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Abstract

In this thesis, an H∞-constrained incentive Stackelberg games for stochastic

systems with deterministic external disturbances are investigated. As part of

the preliminary study, some results of the deterministic system are also pre-

sented. Although we focus on continuous-time, we have studied dynamic

games for both discrete- and continuous-time systems. In the case of discrete-

time, both deterministic and stochastic systems are investigated. One leader

and multiple followers are considered for both finite- and infinite-time cases.

We also studied multiple leaders and multiple followers for a continuous-time

stochastic system. To simplify the calculation, only the infinite-time horizon

of continuous-time is emphasized.

In the incentive Stackelberg game, players are divided into two categories; the

leader group and the follower group. For a single leader game, incentive Stack-

elberg strategy is an extensive idea in which the leader can achieve his team-

optimal solution in a Stackelberg game. Multiple leaders and multiple follow-

ers have made the game more complex and challenging. In the leaders’ group

and followers’ group, players are supposed to be non-cooperativ; subsequently,

Nash equilibrium is investigated. Several theorems and lemmas are designed

to study the incentive Stackelberg game problems. For multiple leader games,

an incentive structure is developed in such a way that leaders achieve Nash

equilibrium by attenuating the disturbance under H∞-constrained. Simultane-

ously, followers achieve their Nash equilibrium ensuring the incentive Stack-

elberg strategies of the leaders while the worst-case disturbance is considered.

The deterministic disturbances and their attenuation to stochastic systems un-

der the H∞-constrained is one of the main attractions of this thesis. Problems

involving deterministic disturbance must be attenuated at a given target called

disturbance attenuation level γ > 0. Surprisingly, the concept of solving the

disturbance reduction problem under the H∞-constrained seems like a Nash

equilibrium between the disturbance input and the control input.



In this research, a very general and simple linear stochastic system governed

by Itô differential equation has been studied. This thesis studies the most com-

mon linear quadratic (LQ) optimal control in the game problems. In order to

solve the LQ problem, stochastic dynamic programming (SDP) and stochastic

maximum principle [Peng (1990)] are used. Cooperative game problems and

non-cooperative game problems are solved based on the concepts of Pareto

optimality and Nash equilibrium solutions, respectively. Several basic prob-

lems are completely solved and useful for current research. The main task to

solve the LQ problem is to find a matrix solution of algebraic Riccati equa-

tions (AREs). Newton’s method and Lyapunov iterative method are used to

solve such AREs.

However, the main objective of this research is to investigate the incentives

Stackelberg strategy, preliminary research and synthesis of LPV systems for

multiple decision makers. We aim to better understand to implement our cur-

rent idea for LPV system in the future. H∞-constrained Pareto optimal strategy

for stochastic linear parameter varying (LPV) systems with multiple decision

makers is investigated. The modified stochastic bounded real lemma and lin-

ear quadratic control (LQC) for the stochastic LPV systems are reformulated

by means of linear matrix inequalities (LMIs). In order to decide the strategy-

set of multiple decision makers, Pareto optimal strategy is considered for each

player and the H∞-constrained is imposed. The solvability conditions of the

problem are established from cross-coupled matrix inequalities (CCMIs). Sev-

eral academic and real-life numerical examples have also been resolved to

demonstrate the usefulness of our proposed schemes.

This thesis consists of seven chapters. In Chapter 1, the research background,

motivation, research survey, objectives and outlines of the thesis are described.

Some basic definitions and preliminary results are also introduced in this chap-

ter. Chapter 2 of the thesis summarizes some of the preliminary mathemat-

ical problems based on discrete-time and continuous-time stochastic optimal

control. The exogenous disturbance problem and its attenuation of the H∞-

constrained are presented. In Chapter 3, the incentive Stackelberg game for

a discrete-time deterministic system is considered. It explains two levels of

hierarchy with one leader and multiple followers. Followers are supposed

to act non-cooperatively. Exogenous disturbance also exists in the system

and is attenuated under the H∞-constrained. Chapter 4 investigates the in-

centive Stackelberg game for discrete-time stochastic systems. The structure
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of the game is very similar to Chapter 3. It is a single leader and multiple

non-cooperative followers with exogenous disturbance which is attenuated un-

der the H∞-constrained in the 2-level hierarchy. Therefore, Chapter 4 can be

viewed as the stochastic version of the deterministic game described in Chapter

3. In Chapter 5, the continuous-time incentive Stackelberg games for multiple

leader and multiple followers are investigated. The external disturbance is in-

cluded with the system, as usual. The information pattern of the game is more

complex than before. Each leader must achieve Nash equilibrium and use the

H∞-constrained to reduce the external disturbance. Each leader separately an-

nounces the declares incentive Stackelberg strategies for each follower. Each

follower employs a leader incentive mechanism that follows the Nash equilib-

rium in a follower group. Leaders and followers do not cooperate with their

group. Chapter 6 discusses the Pareto optimal strategy for stochastic LPV sys-

tem with multiple decision makers. In the dynamic game of uncertain stochas-

tic systems, multiple participants can be used for more realistic plants. The

system includes disturbances that are attenuated under the H∞-constrained. Fi-

nally, in Chapter 7, the thesis is concluded with some motivating guidelines for

future research.

In this thesis, two appendices are included. The Appendix A discusses how

to solve convex optimization problems using linear matrix inequalities (LMIs)

and special cases to solve systems and control theory problems. Some pre-

liminary results on static output feedback optimal control are given in Ap-

pendix B. Here we consider the linear quadratic optimal cost control prob-

lem for stochastic Itô differential equations. Several definitions, theorems, and

lemmas are studied for future research. To solve the output feedback control

problem, Newton’s algorithm and corresponding MATLAB codes are already

developed. Numerical examples of a very basic problem have been solved.

The problem is already formulated for future investigation.
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Chapter 1

Introduction

Game theory is a mathematical model for studies of conflict and cooperation among in-

telligent rational decision makers. Game theory is mainly applied to economics, politics,

psychology, logic, and computer science. Initially, it involved a zero-sum game in which

one’s earnings led to the loss of other. Nowadays game theory applies to a wide range of

behavioral relationships. It is a general term for the logical decision science of humans,

animals, and computers. Game theory is related to strategic interactions among multiple

decision makers and named players. Every player has a nontrivial strategy chosen based on

the payoff, i.e., each player has an objective function to maximize, called profit function, or

to minimize, called cost function. In a multi-player game, each player’s objective function

consists of at least one other player’s choices called decision variables. The decision vari-

able is the amount managed by the decision maker. A decision variable that determines the

value that generates the optimum value of the objective function. The cooperative game

investigates the relative amount of power each player holds in these alliance games, or how

the alliance allocates their returns. This applies to what happens in political science or

international relations and the concept of power. On the other hand, if cooperation is not

allowed between players, we call the game non-cooperative game. The non-cooperative

game concerns the analysis of strategic choices. In this case, two or more players cannot

move together from the solution point. The solution point where players can take bene-

fit from unilateral movements is called Nash Equilibrium, and is named after John Nash.

A non-cooperative game is called zero-sum if the sum of the players’ objective functions

equals zero. The zero-sum game is a mathematical representation in which each player’s

utility gain or loss is completely balanced with the loss or gain of other player’s utility. If

the players’ total returns add up and subtract the total loss, they will total zero. Similarly,

we can define nonzero-sum and constant sum game. If the player’s behavior uniquely deter-

mines the result captured by the objective function, the game is considered deterministic.

In deterministic games, player action solutions produce completely predictable results. On
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the other hand, if at least one player’s objective function is a known probability distribution

of an additional variable (state), then, it becomes stochastic game. The stochastic game

is a dynamic game with a stochastic transition to be played by one or more players. If no

player can get any information about the behavior of any other player, it is called a dynamic

game. On the other hand, if players can only access the information shared by all, we say

the game is static. If the evolution of the decision-making process (controlled by the player

over time) occurs in a continuous period of time and usually involves a differential equa-

tion, the dynamic game is considered a differential game. If it occurs on a discrete-time

horizon case, a dynamic game is called a discrete time game.

1.1 Research background and motivation

CP

Leader’s Control Follower’s Control

Fig. 1.1: Packet switch in a loop architecture.

The engineering application of the incentive Stackelberg strategy is a scheduling

problem of packet switches working in the loop structure (Figure 1.1) introduced by

[Saksena and Cruz (1985)]. Communication in high-speed networks can be switched opti-

cally or electronically. Although optical switches are advantageous for circuit switching, it

is generally considered difficult to combine them with packet switching. In packet switch-

ing and scheduling, the switch provides lossless communications for sessions with certain

smoothing attributes and allows the use of input flow control to translate the session into a

smooth session. When switching between connections according to a scheduling strategy,

inbound packets on each connection are stored in a limited-capacity buffer and managed

by the central processor. Packets are rejected, when the buffer is full. When the central
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processor serves a particular connection, the buffering force of the connection is controlled

locally based on the state information of the buffer. The goal of the local controller is to

maximize the data transmission on the connection. On the other hand, the central processor

knows the state of all connection buffers and all local controllers’ control actions. The goal

of the central processor is to use scheduling policies to maximize the total data transmis-

sion from all connections. In this problem, the central processor is represented as a leader

and the local connection controller is represented as a follower. The problem information

structure allows the leader to access the follower’s decision value and observations at each

stage of the process. However, our motivation is that the incentive Stackelberg strategy

for the above problem comes from static games, our goal is to deal with more challenging

dynamic games. Furthermore, dynamic games using the stochastic system make the thesis

more informative.

1.2 Stochastic differential equations

Since the problem investigated in this thesis refers to a stochastic control system, we recall

some facts on the stochastic differential equations.

Definition 1.1. [Dragan et al. (2006)] A measurable space is an ordered pair (X , A ), in

which X is a set and A is a σ -algebra of subsets of X, that is, A is a family of subsets

A⊂ X such that

(i) X ∈A ;

(ii) If A ∈A , then X−A ∈A ;

(iii) If An ∈A , n≥ 1, then ∪∞
n=1An ∈A .

Definition 1.2. [Dragan et al. (2006)] For a measurable space (X , A ), a function μ :

A → [0,∞] is called a measure if:

(i) μ( /0) = 0

(ii) if An ∈A , n≥ 1 and Ai∩A j = /0 for i �= j, then

μ(∪∞
n=1An) =

∞

∑
n=1

μ(An).

A triplet (X , A , μ) is called a space with measure. If μ(X) = 1, then μ =P is a probability

on A and the triplet (X , A , P) is called a probability space.
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Definition 1.3. [Dragan et al. (2006)] An r-dimensional stochastic process x(t), t ∈ [0,∞)

is called a stochastic process with independent increments if for all 0 = t0 < t1 < · · ·< tN =

t, the random vectors x(t0), x(t1)− x(t0), . . . ,x(tN)− x(tN−1) are independent.

Definition 1.4. [Dragan et al. (2006)] A stochastic process w = {w(t)}t∈[0,∞) in a proba-

bility space (X , A , P) is called a standard Brownian motion or a standard Wiener process

if:

(i) w(0) = 0;

(ii) with probability 1, the function t → w(t) is continuous in t;

(iii) w(t) is a stochastic process with independent increments and the increment w(t + s)−
w(s) has the normal distribution N(0, t) with t, s ∈ [0, ∞);

(iv) E[w(t)] = 0, t ∈ [0, ∞), E[|w(t)−w(s)|2] = |t− s| with t, s ∈ [0, ∞).

1.2.1 Stochastic integrals

Through the one dimensional Wiener process w(t) ∈ R, let us define a continuous sample

path as a solution to the following stochastic differential equation:

dx(t) = f (t, x(t))dt +g(t, x(t))dw(t), x(0) = x0, (1.1)

for all t ∈ [0, ∞), x ∈ R
n. Basically, the stochastic differential equation (1.1) is the repre-

sentation of the following integral sign.

x(t) = x0 +
∫ t

0
f (s, x(s))ds+

∫ t

0
g(s, x(s))dw(s). (1.2)

The last integral term on the right side of equation (1.2) is called a stochastic integral.

For a suitable function g [Higham (2001)], the integral
∫ T

0 g(t)dt can be approximated

by Riemann-Stieltjes integral with the sum

N−1

∑
k=0

g(tk)(tk+1− tk), (1.3)

where the discrete points tk = kδ t were already introduced. The Riemann sum in (1.3) is

based on left end-point. In fact, the integral is defined by taking the limit δ t → 0 in (1.3).

Using a similar idea, we can consider the sum of the form

N−1

∑
k=0

g(tk)(w(tk+1)−w(tk)). (1.4)

By analogy with (1.3), it can be considered as an approximation of the stochastic integral∫ T
0 g(t)dw(t). This is known as the Itô integral. Here, we integrate g with respect to the

Wiener process w(t).
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Remark 1.1. The trajectory of the Wiener process has an infinite change in any interval

[0, T ], T > 0. In other words, for any δ > 0,

P

[
N−1

∑
k=0

|w(tk+1)−w(tk)|> δ

]
→ 1, (1.5)

holds as max(tk+l − tk) → 0, 0 = t0 < tl < .. . < tN = T . It should be noted that be-

cause of (1.5), the Itô stochastic integral can fail to exist in the sense of Riemann-Stieltjes

[Afanasiev et al. (2013)].

An alternative approach to the Riemann sum (1.3) based on mid-point can be written as

N−1

∑
k=0

g
(

tk + tk+1

2

)
(tk+1− tk). (1.6)

The corresponding alternative to (1.4) is

N−1

∑
k=0

g
(

tk + tk+1

2

)
(w(tk+1)−w(tk)). (1.7)

The ‘mid-point’ sum (1.7) is known as Stratonovich integral.

1.2.2 Itô’s formula

Let us define a scalar function V (t, x) for which the partial derivatives Vt , Vx and Vxx exist.

If the process x(t) possesses the following stochastic differential equation:

dx(t) = f (t)dt +σ(t)dw(t). (1.8)

then the process θ(t) = V (t,x(t)) also has a stochastic differential dθ(t), defined by the

following formula:

dθ(t) =
[
Vt(t, x(t))+V T

x (t, x(t)) f (t)

+
1

2
Tr[σ(t)σT (t)Vxx(t, x(t))]

]
dt +V T

x (t, x(t))σ(t)dw(t), (1.9)

where Tr is the trace of a matrix; Vx ∈ R
n is the vector with components ∂V

∂xi
; Vxx is the

square matrix with elements ∂ 2V
∂xi∂x j

, (i, j = 1, . . . ,N) [Afanasiev et al. (2013)].

Proof. Let us consider two arbitrary moments τ1 and τ2 (τ1 < τ2). Let us divide the interval

[τ1, τ2] into some sub-intervals as follows:

τ1 = t0 < t1 < · · ·< tN = τ2.
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Therefore,

θ(τ2)−θ(τ1) =
N−1

∑
i=0

[V (ti+1, x(ti+1))−V (ti, x(ti))]. (1.10)

Applying Taylor’s formula on the term of right hand side, we obtain

V (ti+1, x(ti+1))−V (ti, x(ti))

=Vt(ti +αi(ti+1− ti), x(ti))(ti+1− ti)

+V T
x (ti, x(ti))(x(ti+1)− x(ti))

+
1

2
Tr
[
Vxx (ti, x(ti)+λi(x(ti+1)− x(ti)))

× (x(ti+1)− x(ti))(x(ti+1)− x(ti))
]
,

where, αi and λi are some numbers form the interval [0, 1]. The increment of the process

x(t) of the equation (1.8) can be represented by

x(ti+1)− x(ti) = f (ti)(ti+1− ti)+σ(t j)(w(ti+1)−w(ti)), (1.11)

with max[ti+1− ti]→ 0. Therefore,

V (ti+1, x(ti+1))−V (ti, x(ti))

= [Vt(ti, x(ti))+V T
x (ti, x(ti)) f (t j)](ti+1− ti)

+V T
x (ti, x(ti))σ(t j)](w(ti+1)−w(ti))

+
1

2
Tr[Vxx(ti, x(ti))σ(ti)σT (ti)(ti+1− ti)].

Finally, from (1.10) we can obtain,

θ(t2)−θ(t1) =
N−1

∑
i=0

[[
Vt(ti, x(ti))+V T

x (ti, x(ti)) f (ti)

+
1

2
Tr[Vxx(ti, x(ti))σ(ti)σT (ti)]

]
(ti+1− ti)

+V T
x (ti, x(ti))σ(t j)](w(ti+1)−w(ti))

]
.

By observing the limits of all sums in this expression, it becomes as follows:

dθ(t) =
[
Vt(t, x(t))+V T

x (t, x(t)) f (t)

+
1

2
Tr[σ(t)σT (t)Vxx(t, x(t))]

]
dt +V T

x (t, x(t))σ(t)dw(t), (1.12)

Hence, Itô’s formula is proved.
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1.2.3 Stochastic differential games

Stochastic differential games are a type of decision-making problem in which the evolution

of states is described by stochastic differential equations and the players work throughout

a time interval [Başar and Olsder (1999)]. An N-person stochastic differential game within

a fixed duration involves the following:

(i) An index set N = {1, . . . , N} is called players’ set.

(ii) The prior information about time, [0, T ] is called time domain.

(iii) An infinite set S0 ∈ R
n with some topological structure containing elements {x(t) ∈

S0, 0≤ t ≤ T} is called the game’s trajectory space. Its elements {x(t), 0≤ t ≤ T}
constitutes the game’s allowable state trajectory. Furthermore, for each fixed t ∈
[0, T ], x(t) ∈ S0.

(iv) An infinite set Si ∈ R
mi with some topological structure, defined for each i ∈ N

called the control (action) space of i-th player, Pi, whose elements {ui(t), 0≤ t ≤ T}
are the controls of Pi. Furthermore, for each fixed t ∈ [0, T ], ui(t) ∈ Si.

(v) A stochastic differential equation

dx(t) = f (t, x(t), u1(t), ..., uN(t))dt +σ(t, x(t))dw(t), x(0) = x0, (1.13)

whose solution represents the state trajectory of the game. Here, σ(t, x(t)) is an

m×θ matrix and w(t) is a θ dimensional Wiener process.

(vi) A set of value functions ηi(·) defined for each i ∈N

ηi(t) = {x(s), 0≤ s≤ ε i
t}, 0≤ ε i

t ≤ t, (1.14)

where ε i
t is non-decreasing in t, and ηi(t) determines the state information gained and

recalled by Pi at time t ∈ [0, T ]. Specification of ηi(·) characterizes the information

structure/pattern of Pi.

(vii) A sigma-field Ni
t , in S0, generated for each i ∈N by the set {x(s) ∈ B | 0≤ s≤ ε i

t},
where B⊂ S0 is a Borel set - is called the information field of Pi.

(viii) A pre-specified class Γi of mappings

γi : [0, T ]×S0 → Si,

with the property that ui(t) = γi(t, x) is Ni
t -measurable (i.e. it is adapted to the

information field Ni
t ). Γi is the strategy space of Pi and each of its elements γi is a

permissible strategy for Pi.
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(ix) Two functions qi : S0 → R, gi : [0, T ]× S0× S1× ·· · × SN → R defined for each

i ∈N , so that the composite functional

Ji(u1, ..., uN) = E

[∫ T

0
gi(t, x(t), u1(t), ..., uN(t))dt +qi(x(T ))

]
. (1.15)

is well defined for every u j(t) = γ j(t, x), γ j ∈ Γ j( j ∈N ), and for each i∈N , Ji is the cost

functional of Pi in a fixed duration stochastic differential game and E[·] is the expectation

operator.

1.2.4 Optimal control

The optimal control is a specific branch of modern control to provide an attractive analysis

design. The final result of an optimal design is not considered to be stable, having a certain

bandwidth, or satisfying any kind of ideal constraints related to classical control. However,

it is considered to be the best type of a particular system – therefore, the term optimal.

Linear optimal control is a special kind of optimal control in which the controlled device

is assumed to be linear, and the controller, which generates the optimal control, is limited

to linear. A linear controller operating with a quadratic performance optimization index

is called a linear quadratic (LQ) method. We focus on linear quadratic control problems

where the cost functional is quadratic and the state equation is linear. The control theory of

deterministic systems strongly influences the research of stochastic optimal control prob-

lems, in which the state of the system is represented by a stochastic process. In the long

history of stochastic systems studies, the class associated with white noise perturbations at-

tracted a lot of attention to the control literature. The goal of optimization is very common

because it can be viewed in different ways depending on the method.

It is worth mentioning that this thesis only studies the convex optimization problem.

That is, the weighting matrix of all linear quadratic costs in this thesis is assumed to be

positive definite/positive semi-definite.

Consider the following stochastic LQ system

dx(t) = [Ax(t)+Bu(t)]dt +Apx(t)dw(t), x(0) = x0, (1.16a)

J(x0; u) = E

[∫ ∞

0
[xT (t)Qx(t)+uT (t)Ru(t) dx

]
, (1.16b)

with Q≥ 0 and R > 0.

According to [Rami and Zhou (2000)], let us define a subset I of Sn

I � {X ∈ Sn | det[R] �= 0}. (1.17)
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It should be noted that I �= φ when R is nonsingular.

Let is define the following stochastic algebraic Riccati operatorR : I → Sn by

R(X)� AT X +XA+AT
p XAp +Q−XBR−1BT X . (1.18)

Moreover, let us introduce the following subset P of Sn as

P � {P ∈ Sn | R(P)≥ 0, R > 0}. (1.19)

By applying Schur’s lemma, we can write (1.19) as the following LMI format:

P � {P ∈ Sn | M(P)≥ 0, R > 0}, (1.20)

where

M(X)�

⎡
⎢⎢⎣

AT X +XA+AT
p XAp +Q XB

BT X R

⎤
⎥⎥⎦ . (1.21)

P is then seen to be convex asM is affine [Rami and Zhou (2000)].

1.2.5 Non-cooperative games

In order to express non-cooperative games, the following objects are necessary:

• the number of players,

• the actions that each player may take and the restrictions imposed on them,

• objective function for each player to optimize,

• if the player is allowed to perform multiple actions, the time sequence of the actions,

• the information pattern and at what point each player can use information based on

past actions of other players,

• whether the player’s behavior is the result of a fixed (known) distribution of stochastic

events or not.

Accordingly, we consider an N-player game, with P1, ...,PN denoting the Players set. The

decision or action variable of Player i is denoted by xi ∈ Xi, where Xi is the action set of

Player i. The action set could be a finite set, for example, with N = 2, we could have

a coupled constraint set described by: 0 ≤ x1,x2 ≤ 1, x1 + x2 ≤ 1. If we consider the
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objective/cost function of Player i will be denoted by Ji(xi,x−i), where x−i stands for the

action variables of all players except the i-th one.

Let Ω∈X be the constraint set where the actions variables are feasible. Now, an N-tuple

of action variables x∗ ∈Ω constitutes a Nash equilibrium (or, non-cooperative equilibrium)

(NE) if, for all i ∈ N ,

Ji(x∗i ,x
∗
−i)≤ Ji(xi,x∗−i), ∀ xi ∈ Xi, such that (xi,x∗−i) ∈Ω. (1.22)

If N = 2, and J1 = −J2 = J, then we have a two-player zero-sum game (ZSG), with

Player 1 minimizing J and Player 2 maximizing the same quantity. In this case, the Nash

equilibrium becomes the saddle-point equilibrium(SPE)

J(x∗1,x2)≤ J(x∗1,x
∗
2)≤ J(x1,x∗2), ∀(x1,x2) ∈ X . (1.23)

This also implies that the order in which minimization and maximization are carried out is

inconsequential, that is

min
x1∈X1

max
x2∈X2

J(x1,x2) = max
x2∈X2

min
x1∈X1

J(x1,x2) = J(x∗1,x
∗
2) =: J∗. (1.24)

We then say in this case that the zero-sum game does not have a saddle point in pure

strategies if

min
x1∈X1

max
x2∈X2

J(x1,x2)> max
x2∈X2

min
x1∈X1

J(x1,x2). (1.25)

This opens the door for looking for a mixed-strategy equilibrium.

With just replacing xi’s by pi’s, where pi ∈Pi is the set of all probability distributions

on Xi, a pair (p∗1, p∗2) constitutes a mixed-strategy saddle-point equilibrium (MSSPE), if

J(p∗1, p2)≤ J(p∗1, p∗2)≤ J(p1, p∗2), ∀(p1, p2) ∈P1×P2, (1.26)

where

J(p1, p2) = Ep1,p2
[J(x1,x2)].

Similarly, if there exists no Nash equilibrium for an N-player game, the n-tuple (p∗1, ..., p∗N)
is in mixed-strategy Nash equilibrium (MSNE) if

Ji(p∗i , p∗−i)≤ Ji(pi, p∗−i), ∀pi ∈Pi. (1.27)

A precise definition of extensive form of a dynamic game now follows.

Definition 1.5. Extensive form of an N-person nonzero-sum finite game without chance

moves is a tree structure with
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(i) a specific vertex indicating the starting point of the game,

(ii) N cost functions, each one assigning a real number to each terminal vertex of the

tree, where the i-th cost function determines the loss to be incurred to Pi,

(iii) a partition of the nodes of the tree into N player sets,

(iv) a subpartition of each player set into information sets {η i
j}, such that the same num-

ber branches emanate from every node belonging to the same information set and no

node follows another node in the same information set.

1.2.6 Cooperative games

In the cooperative game, the strategies of individual players are concentrated in the coali-

tion. If the players are able to reach a cooperation agreement so that the choice of action

or decision can be made collectively and with complete trust, the game is called a coop-

erative. One of the main problems in the cooperative game is how to fairly distribute the

big coalition rewards among players. If the solution can be found in vector form, it can

represent the task of each player. In this thesis, we propose the Pareto concept, which was

named after the economist Vilfredo Pareto, for the cooperative games. Let us consider the

following linear stochastic system with linear quadratic cost functions:

dx(t) = [Ax(t)+
N

∑
i=1

Biui(t)]dt +Apx(t)dw(t), x(0) = x0, (1.28a)

Ji (x0, u1, . . . ,uN) :=
1

2
E

[∫ ∞

0

[
xT (t)Qix(t)+

N

∑
j=1

uT
j (t)Ri ju j(t)

]
dt

]
, (1.28b)

where Qi = QT
i ≥ 0, Ri j = RT

i j ≥ 0 for i �= j and Rii = RT
ii > 0, i, j = 1, . . . ,N.

Definition 1.6. A strategy-set (u1, · · · ,uN) is said to be a Pareto optimal strategy if it

minimizes a sum of the cost of functional of all players denoted by

J(u1, · · · ,uN) =
N

∑
i=1

riJi(x0, u1, · · · ,uN), (1.29)

where ∑N
i=1 ri = 1 for some 0 < ri < 1.

Theorem 1.1. For the stochastic optimal control problem (1.28), the optimal linear feed-

back strategy for the a Pareto game is given by

u∗(t) =−R−1BT Px(t). (1.30)
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where PT = P ≥ 0 is the solution of the following stochastic algebraic Riccati equation

(SARE):

PA+AT P+Q−PBR−1BT P+AT
p PAp = 0 (1.31)

with

B :=
[
B1, . . . ,BN

]
,

u(t) :=

⎡
⎢⎣u1(t)

...
uN(t)

⎤
⎥⎦ ,

Q :=
N

∑
i=1

riQi,

R := block diag
[
∑N

i=1 riRi1 . . . ∑N
i=1 riRiN

]
.

Proof. If we centralized the system (1.28) base on the Definition 1.6, we can can rewrite it

as follows:

dx(t) = [Ax(t)+Bu(t)]dt +Apx(t)dw(t), x(0) = x0, (1.32a)

J(x0, u) :=
1

2
E

[∫ ∞

0

(
xT (t)Qx(t)+uT (t)Ru(t)

)
dt
]
, (1.32b)

where

B :=
[
B1, . . . ,BN

]
,

u(t) :=

⎡
⎢⎣u1(t)

...

uN(t)

⎤
⎥⎦ ,

Q :=
N

∑
i=1

riQi,

R := block diag
[
∑N

i=1 riRi1 . . . ∑N
i=1 riRiN

]
.

With the control (1.30) the system (1.32) becomes

dx(t) = [A−BR−1BT P]x(t)dt +Apx(t)dw(t), x(0) = x0, (1.33a)

J(x0, u∗) :=
1

2
E

[∫ ∞

0

(
xT (t)Qx(t)+ xT (t)PBR−1BT Px(t)

)
dt
]
,

=
1

2
E

[∫ ∞

0
xT (t)[Q+PBR−1BT P]x(t)dt

]
. (1.33b)

Let V (x(t)) = x(t)T Px(t) be the Lyapunov candidate for the system (1.32), where P is a

symmetric positive semi-definite matrix. Now applying Itô’s formula, we obtain

dV (x(t)) =Vx[A−BR−1BT P]x(t)+
1

2
xT (t)ApVxxApx(t)
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= xT (t)[[A−BR−1BT P]T P+P[A−BR−1BT P]+AT
p PAp]x(t), (1.34)

which is stable if dV (x(t)) < 0. If (A, Ap | C) is exactly observable, we can form the

Lyapunov stabilizable equation. By integrating and taking expectoration operator (E[·]) in

(1.34) as follows:

E

[∫ ∞

0
xT (t)[[A−BR−1BT P]T P+P[A−BR−1BT P]+AT

p PAp]x(t)dt
]

=−E
[∫ ∞

0
xT (t)[Q+PBR−1BT P]x(t)dt

]
, (1.35)

i.e.,

[A−BR−1BT P]T P+P[A−BR−1BT P]+AT
p PAp +Q+PBR−1BT P = 0. (1.36)

After simplification we can find

PA+AT P+Q−PBR−1BT P+AT
p PAp = 0. (1.37)

Hence, the first part of Theorem 1.1 is proved.

