotted nodes:

 68

Figure 5.16 Google Earth Westdene area

It is obvious when viewing the map that there are inaccuracies. For example,

some nodes are pictured within the water at Loch Logan Waterfront, and the

Western curve Paul Kruger makes in Universitas is reflected by the detected

nodes, but an incorrect offset (in accordance to the satellite photographs) is

present. What percentages of the accuracy error are owing to the incorrect

mapping or owing to flaws in the method (obstacles may influence the plotting

accuracy) still remains unresolved.

The data gathered in Kimberley was done using Network Stumbler. Network

Stumbler unfortunately, at this stage, does not have built in support for GPS

devices over USB. Therefore it is not plotted as with the other data.

The commands are listed below:

iwconfig ath0 mode monitor Puts the NIC in RF-Monitor mode

kismet

 69

Some APs contain NICs. They are typically composed of PC board with an open

slot (in some cases several slots) for PCMCIA cards. The ones with external

antenna slots have these connectors on the PCMCIA card. The operating

systems of the AP as well as data settings are stored on a chip on the board. It

therefore makes sense that these cards can be put in the otherwise rather

strange modes such as AP mode with a tool such as iwconfig, which is the

wireless version of ifconfig – a common Linux console tool. See the manual

pages of iwconfig for more details.

The weakness of the WEP protocol lies in IV leaking out and can be deciphered

by statistical mathematics. Kismet, Airsnort and Aircrack are the most popular

tools that accomplish this. The WPA protocol can be deciphered with coWPAtty.

5.6 The Applications’ user interfaces

The VoIP application

Figure 5.17 The VoIP application

 70

Rootkit

A rootkit was also developed in C, which spawns a shell which can be used to

execute commands on a remote machine. The protocol is mimicking FTP in

order not to draw suspicion.

Figure 5.18 Rootkit

 71

Trojan

Figure 5.18 the Trojan GUI without the hidden functionality

This Trojan is a good example of how innocent an application may look to a user.

The true purpose of the application can only be seen once the network traffic is

analysed or the source code is reviewed (with Windows binaries this is a rather

daunting task as decompiling and interpreting the assembly code is trivial).

With this application a user can strike the F12 key which brings up the following

dialogue box:

Figure 5.19 The Trojan password prompt

 72

If the correct password is entered (in this case “Password”), the user is

presented with much more functionality, as can be seen on the following

screenshot.

Figure 5.20 The Trojan GUI with hidden functionality

5.7 Summary

To summarise, we present the following code to serve as an example of the

multitude of attack vectors that can be implemented against a few flawed lines of

code. Consider the following pseudo code which is basically a possible method

of FTP authentication:

 73

if (left$(packetReceived,8) == “220 User”) {

 if (fetchUsernameFromDB(right$(packetReceived, 8)) == true)

 correctuser = true;

 if (correctUser == true)

 sendPasswordRequired();

 else

 sendIncorrectLogin();

}

elseif (left$(packetReceived, 4) == “Pass”) {

if (correctUser == true && fetchPasswordFromDB(right$(packetReceived, 4))

== true)

userAuthenticated();

else

 sendIncorrectLogin();

}

Figure 5.21 Multiple vulnerabilities example code

The preceding code examines a received packet to determine what was

requested by the client. It firstly checks whether the packet was intended to

identify the client with a username; if so, the database is queried with the

supplied username, and the client is informed whether a correct username was

supplied. If the packet was not a username submission, execution flow continues

to check whether a password has been submitted instead, in which case the

password is checked for in the database, and confirms if the previously supplied

username was in fact a correct username. Again, the client is notified

accordingly. After careful examination of the code, one might conclude that the

code is vulnerable to an SQL injection (depending on how the usernames and

passwords are handled in function calls). Besides that, the code introduces bad

practice on username and password notification. Most modern applications are

aware of this „vulnerability‟ and respond with a “You supplied a valid username,

please supply a password” response regardless of whether the username was

 74

correct or not. This dramatically increases the number of tries or guesses the

attacker has to make in order to receive notification that something is correct –

both the username and password need to be correct in order to be sure a

username is in fact registered in the system (valid).

