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Abstract

Transforming growth factor-β1 (TGF-β1) is a major mediator of peritoneal fibrosis and

reportedly affects expression of the H3K4 methyltransferase, SET7/9. SET7/9-induced

H3K4 mono-methylation (H3K4me1) critically activates transcription of fibrosis-related

genes. In this study, we examined the effect of SET7/9 inhibition on peritoneal fibrosis in

mice and in human peritoneal mesothelial cells (HPMCs). We also examined SET7/9

expression in nonadherent cells isolated from the effluent of peritoneal dialysis (PD)

patients. Murine peritoneal fibrosis was induced by intraperitoneal injection of methylglyoxal

(MGO) into male C57/BL6 mice over 21 days. Sinefungin, a SET7/9 inhibitor, was adminis-

tered subcutaneously just before MGO injection (10 mg/kg). SET7/9 expression was ele-

vated in both MGO-injected mice and nonadherent cells isolated from the effluent of PD

patients. SET7/9 expression was positively correlated with dialysate/plasma ratio of creati-

nine in PD patients. Sinefungin was shown immunohistochemically to suppress expression

of mesenchymal cells and collagen deposition, accompanied by decreased H3K4me1 lev-

els. Peritoneal equilibration tests showed that sinefungin attenuated the urea nitrogen trans-

port rate from plasma and the glucose absorption rate from the dialysate. In vitro, sinefungin

suppressed TGF-β1-induced expression of fibrotic markers and inhibited H3K4me1. These

findings suggest that inhibiting the H3K4 methyltransferase SET7/9 ameliorates peritoneal

fibrosis.

Introduction

Peritoneal dialysis (PD) has been used as an effective replacement therapy for patients with

end-stage kidney disease. However, long-term exposure to PD fluid leads to peritoneal fibrosis,

which is clinically observed as the failure of fluid removal [1–3]. The pathogenesis of peritoneal

fibrosis is characterized by loss of mesothelial cells with proliferation of α-smooth muscle actin

(α-SMA)-positive myofibroblasts and deposition of extracellular matrix (ECM) proteins in

submesothelial areas [4–7]. Although a number of cytokines reportedly participate in this pro-

cess, transforming growth factor-β1 (TGF-β1) is considered to play a central role in the pro-

gression of peritoneal fibrosis [8–10].
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Glucose is used as a hyperosmotic agent in PD fluid to enable ultrafiltration. One glucose

degradation product is methylglyoxal (MGO); its level increases in response to hyperglycemia

[11]. MGO is also a precursor of advanced glycation end products that damage tissues by

inducing inflammation [12, 13]. Importantly, MGO levels are increased in the sera and PD flu-

ids of PD patients [14, 15] and it reportedly plays a pivotal role in inducing peritoneal fibrosis

[16–18]. In fact, peritoneal injection of MGO into rodents is a well-established method for

inducing peritoneal fibrosis in animal models [19]. However, a therapeutic target in MGO-

induced peritoneal fibrosis has not yet been identified.

Epigenetics is the study of gene regulatory mechanisms in which there are no alterations to

DNA sequences [20, 21]. Histone post-translational modifications include acetylation, methyl-

ation, phosphorylation and ubiquitination. They regulate transcriptional activity by changing

chromatin structure [22–25]. Among histone modifications, methylation of the histone tail is

modulated by specific enzymes, which suggests that TGF-β1-induced histone methyltrans-

ferases are therapeutic targets for peritoneal fibrosis.

In human mesangial cells, TGF-β1 upregulates the expression of a methyl transferase, spe-

cifically, lysine 4 of histone H3 (H3K4) methyltransferase SET domain-containing lysine

methyltransferase 7/9 (SET7/9). SET7/9 is responsible for the transcriptional activation of

fibrotic genes [26]. We have demonstrated that inhibition of SET7/9 ameliorates renal fibrosis

and decreases mono-methylation of lysine 4 in histone H3 (H3K4me1) in a mouse model of

renal fibrosis [27]. These findings led us to hypothesize that sinefungin, a SET7/9 inhibitor,

would suppress MGO-induced peritoneal fibrosis.