1.2.7 Nash games

Definition 1.7. An N-tuple of strategies

u∗ := {u∗1,u∗2, . . . , u∗N},

with u∗i ∈Ui, i ∈N constitutes a Nash equilibria for an N-person nonzero-sum finite game,

if the following N inequalities are satisfied for all ui ∈Ui, i ∈ N:

J∗i := Ji(x0, u∗1, ... ,u
∗
N)≤ Ji(x0, u∗1, ... , u∗i−1, ui, u∗i+1, ... ,u

∗
N). (1.38)

where The N-tuple of quantities {J∗1 , . . . ,J∗N} is known as a Nash equilibrium outcome of

the nonzerosum finite game.

Let us consider the following linear stochastic system with linear quadratic cost func-

tions,

dx(t) = [Ax(t)+
N

∑
i=1

Biui(t)]dt +Apx(t)dw(t), x(0) = x0, (1.39a)

Ji(x0, u1, ... ,uN) = E

[∫ ∞

0
[xT (t)Qix(t)+uT

i (t)Riui(t)]dt
]
, (1.39b)

where with Qi = QT
i ≥ 0 and Ri = RT

i > 0, i = 1, . . . ,N.
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Theorem 1.2. The optimal linear feedback strategies for the Nash games are given by

u∗i (t) = Kix(t) =−R−1
i BT

i Pix(t). (1.40)

where PT
i = Pi ≥ 0 is the solution of the following stochastic algebraic Riccati equation

(SARE):

Pi

(
A−

N

∑
j=1, j �=i

B jR−1
j BT

j

)
+

(
A−

N

∑
j=1, j �=i

B jR−1
j BT

j

)T

Pi

+Qi−PiBiR−1
i BT

i Pi +AT
p PiAp = 0. (1.41)

Proof. The stochastic system (1.39a) can be rewritten for i-th player considering others

players optimal strategy as follows:

dx(t) =

[(
A−

N

∑
j=1, j �=i

B jR−1
j BT

j

)
x(t)+Biui(t)

]
dt +Apx(t)dw(t), x(0) = x0,

= [Ax(t)+Biui(t)]dt +Apx(t)dw(t), x(0) = x0, (1.42)

where

A = A−
N

∑
j=1, j �=i

B jR−1
j BT

j .

Let V (x(t)) = x(t)T Pix(t) be the Lyapunov candidate for the system (1.39), where Pi is a

symmetric positive semi-definite matrix. Now applying Itô’s formula, we obtain

dV (x(t)) =Vx[A−BiR−1
i BT

i P]x(t)+
1

2
xT (t)ApVxxApx(t)

= xT (t)[[A−BiR−1
i BT

i Pi]
T Pi +Pi[A−BiR−1

i BT
i Pi]+AT

p PiAp]x(t), (1.43)

which is stable if dV (x(t)) < 0. If (A, Ap | C) is exactly observable, we can form the

Lyapunov stabilizable equation. By integrating and taking expectoration operator (E[·]) in

(1.43) as follows:

E

[∫ ∞

0
xT (t)[[A−BiR−1

i BT
i Pi]

T Pi +Pi[A−BiR−1
i BT

i Pi]+AT
p PiAp]x(t)dt

]

=−E
[∫ ∞

0
xT (t)[Qi +PiBiR−1

i BT
i Pi]x(t)dt

]
, (1.44)

i.e.,

[A−BiR−1
i BT

i Pi]
T Pi +Pi[A−BiR−1

i BT
i Pi]+AT

p PiAp +Qi +PiBiR−1
i BT

i Pi = 0. (1.45)
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After simplification we can find

PiA+AT Pi +Qi−PiBiR−1
i BT

i Pi +AT
p PiAp = 0, (1.46)

or,

Pi

(
A−

N

∑
j=1, j �=i

B jR−1
j BT

j

)
+

(
A−

N

∑
j=1, j �=i

B jR−1
j BT

j

)T

Pi

+Qi−PiBiR−1
i BT

i Pi +AT
p PiAp = 0. (1.47)

Hence, the first part of Theorem 1.2 is proved.

1.2.8 Stackelberg game

The concept of a Nash equilibrium solution is that there is no specific player controlling

the decision process. However, there are other types of non-cooperative decision problems

in which one participant has the ability to perform his/her strategy on other participants,

and for such decision problems, a hierarchical equilibrium solution concept must be intro-

duced. With regard to the work of H. von Stackelberg (1934), players who occupy a strong

position in such a decision-making problem are called leaders, and other players involved

in the decision-making of leaders are called followers. In two-player differential games,

the existence of a hierarchy in decision-making implies that one of the players is in a po-

sition to determine his/her strategy ahead of time, announce it, and enforce it on the other

players. Therefore, the Stackelberg solution is the only possible hierarchical equilibrium

solution applicable in such decision-making problems, called Stackelberg games. A hierar-

chical equilibrium solution in Stackelberg games is generally called a Stackelberg strategy.

Although there are many levels of hierarchy in the decision-making process, we limit the

discussion here to two levels.

Let us consider the following stochastic system with linear quadratic cost functionals

in the case of infinite-horizon:

dx(t) = [Ax(t)+B0u0(t)+B1u1(t)]dt +Apx(t)dw(t), x(0) = x0, (1.48a)

J0(x0, u0, u1) :=
1

2
E

[∫ ∞

0

(
xT (t)Q0x(t)+uT

0 (t)R00u0(t)+uT
1 (t)R01u1(t)

)
dt
]
, (1.48b)

J1(x0, u0, u1) :=
1

2
E

[∫ ∞

0

(
xT (t)Q1x(t)+uT

0 (t)R10u0(t)+uT
1 (t)R11u1(t)

)
dt
]
= 0,

(1.48c)

where A, B0, B1, Ap, Qi = QT
i ≥ 0, Rii = RT

ii > 0 and Ri j = RT
i j ≥ 0, i �= j, for i, j = 0,1

are the coefficient matrices of suitable dimensions. Assume that the Stackelberg game
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consists of two players. The initial state x(0) = x0 is assumed to be a random variable

with a covariance matrix E[x(0)xT (0)] = In.The subscript i = 0 represents the leader and

i = 1 represents the follower. Assuming that both players adopt a closed loop strategy, the

following definitions can be introduced.

Definition 1.8. For any admissible strategy-set (u0, u1) ∈ U, the strategy-set (u0, u1) is

called a Stackelberg strategy if the following conditions hold.

J0(x0, u∗0, u∗1)≤ J0(x0, u0, u0
1(u0)), ∀u0 ∈ R

m0 , (1.49)

where

J1(x0, u0, u0
1(u0)) = min

u1

J1(x0, u0, u1), (1.50)

and

u∗1 = u0
1(u

∗
0). (1.51)

It is well-known that the closed-loop Stackelberg strategies for the linear quadratic

problems have the following form:

ui = Kix(t), i = 0, 1. (1.52)

Let us assume that (A, Bi, Ap), i = 0, 1 is stabilizable and (A, Ap), i = 0, 1 are exactly

observable, then the following theorem can be derived.

Theorem 1.3. [Mukaidani and Xu (2015a)] The strategy-set (1.52) constitutes the Stackel-

berg strategy only if the following cross-coupled stochsastic cross-coupled algebraic non-

linear matrix equations (ANMEs) have solutions P1 ≥ 0, M0 ≥ 0, N1 > 0, N0 > 0 and K.

AT
KP1 +P1AK + Q̂1−P1B1R−1

11 BT
1 P1 +AT

p P1Ap = 0, (1.53a)

AT
KFP0 +P0AKF + Q̂0 +AT

p P0Ap = 0, (1.53b)

M1AT
K +AKM1−M1P1B1R−1

11 BT
1 −B1R−1

11 BT
1 P1M1 +ApM1AT

p −B1R−1
11 BT

1 P0M0

−M0P0B1R−1
11 BT

1 +M0P1B1R−1
11 R01R−1

11 BT
1 +B1R−1

11 R01R−1
11 BT

1 P1M0 = 0, (1.53c)

AKFM0 +M0AT
KF +APM0AT

p + In = 0, (1.53d)

BT
0 (P1M1 +P0M0)+R01KM1 +R00KM0 = 0, (1.53e)

where

F :=−R−1
11 BT

1 P1,

AK := A+B0K,
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AKF := A+B0K +B1F,

Q̂1 := Q1 +KT R10K,

Q̂0 = Q0 +FT R01F +KT R00K,

Then the strategy-set (u∗0(t), u∗1(t)) = (Kx(t), Fx(t)) is the Stackelberg strategy.

Proof. For an arbitrary leader’s strategy u0 = Kx(t), let us consider the follower’s LQ

closed-loop stochastic system as:

dx(t) = [(A+B0K)x(t)+B1u1(t)]dt +Apx(t)dw(t), x(0) = x0, (1.54a)

J1(x0, Kx, u1) :=
1

2
E

[∫ ∞

0

(
xT (t)(Q1 +KT R10K)x(t)+uT

1 (t)R11u1(t)
)

dt
]
. (1.54b)

Or, simply

dx(t) = [AKx(t)+B1u1(t)]dt +Apx(t)dw(t), x(0) = x0, (1.55a)

J1(x0, Kx, u1) :=
1

2
E

[∫ ∞

0

(
xT (t)Q̂1x(t)+uT

1 (t)R11u1(t)
)

dt
]
, (1.55b)

where

AK := A+B0K,

Q̂1 := Q1 +KT R10K.

In fact (1.55) seems to be a standard LQ optimal control problem. So, if there exists a matrix

PT
1 = P1 ≥ 0 that solves the following stochastic algebraic Riccati equation (SARE):

F(P1, K) := AT
KP1 +P1AK + Q̂1−P1B1R−1

11 BT
1 P1 +AT

p P1Ap = 0, (1.56)

then the follower’s state feedback control problem admits a solution,

u0
1(u0) = Fx(t) = F(K)x(t) =−R−1

11 BT
1 P1x(t). (1.57)

It is seen that the SARE (1.56) is same as the SARE (1.53a). On the other hand, Leader

cost J0 can be obtained as,

J0(x0, u0, u1(u0)) = J0(x0, Kx, Fx)

=
1

2
E

[∫ ∞

0

(
xT (t)(Q0 +FT R01F +KT R00K)x(t)

)
dt
]

=
1

2
E

[∫ ∞

0
xT (t)Q̂0x(t)dt

]
=Tr[P0], (1.58)
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with state equation

dx(t) = [A+B0K +B1F ]x(t)dt +Apx(t)dw(t), x(0) = x0, (1.59)

where P0 = PT
0 ≥ 0 is the solution of the following SARE:

K(P1, P0, K) := AT
KFP0 +P0AKF + Q̂0 +AT

p P0Ap = 0, (1.60)

with

AKF := A+B0K +B1F,

Q̂0 := Q0 +FT R01F +KT R00K.

Therefore, SARE (1.53b) holds. Let us consider the Lagrangian L as follows:

L (P1, P0, K) = Tr[P0]+Tr[M1F(P1, K)]+Tr[M0K(P1, P0, K)],

= Tr[P0 +M1(AT
KP1 +P1AK + Q̂1−P1B1R−1

11 BT
1 P1 +AT

p P1Ap)

+M0(AT
KFP0 +P0AKF + Q̂0 +AT

p P0Ap)]

= Tr[P0 +M1AT
KP1 +M1P1AK +M1Q̂1−M1P1B1R−1

11 BT
1 P1 +M1AT

p P1Ap

+M0AT
KFP0 +M0P0AKF +M0Q̂+M0AT

p P0Ap)] (1.61)

where M1 and M0 are symmetric matrices of Lagrange multipliers. Using Lagrange mul-

tiplier technique for nonlinear matrix functions, the necessary conditions for minimizing

Tr[P0] are as follows:

∂L

∂P1
= M1AT

K +AKM1−M1P1B1R−1
11 BT

1 −B1R−1
11 BT

1 P1M1 +ApM1AT
p −B1R−1

11 BT
1 P0M0

−M0P0B1R−1
11 BT

1 +M0P1B1R−1
11 R01R−1

11 BT
1 +B1R−1

11 R01R−1
11 BT

1 P1M0 = 0, (1.62a)

∂L

∂P0
= AKFM0 +M0AT

KF +APM0AT
p + In = 0, (1.62b)

1

2

∂L

∂K
= BT

0 (P1M1 +P0M0)+R01KM1 +R00KM0 = 0. (1.62c)

So, (1.53c)–(1.53e) are derived. Hence, Theorem 1.3 is proved.

1.2.9 Incentive Stackelberg game

The incentive Stackelberg strategy is used to induce non-cooperative followers’ virtual co-

operation to achieve the optimal solution of the leader [Saksena and Cruz (1985)]. An

incentive Stackelberg strategy is one where the leader achieves his/her team-optimal

solution to the hierarchical game by using an incentive mechanism. The following

two steps are the main elements of an incentive Stackelberg problem [Ho et al. (1982),

Basar and Olsder (1980)].
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(i) The leader determines a team-optimal strategy-set and announces it ahead of time.

(ii) Knowing the incentive, based on the leader’s announced team-optimal strategy, each

follower chooses a strategy so as to minimize his/her own cost.

It should be noted that no matter how the followers behave, the leader can achieve his/her

own team-optimal equilibrium by using the corresponding incentive strategy-set. Incen-

tive Stackelberg games apply to organizations with several players and with organizational

objective functions that may not be the same as the members’ objective functions. How-

ever, Chapter 3, Chapter 4 and Chapter 5 will discuss the disturbance attenuation incentive

Stackelberg game in detail. Here we present only the basic formulation of the incentive

Stackelberg game problem for one leader and one follower.

Consider a linear stochastic system governed by the Itô differential equation defined by

dx(t) =
[
Ax(t)+B0u0(t)+B1u1(t)

]
dt +Apx(t)dw(t), x(0) = x0, (1.63)

where x(t) ∈ R
n represents the state vector; u0(t) ∈ R

m0 represents the leader’s control

input for the follower; u1(t) ∈ R
m1 represents the follower ’s control input; w(t) ∈ R rep-

resents a one-dimensional standard Wiener process defined in the filtered probability space

(Ω, F , P, Ft) with Ft = σ{w(s) : 0≤ s≤ t} [Chen and Zhang (2004)].

Cost functionals of the leader is given by

J0 (x0, u0, u1) :=
1

2
E

[∫ ∞

0

{
xT (t)Q0x(t)+uT

0 (t)R00u0(t)+uT
1 (t)R01cu1(t)

}
dt
]
, (1.64)

where Q0 = QT
0 ≥ 0, R00 = RT

00 > 0, R01 = RT
01 ≥ 0.

Cost functionals of the follower is given by

J1 (x0, u0, u1) :=
1

2
E

[∫ ∞

0

{
xT (t)Q1x(t)+

[
uT

1 (t)R10u1(t)+uT
1 (t)R11u1(t)

]}
dt
]
, (1.65)

where Q1 = QT
1 ≥ 0, R11 = RT

11 > 0 and R10 = RT
10 ≥ 0. For a two-level incentive Stack-

elberg game, leader announce the following incentive strategy to the follower in ahead of

time:

u0(t) =Λx(t)+Ξu1(t), (1.66)

where the parameters Λ and Ξ are to be determined associated with the optimal strategy

u1(t) of the follower.

First, the leadear’s team-optimal solution u∗c(t) is investigated. By composing the

stochastic system (1.63), the following centralized systems can be obtained.

dx(t) =[Ax(t)+Bcuc(t)]dt +Apx(t)dw(t), x(0) = x0, (1.67)
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where

Bc :=
[
B0 B1

]
,

uc := col
[
u0 u1

]
.

Furthermore, the cost functional (1.64) can be modified as

J0 (uc(t)) :=
1

2
E

[∫ ∞

0

{
xT (t)Q0x(t)+uT

c (t)Rcuc(t)
}

dt
]
, (1.68)

where

Rc := block diag
[
R00 R01

]
.

Therefore, using standard LQ theory, suppose that the leader team-optimal state feedback

strategy is given by

u∗c(t) = Kcx(t) =−R−1
c BT

c Pcx(t), (1.69)

where

Kc =

[
Kc0

Kc1

]
=

[−R−1
00 BT

0 Pc

−R−1
01 BT

1 Pc

]
. (1.70)

Then there exists a matrix PT
c = Pc ≥ 0 that solves the following SARE:

PcA+AT Pc +Q0−PcBcR−1
c BT

c Pc +AT
p PcAp = 0. (1.71)

It should be noted that the relation between Λ and Ξ can be derived from (1.66) as

−R−1
00 BT

0 Pc =Λ−ΞR−1
01 BT

1 Pc, (1.72)

or,

Λ =−R−1
00 BT

0 Pc +ΞR−1
01 BT

1 Pc. (1.73)

So, the leader’s incentive Stackelberg strategy can be determined by

u0(t) =[Kc0−ΞKc1]x(t)+Ξu1(t),

=Kc0x(t)+Ξ [u1−Kc1x(t)] . (1.74)

To determine Ξ which satisfy (1.66), let us consider the following optimization problem

for the follower. To establish the follower’s according optimal strategy regarding leader’s

incentive Stackelberg strategy (1.66), we can change (1.63) as follows,

dx(t) =
[
Ax(t)+B0u0(t)+B1u1(t)

]
dt +Apx(t)dw(t), x(0) = x0,

=
[
Ax(t)+B0(Λx(t)+Ξu1(t))+B1u1(t)

]
dt +Apx(t)dw(t), x(0) = x0,
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=
[
Âx(t)+ B̂u1(t)u1(t)

]
dt +Apx(t)dw(t), x(0) = x0. (1.75)

where

Â := A+B0Λ,

B̂ := B1 +B0Ξ.

The cost functional of the follower can be written as

J1(x0, u0, u1) =
1

2
E

[∫ ∞

0

[
xT (t)Q1x(t)+(Λx(t)+Ξu1(t))T R10(Λx(t)+Ξu1(t))

+uT
1 (t)R11u1(t)

]
dt
]
,

=
1

2
E

[∫ ∞

0

{
xT (t)Q̂x(t)+

[
[Λx(t)+Ξu1(t)]T R10[Λx(t)+Ξu1(t)]

+uT
1 (t)R11u1(t)

]}
dt
]
, (1.76)

or, equivalently,

J1(x0, u1) =
1

2
E

[∫ ∞

0

{
xT (t)Q̂x(t)+2xT (t)Ŝu1(t)+uT

1 (t)R̂u1(t)
}

dt
]
, (1.77)

where

Q̂ := Q0 +ΛT R10Λ,

R̂ := R11 +ΞT R10Ξ,

Ŝ := ΛT R10Ξ.

It should be noted that there exists a cross-coupling term 2xT (t)Ŝu1(t) in the cost func-

tional (1.77). By using the technique similar to the one used in the stochastic optimal

control problem [Chen and Zhang (2004)], follower’s optimal strategy u†
1(t) = K†

1 x(t) can

be obtained, where

K†
Fi =−R̂−1(P1B̂+ Ŝ)T , (1.78)

and P1 is the symmetric non-negative solution of the following SARE:

P1Â+ ÂT P1 +AT
p P1Ap− (P1B̂+ Ŝ)R̂−1(P1B̂+ Ŝ)T + Q̂ = 0. (1.79)

Furthermore, to keep the optimality of the entire system unchanged, followers have to

determine Ξ satisfying the following equivalence relation.

K∗c1 ≡ K†
1 ,
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which can establish from (1.70) and (1.78) as follows:

−R−1
01 BT

1 Pc =−R̂−1(P1B̂+ Ŝ)T , (1.80)

or,

[R11 +ΞT R10Ξ]R−1
01 BT

1 Pc = BT
1 P1 +ΞT BT

0 P1 +ΞT R10Λ. (1.81)

By using relation (1.73) for Λ, we get

R11R−1
01 BT

1 Pc +ΞT R10ΞR−1
01 BT

1 Pc =

BT
1 P1 +ΞT BT

0 P1−ΞT R10R−1
01 BT

0 Pc +ΞT R10ΞR−1
01 BT

1 Pc. (1.82)

Canceling the term ΞT R10ΞR−1
01 BT

1 Pc from both sides of (1.82) we get

R11R−1
01 BT

1 Pc = BT
1 P1 +ΞT BT

0 P1−ΞT R10R−1
01 BT

0 Pc, (1.83)

and after simplification, the following MAEs can be found:

ΞT (BT
0 P1−R10R−1

01 BT
0 Pc) = R11R−1

01 BT
1 Pc−BT

1 P1. (1.84)

Remark 1.2. It should be noted that the incentive parameter Ξ can be uniquely determined

if and only if (BT
0 P1−R10R−1

01 BT
0 Pc) is non-singular.

Theorem 1.4. Suppose that the SARE in (1.71), SARE (1.79) and the MAEs (1.83) have

solutions. Then the strategy-set (1.66) under (1.70) and (1.78) constitutes the two-level

incentive Stackelberg strategies with H∞ constraint.

1.3 Research survey

The Stackelberg leadership model is a hierarchical strategy involving the first move-

ment of the leader and then the consequent movement of the followers. The term

Stackelberg was used after the German economist Heinrich Freiherr von Stackelberg,

who introduced this idea in his article ‘Market structure and equilibrium (Marktform

und Gleichgewicht)’ in 1934. The properties of Stackelberg games for two play-

ers have been extensively studied in [Starr and Ho (1969)]. Subsequently, this two-

player static game was extended to a dynamic game with different information patterns

[Chen and Cruz (1972), Simaan et al. (1973)]. Among the information patterns, closed-

loop Stackelberg strategies with applications were attracting considerable research in-

terest as – LQ problems [Medanic (1978), Basar and Selbuz (1979), Tolwinski (1981)].
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The idea of team-optimal solutions opens new directions for closed-loop Stackelberg

strategies. In [Basar and Olsder (1980)], the necessary and sufficient conditions for both

finite- and infinite-horizon closed-loop feedback solutions were derived for a team prob-

lem in which all players optimized a leader’s cost functional jointly. Furthermore,

[Salman and Cruz (1983)] derived team-optimal closed-loop Stackelberg strategies for sys-

tems with slow and fast modes.

An incentive Stackelberg strategy is one where the leader achieves his/her team-

optimal solution to the hierarchical game by using an incentive mechanism. Through

the last four decades, incentive Stackelberg games are the growing interest in research

(see, e.g., [Basar and Olsder (1980), Ho et al. (1982), Ishida and Shimemura (1983),

Zheng et al. (1984), Mizukami and Wu (1987), Mizukami and Wu (1988)], and references

therein). The purpose of the incentive mechanism is to induce virtual cooperation in non-

cooperative followers so that optimal system performance (reflected in the leader’s objec-

tive function) is achieved through hierarchical decision-making [Saksena and Cruz (1985)].

A two-person, continuous-time, linear differential game problems under quadratic cost

functions for both players were derived in [Basar and Olsder (1980)]. In that paper, the

authors treated both the finite- and the infinite-horizon cases. Unlike the discrete-time ver-

sion of [Basar and Selbuz (1979)], which article used a closed-loop team-optimal strategy

in a continuous-time differential game. In the recent years, there were many papers and

works dealing with the incentive Stackelberg strategy. In [Zheng and Basar (1982)], the

existence and derivation of the affine-excitation Stackelberg strategy were studied by using

the geometric method. In [Zheng et al. (1984)], the closed-loop Stackelberg strategy and

incentive policy in the dynamic decision problem were widely discussed. With several con-

trol problems, dynamic games for both continuous- and discrete-time systems have been

extensively studied (see e.g. [Başar and Olsder (1999)] and references therein).

In [Mizukami and Wu (1987), Mizukami and Wu (1988)], incentive Stackelberg strate-

gies were derived for LQ differential games, where the two leaders and one fol-

lower to the first paper and one leader and two followers to the second paper were

considered. In recent years, incentive Stackelberg games with robust control theory

have been studied for discrete-time linear systems with a deterministic disturbance in

[Ahmed and Mukaidani (2016), Mukaidani et al. (2017c)]. In both articles, one leader and

multiple non-cooperative followers were considered. A similar structure was adapted in

[Ahmed et al. (2017a), Mukaidani et al. (2017d), Mukaidani and Xu (2018)] for stochas-

tic case with H∞ constraint. On the other hand, continuous-time stochastic systems

were investigated for an infinite-horizon incentive Stackelberg game in [Mukaidani (2016),

Ahmed et al. (2017b)], where multiple leaders and multiple followers were considered. In
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[Mukaidani et al. (2017b)], incentive Stackelberg strategy with multiple leaders and mul-

tiple followers were considered for the stochastic Markov jumping control problem. It

should be noted that [Ahmed et al. (2017b)] discussed two-level hierarchical stochastic

games with M leaders and N followers with H∞ constraint.

On the other hand, a linear parameter-varying (LPV) system was introduced in

[Shamma (1988)] for analyzing the “gain-scheduling” problem. Gain scheduling involves

implementing a family of linear controllers such that controller coefficients (gains) are

changed (scheduled) based on the current values of the scheduled variables. In short, gain

scheduling is a control design approach that builds a nonlinear controller for a nonlinear

plant by patching a set of linear controllers.

1.4 Objectives and outlines

The primary objective of this research is to investigate the incentive Stackelberg strategy

for various dynamic systems. The incentive Stackelberg games are examined for the sys-

tems including external disturbances which are attenuated under the H∞ constraint. Solving

game problems of multiple players with disturbance terms is more difficult while stochas-

tic systems are observed. In the incentive Stackelberg games, players are divided into two

groups, leaders, and followers. Therefore, games with several constraints cause compli-

cated problems including accuracy of results. In other words, the incentive Stackelberg

game with such a complex pattern is a new approach in the two-level hierarchy. For this

approach, it is necessary to face the computational complexity for solving algebraic Riccati

equations (AREs). Besides, preliminary research and synthesis of the LPV system is pro-

vided for multiple decision makers. We aim to better understand to implement our current

idea for LPV easily in further.

This thesis attempts to consider the incentive Stackelberg game for both the discrete-

and continuous-time framework, both deterministic and stochastic systems are investigated.

In the case of continuous-time and LPV systems, only stochastic structures are included in

this thesis. For all schemes, linear quadratic optimal control is investigated only for sim-

plicity. However, the investigation of nonlinear problems is our future research. Therefore,

after discussing the basic problem of stochastic LQ systems, four major chapters can be

viewed afterward.

This thesis consists of seven chapters. In Chapter 1, the research background, moti-

vation, research survey, objectives, and outlines of the thesis are described. Some basic

definitions and preliminary results are also introduced in this chapter. Chapter 2 of the the-

sis summarizes some of the preliminary mathematical problems for this study. This chapter
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is an overview of the stochastic LQ systems. Several problems based on discrete-time and

continuous-time stochastic optimal control are solved. Stochastic dynamic programming

(DP) and Itô’s lemma are outlined. In particular, we discuss the concept of the solution of

multi-player games considering Nash equilibrium and Pareto optimality. The exogenous

disturbance problem and its attenuation of the H∞ constraint are presented and will play an

important role in later developments.

In Chapter 3, the incentive Stackelberg game for a discrete-time deterministic system

is considered. It explains two levels of hierarchy with one leader and multiple followers.

Followers are supposed to act non-cooperatively. Exogenous disturbance also exists in the

system and is attenuated under the H∞ constraint. In this work, the team-optimum solution

of the leader is formulated based on the result of [Zhang et al. (2007)]. By simulating a

set of cross-coupled backward difference Riccati equations (CCBDREs), the leader’s team

optimal solution can be found. The H∞ constraint for disturbance attenuation is taken into

account at the same time. On the other hand, the optimal strategy of the followers based

on the Nash equilibrium guarantees the leader’s team optimal solution. The expression

is also derived for the infinite-horizon case. An algorithm for solving the set of cross-

coupling algebra Riccati equations (CCARE) is developed. A numerical example shows

the efficiency of the proposed method.

Chapter 4 investigates the incentive Stackelberg game for discrete-time stochastic sys-

tems. The structure of this game is very similar to that described in Chapter 3. It is a

single leader and multiple non-cooperative followers with an exogenous disturbance at-

tenuating under the H∞ constraint in the 2-level hierarchy. Therefore, Chapter 4 can be

viewed as the stochastic version of the deterministic game described in Chapter 3. In this

chapter, we determine the leader’s incentive Stackelberg strategies according to the result

of [Zhang et al. (2007)] of the stochastic discrete-time system with disturbance. The in-

formation pattern of this problem question is as follows. The leader can access all the

values of the follower’s decision at each stage of the process. An incentive mechanism

for leading non-cooperative followers is virtual cooperation to achieve system goals. To

solve the problem in the case of finite- and infinite-horizon, a set of cross-coupled stochas-

tic backward difference Riccati equation (SBDRE) and stochastic matrix-valued difference

equations (SMVDEs) are derived, correspondingly. Furthermore, the Nash equilibrium of

the followers guarantees the leader’s team optimal solution. A Lyapunov-based recursive

algorithm has also been designed to reduce the computational complexity. Academic and

practical numerical examples guarantee the efficiency of the proposed method.

