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Abstract: The majority of high-performance perovskite and polymer solar cells consist of a TiO2

electron transport layer (ETL) processed at a high temperature (>450 ◦C). Here, we demonstrate
that low-temperature (80 ◦C) ETL thin film of TiOx:Zn1−xCdxS can be used as an effective ETL
and its band energy can be tuned by varying the TiOx:Zn1−xCdxS ratio. At the optimal ratio of
50:50 (vol%), the MAPbIxCl1−x perovskite and PCBTBT:PC70BM polymer solar cells achieved 9.79%
and 4.95%, respectively. Morphological and optoelectronic analyses showed that tailoring band edges
and homogeneous distribution of the local surface charges could improve the solar cells efficiency
by more than 2%. We proposed a plausible mechanism to rationalize the variation in morphology
and band energy of the ETL.

Keywords: electron transport layer; TiOx; ZnCdS; solar cells; perovskite; polymer; scanning Kelvin
probe microscopy

1. Introduction

The ever-growing energy demand relies mainly on the combustion of fossil fuel, which continues to
cause serious resource depletion and environmental pollution. Solar energy is a proven renewable energy
that is environmentally friendly and free from regional restriction. Inorganic solar cells (i.e., Si-based,
gallium arsenide, copper indium gallium selenide, cadmium telluride, etc.) offer high efficiency
(more than 25%) and stability, however, the technology development is hindered by a sophisticated
manufacturing process in addition to the handling of toxic materials [1]. While dye-sensitized, polymer
and perovskite solar cells are the emerging photovoltaic devices that are both lightweight and low cost,
they however have their own set of problems that inhibit their large-scale production as was highlighted
in recent review papers [1–3]. To realize their practical applications, device stability is one of the critical
factors that needs to be understood and overcome. Different approaches have been proposed for a more
stable polymer [4–6], dye-sensitized and perovskite solar cells [7–11].

Interface engineering can be considered as the most crucial factor in order to achieve high
performance and stable solar cells, because it shapes the pathways of photogenerated charge carriers
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from an active layer to metal electrodes. Both polymer solar cells and perovskite solar cells can
be easily fabricated in n-i-p configuration where electrons are collected at the bottom electrode,
or p-i-n configuration where electrons are collected at the top electrode, via simple solution processes.
In terms of device performances, p-i-n devices often exhibit more reliable performances and better
environmental stability. However, their efficiencies are slightly lower than that of n-i-p structures
due to the barrier in Fermi levels at the interface between the electron transport layer and the metal
electrode [12]. Significant efforts have been devoted to developing interfacial materials for better
band alignment, defect passivation and charge separation. While ZnO [13,14], SnO2 [15], Al2O3 [16],
MoOx [17], core-shell nanoparticles/structures [18], and organic compounds [3,19,20] have all been
reported as materials for electron transport layer (ETL), TiO2 remains the most widely used and essential
ETL material for both polymer solar cells and perovskite solar cells owing to the ease of tuning its
optical and electrical band gaps. Comprehensive reviews on ETL materials, properties and interface
engineering have been reported in recent papers [12,21,22]. Different concepts of tailoring TiO2 have
been proposed and showed promising results including metal-doped TiO2 [23], amino acid-modified
TiO2 [24], plasmon-mediated TiO2 [25], or functionalized organic/polymer on TiO2 [26,27].

Instead of doping TiO2, synthesizing ETL composite of two metal oxides with appropriate band
edges is another approach in facilitating electron transport, offering better efficiency and minimizing
recombination rate. ETL composites of SrTiO3/TiO2 [28], BaTiO3/TiO2 [29], and In2O3/TiO2 [30] have
been shown to improve the overall device efficiency. Nevertheless, it is critical to further optimize
the suitable mixing ratio (molar ratio, volume ratio) in order to achieve high power conversion
efficiency. Controlling film thickness and morphology are the main challenges in using nanocomposites
as ETL. It is also unclear how work function would vary at nanometer level when two semiconducting
metal oxides are mixed together and the influence of lateral inhomogeneity of work function on
the device performance.