In this study, we show that SET7/9 expression in PD patients is significantly elevated com-

pared with that in non-PD patients, and that SET7/9 expression in nonadherent cells isolated

from the PD effluent is positively correlated with dialysate/plasma (D/P) ratios of creatinine

(Cr) in PD patients. We also show that sinefungin alleviates both peritoneal fibrosis and perito-

neal membrane dysfunction while reducing H3K4me1 expression in MGO-injected mice.

Finally, we show that sinefungin suppresses both TGF-β1-induced fibrotic markers and

H3K4me1 expression in primary human peritoneal mesothelial cells (HPMCs). Our resulting

data suggest that sinefungin is a candidate therapeutic agent for PD patients.

Materials and methods

Clinical sample collection and ethics statement

To culture nonadherent cells from the PD effluent, we isolated cells from glucose-based PD

fluid (1.5% Dianeal) from 12 PD patients who were treated at Hiroshima University Hospital

from September 2015 to January 2017. HPMCs (described below) were used as the control.

The Medical Ethics Committee of Hiroshima Graduate School of Biomedical Science

approved this study (E-62), and it was performed in accordance with the Declaration of Hel-

sinki. Written informed consent was acquired from each patient.

Animal model

Male C57/BL6 mice (aged 10 weeks and weighing about 25 g) were obtained from Charles

River Laboratories Japan (Yokohama, Japan). The mice were housed in a light- and tempera-

ture-controlled room in the Laboratory Animal Center of Hiroshima University (Hiroshima,

Japan) with free access to food and water. The mice were divided into 3 groups (n = 5 per

group): (1) the control group received intraperitoneal injections of 2.5 mL saline, (2) the

MGO + saline group received intraperitoneal injections of 40 mM MGO (MP Biomedicals

LLC, Illkirch, France) + subcutaneous injections of saline, (3) the MGO + sinefungin group
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received intraperitoneal injections of 40 mM MGO + subcutaneous injection of 10 mg/kg sine-

fungin (Sigma-Aldrich, St Louis, MO). Sinefungin was prepared as a suspension in saline, and

administered subcutaneously (0.1 mL per mouse) just before MGO injection. We adminis-

tered these solutions 5 consecutive days per week for 3 weeks. Mice were injected with 4 mL of

4.25% Dianeal solution (Baxter Health Care, Deerfield, IL, USA) to perform the PET. After 10

min, the peritoneal fluid was removed and then mice were sacrificed by cardiac puncture

under deep sedation with sodium pentobarbital anesthesia. We assessed peritoneal absorption

of glucose from the dialysate (D/D0) and the dialysate/plasma (D/P) ratio of urea nitrogen

(UN) in the 3 groups. Parietal peritoneum samples were collected from sides contralateral to

injections.

The Animal Care and Use Committee at Hiroshima University approved all of the experi-

mental protocols (permit number: A16-61), and the experiments were performed in accor-

dance with the National Institutes of Health Guidelines on the Use of Laboratory Animals.

Histology and immunohistochemistry

Histologic and immunohistochemical staining of 4-μm-thick tissue sections was performed as

previously described [28, 29]. The following primary antibodies were used: mouse monoclonal

anti-α-SMA antibody (Sigma-Aldrich), rabbit polyclonal anti-FSP-1 antibody (Abcam, Cam-

bridge, UK), rabbit polyclonal anti-collagen I antibody (Abcam), rabbit polyclonal anti-colla-

gen III antibody (Abcam), rabbit polyclonal anti-TGF-β1 antibody (Santa Cruz Biotechnology,

Santa Cruz, CA, USA), rabbit polyclonal anti-SET7/9 antibody (Abcam), and rabbit polyclonal

anti-H3K4me1 antibody (Abcam).

Areas that contained collagens I or III were assessed in predetermined fields (×200 magnifi-

cation) of the submesothelial compact zone, captured by a digital camera and analyzed using

ImageJ software (version 1.48p; National Institutes of Health, Bethesda, MD, USA) in 10 fields.

We counted cells expressing α-SMA, FSP-1, TGF-β1, SET7/9 or H3K4me1 in the submesothe-

lial compact zone in 10 fields at ×200 magnification.