In Chapter 5, the continuous-time incentive Stackelberg games for multiple leaders and

multiple followers are investigated. The external disturbance is included with the system,
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as usual. To explain this kind of game, consider that the M leader and the N follower

belong to two groups. By adjusting the values of M and N, we can form any suitable

hierarchical game. That is why we call it a generic construction. The information pattern

of the game is more complex than before we followed. Each leader must achieve the Nash

equilibrium and use the H∞ constraint to reduce the external disturbance. Each leader will

individually announce the incentive Stackerberg strategy for each follower. Each follower

employs a leader incentive mechanism that follows the Nash equilibrium in a follower

group. Leaders and followers do not cooperate with their group. In this chapter, the Nash

equilibrium of the leader under the H∞ constraint is derived based on the infinite-horizontal

stochastic H2/H∞ control problem of [Chen and Zhang (2004)]. We can get the strategy-

set by solving a set of cross-coupled stochastic algebraic Riccati equations (CCSAREs)

and matrix algebraic equations (MAEs). The leaders achieve the Nash equilibrium by

attenuating disturbance under the H∞ constraint. Simultaneously, the followers achieve the

Nash equilibrium regarding the leaders’ incentives with the worst-case disturbance. The

solution can be easily found using Lyapunov-based iterations. To illustrate our findings,

we present a simple numerical example.

Chapter 6 discusses the Pareto optimal strategy for the stochastic LPV system with mul-

tiple players. In the dynamic game of uncertain stochastic systems, multiple participants

can be used for more realistic plants. The system includes disturbances that are attenuated

under the H∞ constraint. This section can be seen as an extension of [Mukaidani (2017a)].

This is because the fixed gain controller is also considered here to understand the prac-

tical implementation. In this chapter, we design a method for Pareto optimal solution

that satisfies the H∞ norm condition. We redesigned the stochastic bounded real lemma

[Ku and Wu (2015)] and the linear quadratic control [Rotondo (2015)] to find the solution.

Solvability conditions are established using linear matrix inequalities (LMIs). For multiple

players, a Pareto optimal strategy-set is designed. The Pareto optimal strategy-set can be

found by solving a set of cross-coupling matrix inequalities (CCMI). A numerical example

is provided to demonstrate the effectiveness of the proposed model of the LPV system.

However, for stochastic LPV systems, the H∞ constraint incentive Stackelberg game is not

investigated in this chapter. This will be our future research. It should be noted that some

basic results on the LMI problems are presented in Appendix A as a preliminary study of

this chapter.

Finally, in Chapter 7, the thesis is concluded with some motivating guidelines for future

research. It should be noted that Appendix B contains some of the basic results of output

feedback control as a preliminary study of future research.
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Chapter 2

Basic Problems of Stochastic Linear
Quadratic (LQ) Systems

Optimization problems can be divided into two groups, static and dynamic. An optimiza-

tion problem that does not change over time is called a static optimization problem. Many

scientific and business applications require the control of systems developed over time,

called dynamic systems. Since time can vary discretely and continuously, dynamic systems

are separated into discrete- and continuous-time systems. This study plans to deal with both

types of systems, with the emphasis on continuous-time systems. Optimal control of the

dynamic system addresses the finding of control actions achieved in an optimal manner en-

suring the stability of the control. There are various types of stability in describing solutions

to difference (for discrete-time) or differential (for continuous-time) equations in dynami-

cal systems. The most important type is that solution stability approaches the equilibrium

point discussed in the Lyapunov stability theory. An optimal control problem consists of

a cost functional and a set of difference or differential equations describing the trajectories

of the control variables that minimize the cost functional.

In this research, we focus only on the linear control system composed of linear dif-

ference or differential equations. There are several reasons for choosing linear optimal

control instead of general optimal control. For example, many engineering problems are

linear before adding controllers. It is easy to physically implement, takes less time to calcu-

late, applies to small signal based nonlinear systems, and computation algorithm proposes

nonlinear optimization design. The specialty of linear control is that the plant to be con-

trolled as well as the control unit that produces optimal control are assumed to be linear.

The linear optimal controllers are attained by operating with quadratic performance in-

dices. Such pattern of linear control that minimizes the sum (for discrete-time) or integral

(for continuous-time) of the quadratic function assessed by the control and state variables

is called linear quadratic (LQ) optimal control. LQ optimal control initiated by Kalman
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[Kalman (1960)] plays a major role in control theory. Many researchers have conducted ex-

tensive studies on deterministic LQ problems [Anderson and Moore (1989), Lewis (1986)].

In [Wonham (1968)], Wonham introduced the stochastic LQ optimal control governed by

the Ito differential equations. Systems perturbed by Gaussian white noise are called linear

quadratic Gaussian control problems and have become the most popular in control theory

research [Athans (1971)].

The main idea of LQ control design is to minimize the quadratic cost functional,∫ ∞
0 (xT Qx+uT Ru)dt. It turns out that regardless of the values of Q and R, the cost functional

has a unique minimum that can be obtained by solving the Algebraic Riccati Equation. The

parameters Q and R can be used as design parameters to penalize the state variables and

the control signals. The larger these values are, the more we penalize these signals. Basi-

cally, choosing a large value for R means we try to stabilize the system with less (weighted)

energy. This is usually called an expensive control strategy. On the other hand, choosing

a small value for R means we do not want to penalize the control signal (cheap control

strategy). Similarly, if we choose a large value for Q means we try to stabilize the system

with the least possible changes in the states and large Q implies less concern about the

changes in the states. Since there is a trade-off between the two, we may want to keep Q

as I (identity matrix) and only alter R. We can choose a large R, if there is a limit on the

control output signal (for instance, if large control signals introduce sensor noise or cause

actuator’s saturation), and choose a small R if having a large control signal is not a problem

for the system.

Indeed, with random choice of Q and R matrices, the optimal regulators do not provide

good set point tracking performance. Conventionally, control engineers often select the

weighting matrices based on trial and error approach, which not only makes the design

tedious but also provides a non optimized response. One more methodology adopted in the

design of optimal controller is that the initial values of weighting matrices could be chosen

as Q =CTC and R = BT B, where C comes from the controlled output y =Cx and B is the

coefficient matrix of the control input (u); and after the initial trial, if the performance is

not satisfactory these weights can be altered again to get the desired response. However,

this approach once again makes use of trial and error method.

2.1 Discrete-time stochastic optimal control problems

In the framework of discrete-time, the decision maker observes state variables for each time

period. The objective is to optimize the sum of expected values of the objective function

over the entire period. New observations are made in each time period, and the control
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variables are optimally adjusted. The optimal solution for the current time can be found

by iterating the matrix Riccati equation from the last period back to the current period.

The discrete-time stochastic linear quadratic optimal control problem can be expressed as

follows:

J(x0, u) := min
1

2
E

[
xT (Tf )Q(Tf )x(Tf )+

Tf−1

∑
k=0

[xT (k)Q(k)x(k)+uT (k)R(k)u(k)]

]
, (2.1)

where Q(k) = QT (k)≥ 0; R(k) = RT (k)> 0; E[·] is the expected operator conditional on

x0; superscript T indicates the transpose of a matrix and 0 < Tf < ∞ is the time range. The

state equation is defined as follows:

x(k+1) = A(k)x(k)+B(k)u(k)+Ap(k)x(k)w(k), x(0) = x0, (2.2)

where x(t) ∈ R
n is the state vector; u(t) ∈ R

nu is the control input; w(t) ∈ R is a one-

dimensional wiener process; and A(k), B(k), Ap(k) are the coefficient matrices of suitable

dimensions.

Theorem 2.1. If the following stochastic backward difference Riccati equation (SBDRE)

has a solution P(k)> 0:

P(k) =AT (k)P(k+1)A(k)+AT
p (k)P(k+1)Ap(k)−AT (k)P(k+1)B(k)

× [R(k)+BT (k)P(k+1)B(k)]−1BT (k)P(k+1)A(k)+Q(k), P(Tf +1) = 0, (2.3)

then, the discrete-time stochastic system (2.2) with cost functional (2.1) have the following

optimal state feedback control:

u∗(k) =−[R(k)+BT (k)P(k+1)B(k)]−1BT (k)P(k+1)A(k)x(k). (2.4)

Proof. According to dynamic programming algorithm we can write discrete-time stochas-

tic quadratic Hamilton-Jacobi-Bellman (HJB) as follows:

V (k) = min
u(k)

1

2
E
[
xT (k)Q(k)x(k)+uT (k)R(k)u(k)+V (k+1)

]
= min

u(k)

1

2
E

[
xT (k)Q(k)x(k)+uT (k)R(k)u(k)+ xT (k+1)P(k+1)x(k+1)+2v(k+1)

]
,

(2.5)

where V (k) is a quadratic function with a stochastic increment as follows:

V (k) =
1

2
xT (k)P(k)x(k)+ v(k) (2.6a)
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v(k+1) =
1

2
Tr[P(k+1)Ap(k)x(k)xT (k)AT

p (k)]+ v(k), v(Tf ) = 0, (2.6b)

with the symmetric positive definite matrix P.

Using equation (2.6b), the following result can be found form (2.5):

V (k) =min
u(k)

1

2
E

[
xT (k)Q(k)x(k)+uT (k)R(k)u(k)

+ [A(k)x(k)+B(k)u(k)]T P(k+1)[A(k)x(k)+B(k)u(k)]

+Tr[P(k+1)Ap(k)x(k)xT (k)AT
p (k)]+2v(k)

]
,

=min
u(k)

1

2
E

[
xT (k)[Q(k)+AT (k)P(k+1)A(k)+AT

p (k)P(k+1)Ap(k)]x(k)

+uT (k)[R(k)+BT (k)P(k+1)B(k)]u(k)+2xT (k)AT (k)P(k+1)B(k)u(k)
]
+ v(k),

(2.7)

To minimize the right hand side of (2.7) with respect to the control input u(k) we obtain

the following state feedback optimal control scheme:

u∗(k) =−[R(k)+BT (k)P(k+1)B(k)]−1BT (k)P(k+1)A(k)x(k), (2.8)

Comparing right hand sides of (2.6a) and (2.7), the following stochastic backward differ-

ence Riccati equation (SBDRE) can be derived using (2.8):

P(k) =AT (k)P(k+1)A(k)+AT
p (k)P(k+1)Ap(k)−AT (k)P(k+1)B(k)

× [R(k)+BT (k)P(k+1)B(k)]−1BT (k)P(k+1)A(k)+Q(k), P(Tf +1) = 0. (2.9)

For infinite-horizon case, the state equation and the cost functional have the following

form:

x(k+1) = Ax(k)+Bu(k)+Apx(k)w(k), x(0) = x0, (2.10a)

J(x0, u) := min
1

2
E

[
∞

∑
k=0

[xT (k)Qx(k)+uT (k)Ru(k)]

]
, (2.10b)

where Q = QT ≥ 0, R = RT > 0. It should be noted that for the infinite-horizon case, the

coefficient matrices are considered to be constant matrices of appropriate dimensions.

Lemma 2.1. Suppose that there exists a symmetric constant matrix P > 0 that solves the

following SARE of the system (2.10):

P = AT PA+AT
p PAp−AT PB[R+BT PB]−1BT PA+Q. (2.11)

then the optimal control problem admits a state feedback solution,

u(k) =−[R+BT PB]−1BT PAx(k), (2.12)
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Proof. Using optimal control u∗(k) = Kx(k), the state feedback system (2.10) can be writ-

ten as

x(k+1) = (A+BK)x(k)+Apx(k)w(k), x(0) = x0, (2.13)

with cost functional

J(x0) := min
1

2
E

[
∞

∑
k=0

xT (k)[Q+KT RK]x(k)

]
. (2.14)

Suppose that there exits a symmetric positive definite matrix P such that the SARE (2.11)

holds for all admissible control inputs. Let us define the Lyapunov candidate function

E[V (x(k))] = E[xT (k)Px(k)], (2.15)

where V (x(k)> 0 for all x(k) �= 0.

The difference between corresponding trajectory of the system (2.10) is given by

E[ΔV (x(k))] = E[V (x(k+1))−V (x(k))]

= E[xT (k+1)Px(k+1)− xT (k)Px(k)]

= E[xT (k)(A+BK)T P(A+BK)x(k)]

+E[xT (k)AT
p PApx(k)]−E[xT (k)Px(k)]

= E[xT (k)[(A+BK)T P(A+BK)+AT
p PAp−P]x(k), (2.16)

which is stable if E[ΔV (x(k))] < 0. Then, we can form the discrete-time Lyapunov stabi-

lizable equation [Zhang et al. (2008)] as follows:

(A+BK)T P(A+BK)+AT
p PAp−P =−(Q+KT RK) (2.17)

Substituting the value of K =−[R+BT PB]−1BT PA to equation (2.17) and simplifying, we

can get the following SARE:

P = AT PA+AT
p PAp−AT PB[R+BT PB]−1BT PA+Q. (2.18)

Hence, Lemma 2.1 is proved.

2.2 Continuous-time stochastic optimal control problems

Consider the following continuous-time stochastic linear quadratic optimal control prob-

lem:

dx(t) = [A(t)x(t)+B(t)u(t)]dt +Ap(t)x(t)dw(t), x(0) = x0, (2.19a)
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J(x0, u) :=
1

2
E

[
xT (Tf )Q(Tf )x(Tf )+

∫ Tf

0

(
xT (t)Q(t)x(t)+uT (t)R(t)u(t)

)
dt
]
, (2.19b)

where x(t) ∈ L 2
F (R+, R

n) is the state vector; u(t) ∈ L 2
F (R+, R

nu) is the control in-

put; w(t) ∈ R is a one-dimensional wiener process; A(t), B(t), Ap(t), Q(t) = QT (t) ≥ 0,

R(t) = RT (t) > 0 are the coefficient matrices of suitable dimensions; E[·] is the expected

operator conditional on x0; 0< Tf <∞ is the time range; L 2
F (R+, R

�) denotes the space of

nonanticipative stochastic processes. In order to solve the above-mentioned optimal control

problem, the following theorem can be obtained.

Theorem 2.2. For the stochastic optimal control problem (2.19), suppose that the following

stochastic Riccati differential equation (SRDE) has the solution PT (t) = P(t)≥ 0:

−Ṗ(t) =AT (t)P(t)+P(t)A(t)+AT
p (t)P(t)Ap(t)+Q(t)

−P(t)B(t)R−1(t)BT (t)P(t), P(Tf ) = Q(Tf ), (2.20)

then the optimal control problem admits a state feedback solution,

u∗(t) =−R−1(t)BT (t)P(t)x(t). (2.21)

Proof. In order to prove the Theorem 2.2, the stochastic dynamic programming (SDP)

method and the stochastic maximum principle can be considered. The following two sec-

tions derive the Theorem 2.2 as two different techniques.

2.2.1 Stochastic dynamic programming (SDP)

We define the finite-horizon value function,

v(t,x) =
1

2
min

u(t)∈U
E

[∫ Tf

t
{xT (s)Q(s)x(s)+uT (s)R(s)u(s)}ds

]
. (2.22)

It will satisfy the stochastic Hamilton-Jacobi-Bellman (HJB) equation,

−vt = min
u(t)∈U

[
1

2
(xT (t)Q(t)x(t)+uT (t)R(t)u(t))+ vT

x (A(t)x(t)+B(t)u(t))

+
1

2
(Ap(t)x(t))T (Ap(t)x(t))vxx], (2.23)

with boundary condition: v(Tf ,x) = 1
2xT (Tf )Q(Tf )x(Tf ).

To minimize the right hand side of (2.23) with respect to the control input u(t) we get,

R(t)u∗(t)+BT (t)vx = 0, (2.24)
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or,

u∗(t) =−R−1(t)BT (t)vx. (2.25)

Now, if we insert this optimal state feedback control input u∗(t) into equation (2.23) we

get,

−vt =
1

2
(xT (t)Q(t)x(t)+ vT

x B(t)R−1(t)BT (t)vx)+ vT
x (A(t)x(t)−B(t)R−1(t)BT (t)vx)

+
1

2
xT (t)AT

p (t)Ap(t)x(t)vxx,

=
1

2
(xT (t)Q(t)x(t)− vT

x B(t)R−1(t)BT (t)vx)+ vT
x A(t)x(t)+

1

2
xT (t)AT

p (t)Ap(t)x(t)vxx,

(2.26)

with boundary condition:

v(Tf ,x) =
1

2
xT (Tf )Q(Tf )x(Tf ).

Now let

v(t,x) =
1

2
xT (t)P(t)x(t), (2.27)

where P(t) is a symmetric positive semidefinite matrix. Therefore,

vx = P(t)x(t),

and

vxx = P(t).

So, from (2.26) we get,

−1

2
xT (t)Ṗ(t)x(t) =

1

2
(xT (t)Q(t)x(t)− xT (t)P(t)B(t)R−1(t)BT (t)P(t)x(t))

+ xT (t)P(t)A(t)x(t)︸ ︷︷ ︸
1
2 xT (t)(P(t)A(t)+AT (t)P(t))x(t)

+
1

2
xT (t)AT

p (t)P(t)Ap(t)x(t), (2.28)

with boundary condition: P(Tf ) = Q(Tf ). Simply,

−Ṗ(t) =AT (t)P(t)+P(t)A(t)+AT
p (t)P(t)Ap(t)+Q(t)

−P(t)B(t)R−1(t)BT (t)P(t), P(Tf ) = Q(Tf ). (2.29)

Moreover, substituting vx = P(t)x(t) into equation (2.25), we can obtain the state feedback

optimal control input,

u∗(t) =−R−1(t)BT (t)P(t)x(t). (2.30)

33



2.2.2 Stochastic maximum principle

Recall the continuous-time stochastic system (2.19a) with linear quadratic cost (2.19b). In

order to find the solution of this optimal control problem by stochastic maximum principle

[Peng (1990)], let us consider the Hamiltonian:

H(x, u, p, q)

:=
1

2
[xT (t)Q(t)x(t)+uT (t)R(t)u(t)]+ pT (A(t)x(t)+B(t)u(t))+qT Ap(t)x(t). (2.31)

It follows the necessary conditions from the stochastic maximum principle:

d p =−∂H
∂x

dt +qdw =−(Q(t)x(t)+AT (t)p+AT
p (t)q)dt +qdw(t). (2.32)

with boundary condition:

p(Tf ) = Q(Tf )x(Tf ).

The optimal control input:

∂H
∂u

= R(t)u∗(t)+BT (t)p = 0, or, u∗(t) =−R−1(t)BT (t)p. (2.33)

Target: To find p from (2.32) which is still a stochastic differential equation, cannot solve

it directly. Ito’s lemma is introduced to solve this problem.

Assume that p(t) and x(t) are related by p(t) = θ(t,x(t)). Now using Ito’s lemma to

θ(t,x(t)) for the given stochastic differential equation (2.19a), we have

dθ = [θt +θx(A(t)x(t)−B(t)R−1(t)BT (t)θ)+
1

2
xT AT

p (t)θxxAp(t)x(t)]dt+θxAp(t)x(t)dw(t).

(2.34)

Comparing equation (2.32) and (2.34) we get:

θt +θx(A(t)x(t)−B(t)R−1(t)BT (t)θ)+
1

2
xT (t)AT

p (t)θxxAp(t)x(t)

=−(Q(t)x(t)+AT (t)θ +AT
p (t)q), (2.35a)

q = θxAp(t)x(t) (2.35b)

with boundary condition:

θ(Tf , x(Tf )) = Q(Tf )x(Tf ).

Then, the equation (2.35a) and (2.35b) can be combined as the following simplified form:

−θt =θx(A(t)x(t)−B(t)R−1(t)BT (t)θ)+
1

2
xT (t)AT

p (t)θxxAp(t)x(t)

+(Q(t)x(t)+AT (t)θ +AT
p (t)θxAp(t)x(t)), (2.36)
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with boundary condition:

θ(Tf , x(Tf )) = Q(Tf )x(Tf ).

Now, let us consider θ = P(t)x(t) with PT (t) = P(t) ≥ 0, which implies θx = P(t)

and θxx = 0. On the other hand, θ(Tf , x(Tf )) = P(Tf )x(Tf ) = Q(Tf )x(Tf ), which implies

P(Tf ) = Q(Tf ). So the equation (2.36) can be transferred as follows:

−Ṗ(t)x(t) =P(t)(A(t)x(t)−B(t)R−1(t)BT (t)P(t)x(t))

+(Q(t)x(t)+AT (t)P(t)x(t)+AT
p (t)P(t)Ap(t)x(t)) (2.37)

with boundary condition:

P(Tf ) = Q(Tf ).

Canceling x(t) from both sides of (2.37), the following stochastic Riccati differential equa-

tion (SRDE)can be obtained:

−Ṗ(t) =AT (t)P(t)+P(t)A(t)+AT
p (t)P(t)Ap(t)+Q(t)

−P(t)B(t)R−1(t)BT (t)P(t), P(Tf ) = Q(Tf ). (2.38)

Moreover, substituting vx = P(t)x(t) into equation (2.25), we can obtain the state feedback

optimal control input,

u∗(t) =−R−1(t)BT (t)P(t)x(t). (2.39)

2.2.3 Infinite-horizon case

To derive the result for an infinite horizon case, the following facts are used.

Consider the following stochastic system:

dx(t) = [Ax(t)+Bu(t)]dt +Apx(t)dw(t), x(0) = x0. (2.40)

Definition 2.1. [Chen and Zhang (2004)] The stochastic controlled system (2.40) is called

stabilizable (in the mean square sense), if there exists a feedback control u(t) = Kx(t), such

that for any x0 ∈ R
n, the closed-loop system

dx(t) = [A+BK]x(t)dt +Apx(t)dw(t), x(0) = x0. (2.41)

is asymptotically mean square stable, i.e.,

lim
t→∞

E[x(t)T x(t)] = 0, (2.42)

where is K a constant matrix
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Definition 2.2. If there exist feedback control

u(t) = Kx(t),

such that for any x(0) = x0, the closed-loop stochastic system (2.40) is asymptotically

mean-square stable, then the stochastic system is called stabilizable.

Definition 2.3. [Chen and Zhang (2004)] Consider the following stochastic system with

measurement equation.

dx(t) = Ax(t)dt +Apx(t)dw(t), x(0) = x0, (2.43a)

z(t) =Cx(t), (2.43b)

where x(t)∈R
n is the state vector and z(t)∈R

nz is the output measurement; A, Ap ∈R
n×n

and C ∈ R
nz×n are the coefficient matrices. If z(t)≡ 0, ∀ t ≥ 0 implies x0 = 0, (A, Ap | C)

is called exactly observable.

To check the exact observability for the system (2.43) we can find the following obsev-

ability matrix [Zhang and Chen (2004)]:

Os =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C
CA
CAp

CApA
CAAp
CA2

CA2
p

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then, (A, Ap|C) is exactly observable iff rank(Os) = n.

Lemma 2.2. Assume that stochastic system (2.43a) is asymptotically mean-square stable.

Let us define

J = E

[∫ ∞

0
xT (t)CTCx(t)dt

]
. (2.44)

If (A, Ap | C) is exactly observable, then (A, Ap) is stable if the following stochastic alge-

braic Lyapunov equation:

AT P+PA+AT
p PAp +CTC = 0, (2.45)

has a unique positive definite solution P = PT . Moreover,

J = E[xT (0)Px(0)]. (2.46)
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Proof. Let V (x(t)) = x(t)T Px(t) be the Lyapunov candidate for the system (2.43a), where

P is a symmetric positive semi-definite matrix. Now applying Itô’s formula, we obtain

dV (x(t)) =VxAx(t)+
1

2
xT (t)AT

pVxxApx(t)

= xT (t)[AT P+PA+AT
p PAp]x(t), (2.47)

which is stable if dV (x(t)) < 0. If (A, Ap | C) is exactly observable, we can form the

Lyapunov stabilizable equation by integrating and taking expectoration operator (E[·]) in

(2.47) as follows:

E

[∫ ∞

0
xT (t)[AT P+PA+AT

p PAp]x(t)dt
]
= E

[∫ ∞

0
xT (t)CTCx(t)dt

]
, (2.48)

i.e.,

AT P+PA+AT
p PAp +CTC = 0. (2.49)

Hence, the first part of Lemma 2.2 is proved.

Let us consider the proof of second part.

E

[∫ t

0
xT (s)CTCx(s)ds

]
=−E

[∫ t

0
xT (s)[AT P+PA+AT

p PAp]x(s)ds
]

=−E
[∫ t

0
xT (s)Ṗx(s)ds

]
[Itô’s formula (2.48).]

= E[xT (0)Px(0)]−E[xT (t)Px(t)]

= E[xT (0)Px(0)], when t → ∞.

Hence the Lemma 2.2 is proved.

Now, consider the next stochastic linear quadratic optimal control problem in the case

of infinite-horizon:

dx(t) = [Ax(t)+Bu(t)]dt +Apx(t)dw(t), x(0) = x0, (2.50a)

J(x0, u) :=
1

2
E

[∫ ∞

0

(
xT (t)Qx(t)+uT (t)Ru(t)

)
dt
]
, (2.50b)

where A, B, Ap, Q=QT ≥ 0, R=RT > 0 are the coefficient matrices of suitable dimensions.

In order to solve the above-mentioned optimal control problem, the following result can be

obtained.
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Theorem 2.3. For the stochastic optimal control problem (2.50), suppose that the following

stochastic algebraic Riccati equation (SARE) has the solution PT = P≥ 0:

PA+AT P+Q−PBR−1BT P+AT
p PAp = 0, (2.51)

then the optimal control problem admits a state feedback solution,

u∗(t) = Kx(t) =−R−1BT Px(t). (2.52)

Proof. Recall SRDE (2.20) of Theorem 2.2. As Tf → ∞, P(t) approaches to steady-state.

Therefore, Ṗ(t) = 0. Then form equation (2.20), we can obtain the following stochastic

algebraic Riccati equation (SARE):

PA+AT P+Q−PBR−1BT P+AT
p PAp = 0. (2.53)

Moreover, using the same technique as finite-horizon case, the optimal state feedback con-

trol can be derived as follows:

u∗(t) = Kx(t) =−R−1BT Px(t). (2.54)

For Lyapunov stability analysis, consider SARE (2.53) as the form of stochastic algebraic

Lyapunov equation:

(A+BK)T P+P(A+BK)+(Q+KT RK)+AT
p PAp = 0, (2.55)

with K =−R−1BT P. By Lemma 2.2, if (A+BK, Ap |
√

Q+KT RK) is exactly observable,

then (A + BK, Ap) is stable if the stochastic algebraic Lyapunov equation (2.55) has a

unique positive definite solution P = PT .

2.2.4 Numerical examples
Finite-horizon case

Consider the linear stochastic differential equation:

dx(t) = (−x(t)+u(t))dt + εx(t)dw(t), x(0) = 1, (2.56a)

J(x0, u) := E

[∫ 1

0
(x2(t)+u2(t))dt

]
. (2.56b)

To find the optimal control for the above problem. Hamiltonian is defined by

H = x2 +u2 + p(−x+u)+qεx. (2.57)
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It follows the necessary conditions from the stochastic maximum principle:

dx∗(t) =
∂H
∂ p

dt + εx∗(t)dw(t) = (−x∗(t)+u(t))dt + εx∗(t)dw(t). (2.58)

with initial condition x∗(0) = 1.

d p =− ∂H
∂x(t)

dt +qdw(t) =−(2x(t)− p+qε)dt +qdw(t). (2.59)

with boundary condition: p(1) = 0.

The optimal control input:

∂H
∂u(t)

= 2u∗(t)+ p = 0,or, u∗(t) =− p
2
. (2.60)

To find p from (2.59) which is still a stochastic differential equation, cannot solve it directly.

Assume that p(t) and x∗(t) are related by p(t) = θ(t,x∗(t)). Now using Ito’s lemma to

θ(t,x∗(t)), we have (omitting ∗ from x∗ for the simplicity of notation)

dθ = [θt +θx

(
−x(t)− θ

2

)
+

1

2
θxx(εx(t))2]dt +θxεx(t)dx. (2.61)

Comparing equation (2.59) and (2.61) we get:

θt +θx

(
−x(t)− θ

2

)
+

1

2
θxx(εx(t))2 =−(2x(t)−θ +qε), (2.62a)

q = θxεx(t) (2.62b)

with boundary condition: θ(1,x) = 0. Then, the equation (2.62) means the following

simplified form:

−θt = 2x(t)−θ +θxε2x(t)+θx

(
−x(t)− θ

2

)
+

1

2
θxx(εx(t))2. (2.63)

with boundary condition: θ(1,x) = 0. Since (2.63) is a deterministic partial differential

equation, so we can solve it numerically by using backward difference formula. This pro-

vides the solution for the control input in an open-loop pattern.