In addition, the formation of crystalline TiO2 requires high temperature annealing (500 ◦C) which is
not suitable for fabricating devices on flexible substrates, as well as for many other practical applications.
Several groups have addressed this issue by developing low-temperature processes. Kim et al. found
that the devices made of ultra-thin amorphous TiOx by atomic layer deposition are more stable than
crystalline TiO2 [31,32]. Recently, Deng et al. reported that high efficiency perovskite solar cells
could be achieved using TiOx processed at room-temperature [33]. Another study by Wang et al.
demonstrated that efficient perovskite devices made of ETL nanocomposites of graphene/TiO2 could
be processed at 150 ◦C [34].

Here, we show that low-temperature (80 ◦C) processed TiOx:Zn1−xCdxS (T:Z) can be used
as an effective ETL in both p-i-n perovskite and polymer solar cells. Zn1−xCdxS was chosen due to
the ease of synthesis and highly tunable bandgap by varying Zn/Cd molar ratios [35]. We examined
performances of the p-i-n devices using different loadings of Zn1−xCdxS in TiOx and carried out
electrochemical impedance spectroscopy, ultraviolet photoelectron spectroscopy (UPS) and scanning
Kelvin probe microscopy (SKPM) measurements. The local morphology with corresponding work
function obtained from SKPM can shed more light into the fundamental understanding of electron
transport layer in solar cells.

2. Materials and Methods

2.1. Chemical Preparation

2.1.1. Zn1−xCdxS Nanoparticles Synthesis

During the process, 0.55 g of zinc acetate (99.99%, Ajax Finechem, New South Wales,
Australia) and 0.33 g of cadmium acetate (99.99% Asia Pacific Specialty Chemicals Limited,
New South Wales, Australia) were dissolved in 25 mL of DI water and stirred for 15 min. Another solution
of 0.65 g thioacetamide (99.0%, Sigma Aldrich, MO, USA) and 0.6 g of polyvinylpyrrolidone (99.0%,
Sigma Aldrich, MO, USA) in 25 mL DI water were prepared. Both solutions were mixed and stirred
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at room temperature for 30 min. The mixture was heated with 700 W microwave (Sharp Cooperation,
Osaka, Japan) radiation for 3 min. Zn1−xCdxS nanopowder was filtered and rinsed with 2-butanol [36].
The nanopowder was dried at 250 ◦C for 2 h and calcined at 500 ◦C for 1 h. Suspension of 0.4 mg/mL
Zn1−xCdxS in 2-butanol was used in all experiments.

2.1.2. TiOx Synthesis

During the synthesis, 2.7 mL titanium (IV) butoxide (97%, Sigma Aldrich, MO, USA), 0.57 mL
ethyl acetoacetate (99%, Sigma Aldrich), 57 µL 2,4-pentanedione (99%, Sigma Aldrich, MO, USA)
and 57µL 2,3-butanedione (97%, Sigma Aldrich, MO, USA) were mixed and stirred at room temperature
overnight [37].

2.1.3. Polymer (PCDTBT:PC70BM) Ink Formulation

For PCDTBT:PC70BM ink formation, 8 mg of PCDTBT (Ossila Ltd., Sheffield, UK) and 32 mg
of PC70BM (Ossila Ltd., Sheffield, UK) were dissolved in 1 mL anhydrous dichlorobenzene
(Sigma Aldrich, MO, USA). This PCDTBT:PC70BM is used for polymer solar cells. For perovskite
solar cells, PC70BM solution was prepared by dissolving 50 mg of PC70BM into 1 mL anhydrous
dichlorobenzene (Sigma Aldrich, MO, USA). Both solutions were then stirred at 60 ◦C for 1 h [17].