An obvious vulnerability that was missed with the code above as well is that the

username and password were not treated as a combination. The logic is flawed

since any correct username, as well as any correct password will result in

successful authentication. The username does not require its own matching

password. This also drastically decreases the number of possibilities (especially

in the case where there are many usernames and passwords in the database) to

the benefit of a brute force attack.

If the code was adjusted to reply positively to the client on a username

submission, regardless of whether it is in fact valid, closer examination of the

code reveals yet another possible weakness. An attacker may code an

application that understands the authentication process of the protocol along with

some added functionality. Additional to authentication the application maintains a

timer and a log of measured response times from the server. Every time the

attacker guesses an incorrect password the response time may vary minimally.

Conversely, if the attacker guesses a correct username, the amount of time

again may vary, but on average (of a few attempts) correct usernames are

responded to in a longer time segment. This happens because an extra

instruction is executed (line 3), along with passing some database parameters

and so forth. Resource availability may drastically influence and most probably

distort results of the attacker, but on the other hand the attacker might be aware

that the system load is very low at a specific time of day, for example, and launch

his attack accordingly.

 75

From the vulnerabilities discussed above, it is apparent that a vast number of

things could go wrong. Developers need to be fully aware of what their code

really does, and forget what they think it does, or what they want it to do.

 76

6 CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

Both VoIP and wireless networking are relatively new technologies. All new

technologies tend to take time before they are implemented to satisfactory

standards. Furthermore, security‟s worst enemy is additional features. These two

factors have drastically detrimental trade-offs. Probably the largest problem with

wireless networking is the feature that it should be able to support re-association of

a client and a different access point in the network. The problems exponentially

escalate as soon as a work-around is devised. It therefore makes sense that

different standards are implemented, that is 802.11 and 802.16, as different

problems are attempted to be solved. The 802.11 standard has a stronger focus on

mobility (disassociation and re-association) whereas 802.16 does not attempt this

and therefore accommodates a stronger focus on security.

The most common security flaws for VoIP over wireless networks were examined

along with viable solutions. The objectives of this work were mainly to describe the

details of what cause the vulnerabilities, and how they can be solved, as awareness

is the key to developing a secure system. The vulnerabilities within the scope of this

work were fully explained by means of what the causes are, what effect exploitation

has, as well as how they can be mitigated.

A difficulty that was experienced is that all of these vulnerabilities may appear in

almost any section of the code of the entire programme. Since this opens a myriad

of new conditions that should be compensated for, the code may grow more than

two-fold for a working, secure VoIP system. As larger pieces of code opens even

more possibilities of oversight errors, securing VoIP systems seems an unattainable

feat.

 77

Security is often approached on the basis of the systems development life cycle.

The reason for this is that security is never achieved; it rather is a continuous

process of risk analysis (which constantly changes along with the company‟s internal

and external environment), mitigation and acceptance. It is both senseless and

unprofitable for a business to mitigate a risk which realistically would never come to

pass. On the other hand financial and military institutions need excellent security as

they are much more prone to attacks.

The worst problem with security is that the vulnerabilities arise from oversight errors.

This is the main reason why we addressed each problem separately, in order to

completely explain and ensure in depth knowledge of some of the problems that

security professionals face. Implicitly, this approach also revealed some

weaknesses. The in depth study of the vulnerabilities imposed time restrictions on

developing a complete, secure system on which tests could be done. There are also

many other types of vulnerabilities that have not been studied. Developers should be

encouraged to take considerable conditions into account.

In 2003 when WEP was proven beyond doubt to be “crackable” the Internet

Engineering Task Force made it known that the next standard will be much more

secure, and that WEP was not intended to be invincible. As the name states: Wired

Equivalent Privacy, wired networks do not have much privacy, except for physical

access restriction. A large factor influencing the successful maintenance of security

is training. As Kevin Mutnick said, the user is the weakest link in security [11].