For Closed-loop pattern, let θ = zx, or, θx = z and θxx = 0.

On the other hand, θ(1,x) = z(1)x = 2xor, z(1) = 2.

So the equation (2.63) takes the for

−żx = 2x− zx+ zε2x− zx− z2x
2
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or, ż =
z2

2
+(2− ε2)z−2; z(1) = 2. (2.64)

We can solve the differential equation (2.64) numerically by backward difference formula.

Solving the system (2.64) for z, we can find the state feedback optimal control from

(2.60),

u∗(t) =−p/2 =−(z/2)x(t). (2.65)

The state trajectory can be depicted by Fig. 2.1 and can be detected by the following

equation:

x(t +h) = x(t)+h(−1− z/2)x(t)+ εx(t)
√

hN(0,1), x(0) = 1. (2.66)
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Fig. 2.1: Finite-horizon state trajectory.

Infinite-horizon case

Recall the stochastic linear quadratic optimal control problem (2.50). Let us consider the

following system matrices:

A =

⎡
⎢⎢⎣
−2.98 0.93 0 −0.034

−0.99 −0.21 0.035 −0.0011

0 0 0 1

0.39 −5.555 0 −1.89

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣
−0.032

0

0

−1.6

⎤
⎥⎥⎦ , x0 =

⎡
⎢⎢⎣

1

0.5
−0.5
−1

⎤
⎥⎥⎦ ,

Ap = 0.1A, Q = diag
[
1.5 0.8 2.3 1.9

]
, R = diag

[
2.5 1.8 1.3 0.9

]
.

In order to solve this optimal control problem let us consider the SARE (2.51) as the fol-

lowing nonlinear matrix function:

G (P) = PA+AT P+Q−PBR−1BT P+AT
p PAp = 0. (2.67)

To solve the nonlinear matrix function (2.67) Newton’s method can be applied as follows:
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Newton’s Method

The iterative form of the SARE (2.67) by Newton’s iteration is:

P(k+1)(A−SP(k))+(A−SP(k))T P(k+1) +AT
p P(k+1)Ap +P(k)SP(k) +Q = 0, (2.68)

where S = BR−1BT and k = 0, 1, . . ..

This result can be established using Newton’s method as follows. By the definition of

Newton’s method, the following equation holds:

vecP(k+1) =vecP(k)−
[

∂vecG (P)
∂ (vecP)T

∣∣∣∣
P=P(k)

]−1

vecG (P(k))

= vecP(k)−
[
(A−SP(k))T ⊗ In + In⊗ (A−SP(k))T +AT

p ⊗AT
p

]−1

vecG (P(k)).

(2.69)

Thus, the operation (A−SP(k))T ⊗ In + In⊗ (A−SP(k))T +AT
p ⊗AT

p yields[
(A−SP(k))T ⊗ In + In⊗ (A−SP(k))T +AT

p ⊗AT
p

]
(2.70)

×(vecP(k+1)−vecP(k))+vecG (P(k)) = 0. (2.71)

Moreover, using the formulation vec(AXB) = [BT ⊗A]vecX in the left hand side of (2.71),

we obtain

LHS =
[
(A−SP(k))T ⊗ In + In⊗ (A−SP(k))T +AT

p ⊗AT
p

]
× (vecP(k+1)−vecP(k))+vecG (P(k))

= vec

[
(P(k+1)−P(k))(A−SP(k))+(A−SP(k))T (P(k+1)−P(k))

+AT
p (P

(k+1)−P(k))Ap

]
+vecG (P(k))

= vec

[
P(k+1)(A−SP(k))+(A−SP(k))T P(k+1) +AT

p P(k+1)Ap

]

−vec

[
P(k)(A−SP(k))+(A−SP(k))T P(k) +AT

p P(k)Ap

]
+vecG (P(k))

= vec

[
P(k+1)(A−SP(k))+(A−SP(k))T P(k+1) +AT

p P(k+1)Ap +P(k)SP(k) +Q
]

= 0 (RHS).

which is the desired result.
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Theorem 2.4. Newton-Kantorovich theorem [Yamamoto 1986, Ortega 1990] : Assume that

G : Rn → Rn (2.72)

is differentiable on a convex set D. Suppose that the inverse of map G exists and moreover

it is differentiable on set D and that

||G′(x)−G′(y)|| ≤ γ||x−y|| (2.73)

for all x, y ∈ D.

Proof. Suppose that there is an x0 ∈ D such that

||G′(x0)−1|| ≤ β (2.74)

||G′(x0)−1G(x0)|| ≤ η (2.75)

and

θ := βγη < 1/2 (2.76)

Assume that

S := { x : ||x−x0|| ≤ t∗ } ⊂ D (2.77)

and

t∗ =
1−√1−2θ

βγ
(2.78)

Then Newton iterations

xk+1 = xk−G′(xk)−1G(xk), (2.79)

k = 0, 1, · · · are well defined and converge to a solution x∗ of G(x) = 0 in S. Moreover,

the solution x∗ is unique in S̃∩D, where

S̃ := { x : ||x−x0|| ≤ t̃ } ⊂ D (2.80)

t̃ =
1+

√
1−2θ

βγ
(2.81)

and error estimate is given by

||x∗ −xk|| ≤ (2θ)2k

2kβγ
= 21−k(2θ)2k−1η , k = 0, 1, ... (2.82)

Hence, Newton-Kantorovich theorem is proved.
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Newton’s algorithm

Inputs: Let P = P(0) be the given initial matrix; IT ER is the maximum number of itera-

tions; TOL is the tolerance of convergence.

Output: Solution matrix P.

Step 1 For k = 1, 2, · · · , IT ER do Step 2 to Step 3.

Step 2 Calculate the following newtons formula:

vecP(k+1) = vecP(k)−
[

∂vecG (P)
∂ (vecP)T

∣∣∣∣
P=P(k)

]−1

vecG (P(k)), (2.83)

where

∂vecG (P)
∂ (vecP)T = AT ⊗ In + In⊗AT − In⊗PBR−1BT −BR−1BT P⊗ In +AT

p ⊗AT
p .

Step 3 If ‖P(k+1)−P(k)‖< TOL, stop.

Step 4: Output

Step 5: End

This task can also be accomplished by using the Lyapunov iterative technique in Step 2 of

the above algorithm. The MATLAB built-in command lyap is very useful for this kind of

simulation. The application of this algorithm through MATLAB simulation provides the

following results:

P =

⎡
⎢⎢⎣

2.7357 −7.5039 1.3446 0.7675

−7.5039 23.8648 −4.9545 −2.9577

1.3446 −4.9545 4.0786 1.3543

0.7675 −2.9577 1.3543 0.9572

⎤
⎥⎥⎦ ,

K =
[
0.5262 −1.9890 0.8840 0.6224

]
.

k Lyapunov method Newton’s method

0 2.4970 2.4970

1 3.0127×10−1 3.1088×10−1

2 1.3197×10−3 1.0294×10−3

3 2.2233×10−6 4.1651×10−9

4 5.886×10−9 6.4285×10−15

5 1.7001×10−11

6 1.2671×10−13

7 6.7299×10−14

Table 2.1: Error in each iteration.
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Fig. 2.2: Trajectory of the state.

From Table 2.1, it can be observed that the algorithm converges to the exact solution

with an accuracy of ‖G (P(k))‖< 10−13 after seven iterations using the Lyapunov iterative

technique. It can also be observed that Newton’s method attains quadratic convergence only

after four iterations under the appropriate initial conditions. Therefore, Newton’s method

is potentially fast and more accurate than the widely used the Lyapunov iterative technique.

Fig. 2.2 shows the response of the system with a state trajectory. It shows that the state

variables x(k) can stabilize the given system, which implies that the proposed method is

very useful and reliable.

2.3 Solution concepts for multi-player problems

To understand the multi-player situation, let us consider the two-player game problems for

the cooperative and non-cooperative cases. Stochastic Pareto optimality and Nash equilib-

rium solution concepts are introduced for cooperative and non-cooperative game problems,

respectively. Let us consider the linear stochastic system of two players:

dx(t) = [Ax(t)+B1u1(t)+B2u2(t)]dt +Apx(t)dw(t), x(0) = x0, (2.84)

and the cost functionals are

J1(x0, u1, u2) =
1

2
E

[∫ Tf

0

(
xT (t)Q1x(t)+uT

1 (t)R11u1(t)+uT
2 (t)R12u2(t)

)
dt
]
, (2.85a)

J2(x0, u1, u2) =
1

2
E

[∫ Tf

0

(
xT (t)Q2x(t)+uT

1 (t)R21u1(t)+uT
2 (t)R22u2(t)

)
dt
]
, (2.85b)

where Qi = QT
i ≥ 0, Ri j = RT

i j ≥ 0 for i �= j and Rii = RT
ii > 0, i, j = 1, 2.
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2.3.1 Pareto optimal solution

Let us consider the following linear stochastic system with linear quadratic cost functions,

dx(t) = [Ax(t)+
N

∑
i=1

Biui(t)]dt +Apx(t)dw(t), x(0) = x0, (2.86a)

Ji (x0, u1, . . . ,uN) :=
1

2
E

[∫ Tf

0

[
xT (t)Qix(t)+

N

∑
j=1

uT
j (t)Ri ju j(t)

]
dt

]
, (2.86b)

where Qi = QT
i ≥ 0, Ri j = RT

i j ≥ 0 for i �= j and Rii = RT
ii > 0, i, j = 1, . . . ,N.

Definition 2.4. A strategy-set (u1, · · · ,uN) is said to be a Pareto optimal strategy if it

minimizes a sum of the cost of functional of all players denoted by

J(u1, · · · ,uN) =
N

∑
i=1

riJi(x0, u1, · · · ,uN), (2.87)

where ∑N
i=1 ri = 1 for some 0 < ri < 1.

Theorem 2.5. For the stochastic optimal control problem (2.86), suppose that the following

stochastic Riccati differential equation (SRDE) has the solution PT (t) = P(t)≥ 0:

−Ṗ(t) = P(t)A+AT P(t)+Q−P(t)BR−1BT P(t)+AT
p P(t)Ap, P(Tf ) = 0, (2.88)

then the Pareto optimal control problem admits a state feedback solution,

u∗(t) =−R−1(t)BT (t)P(t)x(t), (2.89)

where

B :=
[
B1, . . . ,BN

]
,

u(t) =

⎡
⎢⎣u1(t)

...
uN(t)

⎤
⎥⎦ ,

Q =
N

∑
i=1

riQi,

R = block diag
[
∑N

i=1 riRi1 . . . ∑N
i=1 riRiN

]
.

Proof. If we centralized the system (2.86) base on the Definition 2.4, we can can rewrite it

as follows:

dx(t) = [Ax(t)+Bu(t)]dt +Apx(t)dw(t), x(0) = x0, (2.90a)
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J(x0, u) :=
1

2
E

[∫ Tf

0

(
xT (t)Qx(t)+uT (t)Ru(t)

)
dt
]
, (2.90b)

where

B :=
[
B1, . . . ,BN

]
,

u(t) =

⎡
⎢⎣u1(t)

...

uN(t)

⎤
⎥⎦ ,

Q =
N

∑
i=1

riQi,

R = block diag
[
∑N

i=1 riRi1 . . . ∑N
i=1 riRiN

]
.

We define the finite-horizon value function,

v(t,x) =
1

2
min

u(t)∈U
E

[∫ Tf

t
{xT (s)Qx(s)+uT (s)Ru(s)}ds

]
. (2.91)

It will satisfy the stochastic Hamilton-Jacobi-Bellman (HJB) equation,

−vt = min
u(t)∈U

[
1

2
(xT (t)Qx(t)+uT (t)Ru(t))+ vT

x (A(t)x(t)+Bu(t))

+
1

2
(Ap(t)x(t))T (Ap(t)x(t))vxx], (2.92)

with boundary condition: v(Tf ,x) = 0.

To minimize the right hand side of (2.92) with respect to the control input u(t) we get,

Ru∗(t)+BT vx = 0, (2.93)

or,

u∗(t) =−R−1BT vx. (2.94)

Now, if we insert this optimal state feedback control input u∗(t) into equation (2.92) we

get,

−vt =
1

2
(xT (t)Qx(t)+ vT

x BR−1BT vx)+ vT
x (A(t)x(t)−BR−1BT vx)

+
1

2
xT (t)AT

p (t)Ap(t)x(t)vxx,

=
1

2
(xT (t)Qx(t)− vT

x BR−1BT vx)+ vT
x A(t)x(t)+

1

2
xT (t)AT

p (t)Ap(t)x(t)vxx, (2.95)

with boundary condition:

v(Tf ,x) = 0.
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Now let

v(t,x) =
1

2
xT (t)P(t)x(t), (2.96)

where P(t) is a symmetric positive semidefinite matrix. Therefore,

vx = P(t)x(t),

and

vxx = P(t).

So, from (2.95) we get,

−1

2
xT (t)Ṗ(t)x(t) =

1

2
(xT (t)Qx(t)− xT (t)P(t)BR−1BT P(t)x(t))

+ xT (t)P(t)A(t)x(t)︸ ︷︷ ︸
1
2 xT (t)(P(t)A(t)+AT (t)P(t))x(t)

+
1

2
xT (t)AT

p (t)P(t)Ap(t)x(t), (2.97)

with boundary condition: P(Tf ) = 0. Simply,

−Ṗ(t) =P(t)A(t)+AT (t)P(t)+Q−P(t)BR−1BT P(t)+AT
p (t)P(t)Ap(t), P(Tf ) = 0.

(2.98)

Moreover, substituting vx = P(t)x(t) into equation (2.94), we can obtain the state feedback

optimal control input,

u∗(t) =−R−1BT P(t)x(t). (2.99)

Infinite-horizon case:

Let us consider the following linear stochastic system with linear quadratic cost functions,

dx(t) = [Ax(t)+
N

∑
i=1

Biui(t)]dt +Apx(t)dw(t), x(0) = x0, (2.100a)

Ji (x0, u1, . . . ,uN) :=
1

2
E

[∫ ∞

0

[
xT (t)Qix(t)+

N

∑
j=1

uT
j (t)Ri ju j(t)

]
dt

]
, (2.100b)

where Qi = QT
i ≥ 0, Ri j = RT

i j ≥ 0 for i �= j and Rii = RT
ii > 0, i, j = 1, . . . ,N.

Theorem 2.6. For the stochastic optimal control problem (2.100), suppose that the follow-

ing stochastic algebraic Riccati equation (SARE) has the solution PT = P≥ 0:

PA+AT P+Q−PBR−1BT P+AT
p PAp = 0, (2.101)

then the optimal control problem admits a state feedback solution,

u∗(t) = Kx(t) =−R−1BT Px(t). (2.102)
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Proof. Recall SRDE (2.88) of Theorem 2.5. As Tf → ∞, P(t) approaches to steady-state.

Therefore, Ṗ(t) = 0. Then form equation (2.88), we can obtain the following stochastic

algebraic Riccati equation (SARE):

PA+AT P+Q−PBR−1BT P+AT
p PAp = 0. (2.103)

Moreover, using the same technique as finite-horizon case, the optimal state feedback con-

trol can be derived as follows:

u∗(t) = Kx(t) =−R−1BT Px(t). (2.104)

For Lyapunov stability analysis, consider SARE (2.103) as the form of stochastic algebraic

Lyapunov equation:

(A+BK)T P+P(A+BK)+(Q+KT RK)+AT
p PAp = 0, (2.105)

with K =−R−1BT P. By Lemma 2.2, if (A+BK, Ap |
√

Q+KT RK) is exactly observable,

then (A+BK, Ap) is stable if the stochastic algebraic Lyapunov equation (2.105) has a

unique positive definite solution P = PT .

2.3.2 Nash equilibrium solution

Recall the two-player game problem (2.84)–(2.85). We call the pair (u1, u2) ∈U1×U2 a

Nash equilibrium if

J1(x0, u∗1, u∗2)≤ J1(x0, u1, u∗2), ∀u1 ∈U1, (2.106a)

J2(x0, u∗1, u∗2)≤ J2(x0, u∗1, u2), ∀u2 ∈U2. (2.106b)

Theorem 2.7. If there exist two symmetric positive semi-definite matrices P1(t) and P2(t)

satisfying the following cross-coupling stochastic Riccati differential equations (SRDEs):

−Ṗ1(t) =(A+B2K2)
T P1(t)+P1(t)(A+B2K2)+AT

p P1Ap +Q1 +KT
2 R12K2

−P1(t)B1R−1
11 BT

1 P1(t), P1(Tf ) = 0, (2.107a)

−Ṗ2(t) =(A+B1K1)
T P2(t)+P2(t)(A+B1K1)+AT

p P2Ap +Q2 +KT
1 R21K1

−P2(t)B2R−1
22 BT

2 P2(t), P2(Tf ) = 0, (2.107b)

then, the state feedback strategy pair (u∗1(t), u∗2(t)) is a Nash equilibrium for the system

(2.84)–(2.85) , where

u∗1(t) = K1x(t) =−R−1
11 BT

1 P1(t)x(t), (2.108a)

u∗2(t) = K2x(t) =−R−1
22 BT

2 P2(t)x(t). (2.108b)
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Proof. Substituting u∗2(t) = K2x(t) into state equation (2.84) and the cost functional for the

first player (2.85a) gives

dx(t) = [(A+B2K2)x(t)+B1u1(t)]dt +Apx(t)dw(t), x(0) = x0, (2.109a)

J1(x0, u1, u∗2) =
1

2
E

[∫ Tf

0

(
xT (t)Q1x(t)+uT

1 (t)R11u1(t)+ xT (t)KT
2 R12K2x(t)

)
dt
]
.

(2.109b)

Hence, by Theorem 2.2, if the following stochastic Riccati differential equation (SRDE)

has the solution PT
1 (t) = P1(t)≥ 0:

−Ṗ1(t) =(A+B2K2)
T P1(t)+P1(t)(A+B2K2)+AT

p P1Ap +Q1 +KT
2 R12K2

−P1(t)B1R−1
11 BT

1 P1(t), P1(Tf ) = 0, (2.110)

then the stochastic optimal control problem (2.109) admits a state feedback solution,

u∗1(t) = K1x(t) =−R−1
11 BT

1 P1(t)x(t). (2.111)

Conversely, substituting u∗1(t) = K1x(t) into state equation (2.84) and the cost functional

for the first player (2.85b) gives

dx(t) = [(A+B1K1)x(t)+B2u2(t)]dt +Apx(t)dw(t), x(0) = x0, (2.112a)

J2(x0, u∗1, u2) =
1

2
E

[∫ Tf

0

(
xT (t)Q2x(t)+uT

2 (t)R22u2(t)+ xT (t)KT
1 R21K1x(t)

)
dt
]
.

(2.112b)

Hence, by Theorem 2.2, if the following stochastic Riccati differential equation (SRDE)

has the solution PT
2 (t) = P2(t)≥ 0:

−Ṗ2(t) =(A+B1K1)
T P2(t)+P2(t)(A+B1K1)+AT

p P2Ap +Q2 +KT
1 R21K1

−P2(t)B2R−1
22 BT

2 P2(t), P2(Tf ) = 0, (2.113)

then the stochastic optimal control problem (2.112) admits a state feedback solution,

u∗2(t) = K2x(t) =−R−1
22 B2T P2(t)x(t). (2.114)

Hence the theorem is proved.

Infinite horizon case

In the case of infinite horizon, let us consider the linear stochastic system of two players:

dx(t) = [Ax(t)+B1u1(t)+B2u2(t)]dt +Apx(t)dw(t), x(0) = x0, (2.115)
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and the cost functionals are

J1(x0, u1, u2) =
1

2
E

[∫ ∞

0

(
xT (t)Q1x(t)+uT

1 (t)R11u1(t)+uT
2 (t)R12u2(t)

)
dt
]
, (2.116a)

J2(x0, u1, u2) =
1

2
E

[∫ ∞

0

(
xT (t)Q2x(t)+uT

2 (t)R22u2(t)+uT
1 (t)R21u1(t)

)
dt
]
, (2.116b)

where Qi = QT
i ≥ 0, Ri j = RT

i j ≥ 0 for i �= j and Rii = RT
ii > 0, i, j = 1, 2.

Lemma 2.3. If there exist two symmetric positive semi-definite matrices P1 and P2 satisfy-

ing the following cross-coupling stochastic Riccati differential equations (SRDEs):

(A+B2K2)
T P1 +P1(A+B2K2)+AT

p P1Ap +Q1 +KT
2 R12K2−P1B1R−1

11 BT
1 P1 = 0,

(2.117a)

(A+B1K1)
T P2 +P2(A+B1K1)+AT

p P2Ap +Q2 +KT
1 R21K1−P2B2R−1

22 BT
2 P2 = 0,

(2.117b)

then, the state feedback strategy pair (u∗1(t), u∗2(t)) is a Nash equilibrium for the system

(2.115)–(2.116), where

u∗1(t) = K1x(t) =−R−1
11 BT

1 P1x(t), (2.118a)

u∗2(t) = K2x(t) =−R−1
22 BT

2 P2x(t). (2.118b)

Proof. Substituting u∗2(t) = K2x(t) into state equation (2.115) and the cost functional for

the first player (2.116a) gives

dx(t) = [(A+B2K2)x(t)+B1u1(t)]dt +Apx(t)dw(t), x(0) = x0, (2.119a)

J1(x0, u1, u∗2) =
1

2
E

[∫ ∞

0

(
xT (t)Q1x(t)+uT

1 (t)R11u1(t)+ xT (t)KT
2 R12K2x(t)

)
dt
]
.

(2.119b)

Hence, by Theorem 2.3, if the following stochastic Riccati differential equation (SRDE)

has the solution PT
1 = P1 ≥ 0:

(A+B2K2)
T P1 +P1(A+B2K2)+AT

p P1Ap +Q1 +KT
2 R12K2−P1B1R−1

11 BT
1 P1 = 0,

(2.120)

then the stochastic optimal control problem (2.119) admits a state feedback solution,

u∗1(t) = K1x(t) =−R−1
11 BT

1 P1x(t). (2.121)

Conversely, substituting u∗1(t) = K1x(t) into state equation (2.115) and the cost functional

for the first player (2.116b) gives

dx(t) = [(A+B1K1)x(t)+B2u2(t)]dt +Apx(t)dw(t), x(0) = x0, (2.122a)
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J2(x0, u∗1, u2) =
1

2
E

[∫ ∞

0

(
xT (t)Q2x(t)+uT

2 (t)R22u2(t)+ xT (t)KT
1 R21K1x(t)

)
dt
]
.

(2.122b)

Hence, by Theorem 2.3, if the following stochastic Riccati differential equation (SRDE)

has the solution PT
2 = P2 ≥ 0:

(A+B1K1)
T P2 +P2(A+B1K1)+AT

p P2Ap +Q2 +KT
1 R21K1−P2B2R−1

22 BT
2 P2 = 0,

(2.123)

then the stochastic optimal control problem (2.122) admits a state feedback solution,

u∗2(t) = K2x(t) =−R−1
22 B2T P2x(t). (2.124)

Hence the lemma is proved.

2.3.3 Numerical examples
Finite-horizon case:

Consider a linear stochastic two-player Nash equilibrium problem:

dx(t) = (−x+u1 +u2)dt + εxdw(t), x(0) = 1, (2.125)

with cost functionals

J1 =
1

2
E

[∫ 1

0
(x2 +u2

1 +2u2
2)dt
]
, (2.126a)

J2 =
1

2
E

[∫ 1

0
(x2 +2u2

1 +u2
2)dt
]
. (2.126b)

To find the optimal control for the above problem.

We call a pair (u1, u2) ∈U1×U2 a Nash equilibrium if

J1(u∗1, u∗2)≤ J1(u1, u∗2), ∀u1 ∈U1, (2.127a)

J2(u∗1, u∗2)≤ J2(u∗1, u2), ∀u2 ∈U2. (2.127b)

In such case, the pair (u∗1, u∗2) can be defined as

u∗1 =−P1x and u∗2 =−P2x, where (2.128)

−Ṗ1 = P1(−1−P2)+(−1−P2)
T P1−P2

1 +1+2P2
2 +P1ε2, P1(1) = 0,

−Ṗ2 = P2(−1−P1)+(−1−P1)
T P2−P2

2 +1+2P2
1 +P1ε2, P2(1) = 0.
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which imply

Ṗ1 = P2
1 +2P1P2 +2P1−2P2

2 −1+P1ε2, P1(1) = 0, (2.129a)

Ṗ2 = P2
2 +2P1P2 +2P2−2P2

1 −1+P1ε2, P2(1) = 0. (2.129b)

Solving the system (2.129) for P1 and P2 we can find the optimal control from (2.128). The

state trajectory can be depicted by Fig. 2.3 and can be detected by the following equation:

x(t +h) = x(t)+h(−1−P1−P2)x(t)+ εx(t)
√

hN(0,1), x(0) = 1, (2.130)

where 0 < h < 1 is a small step size of time.
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Fig. 2.3: Finite-horizon state trajectory.

Infinite-horizon case:

Let us consider the following system matrices of the system (2.115)–(2.116) for a two-

player Nash equilibrium problem:

A =

⎡
⎣ −0.52 1.12 0

0 −0.24 1

0.23 0.85 −0.16

⎤
⎦ , Ap = 0.1A, x(0) =

⎡
⎣ 1

0.5
−0.6

⎤
⎦ ,

B1 =

⎡
⎣0.15

0.12

3.55

⎤
⎦ , B2 =

⎡
⎣ 0.23

−0.52

0.28

⎤
⎦ ,

Q1 = diag( 1 1.5 2.1 ), Q2 = diag( 1.2 1.1 3.1 ),

R11 = 1.9, R12 = 2.5, R21 = 2.7, R22 = 3.5.

Applying Lemma 2.3, we can obtain the following results:
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Fig. 2.4: Trajectory of the state.

P1 =

⎡
⎣8.4141e−1 6.2288e−1 1.0255e−1

6.2288e−1 2.2012 5.0173e−1

1.0255e−1 5.0173e−1 6.3970e−1

⎤
⎦ ,

P2 =

⎡
⎣ 1.0076 8.1692e−1 1.4292e−1

8.1692e−1 2.5452 6.2007e−1

1.4292e−1 6.2007e−1 9.0459e−1

⎤
⎦ ,

K1 =
[−2.9737e−1 −1.1256 −1.2350

]
,

K2 =
[
4.3723e−2 2.7486e−1 1.0366e−2

]
.

It can be observed that the Lyapunov iterative algorithm converges to the exact solution

with an accuracy of 10−13 after 14 iterations. Fig. 2.4 shows the response of the system

with a state trajectory. It shows that the state variables x(k) can stabilize the given system,

which implies that the proposed method is very useful and reliable.

2.4 Disturbance attenuation problems

Consider the following stochastic linear system [Zhang and Chen (2004)]:⎧⎪⎨
⎪⎩

dx(t) = [Ax(t)+B2u(t)+B1v(t)]dt +Apx(t)dw(t),

z(t) =

[
Cx(t)
Du(t)

]
,

(2.131)

where x(0) = 0 and DT D = I. In (2.131), x(t) ∈ R
n is the state vector, u(t) ∈ R

nu is the

control input, v(t) ∈ R
nv is the disturbance, w(t) ∈ R is a one-dimensional wiener process

and z(t) ∈ R
nz is the controlled output.
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We want to minimize H2 performance of the output by controlling u(t) so that the

effect of disturbance v(t) will be eliminated under H∞ - constraint. Moreover, minimize the

desired cost function when worst-case disturbance v∗(t) is imposed.

For any disturbance attenuation γ > 0, we need to find a state feedback control u∗(t) ∈
L 2

F (R+, R
nu) such that,

(i) For v �= 0, the perturbation operator

‖L ‖∞ = sup
v(t) ∈L 2

F (R+, R
nv)

v �= 0, x0 = 0

‖z‖
‖v‖ ,

= sup
v(t) ∈L 2

F (R+, R
nv)

v �= 0, x0 = 0

{
E

[∫ ∞

0
(xTCTCx+uT u)dt

]}1/2

{
E

[∫ ∞

0
vT v dt

]}1/2
< γ. (2.132)

(ii) For v = 0, u∗(t) stabilizes system (2.131) internally, i.e, limt→∞E[xT (t)x(t)] = 0.

(iii) For v(t) = v∗(t), worst-case disturbance, if exist, where

v∗(t) = argmin
v

J1(x0, u∗, v), ∀x0 ∈ R
n, (2.133)

with

J1(x0, u∗, v) = E

[∫ ∞

0
(γ2‖v‖2−‖z‖2)dt

]
, (2.134)

is applied to the system (2.131) u∗(t) minimizes the cost functional,

J2(x0, u, v∗) = ‖z‖2 = E

[∫ ∞

0
(xTCTCx+uT u)dt

]
. (2.135)

Equivalently condition (i), next theorem will also show that if J1(x0, u∗, v∗) ≥ 0, then u∗

is a solution to the stochastic H2/H∞ control. If an admissible control u(t) satisfies the

condition (i) and (ii), then u(t) is called a solution under H∞-constraint.