2.1.4. Perovskite (MAPbIxCl3-x) Ink Formulation

For MAPbIxCl3-x ink formation, 2.4 g of MAI (Ossila Ltd., Sheffield, UK) and 1.4 g PbCl2
(Sigma Aldrich, MO, USA) were mixed and stirred in 5 mL anhydrous dimethylformamide
(Sigma Aldrich, MO, USA) at 70 ◦C for 2 h [38].

2.2. Device Fabrication

Polymer and perovskite solar cells were fabricated on pre-patterned ITO glass (Luminescence
Technology Corporation, Taipei, Taiwan, 25 × 25 mm2, 5 Ω/sq). Prior to the fabrication, the substrates
were cleaned by ultrasonication under detergent, DI water, acetone, and isopropyl alcohol sequentially.
The substrates were further exposed under 395 UV light for 20 min.

Convective deposition [39] or spin coating method was used for depositing of hole transporting,
photoactive, and electron transporting layers. A cleaned glass microscope slide (75 × 25 × 1 mm3,
Fisher PA, Charlotte, NC, USA) was used as a deposition blade and placed at 45◦ with respect to
the patterned ITO substrate. PEDOT:PSS was used as the hole transporting layer for both solar cells.
20 µL of PEDOT:PSS (100 nm) were coated twice by convective deposition at the speed of 3000 µm/s.
The coated substrate was annealed on a hot plate at 120 ◦C for 30 min in the ambient environment
(%RH 50-60). The polymer solar cell fabrication was continued under ambient conditions while
the PEDOT:PSS coated substrates were transferred to a glove box for perovskite solar cell fabrication.

For polymer solar cell with ITO/PEDOT:PSS/PCDTBT:PC70BM/TiOx/Al structure, 20 µL
PCDTBT:PC70BM (80 nm) were convectively deposited at the speed of 750 µm/s and left in air
for 3 min followed by the deposition of 20 µL TiOx solution with various Zn1−xCdxS suspension ratio.
The coated films (20 nm) were annealed at 80 ◦C.

For perovskite solar cell with ITO/PEDOT:PSS/CH3NH3PbIxCl3-x/PC70BM/TiOx/Al structure,
40 µL perovskite ink were deposited with spin coating technique with 2250 rpm for 30 s. The substrate
and ink were kept at 70 ◦C before the deposition. The perovskite (300 nm) coated substrate was
annealed at 100 ◦C on a hot plate for 90 min. Following this, 35 µL of 50mg/mL PC70BM solution were
spin casted onto the perovskite film at 1500 rpm for 30 s. Then, 200 µL TiOx solution with various
Zn1−xCdxS suspension ratio were spin casted (20 nm) with 2500 rpm for 30 s. The multilayer films
were then annealed at 80 ◦C for 30 min in a glove box.

Aluminum metal electrode (80 nm) was deposited on top of the TiOx layer to complete the polymer
and perovskite solar cell fabrication. Four independent cells with 0.1 cm2 active area per cell were
fabricated on the patterned ITO substrate.
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2.3. Characterization

Surface morphologies were characterized by atomic force microscope (NanoWizard 3 NanoScience,
JPK Instruments, Berlin, Germany).). Bruker OSCM-PT-R3 AFM probes (Bruker Nano, CA, USA) were
used. The solar cell performance was measured using 0.1 cm2 mask under 100 mW/cm2 and 1.5 AM
filter (Abet Technologies, Milford, CT, USA). The light intensity was calibrated by 4 cm2 solar cell
reference (VLSI Standards, Mountain View, CA, USA). I-V measurements were conducted using source
measurement unit (PXI-4130, National Instrument, Austin, TX, USA with 10 mV scan step from 1 V to
−1 V. Incident photon-to-current efficiency IPCE was measured using QEPVSI-b (Newport Corporation,
Irvine, CA, USA). Impedance spectroscopy and Mott-Shockey (M-S) measurements were carried
out using CHI 660E electrochemical work station (CH Instruments, Bee Cave, TX, USA). For M-S
measurement, a small AC voltage of 5 mV was applied under constant illumination to measure device
impedance as a function of frequency (100 Hz to 1 MHz). UPS was carried out at the Synchrotron Light
Research Institute.