Cell culture

We isolated HPMCs from human omentum as previously described [30]. The Medical Eth-

ics Committee of Hiroshima Graduate School of Biomedical Science permitted harvesting of

the omentum (E-84). Written informed consent was acquired from each patient. We main-

tained HPMCs in M199 medium (Life Technologies, NY, USA) including 10% fetal bovine

serum (FBS) and penicillin/streptomycin. HPMCs were seeded into six-well plates and

grown to subconfluence. Then, HPMCs were growth-arrested in M199 medium supple-

mented with 0.1% FBS for 24 h, and then treated with 5 ng/mL TGF-β1 (R &D Systems,

Minneapolis, MN, USA) for 24 h. Preincubation with sinefungin (3 or 10 μg/mL) was con-

ducted for 60 min before the 24 h of TGF-β1 stimulation. We repeated cell culture experi-

ments five times.

Western blotting and Enzyme-Linked Immunosorbent Assays (ELISA)

Immunoblotting and detection of secreted fibronectin were performed as previously described

[31, 32]. The primary antibodies were as follows: anti-SET7/9 (Cell Signaling Technology,

Danvers, MA, USA), anti-α-SMA (Sigma-Aldrich), anti-fibronectin (Sigma-Aldrich), anti-

zonula occludens-1 (ZO-1; Invitrogen, Carlsbad, CA, USA), anti-α-tubulin (Sigma-Aldrich),

anti-H3K4me1 (Cell Signaling Technology), and anti-H3 (Cell Signaling Technology). The

intensity of each band was quantified by using ImageJ software. An ELISA kit (R&D Systems)
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was used to quantitate the concentrations of TGF-β1 in peritoneal fluid, following the manu-

facturer’s instructions.

RNA extraction and quantitative real-time reverse transcription-PCR

RNA extraction and reverse transcription quantitative PCR were performed as previously

described [33]. Specific oligonucleotide primers and probes for ACTA2 (α-SMA) (assay ID:

Hs00426835_g1), Col1A2 (assay ID: Hs00164099_m1), CTGF (assay ID: Hs01026927_g1),

PAI-I (assay ID: Hs01126606_m1), and GAPDH (assay ID: Hs02758991_g1) were obtained as

TaqMan Gene Expression Assays (Applied Biosystems, Foster City, CA). GAPDH mRNA was

used as an internal control.

ChIP assays

Chromatin immunoprecipitation (ChIP) assays for Col1A2 were performed using a ChIP

Assay Kit (EMD Millipore, Temecula, CA, USA) as described [34]. The resulting solutions

were incubated overnight at 4˚C with anti-H3K4me1 antibody. DNA was purified using the

QIAquick PCR Purification Kit (Qiagen, Valencia, CA, USA). Analyses of the Col1A2 pro-

moter region were performed by PCR reaction. The primer was designed to include the

SMAD binding element (ATGCAGACA) and it was used for the amplification of the Col1A2
promoter as follows: forward, 50-GCGGAGGTATGCAGACAACG-30 and reverse, 50- GGGCTG
GCTTCTTAAATTG-30.

Statistical analysis

Results are expressed as means ± standard deviations (S.D.). Comparisons between two groups

were analyzed by Student’s t test. For multiple group comparisons, we used one-way ANOVA

followed by t tests with Bonferroni corrections. Correlations were calculated by the Spearman’s

rank correlation coefficient. P< 0.05 was considered significant.

Results

SET7/9 expression was elevated in mice with peritoneal fibrosis induced by

MGO and was associated with functional impairment of the peritoneal

membrane in PD patients

We first performed immunohistochemical staining to identify SET7/9 expression in peritoneal

tissues of mice that had been injected with MGO. The number of SET7/9-positive cells in the

submesothelial zone was elevated in MGO-injected mice compared with that in control mice

(Fig 1A and 1B).

To evaluate the association between SET7/9 expression and peritoneal permeability, we col-

lected nonadherent cells isolated from the PD effluent of PD patients at Hiroshima University

Hospital from September 2015 to January 2017 (n = 12). We found that SET7/9 expression

was significantly upregulated in PD patients compared with HPMCs from non-PD patients

(Fig 1C and 1D). Furthermore, SET7/9 protein expression was positively correlated with D/P

of Cr concentration (ρ = 0.61, P = 0.035; Fig 1E).