6.2 Future Work

Future work may include studying the other common vulnerabilities, field tests on

new wireless technologies, such as WiMAX and UMTS/WCDMA. A working system

could be developed and tested for vulnerabilities. There are also code scanners

available that scan code for known vulnerabilities before compiling, which could be

used to aid in developing the system.

 78

Furthermore, a system could be developed that allows for calls to be made over a

NAT enabled network. This would require a server on the network that is reachable

by all hosts and directs all calls. However, great care should be taken to guard

against DoS attacks in such a setup and in-depth research should be conducted on

the matter.

 79

6 Gevolgtrekking en verdere navorsing

6.1 Gevolgtrekking

Beide VoIP en koordlose netwerke is relatief nuwe tegnologieë. Alle nuwe

tegnologieë neig om tyd op te neem alvorens dit volgens bevredigend standaarde

geïmplementeer kan word. Verdermeer, is sekuriteit se grootste vyand is

addisionele funksionaliteite. Hierdie twee faktore beïnvloed mekaar drasties. Die

probleem eskaleer eksponensieel sodra omleidings ontwikkel word. Dit is gevolglik

sinvol dat verskillende standaarde geïmplementeer word byvoorbeeld 802.11 en

802.16, in ‟n poging om verskillende probleme op te los. Die 802.11 standaard het „n

sterker fokus op mobiliteit dissosiasie en herassosiasie terwyl 802.16 nie so sterk

op mobiliteit afgestem is nie. Gevolglik bied dit beter sekuriteit.

Die mees algemene sekuriteitsleemtes vir VoIP via koordlose netwerke is

geëvalueer met lewensvatbare oplossings. Gesien in die lig dat waaksaamheid die

sleutel is tot die ontwikkling van ‟n sekure sisteem, was dit die doelwit van hierdie

studie om in hoofsaak die eienskappe te beskryf wat verantwoordelik is vir

kwesbaarheid en hoe om dit op te los. Die kwesbaarhede binne die reikwydte van

hierdie studie was volledig verduidelik: Die oorsake, die impak van uitbuiting en

metodes om dit te verlig.

„n Dilemma wat ondervind was, is die feit dat al die genoemde kwesbaarhede in

bykans enige afdeling van die kode van die algehele program kan voorkom.

Aangesien dit „n veelheid van nuwe geleenthede meebring waarvoor daar

gekompenseer moet word, vergroot die kode meer as dubbelvoudig vir die werking

van ‟n sekure VoIP sisteem. Aangesien bonkige kodes selfs meer moontlikhede vir

oorsig-foute meebring, blyk die opskerping van sekuriteit vir VoIP sisteme

onhaalbaar.

 80

Sekuriteit word dikwels gebaseer op die sisteme lewenssiklus. Die rede hiervoor is

dat sekuriteit nie ‟n afgekapselde eindpunt bereik nie. Dit is eerder ‟n konstante

proses van risiko-analise (vanweë die konstante veradering van die maatskapy se

interne en eksterne milieu). Dit is beide sinloos en ook onekonomies vir ‟n besigheid

om risiko‟s wat realisties gesproke nooit sal manifesteer nie, te probeer bekamp.

Aan die anderkant benodig finansiële en militêre instansies wel uitstekende

sekuriteit gesien in die lig dat hulle groter teikens vir infiltrasie is.

Die grootste probleem met sekuriteit is dat swakplekke as gevolg van oorsig-foute

ontstaan. Dit is die hoof-rede waarom hierdie studie elke probleem afsonderlik

aanspreek, ten einde elk breedvoerig te verduidelik en indiepte kennis te verseker

van sommige van die probleme waaraan sekuriteitslui aandag moet skenk. Implisiet

het hierdie benadering ook sommige leemtes uitgewys. Die indiepte studie van die

swakhede het ‟n tydsbeperking geplaas op die ontwikkeling van ‟n volledige sekure

sisteem, waarop toetse gedoen kon word. Daar is ook baie ander tipes

kwesbaarhede wat nie bestudeer is nie. Ontwikkellaars moet aangemoedig word om

„n substansiële hoeveelheid omstandighede in berekening te bring.