3. Results and Discussion

To determine the best loading ratio of Zn1−xCdxS in TiOx in both polymer and perovskite solar
cells, we fabricated p-i-n cell structures using various volumetric mixing ratios of TiOx:Zn1−xCdxS
dispersions as 100:0 (T100), 75:25 (T75:Z25), 50:50 (T50:Z50), 25:75 (T25:Z75), 0:100 (Z100). Figure 1a
shows SEM cross-sectional image of the device structures. The perovskite solar cells made of T100,
T75:Z25, T50:Z50, T25:Z75 and Z100 achieved the efficiencies of 7.74%, 9.47%, 9.79%, 8.07% and 6.74%,
respectively. Polymer solar cells share similar trends with perovskite devices, namely 4.22% (T100),
4.40% (T75:Z25), 4.95% (T50:Z50), 3.63% (T25:Z75) and 2.93% (Z100). Incorporating Zn1−xCdxS shows
an increase in current density from 15 mA/cm2 to 18 mA/cm2 for perovskite solar cells (Figure 1b)
and from 8 mA/cm2 to 11 mA/cm2 for polymer solar cells (Table 1) and Figure S1 indicating better
carrier extraction from the active layer after ETL modification. Further details on perovskite solar
cell performances are shown in Table 2. Negligible hysteresis for this p-i-n perovskite solar cell was
observed after forward-reverse scan study as shown in Figure S2 in supplementary information.
The results agree well with previous studies [40–42].

EIS and Mott-Schotkky measurements were carried out to understand the recombination losses
and charge transport properties upon mixing Zn1−xCdxS into TiOx. Figure 1c shows Nyquist
plots for perovskite solar cells and polymer solar cells at different loading of Zn1−xCdxS. The high
frequency intercept of the Nyquist plot attributed to the series resistance and the low-frequency
intercept corresponds to the recombination resistance (Rrec). As Rrec gets larger, lower leakage current
and recombination occur at the surface. It was clearly observed that Rrec increased for devices
containing Zn1−xCdxS, which had lower recombination losses. In addition, the lifetime of free carriers
(τ) could be calculated from the maximum frequency (fm) obtained from Bode plot as shown in
Figure 1d by

τ =
1

2π fm
(1)

The carrier lifetime increased from 46 µs to 68 µs and to 82 µs as Zn1−xCdxS content increased
from 0 to 100%. It is also well known that the interfacial charge density is inversely proportional to
the slope of the Mott-Schottky plots (Figure 1e) as follows:

1
C2 =

2
eεoεrNA2 (V −V f b −

kBT
e

) (2)

where C is capacitance, εo is vacuum permittivity, εr is dielectric constant of material, N is charge
carrier density, A is electrode area, V is applied potential, Vfb is flat band potential, kB is Boltzmann
constant, T is absolute room temperature and e is elementary charge of electron. As the charge
carrier density is smaller than 5 × 1020 cm−3 [43], the difference in flat band potential is negligible.
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Assuming an equivalent dielectric constant for all devices under illumination, the slopes of T100,
T75:Z25, T50:Z50, T25:Z75 and Z100 are −2.2 × 1010, −2.3 × 1010, −2.4 × 1010, −1.8 × 1010, −1.0 × 1010

respectively, indicating the highest interfacial charge density and resulting in the highest current density.
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Figure 1. (a) SEM cross-sectional image, (b) J-V characteristics of perovskite solar cells, (c) Nyquist
plot, (d) Bode plot and (e) Mott-Schottky plot of perovskite solar cells fabricated from different ratio of
TiOx:Zn1−xCdxS.

Table 1. Performances of polymer solar cells fabricated from different T:Z ETL.