Sinefungin suppressed MGO-induced peritoneal cell accumulation and

thickening

We conducted hematoxylin-eosin staining to evaluate changes in cell density and Masson’s

trichrome staining to analyze peritoneal thickening. In mice that had been injected with
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MGO, peritoneal cell density increased and the submesothelial compact zone was thickened.

In contrast, the subcutaneous injection of sinefungin significantly suppressed both cellularity

(Fig 2A and 2B) and thickening of the submesothelial compact zone (Fig 2C and 2D) com-

pared with vehicle-only treatment in MGO-injected mice.

Sinefungin suppressed expression of mesenchymal markers and ECM

proteins in mice with peritoneal fibrosis

We examined peritoneal tissues for expression of mesenchymal proteins α-SMA and FSP-1

and collagens I and III as extracellular matrix (ECM) proteins. Injections of MGO remarkably

elevated α-SMA-positive myofibroblasts and FSP-1-positive cells in the submesothelial com-

pact zone. In contrast, sinefungin significantly reduced α-SMA-positive myofibroblasts (Fig

3A and 3B) and FSP-1-positive cells (Fig 3C and 3D) compared with MGO-injected mice

treated with vehicle only. The expression of collagens I and III was increased in the subme-

sothelial compact zone of MGO-injected mice treated with vehicle only (Fig 4A and 4C). How-

ever, sinefungin significantly diminished the area in which collagens I and III accumulated in

MGO-injected mice (Fig 4B and 4D).

Fig 1. SET7/9 expression was elevated in methylglyoxal (MGO)-injected mice, and was associated with the level of functional impairment of the

peritoneal membrane in PD patients’ effluents. (A) Immunohistochemical analyses of SET7/9 expression in peritoneal tissues of control- and MGO-

injected mice (×200). (B) Numbers of SET7/9-positive (SET7/9+) cells in mice with or without peritoneal MGO injection (n = 5 for both groups). (C)

SET7/9 protein expression in nonadherent cells from human PD effluents was confirmed by Western blotting. Panel: typical results. GAPDH was used

as an internal control. Full-length blots are presented in S1 Fig. (D) Relative levels of SET7/9 protein expression. Controls: HPMCs from non-PD

patients; PD patients: nonadherent cells isolated from PD effluent of patients who had undergone PD for� 1 year. (E) Correlation between SET7/9

protein expression of nonadherent cells and the dialysate/plasma (D/P) ratio of creatinine (Cr) in PD patients (n = 12). Scale Bar = 200 μm. Data are

means ± S.D. �, P< 0.05 (Student’s t test or Spearman’s rank correlation coefficient).

https://doi.org/10.1371/journal.pone.0196844.g001
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Sinefungin inhibited SET7/9-mediated H3K4me1 but not TGF-β1

expression

To investigate the expression of H3K4me1 and TGF-β1 during the progression of peritoneal

fibrosis, we stained tissue sections with an anti-H3K4me1 antibody and an anti-TGF-β1

antibody. In MGO-injected mice treated with vehicle only, the number of H3K4me1-positive

cells in the submesothelial compact zone remarkably increased compared with control mice,

whereas sinefungin significantly reduced the number of H3K4me1-positive cells (Fig 5A and

5B). The number of TGF-β1-positive cells in the submesothelial compact zone did not change

in MGO-injected mice treated with sinefungin compared with those treated with vehicle only

(Fig 5C and 5D). Double immunostaining simultaneously showed localization of H3K4me1

and collagen I. H3K4me1 expression increased in the areas where collagens I accumulated in

MGO-injected mice that were treated with vehicle only, whereas it decreased along with colla-

gen I expression in MGO-injected mice treated with sinefungin (Fig 5E). Similarly, sinefungin

did not affect TGF-β1 protein levels in mouse peritoneal fluid (Fig 5F).