The infinite horizon stochastic H2/H∞ control is associated with the two-player,

nonzero-sum Nash equilibrium strategies (u∗, v∗) defined by,

J1(x0, u∗, v∗)≤ J1(x0, u∗, v), (2.136)

J2(x0, u∗, v∗)≤ J2(x0, u, v∗). (2.137)

If the previous (u∗, v∗) exists, then we say that the infinite horizon H2/H∞ control admits

a pair of solutions.
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Theorem 2.8. For (2.131), suppose that the coupled AREs,

P1(A−B2BT
2 P2)+(A−B2BT

2 P2)
T P1 +AT

p P1Ap = ÃT
2 Ã2, (2.138)

P2(A−B2BT
2 P2− γ−2B1BT

1 P1)+(A−B2BT
2 P2− γ−2B1BT

1 P1)
T P2 +AT

p P2Ap =−ÃT
3 Ã3,

(2.139)

have a pair of solution (P1 ≤ 0,P2 ≥ 0), where Ã2 =

⎡
⎣ C

γ−1BT
1 P1

BT
2 P2

⎤
⎦ and Ã3 =

[
C

BT
2 P2

]
. If

[A,Ap|C] and [A− γ−2B1BT
1 P1,Ap|C] are exactly observable, then the stochastic H2/H∞

control problem admits a pair of solutions

u∗(t) =−BT
2 P2x(t), (2.140)

v∗(t) =−γ−2BT
1 P1x(t). (2.141)

Proof. To prove Theorem 2.8, we have to prove the following claims:

(i) (u∗, v∗) ∈L 2
F (R+, R

nu)×L 2
F (R+, R

nv) and (A−B2BT
2 P2,Ap) is stable,

(ii) ‖L ‖∞ < γ and

(iii) u∗ minimizes the output energy ‖z‖2
2 when v∗ applied in (2.131), i.e.,

u∗ = argmin
u

J2(x0, u, v∗), ∀u ∈L 2
F (R+, R

n
u).

(i) By Lemma 3 of [Zhang and Chen (2004)], [A− B2BT
2 P2− γ−2B1BT

1 P1, Ap|Ã3] is

exactly observable. So form Lemma 1 of [Zhang and Chen (2004)], (2.131) yields (A−
B2BT

2 P2−γ−2B1BT
1 P1,Ap) being stable. Hence, (u∗, v∗)∈L 2

F (R+, R
nu)×L 2

F (R+, R
nv).

Second, form Lemmas 1 and 3 of [Zhang and Chen (2004)], (2.138) yields (A−
BT

2 P2P2,Ap) is stable, i.e., (2.131) is internally stabilizable by u(t) = u∗(t) = −BT
2 P2x(t).

So, we can write [Hinrichsen and Pritchard (1998)],

P1(A−B2BT
2 P2)+(A−B2BT

2 P2)
T P1 +AT

p P1Ap−P2B2BT
2 P2− γ−2P1B1BT

1 P1−CTC = 0,

(2.142)

(ii) Substituting u(t) = u∗(t) =−BT
2 P2x(t) into (2.131) gives⎧⎪⎨

⎪⎩
dx(t) =

{
(A−B2BT

2 P2)x(t)+B1v(t)
}

dt +Apx(t)dw(t),

z(t) =

[
Cx(t)

−DBT
2 P2x(t)

]
,

(2.143)
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where x(0) = x0. Applying Ito’s formula to (2.143) and considering (2.138), we have

E

[∫ ∞

0
d(xT P1x)

]
= E

[∫ ∞

0

{(
(A−B2BT

2 P2)x+B1v
)
(P1x+ xT P1)+ xT AT

p P1Apx
}

dt
]

or, − xT
0 P1x0 = E

[∫ ∞

0

{
xT (P1(A−B2BT

2 P2)+(A−B2BT
2 P2)

T P2 +AT
p P1Ap)x

+ vT BT
1 P1x+ xT P1B1v

}
dt
]

= E

[∫ ∞

0

{
xT ÃT

2 Ã2x+ vT BT
1 P1x+ xT P1B1v

}
dt
]

= E

[∫ ∞

0

{
xT (CTC+ γ−2P1B1BT

1 P1 +P2B2BT
2 P2)x+ vT BT

1 P1x+ xT P1B1v
}

dt
]

= E

[∫ ∞

0

{
zT z+ γ2v∗

T
v∗+ vT BT

1 P1x+ xT P1B1v
}

dt
]

[suppose, v∗(t) =−γ−2BT
1 P1x(t)]

or, E

[∫ ∞

0

{
γ2vT v− zT z

}
dt
]
= xT

0 P1x0 +E

[∫ ∞

0

{
γ2vT v+ γ2v∗

T
v∗ − γ2vT v∗ − γ2v∗

T
v
}

dt
]

= xT
0 P1x0 + γ2

E

[∫ ∞

0
(v− v∗)T (v− v∗)dt

]
(2.144)

So

J1(x0, u∗, v) = E

[∫ ∞

0

{
γ2vT v− zT z

}
dt
]

= xT
0 P1x0 + γ2

E

[∫ ∞

0
(v− v∗)T (v− v∗)dt

]
≥ J1(x0, u∗, v∗) = xT

0 P1x0.

(2.145)

Now, if we define an operator L1v = v−v∗, then form (2.145) we have (for x(0) = x0 = 0):

J1(x0, u∗, v) = γ‖v‖2−‖z‖2 = γ2‖L1v‖2 ≥ ε‖v‖2 > 0

, for some ε > 0, which yields ‖L ‖∞ < γ .

(iii) Finally, when worst-case disturbance v = v∗(t) = −γ−2BT
1 P1x(t) is applied to

(2.131), we have⎧⎪⎨
⎪⎩

dx(t) =
{
(A− γ−2B1BT

1 P1)x(t)+B2u(t)
}

dt +Apx(t)dw(t)

z(t) =

[
Cx(t)
Du(t)

]
,

(2.146)

where x(0) = x0. Now the H2 optimization problem becomes a standard stochastic LQ

optimal control problem, so we can write [Rami and Zhou (2000)]

P2(A− γ−2B1BT
1 P1)+(A− γ−2B1BT

1 P1)
T P2 +AT

p P1Ap−P2B2BT
2 P2 +CTC = 0, (2.147)
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which is the same as (2.139). Applying Ito’s formula in (2.146) considering (2.147) we get,

E

[∫ ∞

0
d(xT P2x)

]
= E

[∫ ∞

0

{(
(A− γ−2B1BT

1 P1)x+B2u
)
(P2x+ xT P2)+ xT AT

p P2Apx
}

dt
]

or, − xT
0 P2x0 = E

[∫ ∞

0

{
xT P2B2BT

2 P2x− xTCTCx+uT BT
2 P2x+ xT P2B2u

}
dt
]
[by (2.147)]

or, E

[∫ ∞

0

{
xTCTCx+uT u

}
dt
]

= xT
0 P2x0 +E

[∫ ∞

0

{
uT u+u∗

T
u∗+uT u∗ −uT u∗ −u∗

T
u
}

dt
]

or, J2(x0, u, v∗) = xT
0 P2x0 +E

[∫ ∞

0
(u−u∗)T (u−u∗)dt

]
. (2.148)

If we put u = u∗, then form (2.148) we get

J2(x0, u, v∗)≥ J2(x0, u∗, v∗) = xT
0 P2x0. (2.149)

It can be shown that [A − γ−2BT
1 P1,Ap|C] is exactly observable and [A − B2BT

2 P2 −
γ−2BT

1 P1,Ap|C] is stochastically detectable. So, the maximal solution of AREs (2.138)

and (2.139) can be written as (P1 ≤ 0, P2 ≥ 0).
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Chapter 3

H∞-Constrained Incentive Stackelberg
Game for Discrete-Time Systems with
Multiple Non-cooperative Followers

This chapter is based on a previously published article [Ahmed and Mukaidani (2016)].

3.1 Introduction

Stackelberg leadership model is a hierarchical strategy involving the first movement of the

leader and then the consequent movement of followers. With several control problems,

dynamic games for both continuous- and discrete-time systems have been extensively

studied (see e.g. [Başar and Olsder (1999)] and references therein). Recently, due to the

growth of interest in multi-agent and cooperative systems, the theoretical game problem

and the applications have been widely investigated. The interest in multi-agent cooperative

systems with theoretical game problems and applications is increasing. For example, a

new class of multi-agent discrete-time dynamic games are demonstrated in terms of the

solutions of the discrete-time coupled Hamilton Jacobi equations [Abouheaf et al. (2013)].

In [Shen (2004)], a non-cooperative game with Nash equilibrium state feedback control

has been considered. Subsequently, Riccati design techniques and neural adaptive design

techniques for cooperative control of multi-agent systems with unknown dynamics has

been established in [Lewis et al. (2013)].

The open and closed-loop Stackelberg games are commonly used in dy-

namic non-cooperative games and the hierarchical decision making problems

[Başar and Olsder (1999)], [Medanic (1978)]. The basic feature of the Stackelberg

game is the leader determines his strategy ahead and the followers optimize their own

cost subject to the leader’s announcement. At last, the leader optimize his cost con-
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sidering the optimized followers’ constraints. Also, incentive Stackelberg strategy an

extensive idea in which the leader can achieve his team-optimal solution in a Stack-

elberg game. Over the past 40 years, the incentive Stackelberg strategy was studied

intensively (see e.g. [Ho et al. (1982), Basar and Selbuz (1979), Basar and Olsder (1980),

Zheng and Basar (1982), Zheng et al. (1984)] and references therein). In [Li et al. (2002)],

the team-optimal state feedback incentive Stackelberg strategy of discrete-time two-player

nonzero-sum dynamic games characterized by linear state dynamics and quadratic cost

functionals was developed. However, the deterministic disturbance is not taken into

account in these literatures. To the best of our knowledge, such perspective is lacking in

the literature in view of the case of the existence of the external disturbance in hierarchical

control strategy. Therefore, the incentive Stackelberg game for such systems seem to be

even more challenging.

In this Chapter, the incentive Stackelberg game for a discrete-time system with multiple

followers under H∞ constraint is considered. We discuss only two-level hierarchical games

with one leader and many non-cooperative followers. In our work, the conditions for the

existence of the leader’s team-optimal solution under the H∞ constraint are derived based

on the existing results in [Zhang et al. (2007)]. It is shown that a solution can be found

by solving a set of cross-coupled backward difference Riccati equations (CCBDREs).

Moreover, the followers’ strategies are established in such a way that satisfies the leader’s

team-optimal solution. Furthermore, we discuss the infinite-horizon case and propose a

numerical algorithm to obtain a solution set of the coupled algebraic Riccati equations. A

numerical example demonstrates the efficiency of the proposed methodology.

Notation: The notations used in this Chapter are fairly standard. In denotes the n×n identity

matrix. block diag denotes the block diagonal matrix. [·] denotes the expectation operator.

YYY = {y(k) : y(k) ∈ R
n}0≤k≤T = {y(0),y(1), . . . ,y(Tf )} denotes the finite sequences. The

l2-norm of y(k)∈ l2(NTf ,R
n) is defined by ‖y(k)‖2

l2(NTf ,R
n)

:=∑
Tf
k=0[‖y(k)‖2], where NTf :=

{0, 1, . . . ,Tf }.

3.2 Preliminary results

Consider the linear discrete-time system,

x(k+1) = A(k)x(k)+B(k)u(k), (3.1a)

x(0) = x0, k = 0, 1, . . . ,Tf , (3.1b)

where x(k) ∈ R
n represents the state vector, u(k) ∈ R

m denotes the control input, A(k) and

B(k) are assumed to be matrix-valued functions of suitable dimensions.
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Let us define the cost functional,

J(x0, u) :=
1

2

Tf

∑
k=0

[xT (k)Q(k)x(k)+2xT (k)S(k)u(k)+uT (k)R(k)u(k)], (3.2)

where Q(k)=QT (k)≥ 0, R(k)=RT (k)> 0, Q(k)−ST (k)[R(k)]−1S(k)> 0 and 0< T <∞.

By using the similar technique of [Zhang et al. (2008)] and [Rami et al. (2002)] to find an

admissible control of the above system, we can derive the following lemma3:

Lemma 3.1. Suppose that the following backward difference Riccati equation (BDRE) has

solution(s):

X(k) =AT
S (k)X(k+1)AS(k)−AT

S (k)X(k+1)V (k)X(k+1)AS(k)+Q(k)

−ST (k)[R(k)]−1S(k), X(T +1) = 0, (3.3)

where

AS(k) := A(k)−B(k)[R(k)]−1S(k),

V (k) := B(k)[R̂(k)]−1BT (k),

R̂ := R(k)+BT (k)X(k+1)B(k),

Q(k)−ST (k)[R(k)]−1S(k)≥ 0.

Then, the optimal state feedback control is given by

u∗(k) = K∗(k)x(k) (3.4)

=−[R̂(k)]−1
(
BT (k)X(k+1)AS(k)+ [R(k)]−1S(k)

)
x(k). (3.5)

In contrast to [Zhang et al. (2008)] and [Rami et al. (2002)], there exist a cross-coupling

term 2xT (k)S(k)u(k) in the cost functional (3.1) in a deterministic system.

Proof. Let us consider the Hamilton as follows:

H(k) =xT (k)Q(k)x(k)+2xT (k)S(k)u(k)+uT (k)R(k)u(k)+V (k+1)

=xT (k)Q(k)x(k)+2xT (k)S(k)u(k)+uT (k)R(k)u(k)

+ xT (k+1)X(k+1)x(k+1), (3.6)

where V (k) is a quadratic function as follows:

V (k) =
1

2
xT (k)X(k)x(k), V (Tf ) = 0, (3.7)

with the symmetric positive semi-definite matrix X(k).
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Using equation (3.1a), the following result can be found form (3.6):

H(k) =xT (k)Q(k)x(k)+2xT (k)S(k)u(k)+uT (k)R(k)u(k)

+ [A(k)x(k)+B(k)u(k)]T X(k+1)[A(k)x(k)+B(k)u(k)],

=xT (k)[Q(k)+AT (k)X(k+1)A(k)]x(k)

+2xT (k)[S(k)+AT (k)X(k+1)B(k)]u(k)+uT (k)[R(k)+BT (k)X(k+1)B(k)]u(k),
(3.8)

To minimize the right hand side of (3.8) with respect to the control input u(k) we obtain

the following state feedback optimal control scheme:

u∗(k) =−[R(k)+BT (k)X(k+1)B(k)]−1[S(k)+AT (k)X(k+1)B(k)]T x(k),

=−[R̂(k)]−1
(
BT (k)X(k+1)AS(k)+ [R(k)]−1S(k)

)
x(k), (3.9)

where

AS(k) := A(k)−B(k)[R(k)]−1S(k),

R̂ := R(k)+BT (k)X(k+1)B(k).

Comparing right hand sides of (3.49) and (3.8), the following backward difference Ric-

cati equation (BDRE) can be derived using (3.3):

X(k) =AT
S (k)X(k+1)AS(k)−AT

S (k)X(k+1)V (k)X(k+1)AS(k)+Q(k)

−ST (k)[R(k)]−1S(k), X(T +1) = 0. (3.10)

On the other hand, consider the following discrete-time system.

x(k+1) = A(k)x(k)+D(k)v(k), (3.11a)

z(k) =C(k)x(k), x(0) = x0, k = 0, 1, . . . Tf , (3.11b)

where v(k) ∈ R
nv represents the external disturbance. z(k) ∈ R

nz represents the controlled

output. The following definition is the counterpart of the deterministic case of the existing

results in [Zhang et al. (2007), Zhang et al. (2008)].

Definition 3.1. In system (3.11), if the disturbance input v(k) ∈ l2(NTf , R
nv) and the con-

trolled output z(k) ∈ l2(NTf , R
nz), then the perturbed operator

LTf := l2(NTf , R
nv)→ l2(NTf , R

nz) (3.12)
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is defined by

LTf v(k) :=Cx(k, 0, v), ∀v(k) ∈ l2(NTf , R
nv), (3.13)

with its norm

‖LTf ‖ := sup
v(k) ∈ l2(NTf , R

nv ),

v(k) �= 0, x0 = 0

‖z(k)‖2
l2(NTf , R

nz)

‖v(k)‖2
l2(NTf , R

nv)

. (3.14)

The following lemma can be viewed as the deterministic version of

[Zhang et al. (2007), Zhang et al. (2008)].

Lemma 3.2. For the discrete time system (3.11), ‖LTf ‖ < γ for given γ > 0 if and only if

there exists a unique solution Y (k)≤ 0 to the following matrix difference equation.

Y (k) = AT (k)Y (k+1)A(k)−AT (k)Y (k+1)U(k)Y (k+1)A(k)

−CT (k)C(k), Y (T +1) = 0, (3.15)

where

U(k) := D(k)[Tγ(k)]−1DT (k),

Tγ(k) := γ2Inv +DT (k)Y (k+1)D(k).

In this case, worst-case disturbance is given by

v∗(k) = F∗γ (k)x(k) =−[Tγ(k)]−1DT (k)Y (k+1)A(k)x(k). (3.16)

Proof. The corresponding cost function can be defined as:

Jv(x0, v) :=
Tf

∑
k=0

[γ2vT (k)v(k)− xT (k)CT (k)C(k)x(k)]. (3.17)

Let us consider the Hamilton as follows:

H(k) =γ2vT (k)v(k)− xT (k)CT (k)C(k)x(k)+V (k+1)

=γ2vT (k)v(k)− xT (k)CT (k)C(k)x(k)+ xT (k+1)Y (k+1)x(k+1), (3.18)

where V (k) is a quadratic function as follows:

V (k) =
1

2
xT (k)Y (k)x(k), V (Tf ) = 0, (3.19)

with the symmetric positive semi-definite matrix Y (k).
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Using equation (3.11a), the following result can be found form (3.18):

H(k) =γ2vT (k)v(k)− xT (k)CT (k)C(k)x(k)

+ [A(k)x(k)+D(k)v(k)]TY (k+1)[A(k)x(k)+D(k)v(k)],

=xT (k)[AT (k)Y (k+1)A(k)−CT (k)C(k)]x(k)

+2xT (k)[AT (k)Y (k+1)D(k)]v(k)+ vT (k)[γ2Inv +DT (k)Y (k+1)D(k)]v(k),
(3.20)

To minimize the right hand side of (3.20) with respect to the disturbance input v∗(k) we

obtain the following state feedback worst-case disturbance:

v∗(k) =−[γ2Inv +DT (k)Y (k+1)D(k)]−1[AT (k)Y (k+1)D(k)]T x(k),

=−[Tγ(k)]−1DT (k)Y (k+1)A(k)x(k) (3.21)

where

Tγ(k) := γ2Inv +DT (k)Y (k+1)D(k).

Comparing right hand sides of (3.19) and (3.20), the following backward difference Riccati

equation (BDRE) can be derived using (3.56):

Y (k) = AT (k)Y (k+1)A(k)−AT (k)Y (k+1)U(k)Y (k+1)A(k)

−CT (k)C(k), Y (T +1) = 0, (3.22)

where

U(k) := D(k)[Tγ(k)]−1DT (k).

3.3 H∞-constrained incentive Stackelberg game

3.3.1 Problem formulation

Consider a linear discrete-time system involving multiple followers defined by

x(k+1) = A(k)x(k)+
N

∑
j=1

B0 j(k)u0 j(k)+
N

∑
j=1

B j(k)u j(k)+D(k)v(k), (3.23a)

z(k) =

⎡
⎢⎢⎢⎢⎢⎣

C(k)x(k)
G0(k)uuu0(k)
G1(k)u1(k)

...

GN(k)uN(k)

⎤
⎥⎥⎥⎥⎥⎦ , (3.23b)
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where x(0) = x0, GT
i (k)Gi(k) = Imi , ui(k) ∈ l2(NTf , R

mi), i = 1, . . . ,N represents the i-th

follower’s control input. It should be noted that i = 0 represents the leader’s control input,

uuu0(k) =
[

uT
01(k) · · · uT

0N(k)
]T

,

and each i-th control input u0i, i = 1, . . . ,N is applied for each i-th follower. Define the

linear quadratic cost functionals as follows:

J0(x0, uuu0, u1, . . . ,uN , v)

:=
1

2

Tf

∑
k=0

[
xT (k)Q0(k)x(k)+

N

∑
j=1

{
uT

0 j(k)R00 j(k)u0 j(k)+uT
j (k)R0 j(k)u j(k)

}]
,

(3.24a)

Ji(x0, uuu0, u1, . . . ,uN , v)

:=
Tf

∑
k=0

[
xT (k)Qi(k)x(k)+uT

0i(k)R0ii(k)u0i(k)+uT
i (k)Rii(k)ui(k)

]
, (3.24b)

where Qi(k) = QT
i (k)≥ 0, R00i(k) = RT

00i(k)> 0, R0i(k) = RT
0i(k)≥ 0, R0ii(k) = RT

0ii(k)≥
0, Rii(k) = RT

ii (k)> 0, i = 1, . . . ,N. Furthermore, for given a disturbance attenuation level

γ > 0, define the performance function

Jγ(x0, uuu0, u1, . . . ,uN , v) :=
Tf

∑
k=0

[γ2‖v(k)‖2−‖z(k)‖2]. (3.25)

It should be noted that throughout the Chapter, each player only has access to perfect state

information and the following state feedback form defined by the space of admissible strate-

gies Γi, i = 0, 1, . . . ,N is considered.

u0i(k) = u0i
(
k, x(k), x(0)

)
ui(k) = ui

(
k, x(k), x(0)

)
}
, i = 1, . . . ,N. (3.26)

The finite horizon H∞-constrained incentive Stackelberg game with multiple non-

cooperative followers is given below:

Given the disturbance attenuation level γ > 0, 0 < T < ∞, find (if possible) strategies

u∗0i(k) ∈ l2(NTf , R
m0i), u∗i (k) ∈ l2(NTf , R

mi), i = 1, . . . ,N such that

i) for the worst-case disturbance v∗(k) ∈ l2(NTf , R
nv), the following inequalities hold:

J0(x0, uuu∗0, u∗1, . . . ,u
∗
N , v∗) = min

(uuu0, u1, ... ,uN)
J0(x0, uuu0, u1, . . . ,uN , v∗), (3.27a)

Ji(x0, u∗01, . . . ,u
∗
0N , u∗1, . . . ,u

∗
N , v∗)≤ Ji(x0, u∗0(−i), u∗−i, v∗), (3.27b)

64



where

u∗0(−i) := (u∗01, . . . ,u
∗
0(i−1), u0i, u∗0(i+1), . . . ,u

∗
0N),

u∗−i := (u∗1, . . . ,u
∗
i−1, ui, u∗i+1, . . . ,u

∗
N),

u0 j := u0 j(u j), u∗0 j = u0 j(u∗j), j = 1, . . . ,N,

u j := u j(u j), u∗j = u j(u∗j), j = 1, . . . ,N.

ii) The norm of the perturbed operator mentioned in (3.14) and the disturbance attenu-

ation level are related as

‖LTf ‖< γ, (3.28)

where ‖z(k)‖2
l2(NTf , R

n)
and ‖v(k)‖2

l2(NTf , R
n)

in (3.14) are defined as

‖z(k)‖2
l2(NTf , R

n) :=
Tf

∑
k=0

[
‖C(k)x(k)‖2 +‖uuu∗0(k)‖2 +

N

∑
j=1

‖u∗j(k)‖2

]

‖v(k)‖2
l2(NTf , R

n) :=
Tf

∑
k=0

[‖v(k)‖2].

It should be noted that a strategy pair (uuu∗0, u∗1, . . . ,u
∗
N) is called a team-optimal strategy

pair for the leader [Başar and Olsder (1999)]. The problem is that find sufficient condi-

tions such that Stackelberg strategy achieves a team-optimal value for J0. Furthermore, the

condition of (3.27b) is called Nash equilibrium condition.

3.3.2 Main results

First, the team optimization problem is solved by using the standard linear quadratic (LQ)

control under the worst disturbance. Let us consider the following LQ control problem.

x(k+1) = Av(k)x(k)+Bc(k)uc(k), (3.29a)

J0(x0, uc) :=
1

2

Tf

∑
k=0

[xT (k)Q0(k)x(k)+uT
c (k)Rc(k)uc(k)], (3.29b)

where

Av(k) := A(k)+D(k)Fγ(k),

v∗(k) := Fγ(k)x(k),

uc(k) :=
[

uuuT
0 (k) uT

1 (k) · · · uT
N(k)

]T
,
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Bc(k) :=
[

BBB0(k) B1(k) · · · BN(k)
]
,

BBB0(k) :=
[

B01(k) · · · B0N(k)
]
,

Rc(k) := block diag
(

RRR0(k) R01(k) · · ·R0N(k)
)
,

RRR0(k) := block diag
(

R001(k) · · ·R00N(k)
)
.

According to Lemma 3.1, the team-optimal control can be written as

ūc(k) =
[

ūuuT
0 (k) ūT

1 (k) · · · ūT
N(k)

]T
= Kc(k)x(k) =

[
KKK0(k)
KKK1(k)

]
x(k)

=−[R̂c(k)]−1BT
c (k)P(k+1)Av(k)x(k), (3.30)

where P(k) satisfies the following BDRE

P(k) = AT
v (k)P(k+1)Av(k)−AT

v (k)P(k+1)Sc(k)P(k+1)Av(k)

+Q0(k), P(T +1) = 0, (3.31)

with

KKK0(k) :=
[

KT
01(k) · · · KT

0N(k)
]T

,

KKK1(k) :=
[

KT
1 (k) · · · KT

N (k)
]T

,

Sc(k) := Bc(k)[R̂c(k)]−1BT
c (k),

R̂c(k) := Rc(k)+BT
c (k)P(k+1)Bc(k).

Furthermore, the related team-optimal state response is given below.

x̄(k+1) = Av(k)x̄(k)+Bc(k)uc(k) = [Av(k)+Bc(k)Kc(k)]x̄(k), x̄(0) = x0. (3.32)

On the other hand, by using Lemma 3.2, the H∞ constraint condition can be obtained.

Namely, suppose that the following BDRE has the solution set.

W (k) =AT
K(k)W (k+1)AK(k)−AT

K(k)W (k+1)UW (k)W (k+1)AK(k)

−LK(k), W (T +1) = 0, (3.33)

where

AK(k) := A(k)+Bc(k)Kc(k),

UW (k) := D(k)[TWγ(k)]−1DT (k),

TWγ(k) := γ2Inv +DT (k)W (k+1)D(k),

LK(k) :=CT (k)C(k)+KKKT
0 (k)KKK0(k)+KKKT

1 (k)KKK1(k).
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In this case, the worst-case disturbance is given by

v∗(k) = F∗γ (k)x(k) =−[TWγ(k)]−1DT (k)W (k+1)AK(k)x(k). (3.34)

It is assumed that the leader chooses the following incentive Stackelberg strategy:

u∗0i(k) = η0i(k)x(k)+ηii(k)ui(k), i = 1, 2, . . . ,N, (3.35)

where η0i(k) ∈ R
m0i×n and ηii(k) ∈ R

m0i×mi are strategy parameter matrices having the

following relation:

η0i(k) = K0i(k)−ηii(k)Ki(k), i = 1, 2, . . . ,N. (3.36)

It should be ensured that u∗0i(k), u∗i (k) and x∗(k) are satisfied the H∞ constraint team-

optimal Nash equilibrium. Hence for i = 1, 2, . . . ,N,

u∗0i(k) =−[R00i(k)]−1BT
0iP(k+1)x∗(k+1), (3.37a)

u∗i (k) =−[R0i(k)]−1BT
i P(k+1)x∗(k+1). (3.37b)

Second, the followers’ optimization problem is solved. Consider the following cost func-

tional,

Ji(x0, uuu∗0, u1, . . . ,uN , v)

:=
1

2

Tf

∑
k=0

[
xT (k)Qi(k)x(k)+u∗T0i (k)R0ii(k)u∗0i(k)+uT

i (k)Rii(k)ui(k)
]
, i = 1, . . . ,N,

(3.38)

where uuu∗0(k) = uuu∗0(k, x(k), x(0)) can be obtained by (3.35).

In order to establish the sufficient condition for optimality, the following Hamiltonian is

defined.

Hi(ui, αi) :=
1

2

[
xT (k)Qi(k)x(k)+u∗T0i (k)R0ii(k)u∗0i(k)+uT

i (k)Rii(k)ui(k)
]

+αT
i (k+1)

[
Av(k)x(k)+B0i(k)u∗0i(k)+

N

∑
j=1, j �=i

B0 j(k)u∗0 j(k)

+Bi(k)ui(k)+
N

∑
j=1, j �=i

B j(k)u j(k)
]
. (3.39)

Hence we have,

αi(k) =
∂Hi(ui, αi)

∂x(k)
= Q̃i(k)x(k)+ ÃT

i (k)αi(k+1), αi(T +1) = 0, (3.40)
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where

Ãi(k) := Av(k)+B0i(k)η0i(k)+
N

∑
j=1, j �=i

[B0 j(k)K0 j(k)+B j(k)Kj(k)],

Q̃i(k) := Qi(k)+ηT
0i(k)R0ii(k)η0i(k).