TiOx: ZnCdS
Conc. (%)

Voc
(V)

Jsc
(mA/cm2) FF PCE

(%)

T100 0.879
(0.869 ± 0.008)

8.79
(8.67 ± 0.484)

0.55
(0.52 ± 0.028)

4.22
(3.94 ± 0.280)

T75:Z25 0.869
(0.867 ± 0.002)

10.59
(10.18 ± 0.465)

0.48
(0.47 ± 0.007)

4.40
(4.18 ± 0.245)

T50:Z50 0.910
(0.896 ± 0.012)

10.35
(10.25 ± 0.191)

0.53
(0.52 ± 0.013)

4.95
(4.77 ± 0.138)

T25:Z75 0.849
(0.844 ± 0.005)

8.55
(8.48 ± 0.214)

0.50
(0.50 ± 0.009)

3.63
(3.56 ± 0.086)

Z100 0.869
(0.863 ± 0.004)

8.69
(8.81 ± 0.166)

0.39
(0.38 ± 0.010)

2.93
(2.90 ± 0.030)
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Table 2. Performances of perovskite solar cells fabricated from different T:Z ETL.

TiOx: ZnCdS
Conc. (%)

Voc
(V)

Jsc
(mA/cm2) FF PCE

(%)

T100 0.859
(0.848 ± 0.007)

15.14
(15.72 ± 0.391)

0.60
(0.57 ± 0.015)

7.74
(7.65 ± 0.09)

T75:Z25 0.879
(0.880 ± 0.003)

17.31
(16.22 ± 1.922)

0.62
(0.62 ± 0.009)

9.47
(8.79 ± 1.024)

T50:Z50 0.889
(0.884 ± 0.003)

17.99
(17.82 ± 0.139)

0.61
(0.61 ± 0.001)

9.79
(9.67 ± 0.090)

T25:Z75 0.879
(0.875 ± 0.009)

15.19
(15.13 ± 1.177)

0.60
(0.57 ± 0.042)

8.07
(7.58 ± 0.590)

Z100 0.849
(0.844 ± 0.007)

15.19
(13.61 ± 3.159)

0.52
(0.50 ± 0.050)

6.74
(5.81 ± 1.796)

To better understand the nature of the starting materials, we performed detailed characterizations
of TiOx, Zn1−xCdxS and their nanocomposites. SEM images and EDS spectra (Figure S3) to confirm
that the prepared nanocomposites form uniform, smooth thin films and addition of Zn1−xCdxS in
TiOx does not effect on the morphology of the films. TEM images (Figure S4) reveal that the TiOx is in
amorphous form with small amount of anatase crystals of TiO2 while Zn1−xCdxS is fully crystalline
with crystallite size of about 5 nm. UV-Vis spectra and Tauc plots are shown in Figure S5. The band
gaps calculated from Tauc plot of T100 and Z100 thin films are 3.7 and 2.5 eV, respectively, which are in
good agreement with the band gap of TiOx and Zn1−xCdxS reported in the literatures [33,35]. The band
gap values obtained from highest slopes in the Tauc plot of T75:Z25, T50:Z50, T25:Z75 films share
the same value of 3.47 eV, which is lower than that of the pure T100 film. The nanocomposite ETL films
also exhibit minor slopes, indicating indirect transitions or existence of gap states [44]. The indirect
band gap is shifted from 3.0 eV for T75:Z25 to 3.1 eV for T50:Z50 to 3.25 eV for T25:Z75.
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Figure 2. (a) UPS spectra and (b) proposed energy band diagram of TiOx:Zn1−xCdxS nanocomposite
films. Energy levels of ITO, PEDOT:PSS, perovskite, PC70BM and Al were taken from other studies [3,32].
Photon energy (PE) is 40.8 eV.