Sinefungin reduced peritoneal membrane functional impairments in mice

with peritoneal fibrosis

We performed a peritoneal equilibrium test (PET) to evaluate functional alteration of the peri-

toneal membrane. The urea nitrogen transport rate from plasma and the glucose absorption

rate from dialysate were markedly higher in MGO-injected mice than in control mice, but

Fig 2. Sinefungin suppressed peritoneal cell density and thickening in MGO-injected mice. (A) Typical hematoxylin-eosin staining of peritoneal

tissues of control mice, MGO-injected mice treated with vehicle only, and MGO-injected mice treated with sinefungin (×200). (B) Cell densities in the 3

groups of mice. (C) Typical Masson’s trichrome staining of peritoneal tissues of control mice, MGO-injected mice treated with vehicle only, and MGO-

injected mice treated with sinefungin (×200). (D) Peritoneal thickness in the 3 groups of mice. Scale Bar = 200 μm. Data are means ± S.D. �, P< 0.05

(one-way ANOVA followed by post hoc test using t test with Bonferroni correction; n = 5 mice per group).

https://doi.org/10.1371/journal.pone.0196844.g002
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these changes were significantly alleviated in MGO-injected mice treated with sinefungin

(Fig 6A and 6B).

Sinefungin inhibited TGF-β1-induced expression of fibrotic markers and

H3K4me1 in HPMCs

TGF-β1 is an important mediator that can induce peritoneal fibrosis. To evaluate the effect of

sinefungin on fibrotic changes in HPMCs, the cells were stimulated by TGF-β1, with or with-

out sinefungin, for 24 h. TGF-β1 induced the expression of α-SMA and fibronectin, increased

H3K4me1 levels and reduced ZO-1 expression. Sinefungin repressed not only these fibrotic

reactions but also inhibited H3K4me1 in a dose-dependent manner (Fig 7A–7D). Likewise,

preincubation of sinefungin significantly reduced mRNA expression of ACTA2 (α-SMA),
Col1, CTGF and PAI-1 in a dose-dependent manner (Fig 8A–8D).

We also performed chromatin immunoprecipitation (ChIP) assays of H3K4me1 in

HPMCs. We found that the promoter region of the Col1A2 was immunoprecipitated with

H3K4me1 antibody. Moreover, sinefungin inhibited TGF-β1-potentiated expression of the

Col1A2 gene promoter with H3K4me1 antibody (Fig 8E).

Discussion

In this study, we have demonstrated that sinefungin, a specific inhibitor of SET7/9, ameliorates

not only peritoneal fibrosis but also peritoneal dysfunction through suppression of H3K4me1

Fig 3. Sinefungin repressed expression of α-smooth muscle actin (α-SMA) and fibroblast-specific protein-1 (FSP-1) in mice with peritoneal

fibrosis. (A) Typical α-SMA expression in peritoneal tissue of control mice, MGO-injected mice treated with vehicle only and MGO-injected mice

treated with sinefungin (immunohistochemical [IHC] stain, ×200). (B) Numbers of α-SMA-positive (α-SMA+) cells in the 3 groups of mice. (C) Typical

FSP-1 expression in peritoneal tissue of control mice, MGO-injected mice treated with vehicle only and MGO-injected mice treated with sinefungin

(IHC stain, ×200). (D) Numbers of FSP-1-positive (FSP-1+) cells in the 3 groups of mice. The quantitative data are presented as dot plots in S2 Fig. Scale

Bar = 200 μm. Data are means ± S.D. �, P< 0.05 (one-way ANOVA followed by post hoc test using t test with Bonferroni correction; n = 5 mice per

group).

https://doi.org/10.1371/journal.pone.0196844.g003
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in MGO-injected mice. Although we show that TGF-β1 induces SET7/9 expression, sinefungin

does not influence TGF-β1 production in either mouse peritoneal tissue or peritoneal fluid. In

in vitro experiments, we show that sinefungin suppresses TGF-β1-induced fibrotic markers in

HPMCs and inhibits H3K4me1. Additionally, SET7/9 expression is upregulated in PD patients

compared with non-PD patients, and is positively correlated with D/P of Cr concentration.

These results indicate that sinefungin is a candidate therapeutic agent for PD patients to

repress transcriptional activation of fibrotic genes through inhibition of H3K4me1, but not

inhibition of TGF-β1 production.

Among epigenetic regulation, histone modifications, such as acetylation, methylation,

phosphorylation, and ubiquitination participate in regulation of chromatin structure and tran-

scriptional activity. Changes in histone modifications are involved in diverse diseases [35, 36].