Now, consider αi(k) = Pi(k)x(k) then the following BDRE can be derived:

Pi(k) =ÃT
i (k)Pi(k+1)Ãi(k)− X̃T

i (k)Ỹ−1
i (k)X̃i(k) (3.41)

+ Q̃i(k), Pi(T +1) = 0, i = 1, 2, . . . ,N, (3.42)

where

X̃i(k) := B̃T
i (k)Pi(k+1)Ãi(k)+ηT

ii (k)R0ii(k)η0i(k),

Ỹi(k) := R̃i(k)+ B̃T
i (k)Pi(k+1)B̃i(k),

B̃i(k) := Bi(k)+B0i(k)ηii(k),

R̃i(k) := Rii(k)+ηT
ii (k)R0ii(k)ηii(k).

The followers’ optimal strategy will be determined by

∂Hi(ui, αi)

∂ui(k)
= Rii(k)u∗i (k)+Bi(k)T αi(k+1) = 0, (3.43)

which implies

u∗i (k) = K̃i(k)x(k) = [Ỹi(k)]−1X̃i(k)x(k), i = 0, 1, . . . ,N. (3.44)

Remark 3.1. It should be noted that the incentive parameter ηii(k) can be uniquely deter-

mined if and only if Ỹi(k) is non-singular.

3.4 Infinite horizon case

The infinite-horizon H∞-constrained incentive Stackelberg game is studied in this section.

Definition 3.2. [Zhang et al. (2008)] The following discrete-time system:{
x(k+1) = Ax(k),
z(k) =Cx(k), x(0) = x0 ∈ R

n, k ∈ NTf ,
(3.45)

or (A, C) is said to be exactly observable if z(k)≡ 0, ∀k ∈ NTf implies x0 = 0.
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Definition 3.3. [Zhang et al. (2008)] The linear discrete-time system

x(k+1) = Ax(k)+Bu(k), x(0) = x0, (3.46)

∀k = k ∈ N is said to be mean-square stable if for any x0 ∈ R
n, the corresponding state

satisfies lim
k→∞

‖x(k)‖ = 0. The system (3.46) is said to be stabilizable in the mean square

sense if for a constant matrix K, there exists a feedback control law u(k) = Kx(k), that

stabilizes the system (3.46) mean square stable.

By using Lemma 3.1, we have the following result under the infinite horizon case as

the extension: Suppose that the linear discrete-time system

x(k+1) = Ax(k)+Bu(k), x(0) = x0, (3.47)

∀k = k ∈ NTf is mean-square stable, where A and B are assumed to be constant matrices of

suitable dimensions. Let us define the cost functional

J(x0, u) :=
∞

∑
k=0

[xT (k)Qx(k)+2xT (k)Su(k)+uT (k)Ru(k)], (3.48)

where Q = QT ≥ 0, R = RT > 0, and Q−SR−1ST > 0.

Lemma 3.3. For the discrete-time optimal control problem (3.47) with cost functional

(3.48), the optimal feedback strategy is given by

u∗(k) = Kx(k) =−R̂−1
(
BT XAS +R−1S

)
x(k), (3.49)

where XT = X ≥ 0 is the solution of the following algebraic Riccati equation (ARE):

X =AT
S XAS−AT

S XV XAS +Q−ST R−1S, (3.50)

with

AS := A−BR−1S,

V := BR̂−1BT ,

R̂ := R+BT XB,

Q−ST R−1S≥ 0.

Proof. Using optimal control u∗(k) = Kx(k), the state feedback system (3.47) can be writ-

ten as

x(k+1) = (A+BK)x(k), x(0) = x0, (3.51)
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with cost functional

J(x0, u∗) :=
∞

∑
k=0

[xT (k)(Q+2SK +KT RK)x(k)]. (3.52)

Suppose that there exits a symmetric positive definite matrix X such that the ARE (3.56)

holds for all admissible control inputs. Let us define the Lyapunov candidate function

V (x(k)) = xT (k)Xx(k), (3.53)

where V (x(k)> 0 for all x(k) �= 0.

The difference between corresponding trajectory of the system (3.51) is given by

ΔV (x(k)) =V (x(k+1))−V (x(k))

= xT (k+1)Xx(k+1)− xT (k)Xx(k)

= xT (k)(A+BK)T X(A+BK)x(k)− xT (k)Xx(k)

= xT (k)[(A+BK)T X(A+BK)−X ]x(k), (3.54)

which is stable if ΔV (x(k))< 0. Then, we can form the discrete-time Lyapunov stabilizable

equation as follows:

(A+BK)T X(A+BK)−X =−(Q+2SK +KT RK) (3.55)

Substituting the value of K = −R̂−1
(
BT XAS +R−1S

)
to equation (3.55) and simplifying,

we can get the following ARE:

X =AT
S XAS−AT

S XV XAS +Q−ST R−1S, (3.56)

with

AS := A−BR−1S,

V := BR̂−1BT ,

R̂ := R+BT XB,

Q−ST R−1S≥ 0.

Hence, Lemma 3.3 is proved.

On the other hand, consider the following discrete-time system.

x(k+1) = Ax(k)+Dv(k), (3.57a)

z(k) =Cx(k), x(0) = x0, k = 0, 1, . . . Tf , (3.57b)

70



with performance

Jγ(x0, v) :=
∞

∑
k=0

[γ2‖v(k)‖2−‖z(k)‖2], (3.58)

where v(k) ∈ R
nv represents the external disturbance. z(k) ∈ R

nz represents the controlled

output.

Lemma 3.4. For the discrete time system (3.57), ‖LTf ‖< γ for given disturbance attenua-

tion level γ > 0, the worst-case disturbance is given by

v∗(k) = Fγx(k) =−T−1
γ DTYAx(k), (3.59)

if and only if there exists a unique solution Y ≤ 0 to the following matrix difference equa-

tion:

Y = ATYA−ATYUYA−CTC, (3.60)

where

U := DT−1
γ DT ,

Tγ := γ2Inv +DTY D.

Proof. Using the worst-case disturbance v∗(k) = Fγx(k), the state feedback system (3.57a)

can be written as

x(k+1) = (A+DFγ)x(k), x(0) = x0, (3.61)

with cost functional

Jγ(x0, v) =
∞

∑
k=0

[γ2xT (k)FT
γ Fγx(k)− xT (k)CTCx(k)]

=
∞

∑
k=0

xT (k)(γ2FT
γ Fγ −CTC)x(k). (3.62)

Suppose that there exits a symmetric positive definite matrix Y such that the ARE (3.60)

holds for all admissible control inputs. Let us define the Lyapunov candidate function

V (x(k)) = xT (k)Y x(k), (3.63)

where V (x(k)> 0 for all x(k) �= 0.

The difference between corresponding trajectory of the system (3.57) is given by

ΔV (x(k)) =V (x(k+1))−V (x(k))
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= xT (k+1)Y x(k+1)− xT (k)Y x(k)

= xT (k)(A+DFγ)
TY (A+DFγ)x(k)− xT (k)Y x(k)

= xT (k)[(A+DFγ)
TY (A+DFγ)−Y ]x(k), (3.64)

which is stable if ΔV (x(k))< 0. Then, we can form the discrete-time Lyapunov stabilizable

equation as follows:

(A+DFγ)
TY (A+DFγ)−Y =−(γ2FT

γ Fγ −CTC) (3.65)

Substituting the value of Fγ = −T−1
γ DTYA to equation (3.65) and simplifying, we can get

the following ARE:

Y = ATYA−ATYUYA−CTC, (3.66)

where

U := DT−1
γ DT ,

Tγ := γ2Inv +DTY D.

Hence, Lemma 3.4 is proved.

Consider a time-invariant linear discrete-time system with multiple follower is de-

scribed by

x(k+1) = Ax(k)+
N

∑
j=1

B0 ju0 j(k)+
N

∑
j=1

B ju j(k)+Dv(k), (3.67a)

z(k) =

⎡
⎢⎢⎢⎢⎢⎣

Cx(k)
G0uuu0(k)
G1u1(k)

...

GNuN(k)

⎤
⎥⎥⎥⎥⎥⎦ , (3.67b)

where x(0) = x0, GT
i Gi = Imi .

The cost functionals are defined as

J0(x0, uuu0, u1, . . . ,uN , v)

:=
1

2

∞

∑
k=0

[
xT (k)Q0x(k)+

N

∑
j=1

uT
0 j(k)R00 ju0 j(k)+

N

∑
j=1

uT
j (k)R0 ju j(k)

]
, (3.68a)

Jγ(x0, uuu0, u1, . . . ,uN , v) :=
∞

∑
k=0

[γ2‖v(k)‖2−‖z(k)‖2], (3.68b)
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Ji(x0, uuu0, u1, . . . ,uN , v)

:=
1

2

∞

∑
k=0

[
xT (k)Qix(k)+uT

0i(k)R0iiu0i(k)+uT
i (k)Riiui(k)

]
, i = 1, . . . ,N, (3.68c)

where Qi = QT
i ≥ 0, i = 0, 1, . . . ,N, R00i = RT

00i > 0, R0i = RT
0i ≥ 0, R0ii = RT

0ii ≥ 0, Rii =

RT
ii > 0.

In order to solve this problem, first we find the leader’s team optimal solution u∗c(k)
attenuating the disturbance under H∞ constraint. We can accomplish this task by consider-

ing uc(k) and v(k) to perform Nash equilibrium. While considering worst-case disturbance

v∗(k) = Fγx(k), we can solve it by Lemma 3.3 for the system (3.67) with cost functional

(3.68a); and while considering team-optimal state feedback control u∗c(k) = Kcx(k) for

the system (3.67) with cost functional (3.68b), we can obtain the solution by Lemma 3.4.

Hence, the following cross-coupled algebraic Riccati equations (CCAREs) can be found:

P = AT
v PAv−AT

v PScPAv +Q0, (3.69a)

W = AT
KWAK−AT

KWUWWAK−LK, (3.69b)

where

Av := A+DFγ ,

AK := A+BcKc,

Sc := BcR̂−1
c BT

c ,

UW := DT−1
Wγ DT ,

Fγ :=−T−1
Wγ DTWAK,

TWγ := γ2Inv +DTWD,

R̂c := Rc +BT
c PBc,

LK :=CTC+KT
c Kc,

Kc :=

[
KKK0

KKK1

]
=−R̂−1

c BT
c PAv,

KKK0 :=
[

KT
01 · · · KT

0N
]T

,

KKK1 :=
[

KT
1 · · · KT

N
]T

,

Bc :=
[

BBB0 B1 · · · BN
]
,

Rc := block diag
(

RRR0 R01 · · ·R0N
)
.

On the other hand, to ensure each i-th follower’s optimal state feedback Nash equilibrium

strategy for the system (3.67) with cost functional (3.68c), we can use the BDRE (3.42) and
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the followers’ optimal strategy (3.44) determined for the finite-horizon case. According to

Lemma 3.3, these results can be extended infinitely and the following CCARE can be

established:

Pi = ÃT
i PiÃi− X̃T

i Ỹ−1
i X̃i + Q̃i, (3.70a)

K̃i =−[Ỹi]
−1X̃i, i = 1, 2, . . . ,N, (3.70b)

where

Ãi := A+DFγ +B0iη0i +
N

∑
j=1, j �=i

[B0 jK0 j +B jKj],

X̃i := B̃T
i PiÃi +ηT

ii R0iiη0i,

Ỹi := R̃i + B̃T
i PiB̃i,

B̃i := Bi +B0iηii,

Q̃i := Qi +ηT
0iR0iiη0i, R̃i := Rii +ηT

ii R0iiηii.

Remark 3.2. It should be noted that the incentive parameter ηii can be uniquely deter-

mined if and only if Ỹi is non-singular.

Proposition 3.1. If there exists a solutions set of the CCAREs (3.69) and (3.70) then the

following strategy-sets for leader, followers and under the worst-case disturbance are de-

fined correspondingly for the two-level incentive Stackelberg game with H∞ constraint as:

u∗0i(k) := η0ix(k)+η∗iiu
∗
i (k) = K0ix(k), (3.71a)

u∗i (k) := K̃ix(k), (3.71b)

v∗(k) := Fγx(k). (3.71c)

In order to solve the CCAREs of (3.69) and (3.70), first the following computational

algorithm is based on the Lyapunov iteration:{
P(r+1) = [A(r)

v ]T P(r+1)A(r)
v − [A(r)

v ]T P(r)S(r)c P(r)A(r)
v +Q0,

W (r+1) = [A(r)
K ]TW (r+1)A(r)

K − [A(r)
K ]TW (r)U (r)

W W (r)A(r)
K −L(r)

K , r = 0, 1, . . .
(3.72a)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

P(s+1)
i = [Ã(s)

i ]T P(s+1)
i Ã(s)

i − [X̃ (s)
i ]T [Ỹ (s)

i ]−1X̃ (s)
i + Q̃(s)

i ,

[η(s+1)
ii ]T =−

((
Rii +BT

i P(s+1)
i B0iη

(s)
ii +BT

i P(s+1)
i Bi

)
K̃(s)

i +BT
i P(s+1)

i Ã(s)
i

)
×
(

BT
0iP

(s+1)
i B0iη

(s)
ii K̃(s)

i +BT
0iP

(s+1)
i BiK̃

(s)
i +BT

0iP
(s+1)
i Ã(s)

i +R0iiK0i

)−1

,

s = 0, 1, . . . i = 1, 2, . . . ,N,

(3.72b)
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where P(0) = P(0)
i = In, W (0) =−In, η(0)

ii = η(0)
(ii) ,

A(r)
v := A+DF(r)

γ ,

A(r)
K := A+BcK(r)

c ,

S(r)c := Bc[R̂
(r)
c ]−1BT

c ,

U (r)
W := D[T (r)

Wγ ]
−1DT ,

F(r)
γ :=−[T (r)

Wγ ]
−1DTW (r)AK,

T (r)
Wγ := γ2Inv +DTW (r)D,

R̂(r)
c := Rc +BT

c P(r)Bc,

L(r)
K :=CTC+[K(r)

c ]T K(r)
c ,

K(r)
c :=−[R̂(r)

c ]−1BT
c P(r)A(r)

v ,

Ã(s)
i := A+DFγ +B0iη

(s)
0i +

N

∑
j=1, j �=i

[B0 jK0 j +B jKj],

X̃ (s)
i := B̃T

i P(s)
i Ã(s)

i +[η(s)
ii ]T R0iiη

(s)
0i ,

Ỹ (s)
i := R̃i + B̃T

i P(s)
i B̃i,

K̃(s)
i :=−[Ỹ (s)

i ]−1X̃ (s)
i ,

B̃(s)
i := Bi +B0iη

(s)
ii , Q̃(s)

i := Qi +[η(s)
0i ]

T R0iiη
(s)
0i ,

R̃(s)
i := Rii +[η(s)

ii ]T R0iiη
(s)
ii .

It should be noted that the initial guess of ηii has to be chosen appropriately. It should be

also noted that the convergence of the algorithm (3.72) is not unclear for the reader. In

the next section, a numerical example will show that this algorithm can be worked well in

practice.

3.5 Numerical example

In order to demonstrate the efficiency of our proposed three strategies, a simple numerical

example is investigated. Here we present the example for infinite-horizon case with two

non-cooperative players. Let us consider the following system matrices:

A =

[
0.52 1.12

0 −0.24

]
, B01 =

[
0.138 0.20

−0.55 0.84

]
, B02 =

[
0.312 1.20

−1.25 1.03

]
,

B1 =

[
0.15 −0.11

0.12 2.28

]
, B2 =

[
0.23 −0.45

−0.52 1.02

]
,

D =

[
0.054 −0.076

−0.035 −0.094

]
, C =

[
1 2

]
,
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Q0 =

[
1 0

0 2

]
, Q1 =

[
2 0

0 1

]
, Q2 =

[
1 0.5

0.5 3

]
,

R001 = 1.9I2, R002 = 2.5I2, R01 = 2.7I2, R02 = 3.5I2,

R011 = 4.8I2, R022 = 5I2, R11 = 0.3I2, R22 = 0.5I2.

We choose the disturbance attenuation level as γ = 5. First, the CCAREs (3.69a) and

(3.69b) are solved by using the algorithm (3.72a). These solutions that attain the H∞-

constrained team-optimal solutions are given below:

P =

[
1.1667 0.3607

0.3607 2.7939

]
, W =

[ −1.0756 −2.1544

−2.1544 −4.3203

]
,

Kc =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0252 −0.0708

−0.0308 −0.0418

−0.0433 −0.1219

−0.1511 −0.3038

−0.0175 −0.0354

0.0186 0.0879

−0.0201 −0.0351

0.0431 0.1098

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Fγ =

[ −0.0001 −0.0003

−0.0024 −0.0047

]
.

Second, the CCAREs (3.70a) and (3.70b) are solved by using the algorithm (3.72b).

P1 =

[
2.1814 0.3941

0.3941 1.8618

]
, P2 =

[
1.2091 0.9408

0.9408 3.9370

]
,

η11 =

[
1.6976 0.6457

1.1122 1.1856

]
, η22 =

[−0.3909 −0.9033

0.8427 0.8926

]
.

The algorithm (3.72b) converges to the required solution with an accuracy of 1.0e− 12

order after ten iterations. It should be noted that the incentive strategy (3.71a) that will be

announced by the leader can calculated as

u0i(k) = η∗0ix(k)+η∗iiui(k), (3.73)

where

η01 =

[−0.0075 −0.0675

−0.0334 −0.1066

]
, η02 =

[−0.0122 −0.0364

−0.1727 −0.3722

]
.

In fact, after announcing this incentive, the followers’ strategy can be computed by applying

the standard LQ theory

u∗i (k) = [R̃i + B̃T
i PiB̃i]

−1[B̃T
i PiÃi +ηT

ii R0iiη0i]x(k), (3.74)

which implies

u∗1(k) =
[−0.0175 −0.0354

0.0186 0.0879

]
x(k),
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Fig. 3.1: Trajectory of the state.

u∗2(k) =
[−0.0201 −0.0351

0.0431 0.1098

]
x(k).

Indeed, it can be observed that this matrix gain is equal to K̃i. Namely, it can be confirmed

that the followers take the team-optimal solution with H∞ constraint eventually. In fact,

after announcing this incentive, the followers’ strategy can be computed by applying the

standard LQ theory.

u∗i (k) =−[R̃i + B̃T
i PiB̃i]

−1[B̃T
i PiÃi +ηT

ii R0iiη0i]x(k), (3.75)

Fig. 3.1 shows the response of the system with a state trajectory. In addition, Fig. 3.1

represents that the state variables x(k) can stabilize the given system, which implies that

the proposed method is very useful and reliable.

3.6 Conclusion

This chapter investigates the incentive Stackelberg game for discrete-time deterministic

systems. However, stochastic systems are not considered here. It is the motivation to

choose a deterministic system to extend it to a stochastic system. This chapter studies the

most common linear quadratic (LQ) optimal control in the game problems. In order to solve

the LQ problem, discrete-time maximum principle is deeply studied. This chapter involves

one leader and multiple followers rewarding the Starkberg game. For this game, incentive

Stackelberg strategy is a broad idea, and leaders can implement his team-optimal solution

in a Stackelberg game. In the followers’ group, players are supposed to be non-cooperative;

subsequently, Nash equilibrium is investigated.
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The deterministic disturbances and their attenuation to systems under the H∞ constraint

is the main attraction of this chapter. Problems involving deterministic disturbance must

be attenuated at a given target called disturbance attenuation level γ > 0. Surprisingly, the

concept of solving the disturbance reduction problem under the H∞ constraint seems like

a Nash equilibrium between the disturbance input and the control input. In this game, an

incentive structure is developed in such a way that leader achieve team-optimal solution

attenuating the disturbance under H∞ constraint. Simultaneously, followers achieve their

Nash equilibrium ensuring the incentive Stackelberg strategies of the leaders while the

worst-case disturbance is considered.

This chapter also derives results based on a structure similar to the finite time domain

case under infinite time domain conditions. In an infinite-horizon case, incentive Stackel-

berg game with one leader and multiple followers has also investigated for a discrete time

systems with H∞ constraint. Leader’s team-optimal solution attenuating the disturbance

under H∞ constraint is also implemented. On the other hand, followers ensure their Nash

equilibrium under the leader’s incentives considering the worst-case disturbance. The main

attraction of the infinite horizon situation is Lyapunov stability theory. Using Lyapunov sta-

bility theory, several theorems and lemmas have been proved.

In this chapter, the team-optimal solution for the leader is achieved in contrast to mul-

tiple non-cooperative followers’ optimal state feedback gain. The sufficient condition for

optimality according to the followers’ act subject to the Nash equilibrium condition was

also verified. The solution sets for incentive Stackelberg strategy are found by solving a

set of backward difference Riccati equations (BDREs) in the finite-horizon case. On the

other hand, it is shown that the results of the infinite-horizon case are found by solving a

set of algebraic Riccati equations (AREs). An algorithm based on Lyapunov iterations is

developed to obtain a solution set of the coupled algebraic Riccati equations. In order to

ensure the stability of the system, the state trajectory figure is presented. To demonstrate

the effectiveness of the proposed method, a numerical example is demonstrated. However,

this chapter only investigates one leader, which leads many leaders to further study.
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Chapter 4

H∞-Constrained Incentive Stackelberg
Games for Discrete-Time Stochastic
Systems with Multiple Followers

This chapter is based on a previously published article [Ahmed et al. (2017a)].

4.1 Introduction

The Stackelberg game is a strategic game in which a leader declare his/her strategy

first. Then, followers perform their optimal decisions subject to the leader’s announce-

ment. Finally, the leader will modifies his/her action confirming the followers’ response.

Subsequently, this two-player static game was extended to a dynamic game with dif-

ferent information patterns [Chen and Cruz (1972), Simaan et al. (1973)]. Among the

information patterns, closed-loop Stackelberg strategies with applications were attract-

ing considerable research interest as - linear quadratic (LQ) problems [Medanic (1978),

Basar and Selbuz (1979), Tolwinski (1981)]. The idea of team-optimal solutions opens

new directions for closed-loop Stackelberg strategies. In [Basar and Olsder (1980)], nec-

essary and sufficient conditions for both finite- and infinite-horizon closed-loop feedback

solutions were derived for a team problem in which all players optimized a leader’s cost

functional jointly. Furthermore, [Salman and Cruz (1983)] derived team-optimal closed-

loop Stackelberg strategies for systems with slow and fast modes.

The purpose of the incentive mechanism is to induce virtual cooperation in non-

cooperative followers so that optimal system performance (reflected in the leader’s objec-

tive function) is achieved through hierarchical decision-making [Saksena and Cruz (1985)].

An incentive Stackelberg strategy is one where the leader achieves their team-optimal

solution to the hierarchical game by using an incentive mechanism. The following
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two steps are the main elements of an incentive Stackelberg problem [Ho et al. (1982),

Basar and Olsder (1980)]. i) The leader determines a team-optimal strategy-set and an-

nounces it ahead of time. ii) Knowing the incentive, based on the leader’s announced

team-optimal strategy, each follower chooses a strategy so as to minimize their own cost.

It should be noted that no matter how the followers behave, the leader can achieve their

own team-optimal equilibrium by using the corresponding incentive strategy-set. Incen-

tive Stackelberg games apply to organizations with several participants and with organi-

zational objective functions that may not be the same as the members’ objective func-

tions. In the theory of teams, each member of the organization has access to differ-

ent information. In this game, by contrast, it is an important feature that the leader

is able to induce followers to cooperate with them as a team, with the leader’s objec-

tive function as the objective function of the team, while the followers also optimize

their own objective functions [Salman and Cruz (1981)]. Incentive Stackelberg strategies

have been extensively studied for more than 30 years (see e.g. [Salman and Cruz (1981),

Ho et al. (1982), Saksena and Cruz (1985), Zheng and Basar (1982), Zheng et al. (1984)]

and references therein). In [Mizukami and Wu (1988)], incentive Stackelberg games with

one leader and two non-cooperative followers were solved for an LQ differential game. In

[Li et al. (2002)], a team-optimal state feedback incentive Stackelberg strategy for discrete-

time two-player nonzero-sum dynamic games was developed for LQ problems. However,

none of those studies have considered stochastic noise and deterministic disturbances in the

system, which make the problem more challenging.

In recent years, incentive Stackelberg games with robust control theory have

been studied for discrete-time linear systems in [Ahmed and Mukaidani (2016),

Mukaidani et al. (2017c)]. In [Ahmed and Mukaidani (2016)], one leader and multi-

ple non-cooperative followers are considered a deterministic system, whereas our cur-

rent study focuses stochastic systems. Unlike [Mukaidani et al. (2017c)], where one

leader and one follower are considered a stochastic system, this Chapter deals with one

leader and multiple non-cooperative followers. Similar to [Ahmed and Mukaidani (2016)]

and [Mukaidani et al. (2017c)], a deterministic disturbance is considered in this Chap-

ter, which is also seen in [Mukaidani et al. (2017d)]. On the other hand, continuous-

time stochastic systems are investigated for an infinite-horizon incentive Stackelberg

game in [Mukaidani (2016)], where multiple non-cooperative leaders are considered. In

[Mukaidani and Xu (2018)], an incentive Stackelberg strategy for continuous-time stochas-

tic linear systems with exogenous disturbances is derived. One leader and multiple non-

cooperative followers are considered there and no discussion is included for a discrete-

time case yet. This is one of the vital reasons that motivates us to investigate our cur-
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rent study. Accordingly, this Chapter might be viewed as a discrete-time version of

[Mukaidani and Xu (2018)].

Fig. 4.1: Structure of the incentive Stackelberg game.

This Chapter investigates incentive Stackelberg games with one leader and multi-

ple non-cooperative followers for a discrete-time stochastic system with an exogenous

deterministic disturbance, which will be attenuated under the H∞ constraint. We dis-

cuss only two-level hierarchical games with one leader and multiple non-cooperative fol-

lowers and the hierarchical structure is depicted in Fig. 4.1. Among multiple players

Pi, i = 0, 1, ... ,N; P0 is considered as the leader and P1, ... ,PN are considered as the

followers, under the specification that each follower acts non-cooperatively.

We prove that the leader’s discrete-time incentive Stackelberg strategies exist un-

der an H∞ constraint, based on existing results for finite-horizon H2/H∞ discrete-time

stochastic systems [Zhang et al. (2007)], by means of the state feedback information

structure. It should be noted that this information structure seems to be conservative.

However, as an engineering application of incentive Stackelberg strategies, a scheduling

problem involving a packet switch operating in a ring architecture has been introduced

[Saksena and Cruz (1985)]. In this problem, the leader represents the central processor and

the followers represent the local link controllers. The information structure of the prob-

lem is such that the leader has access to both the decision values and observations of all

the followers at each stage of the process. The design of incentive mechanisms that in-

duce non-cooperative followers to virtually cooperate in achieving some system-wide goal

is an important feature of hierarchical decision-making. Therefore, a state feedback in-

formation structure is sufficient to guarantee the existence of an incentive strategy. It is

shown that a solution can be found by solving four cross-coupled stochastic matrix-valued

difference equations (SMVDEs) and a stochastic back-ward difference Riccati equation

(SBDRE) in the finite-horizon case. Moreover, the Nash equilibrium strategies of the fol-

lowers are derived in such a way that ensure the leader’s team-optimal solution. Apart from

the finite-horizon case, four cross-coupled stochastic matrix-valued algebraic equations
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(SMVAEs) corresponding to the existing result in [Zhang et al. (2008)] and a stochastic

algebraic Riccati equation (SARE) are derived in the infinite horizon case to determine

the leader’s discrete-time incentive Stackelberg strategies. A recursive algorithm based on

the Lyapunov iteration is also designed to ease the complexity of computation. Finally, an

academic and a practical numerical examples demonstrate the efficiency of the proposed

methodology.

This is the first attempt to formulate a one leader/multiple followers discrete-time linear

stochastic control problem with an external disturbance. Our main contributions, demon-

strated in the subsequent discussion, are as follows. i) The addition of disturbances to this

type of problem, and their attenuation under an H∞ constraint, is considered for the first

time. ii) Multiple non-cooperative followers in such a discrete-time stochastic system are

considered for the first time. iii) We realize a team-optimal solution for the leader, while

simultaneously guaranteeing the Nash equilibrium states of the followers. iv) To solve this

problem, a recursive algorithm based on the Lyapunov equation has been developed. v) The

system model is new and quite comprehensive in that it covers time-varying parameters,

stochastic control schemes, state-multiplicative noise, and exogenous disturbance inputs,

thereby more closely reflecting real-world systems.