Ultraviolet photoelectron spectroscopy (UPS) was used to characterize the work function
and valence band energy of TiOx:Zn1−xCdxS electron transport layer. UPS spectra of 10 nm T:Z
thin films coated on silicon substrates are shown in Figure 2a. The effective work functions of the films
were obtained by subtracting the source energy (40.8 eV) by the energy difference (∆KE) between
the low kinetic energy edge (LKE) and the spectrometer/sample Fermi level:

φ = 40.8− ∆KE (3)
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Figure 3. Topography, contact potential difference (VCPD) and 3D map highlight variation in local
charge distribution of TiOx:Zn1−xCdxS nanocomposite films. Scan area: 2µm×2µm.

The valence band energy (EVB) was estimated by subtracting the source energy (40.8 eV) by
the energy difference (∆KE’) between the LKE and the high kinetic energy (HKE) edge for photoemission
as below:

φ = 40.8− ∆KE′ (4)

The work functions of T100, T75:Z25, T50:Z50, T25:Z75 and Z100 thin films with respect to
the vacuum level are 4.22, 4.00, 3.70, 4.08 and 3.60 eV, respectively (Table S1). The valence band energy
of T100, T75:Z25, T50:Z50, T25:Z75 and Z100 thin films with respect to the vacuum level are −7.42,
−7.20, −6.90, −7.28 and −7.80 eV, respectively. Figure 2b shows a proposed general band energy
diagram of TiOx:Zn1−xCdxS nanocomposite electron transport layer. The band energy levels of ITO,
PEDOT, perovskite/PCDTBT, PC70BM and Al were taken from other studies [12,32].

Scanning Kelvin probe microscopy (SKPM) is an effective technique to monitor simultaneously
morphology/topography and contact potential difference (VCPD) between the atomic force microscopy
tip and sample surface. When the AFM tip and sample is far apart and not connected electrically,
their Fermi levels are different. As the AFM tip approaches the sample surface, an electrical force is
induced between the tip and the sample surface, brought their Fermi levels to line-up and formed
contact potential difference (CPD). To measure this CPD, an external bias is applied at the contact area
until the surface potential difference between the tip and the sample becomes zero. The magnitude of
the applied bias equals to the work function difference between the tip and the sample, which means
the work function of the sample can be calculated once the work function of the tip is known.
The measured CPD is defined as the difference in work function between a tip and a sample as follows:

VCPD =
∅tip −∅sample

e−
(5)

where VCPD is the CPD between the tip and the sample, ϕtip and ϕsample are the work functions of
the tip and the sample, respectively and e- is the elementary charge. To obtain the work function of
the AFM tip, freshly cleaved highly oriented pyrolytic graphite (HOPG, ϕ = 4.6 eV) and thermally
evaporated gold thin film (Au, ϕ = 5.1 eV) were used. For all measurements, the substrate was
grounded. Topographical and potential maps of the pure TiOx, Zn1−xCdxS and mixed TiOx:Zn1−xCdxS
thin films are shown in Figure 3. Three-dimensional maps combining topographic and VCPD data
clearly show that the T50:Z50 film possesses the least variation in surface potential compared to
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other ETL films. Potential histograms of all samples are shown in Figure 4a. The work function of
T50:Z50 is 3.75 ± 0.28 eV compared to 3.47 ± 0.44 eV of T100 and 3.77 ± 0.29V eV of Z100, which are
comparable to UPS data. FWHM value of T50Z50 has minimum value, indicating the least variation
in work function at nanoscale level. It is expected that the work function values of ETL composite
films obtained from SKPM technique are slightly lower than those obtained from UPS method due to
water adsorption and hydrocarbon contamination (Tables S1 and S2). Although the work function
value of T100 film estimated from SKPM method is about 0.4 eV lower than that of UPS value,
it is in good agreement with plasma enhanced atomic layer deposited TiOx films reported in Kim’s
study [32]. Figure 4b–f shows profiles at three different locations from SKPM image of T25:Z75 film,
which indicates that the surface potential depends on the film roughness. As the tip scanned over
a particle, the height abruptly increased about 5 nm, and the local VCPD decreased about 200 mV,
leading to an increase at the local work function. The distribution of charges at the surface and potential
step can be attributed to crystallographic orientation and atomic relaxation [45]. It is possible that
electronegative character of Zn1−xCdxS results in a partial electron transfer with TiOx that leads to
an increase in local work function [45]. When the height decreased about 3 nm, the local VCPD increased
about 100 mV. Within 1–2 nm variation in height, the local charge distribution could be fluctuated
about 50 mV. The overall results indicate that an effective ETL composites of mixed metal oxides
should have root mean square roughness of about 0.5 nm and scanning probe microscopy can be used
as an effective tool to predict the homogeneity of local charges.
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Figure 4. (a) Surface potential VCPD histograms of TiOx:Zn1−xCdxS nanocomposite films, (b) topography
and (c) its corresponding surface potential image, (d–f) Profiles extracted from topography and surface
potential at three different locations of T25:Z75 film.