In terms of peritoneal fibrosis, Io et al. reported that suberoylanilide hydroxamic acid, a his-

tone deacetylase inhibitor, suppressed peritoneal fibrosis in mice through upregulation of

bone morphogenetic protein (BMP)-7 [37]. Yang et al. also reported that C646, a histone acet-

yltransferase inhibitor attenuates peritoneal fibrosis by blocking the TGF-β1/Smad3 signaling

pathway [38]. Furthermore, we previously showed that the H3K9 methyltransferase G9a is

implicated in peritoneal fibrosis [39]. These findings suggest that histone modification could

be a therapeutic target during peritoneal fibrosis development.

Recently, we demonstrated that inhibiting SET7/9 activity suppressed renal fibrosis and

reduced the level of H3K4me1, but not that of H3K4me2 or H3K4me3 [27]. In the present

study, we confirmed that sinefungin, a histone methyltransferase inhibitor, reduces TGF-

β1-induced H3K4me1 levels in mice and HPMCs. Although we investigated whether MGO

Fig 4. Sinefungin reduced expression of collagen types I and III in mice with peritoneal fibrosis. (A) Typical type I collagen expression in peritoneal

tissue of control mice, MGO-injected mice treated with vehicle only, and MGO-injected mice treated with sinefungin (immunohistochemical [IHC]

stain, ×200). (B) Numbers of type I collagen-positive (collagen I+) pixels in the 3 groups of mice. (C) Typical type III collagen expression in peritoneal

tissue of control mice, MGO-injected mice treated with vehicle only, and MGO-injected mice treated with sinefungin (IHC stain, ×200). (D) Numbers

of type III collagen (collagen III+) pixels in the 3 groups of mice. Scale Bar = 200 μm. Data are means ± S.D. �, P< 0.05 (one-way ANOVA followed by

post hoc test using t test with Bonferroni correction; n = 5 mice per group).

https://doi.org/10.1371/journal.pone.0196844.g004
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Fig 5. Sinefungin inhibited the expression of H3K4me1 but not that of TGF-β1 in mice with peritoneal fibrosis. (A) Typical H3K4me1

levels in peritoneal tissue of control mice, MGO-injected mice treated with vehicle only, and MGO-injected mice treated with sinefungin

(immunohistochemical [IHC] stain, ×200). (B) Numbers of H3K4me1-positive (H3K4me1+) cells in the 3 groups of mice. (C) Typical TGF-β1

expression in peritoneal tissue of control mice, MGO-injected mice treated with vehicle only and MGO-injected mice treated with sinefungin (IHC

stain, ×200). (D) Numbers of TGF-β1-positive (TGF-β1+) cells in the 3 groups of mice. The quantitative data are presented as dot plots in S3 Fig. (E)

Two-color immunohistochemical staining showing localization of H3K4me1 (blue-gray) and collagens I (brown). (F) The concentration of TGF-β1

protein in mouse PD effluent was quantitated by ELISA. Scale Bar = 200 μm. Data are means ± S.D. �, P< 0.05 (one-way ANOVA followed by post hoc
test using t test with Bonferroni correction; n = 5 mice per group).

https://doi.org/10.1371/journal.pone.0196844.g005
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induced SET7/9 expression in HPMCs, MGO did not upregulate SET7/9 expression as well as

subsequent H3K4 methylation (S6 Fig). Therefore, SET7/9 expression is considered to be

induced through TGF-β1 expression. Furthermore, we found that the promoter region of the

Col1A2 was immunoprecipitated with H3K4me1 antibody, and that sinefungin inhibited

TGF-β1-induced expression of the Col1A2 gene promoter immunoprecipitated with

H3K4me1 antibody. These findings indicate that inhibition of H3K4me1 ameliorates perito-

neal fibrosis at transcriptional level of ECM proteins.

Histone lysine methyltransferases are implicated in chromatin formation, and thus in regu-

lating gene expression [40]. Among these enzymes, SET7/9 is responsible for H3K4 methyla-

tion, which is a marker for transcriptional activation [41]. In addition to SET7/9, we also

tested the possibility that TGF-β1 induces other methyltransferases, resulting in H3K4me1. As

shown in S7 Fig, TGF-β1 induced the expression of SET7/9, but not SET1A, SET1B, MLL1,

MLL2, or MLL4, even though all of those have been reported to induce H3K4me1 [42, 43].