Notation: The notations used in this Chapter are fairly standard. In denotes the n× n

identity matrix; block diag(·) denotes the block diagonal matrix; diag(·) denotes the di-

agonal matrix; δi j denotes the Kronecker delta; E[·] denotes the expectation operator,

NTf := {0, 1, ... ,Tf } and N := {0, 1, ...}. The l2-norm of y(·) ∈ l2
w(NTf ,R

n) is defined by

‖y(·)‖2
l2
w(NTf ,R

n) :=
Tf

∑
k=0

E[‖y(k)‖2].

Finally, define an N-tuple

γ := (γ1, ... ,γN) ∈ Γ1× ...×ΓN ,

for given sets Γi, we write

γ∗−i(α) := (γ∗1 , ... ,γ
∗
i−1, α, γ∗i+1, ... ,γ

∗
N),

where the superscript (∗) is used in the optimal case.
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4.2 Definitions and preliminaries

Consider a discrete-time stochastic system with the deterministic disturbance.⎧⎪⎨
⎪⎩

x(k+1) = A(k)x(k)+B(k)u(k)+D(k)v(k)+Ap(k)x(k)w(k), x(0) = x0,

z(k) =

[
C(k)x(k)
G(k)u(k)

]
, GT (k)G(k) = Inu , k ∈ NTf ,

(4.1)

where u(k) ∈ l2
w(NTf , R

nu) represents the control input, v(k) ∈ l2
w(NTf , R

nv) represents the

disturbance input and z(k) ∈ l2
w(NTf , R

nz) represents the controlled output, w(k) is a real-

valued random variable defined in the filtered probability space, second-order process with

E[w(k)] = 0 and E[w(s)w(k)] = δsk [Zhang et al. (2007), Zhang et al. (2008)].

Given the disturbance attenuation level γ > 0,0 < Tf < ∞, an optimal state feedback

control u∗(k) ∈ l2
w(NTf , R

nu) defined as

u∗(k) := K(k)x(k) ∈ R
nu ,

can be found (if existing) such that:

(i) For the closed-loop system⎧⎪⎨
⎪⎩

x(k+1) = (A(k)+B(k)K(k))x(k)+D(k)v(k)+Ap(k)x(k)w(k), x(0) = x0,

z(k) =

[
C(k)x(k)

G(k)K(k)x(k)

]
, GT (k)G(k) = Inu , k ∈ NTf ,

(4.2)

the following condition holds:

‖LTf ‖H∞ := sup
v ∈ l2

w(NTf , R
nv ),

v �= 0, x0 = 0

‖z‖l2
w(NTf , R

nz)

‖v‖l2
w(NTf , R

nv)

< γ, (4.3)

where

‖z‖l2
w(NTf , R

nz) :=

(
Tf

∑
k=0

E
[
xT (k)CT (k)C(k)x(k)+ xT (k)KT (k)K(k)x(k)

]) 1
2

,

‖v‖l2
w(NTf , R

nv) :=

(
Tf

∑
k=0

E
[
vT (k)v(k)

]) 1
2

.

(ii) For the worst-case disturbance v∗(k) ∈ l2
w(NTf , R

nv), if existing, is implemented in

(4.1), u∗(k) optimizes the cost

Ju(u, v∗) := ‖z‖2
l2
w(NTf , R

nz) =
Tf

∑
k=0

E
[
xT (k)CT (k)C(k)x(k)+ xT (k)KT (k)K(k)x(k)

]
. (4.4)
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When such (u∗, v∗) exists, we say that the finite horizon H2/H∞ control is solvable. Here,

the worst-case disturbance means

v∗(k) := argmin
v

Jv(u∗,v), (4.5)

where

Jv(u, v) := γ2‖v‖2
l2
w(NTf , R

nv)−‖z‖2
l2
w(NTf , R

nz) (4.6)

is associated with the system (4.1). Then, the finite horizon H2/H∞ control is equivalent to

the following Nash equilibrium (u∗, v∗):

Ju(u∗, v∗)≤ Ju(u, v∗), (4.7a)

Jv(u∗, v∗)≤ Jv(u∗, v). (4.7b)

Lemma 4.1. [Zhang et al. (2007)] For given disturbance attenuation level γ > 0, the finite

horizon H2/H∞ control for the system (4.1) has solutions (u∗, v∗) as

u∗(k, x(k)) := K(k)x(k),

v∗(k, x(k)) := Fγ(k)x(k),

with K(k)∈R
nu×n and Fγ(k)∈R

nv×n, k∈NTf being matrix-valued functions, iff the follow-

ing four cross-coupled SMVDEs have solutions (P(k), W (k); K(k), Fγ(k)) with P(k) ≥ 0

and W (k)≤ 0, k ∈ NTf :

P(k) = AT
v (k)P(k+1)Av(k)+AT

p (k)P(k+1)Ap−AT
v (k)P(k+1)B(k)

× R̂−1(k)BT (k)P(k+1)Av(k)+CT (k)C(k), P(Tf +1) = 0, (4.8a)

K(k) =−R̂−1(k)BT (k)P(k+1)Av(k), (4.8b)

W (k) = AT
u (k)W (k+1)Au(k)+AT

p (k)W (k+1)Ap(k)−AT
u (k)W (k+1)U(k)W (k+1)Au(k)

−CT (k)C(k)−KT (k)K(k), W (Tf +1) = 0, (4.8c)

Fγ(k) =−T−1
γ (k)DT (k)W (k+1)Au(k), (4.8d)

where

Av(k) := A(k)+D(k)Fγ(k),

Au(k) := A(k)+B(k)K(k),

U(k) := D(k)T−1
γ (k)DT (k),

R̂(k) := Inu +BT (k)P(k+1)B(k)> 0,

Tγ(k) := γ2Inv +DT (k)W (k+1)D(k)> 0.
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Proof. Necessary condition Substituting u∗(k, x(k)) = K(k)x(k) in (4.1), we obtain (4.2).

By Lemma 3 of [Zhang et al. (2007)], (4.8c) has a unique solution W (k) ≥ 0. From

the sufficient condition of Lemma 3 of [Zhang et al. (2007)], the worst-case disturbance

v∗(k, x(k)) can be determined by

v∗(k, x(k)) = Fγ(k)x(k) =−T−1
γ (k)DT (k)W (k+1)Au(k)x(k). (4.9)

On the other hand, implementing v(k, x(k)) = v∗(k, x(k)) = Fγ(k)x(k) in (4.1), we obtain⎧⎪⎨
⎪⎩

x(k+1) = A(k)x(k)+B(k)u(k)+D(k)Fγ(k)x(k)+Ap(k)x(k)w(k), x(0) = x0,

z(k) =

[
C(k)x(k)
G(k)u(k)

]
, GT (k)G(k) = Inu , k ∈ NTf .

(4.10)

While the problem is to minimize the linear quadratic cost functional Ju(u, v∗), it turns to

be a standard discrete-time LQ optimal problem. By Theorem 2.1, (4.8a) provides a unique

solution P(k)≥ 0. Moreover, the optimal state feedback control can be determined by

u∗(k, x(k)) = K(k)x(k) =−R̂−1(k)BT (k)P(k+1)Av(k)x(k). (4.11)

Sufficient condition Substituting u∗(k, x(k)) = K(k)x(k) in (4.1), we obtain (4.2). From

(4.8c) and Lemma 3 of [Zhang et al. (2007)], we have ‖LTf ‖H∞ < γ . By Lemma 2 of

[Zhang et al. (2007)] and (4.8c), we obtain

Jv(u∗, v) =
Tf

∑
k=0

E[γ2‖v(k)‖2−‖z(k)‖2]≥ Jv(u∗, v∗) = xT
0 W (0)x0. (4.12)

Therefore, form (4.12), we see that v∗(k, x(k)) = Fγ(k)x(k) is the worse case disturbance.

Similarly, it can be shown that

Ju(u, v∗) =
Tf

∑
k=0

E[‖z(k)‖2 ≥ Ju(u∗, v∗) = xT
0 P(k)x0. (4.13)

Therefore,

Ju(u∗, v∗)≤ Ju(u, v∗), (4.14a)

Jv(u∗, v∗)≤ Jv(u∗, v), (4.14b)

which imply that the strategy pair (u∗, v∗) solves the finite horizon H2/H∞ control problem

for the system (4.1).
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Lemma 4.2. Consider the linear discrete-time stochastic system

x(k+1) = A(k)x(k)+B(k)u(k)+Ap(k)x(k)w(k), x(0) = x0, k ∈ NTf , (4.15)

where u(k)∈R
m denotes the control input. A(k), B(k) and Ap(k) are assumed to be matrix-

valued functions of suitable dimensions.

Let us define the cost functional

J(x0, u) :=
Tf

∑
k=0

E[xT (k)Q(k)x(k)+2xT (k)S(k)u(k)+uT (k)R(k)u(k)], (4.16)

where Q(k) =QT (k)≥ 0, R(k) =RT (k)> 0, Q(k)−S(k)R−1(k)ST (k)> 0 and 0< Tf <∞.

Then there exists a matrix-valued function P(k) > 0 that solves the following SBDRE

of the system (4.15)–(4.16):

P(k) =AT
s (k)P(k+1)As(k)+AT

p (k)P(k+1)Ap(k)−AT
s P(k+1)B(k)

× R̂−1(k)BT (k)P(k+1)As(k)+Qs(k), P(Tf +1) = 0, (4.17)

where

As(k) := A(k)−B(k)R−1(k)ST (k),

R̂ := R(k)+BT (k)P(k+1)B(k),

Qs(k) := Q(k)−S(k)R−1(k)ST (k),

and the optimal state feedback control in this case is given by

u∗(k) = K(k)x(k) =−R̂−1(k)
[
ST (k)+BT (k)P(k+1)A(k)

]
x(k). (4.18)

Proof. To prove Lemma 4.2, we use the matrix Lagrangian multiplier method as

in [Rami and Zhou (2000)]. At first, we transfer the LQ problem (4.15)–(4.16) in terms

of the state covariance matrices X(k) = E[xT (k)x(k)]. For this instance, we use a closed-

loop state feedback control law

u(k) = K(k)x(k), for k = 1, ..., Tf , (4.19)

where K(k) is the gain matrix for any x0 ∈ R
n, the closed-loop system

x(k+1) =[A(k)+B(k)K(k)]x(k)+Ap(k)x(k)w(k), x(0) = x0, (4.20)

with cost functional

J(x0, u) :=
Tf

∑
k=0

E[xT (k)Q(k)x(k)+2xT (k)S(k)K(k)x(k)+KT (k)xT (k)R(k)K(k)x(k)].

(4.21)
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Then, by a simple calculation an equivalent form of the state equation (4.15) can be written

as

X(k+1) =A(k)X(k)AT (k)+B(k)K(k)X(k)AT (k)

+A(k)X(k)KT (k)BT (k)+B(k)K(k)X(k)KT (k)BT (k)+Ap(k)X(k)AT
p (k),

(4.22)

and the equivalent cost functional of (4.16) is

J (X(k)) = min
K(0), ..., K(N)∈Rm×n

Tr[{Q(k)+2S(k)K(k)+KT (k)R(k)K(k)}X(k)]. (4.23)

Here, the system (4.22)–(4.23) seems to be a deterministic optimal control problem. The

Lagrangian function can be represented as follows,

L=
Tf

∑
k=0

Hk, (4.24)

where

Hk =Tr[{Q(k)+2S(k)K(k)+KT (k)R(k)K(k)}X(k)]+Tr[P(k+1){A(k)X(k)AT (k)

+B(k)K(k)X(k)AT (k)+A(k)X(k)KT (k)BT (k)+B(k)K(k)X(k)KT (k)BT (k)

+Ap(k)X(k)AT
p (k)−X(k+1)}], (4.25)

and the matrices P(0), ..., P(Tf ) are the Lagrangian multipliers. The first-order necessary

conditions for optimality are

∂Hk

∂K(k)
= 0,

∂Hk

∂X(k)
= P(k), for k = 1, ..., Tf , P(Tf +1) = 0.

The calculation of the above derivatives leads to the following equations:

[R(k)+BT (k)P(k+1)B(k)]K(k)+ST (k)+BT (k)P(k+1)A(k) = 0, (4.26)

P(k) = Q(k)+AT (k)P(k+1)A(k)+AT
p (k)P(k+1)Ap(k)+KT (k)[R(k)

+BT (k)P(k+1)B(k)]K(k)+KT (k)[ST (k)+BT (k)P(k+1)A(k)]

+ [S(k)+AT (k)P(k+1)B(k)]K(k), P(Tf +1) = 0. (4.27)

Now, by using Lemma 3.1 of [Rami et al. (2002)], we can see that the existence of a so-

lution K(0), ..., K(Tf ) to equation (4.26) and the solution is given by the following deter-

ministic gain matrices:

K(k) =− [R(k)+BT (k)P(k+1)B(k)]−1[ST (k)+BT (k)P(k+1)A(k)]. (4.28)
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Transferring the gains from equation (4.28) into equation (4.27), we obtain the following

backward difference formula for the Lagrangian multipliers:

P(k) = AT (k)P(k+1)A(k)+AT
p (k)P(k+1)Ap(k)− [S(k)+AT (k)P(k+1)B(k)]

× [R(k)+BT (k)P(k+1)B(k)]−1[ST (k)+BT (k)P(k+1)A(k)]

+Q(k), P(Tf +1) = 0. (4.29)

Alternatively, equation (4.29) can be rewritten as,

P(k) =AT
s (k)P(k+1)As(k)+AT

p (k)P(k+1)Ap(k)

−AT
s P(k+1)B(k)R̂−1R(k)BT (k)P(k+1)As(k)+Qs(k), P(Tf +1) = 0, (4.30)

where

As(k) := A(k)−B(k)R−1(k)ST (k),

R̂(k) := R(k)+BT (k)P(k+1)B(k),

Qs(k) := Q(k)−ST (k)R−1(k)S(k).

Using equation (4.28), the closed-loop optimal state feedback control can be written as

u∗(k) = K(k)x(k) =−R̂−1(k)
[
ST (k)+BT (k)P(k+1)A(k)

]
x(k). (4.31)

To complete the proof of the lemma, we need to show now R̂(k) ≥ 0, k ∈ NTf . Let us

suppose that there exists R̂(l) associated with a negative eigenvalue λ . Denote the unitary

eigenvector corresponding to λ as vλ (i.e., vT
λ vλ = 1 and R̂(l)vλ = λvλ ). Let δ �= 0 be an

arbitrary scalar and construct a control sequence as follows,

û(k) =

{
−R̂−1(k)Ŝ(k)x(k) k �= l,
δ |λ |− 1

2 vλ − R̂−1(k)Ŝ(k)x(k) k = l,
(4.32)

where Ŝ(k) := ST (k)+BT (k)P(k+1)A(k). The associated cost functional is

J(x0, û(0), ..., û(Tf )) = E

[
Tf

∑
k=0

[û(k)+ R̂(k)−1Ŝ(k)x(k)]T R̂(k)[û(k)

+ R̂(k)−1Ŝ(k)x(k)]+ xT
0 P(0)x0

]

=

(
δ
|λ | 1

2

vλ

)T

R̂(l)

(
δ
|λ | 1

2

vλ

)
+E[xT

0 P(0)x0]

=−δ 2 +E[xT
0 P(0)x0].

Definitely, as δ →∞, J(x0, û(0), ..., û(Tf ))→−∞ which contradicts our assumption.
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Definition 4.1. [Zhang et al. (2008)] The following discrete-time stochastic system:{
x(k+1) = Ax(k)+Apx(k)w(k),
z(k) =Cx(k), x(0) = x0 ∈ R

n, k ∈ N,
(4.33)

or (A, Ap/C) is said to be exactly observable if z(k)≡ 0, ∀k ∈ N implies x0 = 0.

Definition 4.2. [Zhang et al. (2008)] The linear discrete-time stochastic system

x(k+1) = Ax(k)+Bu(k)+Apx(k)w(k), x(0) = x0, (4.34)

∀k = k ∈ N is said to be mean-square stable if for any x0 ∈ R
n, the corresponding state

satisfies lim
k→∞

E‖x(k)‖ = 0. The system (4.34) is said to be stabilizable in the mean square

sense if there exists a mean-square feedback stabilizing control law u(k) = Kx(k), where K

is a constant matrix.

By using Lemma 4.2, we have the following result under the infinite horizon case as

the extension:

Suppose that the linear discrete-time stochastic system

x(k+1) = Ax(k)+Bu(k)+Apx(k)w(k), x(0) = x0, (4.35)

∀k = k ∈ N is mean-square stable, where A, B and Ap are assumed to be constant matrices

of suitable dimensions.

Let us define the cost functional

J(x0, u) :=
∞

∑
k=0

E[xT (k)Qx(k)+2xT (k)Su(k)+uT (k)Ru(k)], (4.36)

where Q = QT ≥ 0, R = RT > 0, and Q−SR−1ST > 0.

Lemma 4.3. There exists a symmetric constant matrix P> 0 that solves the following SARE

of the system (4.35)–(4.36):

P =AT
s PAs +AT

p PAp−AT
s PBR̂−1BT PAs +Qs, (4.37)

where

As := A−BR−1ST ,

R̂ := R+BT PB,

Qs := Q−SR−1ST ,

and the optimal state feedback control in this case is given by

u∗(k) = Kx(k) =−R̂−1
[
ST +BT PA

]
x(k). (4.38)

89



Proof. Using optimal control u∗(k) = Kx(k), the state feedback system (4.35) can be writ-

ten as

x(k+1) = (A+BK)x(k)+Apx(k)w(k), x(0) = x0, (4.39)

with cost functional

J(x0, u∗) :=
∞

∑
k=0

E[xT (k)(Q+2SK +KT RK)x(k)]. (4.40)

Suppose that there exits a symmetric positive definite matrix P such that the SARE (4.37)

holds for all admissible control inputs. Let us define the Lyapunov candidate function

E[V (x(k))] = E[xT (k)Px(k)], (4.41)

where V (x(k)> 0 for all x(k) �= 0.

The difference between corresponding trajectory of the system (4.35) is given by

E[ΔV (x(k))] = E[V (x(k+1))−V (x(k))]

= E[xT (k+1)Px(k+1)− xT (k)Px(k)]

= E[xT (k)(A+BK)T P(A+BK)x(k)]

+E[xT (k)AT
p PApx(k)]−E[xT (k)Px(k)]

= E[xT (k)[(A+BK)T P(A+BK)+AT
p PAp−P]x(k), (4.42)

which is stable if E[ΔV (x(k))] < 0. Then, we can form the discrete-time Lyapunov stabi-

lizable equation as follows:

(A+BK)T P(A+BK)+AT
p PAp−P =−(Q+2SK +KT RK) (4.43)

Substituting the value of K = −R̂−1
(
BT PAS +R−1S

)
to equation (4.43) and simplifying,

we can get the following SARE:

P =AT
s PAs +AT

p PAp−AT
s PBR̂−1BT PAs +Qs, (4.44)

where

As := A−BR−1ST ,

R̂ := R+BT PB,

Qs := Q−SR−1ST ,

Hence, Lemma 4.3 is proved.
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4.3 Problem formulation

Consider a linear discrete-time stochastic system with state-dependent noise defined by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(k+1) = A(k)x(k)+
N
∑
j=1

[
B0 j(k)u0 j(k)+B j(k)u j(k)

]
+D(k)v(k)+Ap(k)x(k)w(k), x(0) = x0,

z(k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

C(k)x(k)
G0(k)uuu0(k)
G1(k)u1(k)

...

GN(k)uN(k)

⎤
⎥⎥⎥⎥⎥⎥⎦ , GT

i (k)Gi(k) = Imi , k ∈ NTf , i = 0, 1, ... ,N,

(4.45)

where x(k)∈ l2
w(NTf , R

n) represents the state vector, uuu0(k)= col
[

u01(k) · · · u0N(k)
]∈

l2
w(NTf , R

m0), m0 =
N
∑

i=0
m0i, i = 1, ... ,N represents the leader’s control input correspond-

ing to i-th follower and ui(k) ∈ l2
w(NTf , R

mi), i = 1, ... ,N represents the i-th follower’s

control input, v(k) ∈ l2
w(NTf , R

nv) represents the disturbance input and z(k) ∈ l2
w(NTf , R

nz)

represents the controlled output.

In many real-world control problems, most physical systems and processes include

unmodeled uncertainties in the deterministic exogenous input v(k), such as external distur-

bances. These introduce serious difficulties in the control and design of systems, in contrast

with the stochastic perturbations due to the Wiener process. The H∞ control method is a

well-known approach to reducing the influence of these inputs and plays an important role

in reducing the effect of such deterministic disturbances.

Throughout this Chapter, let (Ω, F , P) be a given filtered probability space, where

w(k) is a real-valued random variable defined in the filtered probability space, second-order

process with E[w(k)] = 0 and E[w(s)w(k)] = δsk [Zhang et al. (2007), Zhang et al. (2008)].

For simplicity, we choose the closed-loop state feedback information structure for the

leader and followers control. Moreover, it provides the advantage of complete control

allowing us to access the control tools directly. In practical, we can see the problem of

packet switch operating problem referred in [Saksena and Cruz (1985)] is solved by a state

feedback control.

On the other hand, the linear quadratic cost functionals of the leader and followers, are

given by

J0(x0, uuu0, u1, ... ,uN , v)

:=
Tf

∑
k=0

E

[
xT (k)Q0(k)x(k)+

N

∑
j=1

{
uT

0 j(k)R00 j(k)u0 j(k)+uT
j (k)R0 j(k)u j(k)

}]
, (4.46a)
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Ji(x0, uuu0, u1, ... ,uN , v)

:=
Tf

∑
k=0

E

[
xT (k)Qi(k)x(k)+uT

0i(k)R0ii(k)u0i(k)+uT
i (k)Rii(k)ui(k)

]
, (4.46b)

where

Q0(k) :=CT (k)C(k), R00i(k) = RT
00i(k)> 0, R0i(k) = RT

0i(k)≥ 0,

Qi(k) = QT
i (k)≥ 0, R0ii(k) = RT

0ii(k)≥ 0, Rii(k) = RT
ii (k)> 0,

for i = 1, ... ,N are matrices for any time step k.

Definition 4.3. For one leader and N follower’s team problem, suppose that

J0(uuu0, u1, ... ,uN) is the leader’s cost functional, where uuu0 is the leader’s control and

ui, i = 1, 2, ... ,N is the i-th follower’s control. A strategy-set (uuu∗0, u∗1, ... ,u
∗
N) is called

the team-optimal solution of the game if

J0(uuu∗0, u∗1, ... ,u
∗
N)≤ J0(uuu0, u1, ... ,uN), (4.47)

for any uuu0 and ui, i = 1, 2, ... ,N.

It should be noted that if J0 is LQ form and strict convex, then a unique optimal solution

exists [Başar and Olsder (1999)].

According to [Basar and Selbuz (1979)], [Mizukami and Wu (1988)], the framework of

the incentive Stackelberg games can be described as follows:

(a) The player P0 announces the following feedback pattern strategy in advance to the

players Pi:

u0i(k) = u0i(k,x(k),ui(k)) = η0i(k)x(k)+ηii(k)ui(k), (4.48)

where η0i(k)∈R
m0i×n and ηii(k)∈R

m0i×mi , i = 1, ... ,N are discrete strategy param-

eter matrices.

(b) Each player Pi decides his/her own optimal strategy u∗i (k), i = 1, ... ,N under the

Nash equilibrium solution concept, considering the announced strategy of the player

P0.

(c) The player P0 finalizes the incentive Stackelberg strategy

u∗0i(k) = u∗0i(k,x(k),u
∗
i (k)) = η0i(k)x(k)+ηii(k)u∗i (k), (4.49)

for each player Pi, i = 1, ... ,N so that the team-optimal solution can be achieved.
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The presence of the external disturbance v(k) affects the controlled output z(k) through

the state vector x(k) which is measured by the perturbed operator LTf : l2
w(NTf , R

nv)→
l2
w(NTf , R

nz) [Zhang et al. (2007)] and its H∞-norm is defined by

‖LTf ‖H∞ := sup
v ∈ l2

w(NTf , R
nv ),

v �= 0, x0 = 0

‖z‖l2
w(NTf , R

nz)

‖v‖l2
w(NTf , R

nv)

, (4.50)

where

‖z‖l2
w(NTf , R

nz) :=

(
xT (k)Q0(k)x(k)+

N

∑
j=0

uT
j (k)u j(k)

) 1
2

,

‖v‖l2
w(NTf , R

nv) :=

(
Tf

∑
k=0

E
[
vT (k)v(k)

]) 1
2

.

An important fact is that the effect of this disturbance cannot be avoided but weakened to

some extent (disturbance attenuation level) γ > ‖LTf ‖H∞ . In other words, it is designed as

the team controller (uuu0, u1, ... ,uN) and the disturbance v are playing a zero-sum game, in

which the cost is

Jv(x0, uuu0, u1, ... ,uN , v) =
Tf

∑
k=0

E[γ2‖v(k)‖2−‖z(k)‖2], ∀v(k) �= 0. (4.51)

In order to attenuate the efficiency of the disturbance under the H∞-norm, the problem of

H∞-constraint is inevitable.

The finite-horizon H∞-constrained incentive Stackelberg game with multiple non-

cooperative followers can be formulated as follows. For any disturbance attenuation level

γ > 0, 0< Tf <∞, we need to find an incentive strategy of P0 by (4.49) and a state feedback

strategy

u∗i (k) := Ki(k)x(k) ∈ l2
w(NTf , R

mi),

of Pi, i = 1, ... ,N considering the worst-case disturbance

v∗(k) := Fγ(k)x(k) ∈ l2
w(NTf , R

nv),

such that

(i) The trajectory of the closed-loop system (4.45) satisfies the following team-optimal

condition (4.52a) along with H∞ constraint condition (4.52b),

J0(x0,uuu∗0,u
∗
1, ... ,u

∗
N ,v

∗)≤ J0(x0,uuu0,u1, ... ,uN ,v∗), (4.52a)

0≤ Jv(x0,uuu∗0,u
∗
1, ... ,u

∗
N ,v

∗)≤ Jv(x0,uuu∗0,u
∗
1, ... ,u

∗
N ,v). (4.52b)
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(ii) A set of decision (u∗0i, u∗i ) ∈ R
m0i+mi , i = 1, ... ,N satisfying the following Nash

equilibrium inequality:

Ji(x0,uuu∗0,u
∗
1, ... ,u

∗
N ,v

∗)≤ Ji(x0,γ∗−i(u0i),γ∗−i(ui),v∗). (4.53)

Then, the strategy-set (u∗0i, u∗i ) ∈ R
m0i+mi , i = 1, ... ,N constitutes both a team-

optimal incentive Stackelberg strategy with the H∞ constraint of the leader and

Nash equilibrium strategies of the followers for a two-level hierarchical game

[Başar and Olsder (1999)].

4.4 Main result

Suppose that for each strategy pair (u0i, ui) ∈ Γ0×Γi, the linear discrete-time stochastic

system (4.45) has a unique solution for all x0, and the value of Ji are well-defined, where Γi

is defined as the space of admissible strategy of player Pi, i = 0, 1, ... ,N. First, to find the

team-optimal solution triplet (u∗0i, u∗i , v∗) with the H∞ constraint, we centralize the control

inputs of the system (4.45) as follows,⎧⎪⎨
⎪⎩

x(k+1) = A(k)x(k)+Bc(k)uc(k)+D(k)v(k)+Ap(k)x(k)w(k), x(0) = x0,

z(k) =

[
C(k)x(k)

Gc(k)uc(k)

]
, GT

c (k)Gc(k) = I∑N
i=1(m0i+mi)

, k ∈ NTf ,
(4.54)

where

Bc(k) :=
[

BBB0(k) B1(k) · · · BN(k)
]
,

uc(k) := col
[

uuu0(k) u1(k) · · · uN(k)
]
,

BBB0(k) :=
[

B01(k) · · · B0N(k)
]
,

Gc(k) := block diag(G0(k) G1(k) · · · GN(k)) .

Moreover, the leader’s cost functional (4.46a) can be rewritten as,

J0(x0, uuu0, u1, ... ,uN , v) :=
Tf

∑
k=0

E

[
xT (k)Q0(k)x(k)+uT

c (k)Rc(k)uc(k)
]
, (4.55)

where

Q0(k) :=CT (k)C(k),

Rc := block diag
(

RRR00(k) R01(k) · · · R0N(k)
)
,

RRR00 := block diag
(

R001(k) · · · R00N(k)
)
.
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Now, to apply Lemma 4.1, we assume that the following four cross-coupled SMVDEs have

solutions (P(k), W (k); Kc(k), Fγ(k)) with P(k)≥ 0 and W (k)≤ 0:

P(k) = AT
v (k)P(k+1)Av(k)+AT

p (k)P(k+1)Ap−AT
v (k)P(k+1)Sc(k)P(k+1)Av(k)

+Q0(k), P(Tf +1) = 0, (4.56a)

Kc(k) =−R̂−1
c (k)BT (k)P(k+1)Av(k), (4.56b)

W (k) = AT
u (k)W (k+1)Au(k)+AT

p (k)W (k+1)Ap(k)−AT
u (k)W (k+1)U(k)W (k+1)Au(k)

−LK(k), W (Tf +1) = 0, (4.56c)

Fγ(k) =−T−1
γ (k)DT (k)W (k+1)Au(k), (4.56d)

where

Av(k) := A(k)+D(k)Fγ(k),

R̂c(k) := Inu +BT (k)P(k+1)B(k)> 0,

Kc(k) :=

[
KKK0(k)
KKK1(k)

]
,

KKK0(k) :=
[

KT
01(k) · · · KT

0N(k)
]T

,

KKK1(k) :=
[

KT
1 (k) · · · KT

N (k)
]T

,

Au(k) := A(k)+Bc(k)Kc(k),

LK(k) := Q0(k)+Kc(k)T Kc(k),

Sc(k) := Bc(k)R̂−1
c BT

c (k),

Tγ(k) := γ2Inv +DT (k)W (k+1)D(k)> 0,

U(k) := D(k)T−1
γ (k)DT (k).