We suggest the following mechanism to rationalize for morphological and electronic variation
of TiOx:Zn1−xCdxS nanocomposite films. In pure TiOx film, nanocrystals can be formed from Ti-O
monomers via hydrolysis and condensation reactions which are strongly dependent on reaction
temperature. Solvent evaporates, supersaturates the polymeric precursor solution and leads to
the formation of a large number of Ti-O species. At low temperature (80 ◦C), the nuclei impinge
on each other and impede further grain growth via diffusion, resulting in a relatively smooth film
of small grains (RMS: 0.7 nm), but the mixture of amorphous and crystalline phases (dominantly
amorphous phase) leads to broad distribution of work function (3.47 ± 0.44 eV). Pure Zn1−xCdxS
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film follows similar mechanism as TiOx film, however, there is no polymeric precursor. The pure
Zn1−xCdxS film is in smooth, crystalline phase (RMS: 0.9 nm), resulting in narrow distribution of
work function (3.77 ± 0.29 V). When preexisting Zn1−xCdxS seeds are present in the initial stage of
the synthesis, the Ti-O species are immobilized onto the seed crystals to overcome the activation
energy barrier for nucleation, leading to the formation of bigger grains compared to that of pure
films and creating an ordered electronic network of TiOx surrounding the grains. For T75Z25 film,
the density of Zn1−xCdxS in the composite film is too low, resulting in rougher film due to scattering
of the large crystalline grains. For T25Z75 film, the density of Zn1−xCdxS in the composite film is
too high, the grains are interconnected by the polymer chains similar to the mechanism proposed
by Yang’s group [11], however, the volume of TiOx is not enough to bridge the gaps between grains,
resulting in a rough surface. For T50Z50 film, the density of Zn1−xCdxS is optimal in the TiOx matrix,
the distribution of seed crystals and its proximity interaction with surrounding polymer chains is
the most effective, resulting in the smoothest film among all. As the morphology and internal structures
of ETL films are tuned by addition of Zn1−xCdxS, the band energy of ETL is simultaneously modified
due to presence of Zn1−xCdxS energy states and surrounding TiOx electronic network, which are
supported by UV-Vis, UPS and SKPM results. Ultimately, appropriate addition of Zn1−xCdxS can be
used to maximize the optoelectronic output and stability of ETL film and the corresponding devices.

4. Conclusions

This study has demonstrated that efficient perovskite and polymer solar cells were successfully
fabricated using low-temperature processed TiOx:Zn1−xCdxS thin film as an electron transport layer.
The ETL band energy can be simply tuned by varying TiOx:Zn1−xCdxS ratio. The addition of Zn1−xCdxS
in TiOx lowers band gap, alters valence band positions and work function levels, reduces recombination
at interfaces and increases charge carrier lifetime. The impact of local surface potential homogeneity
of TiOx:Zn1−xCdxS nanocomposite electron transport layer on the performance of p-i-n perovskite
and polymer solar cells has been revealed. Together with tailoring band edges, a homogeneous
distribution of the local surface charges has been shown to improve solar cells’ efficiency by more
than 2%.
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