In 2003 is bo alle twyfel bewys dat WEP indringbaar is. Internet ingenieurs het

bekend gemaak dat die volgende standaard baie meer sekuur sal wees, en dat

WEP nie daarop toegespits was om ondeurdringbaar te wees nie. Soos die term

“Wireless Equivalency Privacy” aandui, het bedrade netwerke nie veel

konfidensialiteit nie behalwe vir die fisiese beperking wat daar op toegang gestel

word.

„n Belangrike faktor wat die suksekvolle instandhouding van sekuriteit beïnvloed, is

opleiding. Kevin Mutnick het gesê dat die gebruiker die swakste skakel in sekuriteit

is. [11]

 81

6.2 Toekomstige Navorsing

Toekomsnavorsing kan gedoen word oor ander algemene kwesbaarhede en veld-

navorsing oor nuwe koordlose tegnologieë, soos WiMax en UMTS/WCDMA. „n

Werkende sisteem kan ontwikkel en getoets word vir kwesbaarhede. Daar is ook

kode-skandeerders beskikbaar vir die voorafskandering vir kwesbaarhede alvorens

inbruikneming van „n sisteem.

 „n Sisteem kan ook ontwikkel word wat oproepe oor ‟n NAT netwerk kan maak. Dit

vra om „n bediener op die netwerk wat vir alle kliënte bereikbaar is en alle oproepe

kan herlei / kanaliseer. Dit moet egter streng gewaak word teen DoS aanvalle in

sodanige opstelling en indiepte-navorsing moet in die verband onderneem word.

 82

7 References

1. http://www.jetcityorange.com/CapnCrunchWhistle/ (Last accessed 22 September

2008).

2. http://www.realvnc.com (Last Accessed 22 September 2008)

3. http://records.viu.ca/~soules/media112/hacker.htm (Last accessed 22 September

2008).

4. S.H. Park, A. Gins, Z. Gins, “Robust Re-authentication and Key Exchange

Protocol for IEEE 802.11 Wireless LANs”, IEEE Military Communications

Conference, Boston, MA, October 1998.

5. R. A. Serway, “Physics for scientists and engineers with modern physics”, Fourth

Edition, 1996.

6. http://insecure.org/nmap (Last accessed 10 August 2007).

7. http://www.whois.net (Last accessed 08 August 2007).

8. http://www.invisiblethings.org/papers/chameleon_concepts.pdf (Last accessed 2

March 2007).

9. http://en.wikipedia.org/wiki/Virtual_address_space. (Last accessed 07 March

2007).

10. http://www.hoobie.net/brutus/. (Last accessed 07 August 2007).

11. Kevin D. Mitnick, William L. Simon, “The Art of Deception”, John Wiley And

 Sons Ltd, 2002.

12. http://www.linuxcommand.org/man_pages/iwconfig8.html (Last accessed 22

September 2008).

13. Andrew S. Tanenbaum, “Computer Networks”, Fourth Edition, 2004.

14. Arbaugh, W. A., Shankar, N., and Justin Wan, Y.C., “Your 802.11 Wireless

Network has No Clothes” Available on

http://www.drizzle.com/%7Eaboba/IEEE/wireless.pdf (Last accessed 3rd March

2007).

15. http://jdic.dev.java.net (Last accessed 12 March 2007).