Moreover, we found that SET7/9 protein expression in PD patients is significantly greater than

in non-PD patients, and to be positively correlated with the D/P ratio of Cr concentration in

nonadherent cells. Taken together, SET7/9 expression is a critical aspect of both peritoneal

fibrosis development and peritoneal dysfunction in PD patients.

Pathologically, peritoneal fibrosis has two major features: accumulation of ECM proteins

and infiltration of inflammatory cells [44]. Previous studies have demonstrated that TGF-β1

promotes fibrotic genes, and that blockading the TGF-β1 signaling pathway is the key to pre-

vent peritoneal fibrosis [45, 46]. However, as TGF-β1 confers the ability to suppress inflamma-

tion, inhibition of TGF-β1 signaling may lead to autoimmune disease [47, 48]. In this study,

inhibition of SET7/9 suppressed peritoneal fibrosis without changing TGF-β1 expression in

MGO-injected mice. Since our previous studies showed that TGF-β1 is co-expressed with

inflammatory cells in a mouse model of MGO-induced peritoneal fibrosis [39], the present

data imply that H3K4me1 does not affect inflammation.

Fig 6. Sinefungin improved functional impairments of peritoneal membrane in mice with peritoneal fibrosis. (A) Dialysate/plasma (D/P)

ratio of urea nitrogen (UN); (B) peritoneal absorption of glucose from dialysate (D/D0) in control mice, MGO-injected mice treated with vehicle

only, and MGO-injected mice treated with sinefungin during 10-min dialysate dwell (4.25% dialysis solution). Data are means ± S.D. �, P< 0.05

(one-way ANOVA followed by post hoc test using t test with Bonferroni correction; n = 5 mice per group).

https://doi.org/10.1371/journal.pone.0196844.g006
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Regarding the mechanism by which TGF-β1 suppresses inflammation, Wakabayashi et al.

found that TGF-β1 suppresses IL-2 production through H3K9me3, but not H3K4me1 [49].

Another study also showed H3K4me3 to participate in increased expression of forkhead

box p3 (Foxp3), resulting in regulatory T cell (Treg) generation [50]. In fact, immunostaining

for CD68-positive cells revealed that monocyte/macrophage infiltration did not differ in

Fig 7. Sinefungin inhibited TGF-β1-induced fibrotic markers and H3K4me1 in HPMCs. Representative Western blotting

results for the expression of (A) α-SMA (B) secreted fibronectin and (C) zonula occludens-1 (ZO-1) of HPMCs. α-tubulin was

used as an internal control. Lower panel: quantification. (D) Representative Western blotting analysis showing level of H3K4me1

in HPMCs stimulated by TGF-β1. H3 was used as the internal control. Lower panel: quantification. Full-length blots are

presented in S4 Fig. Data are means ± S.D. �, P< 0.05 (one-way ANOVA followed by the post hoc test using t test with Bonferroni

correction; n = 5 samples per group).

https://doi.org/10.1371/journal.pone.0196844.g007
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MGO-injected mice with or without sinfungin (S8 Fig). These results raise the possibility that

sinefungin suppresses peritoneal fibrosis without disturbing inflammation.

In summary, we have demonstrated that sinefungin, an inhibitor of SET7/9, attenuates

not only MGO-induced peritoneal fibrosis in mice but also TGF-β1-induced fibrotic changes

in HPMCs by reducing H3K4me1 levels. We also show that SET7/9 expression in PD patients

Fig 8. Sinefungin suppressed expression of extracellular matrix (ECM)-associated genes and H3K4me1 level at Col1A2
promoters. Quantitative real-time polymerase chain reaction (PCR) analysis of mRNA expression of (A) ACTA2 (α-SMA),

(B) Col1A2, (C) CTGF and (D) PAI-1 in HPMCs (standardized to glyceraldehyde 3-phosphate dehydrogenase [GAPDH]).