16. RFC 4123 http://www.rfc-archive.org/getrfc.php?rfc=4123 (Last accessed 22

September 2008).

http://www.jetcityorange.com/CapnCrunchWhistle/
http://www.realvnc.com/
http://records.viu.ca/~soules/media112/hacker.htm
http://insecure.org/nmap
http://www.whois.net/
http://www.invisiblethings.org/papers/chameleon_concepts.pdf
http://en.wikipedia.org/wiki/Virtual_address_space
http://www.hoobie.net/brutus/
http://www.linuxcommand.org/man_pages/iwconfig8.html
http://www.drizzle.com/~aboba/IEEE/wireless.pdf%20Last%20accessed%203rd%20March%202007
http://www.drizzle.com/~aboba/IEEE/wireless.pdf%20Last%20accessed%203rd%20March%202007
http://jdic.dev.java.net/
http://www.rfc-archive.org/getrfc.php?rfc=4123

 83

17. Ari Takanen, TO Codenomicon Ltd., “VoIP Security Threats:Rebuilding Trust in

Communication Networks”, 2006

18. Anand Balachandran, “Wireless Hotspots: Current Challenges and Future

Directions”, 2003.

19. Ashutosh Dutta, Tao Zhang, Sunil Madhani, “Secure Universal Mobility for

Wireless Internet”, 2004.

20. William Stallings, “Operating Systems - Internals and Design Principles”, Fifth

Edition, 2005.

21. http://airsnort.shmoo.com/ (Last accessed 22 September 2008).

22. http://linux.die.net/man/1/aircrack-ng (Last accessed 22 September 2008).

23. http://secguru.com/link/how_write_rootkit. (Last accessed 08 August 2007).

24. http://www.lightreading.com/document.asp?doc_id=139772&page_number=9

(Last Accessed 22 September 2008).

25. http://anml.iu.edu/ddos/types.html (Last Accessed 22 September 2008).

26. http://www.drizzle.com/~aboba/IEEE/ (Last Accessed 22 September 2008).

http://airsnort.shmoo.com/
http://linux.die.net/man/1/aircrack-ng
http://secguru.com/link/how_write_rootkit
http://www.lightreading.com/document.asp?doc_id=139772&page_number=9
http://anml.iu.edu/ddos/types.html
http://www.drizzle.com/~aboba/IEEE/

 84

8 Appendices

Appendix A

char shellcode[] =

 "\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"

 "\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"

 "\x80\xe8\xdc\xff\xff\xff/bin/sh";

void function() {

 char buffer1[5];

 char buffer2[10];

 int *ret;

 ret = &buffer1[5];

 ret += 2;

 (*ret) = (int)&shellcode;

 printf("buffer1 = %x \nret = %x\nbuffer1[4] = %x\n", buffer1, ret,&buffer1[4]);

}

void main() {

 function();

}

 85

Appendix B

Private Sub chkSQL_Click()

 If chkSQL.Value Then

 lblSQL.Visible = True

 Call calcSQL

 Else

 lblSQL.Visible = False

 End If

End Sub

Private Sub cmdLogin_Click()

 On Error Resume Next

 Dim strSQL As String

 Dim conDB As ADODB.Connection

 Dim rsUser As New ADODB.Recordset

 Set conDB = New ADODB.Connection

 Set rsUser = New ADODB.Recordset

 conDB.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" &

App.Path & "\UsersDB.mdb;Persist Security Info=False"

 conDB.Open

 strSQL = "SELECT * FROM tblUsers WHERE Username = '" & txtUser.Text & _

 "' AND UserPassword = '" & txtPassword.Text & "';"

 With rsUser

 .CursorLocation = adUseClient

 .Open strSQL, conDB, adOpenDynamic, adLockOptimistic ', adCmdText

 86

 If .EOF And .BOF Then

 MsgBox "Wrong username & password"

 Else

 MsgBox "Correct"

 End If

 End With

End Sub

Private Sub txtPassword_Change()

 Call calcSQL

End Sub

Private Sub txtUser_Change()

 Call calcSQL

End Sub

Private Sub calcSQL()

 If chkSQL.Value Then

 lblSQL.Caption = "SELECT * FROM tblUsers WHERE Username = '" &

txtUser.Text & _

 "' AND UserPassword = '" & txtPassword.Text & "';"

 End If

End Sub

	1
	Table of Contents