(E) Representative chromatin immunoprecipitation (ChIP) assay of the binding of the H3K4me1 protein (H3K4me1-Ab) to

Col1A2 promoters in HPMCs. Negative control: mouse immunoglobulin G (IgG). Full-length gels are presented in S5 Fig.

Data are means ± S.D. �, P< 0.05 (one-way ANOVA followed by the post hoc test using t test with Bonferroni correction;

n = 5 samples per group).

https://doi.org/10.1371/journal.pone.0196844.g008
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was significantly higher than in non-PD patients, and that SET7/9 expression in nonadherent

cells was positively correlated with the D/P ratio of Cr concentration in PD patients. Lastly,

we have clarified that the promoter of Col1A2 is located at the H3K4me1 site. These findings

indicate that SET7/9-mediated H3K4me1 could be a therapeutic target for peritoneal

fibrosis.

Supporting information

S1 Fig. Uncropped image of Western blots included in Fig 1C. The red boxes indicate the

cropped regions.

(TIF)

S2 Fig. The quantitative data in Fig 3 are presented as dot plots. (A) Numbers of α-SMA-

positive (α-SMA+) cells shown as mean ± S.D. with individual dot plots in the 3 groups of

mice. (B) Number of α-SMA+ cells in each field of the submesothelial compact zone of all

experimental mice. (C) Numbers of FSP-1-positive (FSP-1+) cells shown as mean ± S.D. with

individual dot plots in the 3 groups of mice. (D) Number of FSP-1+ cells in each field of the

submesothelial compact zone of all experimental mice. �, P< 0.05 (one-way ANOVA followed

by post hoc test using t test with Bonferroni correction; n = 5 mice per group).

(TIF)

S3 Fig. The quantitative data in Fig 5 are presented as dot plots. (A) Numbers of H3K4me1-

positive (H3K4me1+) cells presenting mean ± S.D. with individual dot plots in the 3 groups of

mice. (B) Number of H3K4me1+ cells in each field of submesothelial compact zone of all

experimental mice. (C) Numbers of TGF-β1-positive (TGF-β1+) cells presenting mean ± S.D.

with individual dot plots in the 3 groups of mice. (D) Number of TGF-β1+ cells in each field of

the submesothelial compact zone of all experimental mice. �, P< 0.05 (one-way ANOVA fol-

lowed by post hoc test using t test with Bonferroni correction; n = 5 mice per group).

(TIF)

S4 Fig. Uncropped image of Western blots included in Fig 7A–7D. The red boxes indicate

the cropped regions.

(TIF)

S5 Fig. Uncropped image of gels included in Fig 8E. The red box indicates the cropped

region.

(TIF)

S6 Fig. MGO did not induce the expression of α-SMA, SET7/9, and H3K4me1 in HPMCs.

Representative Western blotting results for the expression of (A) α-SMA (B) SET7/9 of

HPMCs. GAPDH was used as an internal control. Lower panel: quantification. (C) Represen-

tative Western blotting analysis showing level of H3K4me1 in HPMCs. H3 was used as the

internal control. Lower panel: quantification. Data are means ± S.D. �, P< 0.05 (Student’s

t test; n = 5 samples per group).

(TIF)

S7 Fig. TGF-β1 induced the expression of SET7/9, but not SET1A, SET1B, MLL1, MLL2,

or MLL4 in HPMCs. Representative Western blotting results for the expression of (A) SET7/9

(B) SET1A (C) SET1B (D) MLL1 (E) MLL2 and (F) MLL4 of HPMCs. GAPDH was used as an

internal control. Lower panel: quantification. Data are means ± S.D. �, P< 0.05 (Student’s

t test; n = 5 samples per group).

(TIF)
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S8 Fig. Sinefungin did not affect monocyte/macrophage infiltration in mice with perito-

neal fibrosis. (A) Typical CD68 expression in peritoneal tissues of control mice, MGO-

injected mice treated with vehicle only and MGO-injected mice treated with sinefungin

(immunohistochemical [IHC] stain, ×200). (B) Numbers of CD68-positive (CD68+) cells in

the 3 groups of mice. Scale Bar = 200 μm. Data are means ± S.D. �, P< 0.05 (one-way

ANOVA followed by post hoc test using t test with Bonferroni correction; n = 5 mice per

group).

(TIF)
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