Then, we find the state feedback strategy pair

(u∗c(k), v∗(k)) := (Kc(k)x(k), Fγ(k)x(k)).

This strategy pair is the team-optimal solution with the H∞ constraint. More explicitly,

u∗0i(k) = K0i(k)x(k)

=−[R00i(k)+BT
0i(k)P(k+1)B0i(k)

]−1
BT

0i(k)P(k+1)Av(k)x(k), (4.57a)

u∗i (k) = Ki(k)x(k)

=−[R0i(k)+BT
i (k)P(k+1)Bi(k)

]−1
BT

i (k)P(k+1)Av(k)x(k), (4.57b)

v∗(k) = Fγ(k)x(k)

=−[γ2Inv +DT (k)W (k+1)D(k)]−1DT (k)W (k+1)Au(k)x(k). (4.57c)
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It is assumed that the leader chooses the following incentive Stackelberg strategy corre-

sponding to the i-th follower [Mizukami and Wu (1988)]:

u∗0i(k) := η0i(k)x(k)+ηii(k)u∗i (k), i = 1, 2, ... ,N. (4.58)

Using (4.57a), (4.57b) and (4.58) η0i(k) and ηii(k) have the following relation:

η0i(k) := K0i(k)−ηii(k)Ki(k), i = 1, 2, ... ,N. (4.59)

As the second step, the non-cooperative followers’ Nash strategy-set is derived where the

leader’s incentive Stackelberg strategy is considered. For this purpose, we can rewrite the

system for i-th follower using the strategy triplet (γ∗−i(u0i), γ∗−i(ui), v∗) as follows,

x(k+1) =A(k)x(k)+
N

∑
j=1, j �=i

B0 j(k)u∗0 j(k)+B0i(k)[η0i(k)x(k)+ηii(k)ui(k)]

+
N

∑
j=1, j �=i

B j(k)u∗j(k)+Bi(k)ui(k)+D(k)v∗(k)+Ap(k)x(k)w(k), x(0) = x0,

(4.60)

with cost functional

Ji(x0, γ∗−i(u0i), γ∗−i(ui), v∗)

:=
Tf

∑
k=0

E

[
xT (k)Qi(k)x(k)+ [η0i(k)x(k)+ηii(k)ui(k)]T R0ii(k)[η0i(k)x(k)

+ηii(k)ui(k)]+uT
i (k)Rii(k)ui(k)

]
, i = 1, ... ,N. (4.61)

Using simplified notations the above system can be written as

x(k+1) =Ãi(k)x(k)+ B̃i(k)ui(k)+Ap(k)x(k)w(k), x(0) = x0, (4.62)

with cost functional

Ji(x0, γ∗−i(u0i), γ∗−i(ui), v∗)

:=
Tf

∑
k=0

E

[
xT (k)Q̃i(k)x(k)+2xT

i (k)S̃i(k)ui(k)+uT
i (k)R̃i(k)ui(k)

]
, i = 1, ... ,N,

(4.63)

where

Ãi(k) := A(k)+D(k)Fγ(k)+B0i(k)η0i(k)+
N

∑
j=1, j �=i

[B0 j(k)K0 j(k)+B j(k)Kj(k)],
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B̃i(k) := Bi(k)+B0i(k)ηii(k),

S̃i(k) := ηT
0i(k)R0ii(k)ηii(k),

Q̃i(k) := Qi(k)+ηT
0i(k)R0ii(k)η0i(k),

R̃i(k) := Rii(k)+ηT
ii (k)R0ii(k)ηii(k).

Now, by applying Lemma 4.2, the following SBDRE has solution(s) Pi(k) corresponding

to each i-th follower:

Pi(k) =ÂT
i (k)Pi(k+1)Âi(k)+AT

p (k)Pi(k+1)Ap(k)− ÂT
i (k)Pi(k+1)B̃i(k)

× R̂−1
i (k)B̃T

i (k)Pi(k+1)Âi(k)+ Q̂i(k), Pi(Tf +1) = 0, (4.64)

where

Âi(k) := Ãi(k)− B̃i(k)R̃−1
i (k)S̃T

i (k),

R̂i(k) := R̃i(k)+ B̃T
i (k)Pi(k+1)B̃i(k),

Q̂i(k) := Q̃i(k)− S̃i(k)R̃−1
i (k)S̃T

i (k),

and each i-th follower’s optimal state feedback Nash equilibrium strategy is determined by

u∗i (k) = K̃i(k)x(k) =−R̂−1
i (k)

[
S̃T

i (k)+ B̃T
i (k)Pi(k+1)Âi(k)

]
x(k), (4.65)

i = 1, ... ,N. Owing to the equivalence of (4.57b) and (4.65), that is Ki(k) = K̃i(k) we have

the relation,

Ki(k) =−R̂−1
i (k)

[
S̃T

i (k)+ B̃T
i (k)Pi(k+1)Ãi

]
,

or,

[R̃i(k)+ B̃T
i (k)Pi(k+1)B̃i(k)]Ki(k) =−S̃T

i (k)− B̃T
i (k)Pi(k+1)Ãi(k),

or,

[Rii(k)+ηT
ii (k)R0ii(k)ηii(k)+ [Bi(k)+B0i(k)ηii(k)]T Pi(k+1)B̃i(k)]Ki(k)

=−[ηT
0i(k)R0ii(k)ηii(k)]T − [Bi(k)+B0i(k)ηii(k)]T Pi(k+1)Ãi(k),

or,

Rii(k)Ki(k)+ηT
ii (k)R0ii(k)ηii(k)Ki(k)

+BT
i (k)Pi(k+1)B̃i(k)Ki(k)+ηT

ii (k)B
T
0i(k)Pi(k+1)B̃i(k)Ki(k)

=−ηT
ii (k)R0ii(k)K0i(k)+ηT

ii (k)R0ii(k)ηii(k)Ki(k)−BT
i (k)Pi(k+1)Ãi(k)
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−ηT
ii (k)B

T
0i(k)Pi(k+1)Ãi(k),

[using relation (4.59) η0i(k) = K0i(k)−ηii(k)Ki(k)],

or,

ηT
ii (k) =−[Rii(k)Ki(k)+BT

i (k)Pi(k+1)B̃i(k)Ki(k)+Bi(k)T (k)Pi(k+1)Ãi(k)]

× [BT
0i(k)Pi(k+1)B̃i(k)Ki(k)+BT

0iPi(k+1)Ãi(k)+R0ii(k)K0i(k)]−1

or,

ηT
ii (k) =−

(
Rii(k)Ki(k)+BT

i (k)Pi(k+1)Ãi(k)
)(

R0ii(k)K0i(k)+BT
0i(k)Pi(k+1)Ãi(k)

)−1
,

(4.66)

where

Ãi(k) := Ãi(k)+ B̃i(k)Ki(k), i = 1, ... ,N.

Remark 4.1. It should be noted that the incentive parameter ηii(k) can be uniquely deter-

mined if and only if
(
R0ii(k)K0i(k)+BT

0i(k)Pi(k+1)Ãi(k)
)

is non-singular.

Theorem 4.1. Suppose that four cross-coupled SMVDEs (4.56), SBDRE (4.64), and equa-

tion (4.66) have solutions. Then, strategy-set (4.49) is associated with (4.65) from the

two-level incentive Stackelberg strategy-set with H∞ constraint as formulated in Section

4.4, where η0i and ηii are determined through (4.59) and (4.66), respectively.

Remark 4.2. It should be noted that if we substitute η0i(k) from relation (4.59) into SBDRE

(4.64), then SBDRE (4.64) will have two unknowns, Pi(k) and ηii(k). Further, by solving

the two equations, (4.64) and (4.66), it will be possible to obtain a solution for Pi(k) and

ηii(k).

4.5 Infinite-horizon Case

The infinite-horizon H∞-constrained incentive Stackelberg game is investigated in this sec-

tion. Consider a time-invariant linear stochastic discrete-time system such as,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(k+1) = Ax(k)+
N
∑
j=1

B0 ju0 j(k)+
N
∑
j=1

B ju j(k)

+Dv(k)+Apx(k)w(k), x(0) = x0,

z(k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

Cx(k)
G0uuu0(k)
G1u1(k)

...

GNuN(k)

⎤
⎥⎥⎥⎥⎥⎥⎦ , GT

i Gi = Inu , k ∈ N.

(4.67)
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Moreover, the cost functionals are defined as

J0(x0, uuu0, u1, ... ,uN , v)

:=
∞

∑
k=0

E

[
xT (k)Q0x(k)+

N

∑
j=1

{
uT

0 j(k)R00 ju0 j(k)+uT
j (k)R0 ju j(k)

}]
, (4.68a)

Ji(x0, uuu0, u1, ... ,uN , v)

:=
∞

∑
k=0

E

[
xT (k)Qix(k)+

N

∑
j=1

uT
0 j(k)R0i ju0 j(k)+uT

i (k)Riiui(k)
]
, i = 1, ... ,N, (4.68b)

where

Q0 :=CTC, R00i = RT
00i > 0, R0i = RT

0i ≥ 0,

Qi = QT
i ≥ 0, R0ii = RT

0ii ≥ 0, Rii = RT
ii > 0,

for all i = 0, 1, ... ,N. The infinite-horizon H∞-constrained incentive Stackelberg game

with multiple non-cooperative followers can be formulated as follows:

For any disturbance attenuation level γ > 0, we need to find an incentive strategy of P0

by

u∗0i(k) = u∗0i(k,x(k),u
∗
i (k)) = η0ix(k)+ηiiu∗i (k), (4.69)

where parameters η0i and ηii are to be determined and a state feedback strategy

u∗i (k) := Kix(k) ∈ l2
w(N, Rmi),

of Pi, i = 1, ... ,N considering the worst-case disturbance

v∗(k) = Fγx(k) ∈ l2
w(N, Rnv),

such that

(i) the trajectory of the closed-loop system (4.67) satisfies the following team-optimal

condition (4.70a) along with H∞ constraint conditions (4.70b)

J0(x0,uuu∗0,u
∗
1, ... ,u

∗
N ,v

∗)≤ J0(x0, uuu0,u1, ... ,uN ,v∗), (4.70a)

0≤ Jv(x0,uuu∗0,u
∗
1, ... ,u

∗
N ,v

∗)≤ Jv(x0,uuu∗0,u
∗
1, ... ,u

∗
N ,v), (4.70b)

where

Jv(x0, uuu0, u1, ... ,uN , v) :=
Tf

∑
k=0

E[γ2‖v(k)‖2−‖z(k)‖2], ∀v(k) �= 0,

‖z(k)‖2 = xT (k)Q0x(k)+
N

∑
j=0

uT
j (k)u j(k),
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(ii) a set of decision (u∗0i, u∗i ) ∈ R
m0i+mi , i = 1, ... ,N satisfying the following Nash

equilibrium inequality:

Ji(x0,uuu∗0,u
∗
1, ... ,u

∗
N ,v

∗)≤ Ji(x0,γ∗−i(u0i),γ∗−i(ui),v∗). (4.71)

Then, the strategy-set (u∗0i, u∗i ) ∈ R
m0i+mi , i = 1, ... ,N constitutes both team-

optimal incentive Stackelberg strategy with H∞ constraint of the leader and

Nash equilibrium strategies of the followers for a two-level hierarchical game

[Başar and Olsder (1999)].

Note that, if the inequality (4.70b) holds, it ensures the following condition for H∞ con-

straint:

‖L‖H∞ = sup
v ∈ l2

w(N, Rnv ),
v �= 0, x0 = 0

‖z‖l2
w(N, Rnz)

‖v‖l2
w(N, Rnv)

< γ. (4.72)

First, to find the team-optimal solution triplet (u∗0i, u∗i , v∗) with H∞ constraint, rearrange

the system (4.67) as follows,⎧⎪⎨
⎪⎩

x(k+1) = Ax(k)+Bcuc(k)+Dv(k)+Apx(k)w(k), x(0) = x0,

z(k) =

[
Cx(k)

Gcuc(k)

]
, GT

c Gc = I∑N
i=1(m0i+mi)

, k ∈ N,
(4.73)

where x(0) = x0, k ∈ N,

Bc :=
[

BBB0 B1 · · · BN
]
,

BBB0 :=
[

B01 · · · B0N
]
,

uc(k) := col
[

uuu0(k) u1(k) · · · uN(k)
]
,

Gc := block diag
(

G0 G1 · · · GN
)
.

Moreover, the leader’s cost functional (4.68a) can be rewritten as

J0(x0, uuu0, u1, ... ,uN , v) :=
∞

∑
k=0

E

[
xT (k)Q0x(k)+uT

c (k)Rcuc(k)
]
, (4.74)

where

Rc := block diag
(

RRR00 R01 · · · R0N
)
,

RRR00 := block diag
(

R001 · · · R00N
)
.

Now, according to [Zhang et al. (2008)], for the system (4.73), suppose the following four

cross-coupled SMVAEs have solutions (P, W ; Kc, Fγ) with P > 0 and W < 0:

P = AT
v PAv +AT

p PAp−AT
v PScPAv +Q0, (4.75a)
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Kc =−R̂−1
c BT PAv, (4.75b)

W = AT
u WAu +AT

pWAp−AT
u WUWAu−LK, (4.75c)

Fγ =−T−1
γ DTWAu, (4.75d)

where

Av := A+DFγ ,

R̂c := Inu +BT PB > 0,

Au := A+BcKc,

LK := Q0 +KT
c Kc,

Kc :=

[
KKK0

KKK1

]
,

KKK0 :=
[

KT
01 · · · KT

0N
]T

,

KKK1 :=
[

KT
1 · · · KT

N
]T

,

Sc := BcR̂−1
c BT

c ,

U := DT−1
γ DT ,

Tγ := γ2Inv +DTWD > 0.

If (A, Ap/C) and (A+DFγ , Ap/C) are exactly observable, then the state feedback strategy

pair

(u∗c(k), v∗(k)) := (Kcx(k), Fγx(k)),

is the team-optimal solution for the system (4.73) under H∞ constraint. More explicitly,

u∗0i(k) = K0ix(k) =−
[
R00i +BT

0iPB0i
]−1

BT
0iPAvx(k), (4.76a)

u∗i (k) = Kix(k) =−
[
R0i +BT

i PBi
]−1

BT
i PAvx(k), (4.76b)

v∗(k) = Fγx(k) =−[γ2Inv +DTWD]−1DTWAux(k). (4.76c)

Secondly, to derive followers’ Nash strategy-set, we can rewrite the system for i-th

follower as

x(k+1) = Ãix(k)+ B̃iui(k)+Apx(k)w(k), x(0) = x0, (4.77)

with cost functional

Ji(x0, γ∗−i(u0i), γ∗−i(ui), v∗) :=
∞

∑
k=0

E

[
xT (k)Q̃ix(k)+2xT

i S̃iui(k)+uT
i (k)R̃iui(k)

]
, (4.78)

where

Ãi := A+DFγ +B0iη0i +
N

∑
j=1, j �=i

[B0 jK0 j +B jKj],
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B̃i := Bi +B0iηii, Q̃i := Qi +ηT
0iR0iiη0i,

S̃i := ηT
0iR0iiηii,

R̃i := Rii +ηT
ii R0iiηii, i = 1, ... ,N.

Now, applying Lemma 4.3, there exists a symmetric constant matrix Pi > 0 corresponding

to each i-th follower that solves the following SARE:

Pi = ÂT
i PiÂi +AT

p PiAp− ÂT
i PiB̃iR̂−1

i B̃T
i PiÂi + Q̂i, (4.79)

where

Âi := Ãi− B̃iR̃−1
i S̃T

i , R̂i := R̃i + B̃T
i PiB̃i, Q̂i := Q̃i− S̃iR̃−1

i S̃T
i .

Then, each i-th follower’s optimal state feedback Nash equilibrium strategy is determined

by

u∗i (k) = K̃ix(k) =−R̂−1
i
[
S̃T

i + B̃T
i PiÂi

]
x(k), i = 1, ... ,N. (4.80)

Due to the equivalence of (4.76b) and (4.80), that is Ki = K̃i we have the relation

Ki =−R̂−1
i
[
S̃T

i + B̃T
i PiÃi

]
,

or,

[R̃i + B̃T
i PiB̃i]Ki =−S̃T

i − B̃T
i PiÃi,

or,

[Rii +ηT
ii R0iiηii +[Bi +B0iηii]

T PiB̃i]Ki =−[ηT
0iR0iiηii]

T − [Bi +B0iηii]
T PiÃi,

or,

RiiKi +ηT
ii R0iiηiiKi +BT

i PiB̃iKi +ηT
ii BT

0iPiB̃iKi

=−ηT
ii R0iiK0i +ηT

ii R0iiηiiKi−BT
i PiÃi−ηT

ii BT
0iPiÃi,

[using relation η0i = K0i−ηiiKi]

or,

ηT
ii =−[RiiKi +BT

i PiB̃iKi +BT
i PiÃi][BT

0iPiB̃iKi +BT
0iPiÃi +R0iiK0i]

−1,

or,

ηT
ii =−

(
RiiKi +BT

i PiÃi
)(

R0iiK0i +BT
0iPiÃi

)−1
, (4.81)

where

Ãi := Ãi + B̃iKi, i = 1, ... ,N.

102



Remark 4.3. It should be noted that the incentive parameter ηii can be uniquely deter-

mined if and only if
(
R0iiK0i +BT

0iPiÃi
)

is non-singular.

Parameter η0i can be determined by the following equation:

η0i = K0i−ηiiKi, i = 1, 2, ... ,N. (4.82)

Theorem 4.2. Suppose that a discrete-time stochastic system (4.67) is stabilizable and

that four cross-coupled SMVAEs (4.75) have the solution set (P, W ; Kc, Fγ) such that

P > 0, W < 0 and (A, Ap/C) and (A+DFγ , Ap/C) are exactly observable. If SARE (4.79)

and equation (4.81) have solutions Pi > 0 and ηii, respectively, then the strategy-sets (4.69)

and (4.80) from the two-level incentive Stackelberg strategy-set with H∞ constraint are

formulated, as shown in Section 4.5.

In order to solve four cross-coupled SMVAEs of (4.75) and SARE (4.79) along with

(4.81) the following Lyapunov based computational algorithm is used:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P(r+1) = [A(r)
v ]T P(r+1)A(r)

v +AT
p P(r)Ap− [A(r)

v ]T P(r)S(r)c P(r)A(r)
v +Q0,

K(r)
c =−[R̂(r)

c ]−1BT
c P(r)A(r)

v ,

W (r+1) = [A(r)
u ]TW (r+1)A(r)

u +AT
pW (r)Ap− [A(r)

u ]TW (r)U (r)W (r)A(r)
u −L(r)

K ,

F(r)
γ =−[T (r)

γ ]−1DTW (r)A(r)
u ,

(4.83a)

{
P(s+1)

i = [Â(s)
i ]T P(s+1)

i Â(s)
i +AT

p P(s)
i Ap− [Â(s)

i ]T P(s)
i B̃(s)

i [R̂(s)
i ]−1[B̃(s)

i ]T P(s)
i Â(s)

i + Q̂(s)
i ,

[η(s+1)
ii ]T =−(RiiK

(s)
i +BT

i P(s+1)
i Ã

(s)
i
)(

R0iiK0i +BT
0iP

(s+1)
i Ã

(s)
i
)−1

,

(4.83b)

where r = 0, 1, ... , s = 0, 1, ... ,

P(0) = P(0)
i = In, W (0) =−In, η(0)

ii = η0
ii ,

A(r)
v := A+DF(r)

γ ,

A(r)
u := A+BcK(r)

c ,

S(r)c := Bc[R̂
(r)
c ]−1BT

c ,

U (r) := D[T (r)
γ ]−1DT ,

T (r)
γ := γ2Inv +DTW (r)D,

R̂(r)
c := Rc +BT

c P(r)Bc,

L(r)
K :=CTC+[K(r)

c ]T K(r)
c ,

Ã(s)
i := A+DFγ +B0iη

(s)
0i +

N

∑
j=1, j �=i

[B0 jK0 j +B jKj],

B̃(s)
i := Bi +B0iη

(s)
ii ,
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S̃i := [η(s)
0i ]

T R0iiη
(s)
ii ,

Q̃(s)
i := Qi +[η(s)

0i ]
T R0iiη

(s)
0i ,

R̃(s)
i := Rii +[η(s)

ii ]T R0iiη
(s)
ii ,

Ã
(s)
i := Ã(s)

i + B̃(s)
i K(s)

i ,

Â(s)
i := Ã(s)

i − B̃(s)
i [R̃(s)

i ]−1[S̃(s)i ]T ,

R̂(s)
i := R̃(s)

i +[B̃(s)
i ]T PiB̃

(s)
i ,

Q̂(s)
i := Q̃(s)

i − S̃(s)i [R̃(s)
i ]−1[S̃(s)i ]T ≥ 0.

It should be noted that the initial choice of η0
ii has to be chosen appropriately. In the next

section, an academic and a practical numerical examples demonstrate that this algorithm

operates well in practice.

4.6 Numerical examples

In this section, we investigate two simple numerical examples to demonstrate the existence

of our proposed incentive Stackelberg strategy-set.

4.6.1 An academic example

First, we present an example for the infinite-horizon case with two non-cooperative players.

Later, to show the convergence of our results, we present some graphs of the same problem

in Fig. 4.2–4.5 considering a finite time interval. Let us consider the following system

matrices:

x(0) =

⎡
⎣ 1

0.5
−0.5

⎤
⎦ , A =

⎡
⎣ 0.52 1.12 0

0 −0.24 0

0.23 0.85 −0.16

⎤
⎦ , Ap = 0.1A,

B01 =

⎡
⎣ 0.138 0.20 1.15

−0.55 0.84 −1.11

5.23 0 0.11

⎤
⎦ , B02 =

⎡
⎣ 0.312 1.20 0.24

−1.25 1.03 0.65

3.55 0 0.22

⎤
⎦ ,

B1 =

⎡
⎣0.15 −0.11 0.45

0.12 2.28 0.03

3.55 0 0.22

⎤
⎦ , B2 =

⎡
⎣ 0.23 −0.45 0.22

−0.52 1.02 0.02

0.28 2.11 1.96

⎤
⎦ ,

D =

⎡
⎣ 0.054 −0.076 0.23

−0.035 −0.094 0.043

0.023 0.043 0.013

⎤
⎦ , C =

[
1 2 1

]
,

Q0 = diag( 1 1 2 ), Q1 = diag( 1 1.5 2.1 ), Q2 = diag( 1.2 1.1 3.1 ),

R001 = 1.9I3, R002 = 2.5I3, R01 = 2.7I3, R02 = 3.5I3,
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R011 = 4.8I3, R022 = 5I3, R11 = 0.3I3, R22 = 0.5I3.

We choose the disturbance attenuation level as γ = 5.
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Fig. 4.2: Convergence graph of diagonal elements of P(k), W (k).
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Fig. 4.3: Convergence graph of diagonal elements of P1(k), P2(k).
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Fig. 4.4: Convergence graph of diagonal elements of η11(k), η22(k).
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Fig. 4.5: Convergence graph of diagonal elements of η01(k), η02(k).
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First, for the infinite-horizon case, four cross-coupled SMVAEs (4.75) are solved us-

ing algorithm (4.83a). These solutions attain an H∞-constrained team-optimal solutions as

presented below:

P =

⎡
⎣ 1.1166 2.4780e-1 −1.1222e-3

2.4780e-1 1.5448 −5.6224e-3

−1.1222e-3 −5.6224e-3 2.0016

⎤
⎦ ,

Kc =

⎡
⎢⎢⎣

K01

K02

K1

K2

⎤
⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.5655e-2 −8.0571e-2 1.8506e-2

−3.2647e-2 −4.9939e-2 4.9357e-4

−1.1706e-1 −2.6894e-1 −1.9856e-3

−1.8913e-2 −7.8576e-2 8.7567e-3

−1.1254e-1 −2.1784e-1 −4.3089e-4

−2.6742e-2 −4.6254e-2 8.2324e-4

−1.3440e-2 −2.8877e-2 1.3626e-3

−1.1534e-2 4.2314e-3 4.9096e-3

−3.7172e-2 −8.2997e-2 2.7749e-3

−1.7687e-2 −3.1838e-2 6.5192e-4

1.9603e-2 4.4974e-2 4.9832e-3

−1.4987e-2 −3.8356e-2 3.7607e-3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

W =

⎡
⎣ −1.0656 −2.1303 −9.9778e-1

−2.1303 −4.2664 −1.9946

−9.9778e-1 −1.9946 −1.0008

⎤
⎦ ,

Fγ =

⎡
⎣ 3.9128e-5 7.2135e-5 −1.1007e-6

−1.5614e-3 −2.8465e-3 3.5938e-5

2.2915e-3 4.1800e-3 −5.3389e-5

⎤
⎦ .

Then, SARE (4.79) and equation (4.81) are solved using algorithm (4.83b).

P1 =

⎡
⎣ 1.1187 2.6472e-1 −6.9279e-4

2.6472e-1 2.1096 −6.5987e-3

−6.9279e-4 −6.5987e-3 2.1022

⎤
⎦ ,

P2 =

⎡
⎣ 1.3242 2.5554e-1 −1.2502e-3

2.5554e-1 1.6418 −6.1620e-3

−1.2502e-3 −6.1620e-3 3.1012

⎤
⎦ ,

η11 =

⎡
⎣6.6542e-2 1.7460e-1 1.4531e-1

2.2761e-1 2.2356 3.3869e-1

1.8710e-2 −6.5111e-1 1.4926e-1

⎤
⎦ ,

η22 =

⎡
⎣ 1.7417e-1 1.3506 1.4480

−3.6335e-2 −2.4805 −1.0267

1.1609 8.1400 4.4421

⎤
⎦ .

Algorithm (4.83) converges to the required solution with an accuracy of 1.0e-12 order after

28 and 8 iterations respectively. Furthermore, the incentive Stackelberg strategy (4.69) that
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Fig. 4.6: Trajectory of the state.

will be announced by the leader can be calculated as,

u∗0i(k) = η0ix(k)+ηiiu∗i (k), (4.84)

where

η01 =

⎡
⎣−7.3449e-3 −6.7328e-2 1.7155e-2

8.7881e-3 −2.4716e-2 −1.1732e-2

−1.1877e-1 −2.5325e-1 7.7147e-4

⎤
⎦ ,

η02 =

⎡
⎣−2.0608e-2 −7.8234e-2 −3.5325e-3

−7.9949e-2 −1.4682e-1 1.5815e-2

−9.9203e-2 −2.0499e-1 −5.7203e-2

⎤
⎦ .

In fact, after announcing this incentive, the followers’ strategy can be computed by apply-

ing the standard LQ theory.

u∗i (k) =−[R̃i + B̃T
i PiB̃i]

−1[B̃T
i PiÃi +ηT

ii R0iiη0i]x(k), (4.85)

which implies

u∗1(k) =

⎡
⎣−1.3440e-2 −2.8877e-2 1.3626e-3

−1.1534e-2 4.2314e-3 4.9096e-3

−3.7172e-2 −8.2997e-2 2.7749e-3

⎤
⎦x(k),

u∗2(k) =

⎡
⎣−1.7687e-2 −3.1838e-2 6.5192e-4

1.9603e-2 4.4974e-2 4.9832e-3

−1.4987e-2 −3.8356e-2 3.7607e-3

⎤
⎦x(k).

Indeed, it can be observed that this matrix gain is equal to K̃i. Namely, it can be confirmed

that the followers adopt the team-optimal solution with the H∞ constraint eventually.
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Second, considering a finite time interval, the evaluation of P(k) and W (k) are given

in Fig. 4.2, which clearly show the convergence of the solution of SMVDEs (4.56a) and

(4.56c). In a similar manner, convergences of Pi(k) corresponding to each i-th follower, as

referred to SBDRE (4.64), are shown in Fig. 4.3. Moreover, by solving (4.66), we present

the convergence of η11(k) and η22(k) in Fig. 4.4 and by (4.59), we present η01(k) and

η02(k) in Fig. 4.5. It should be noted that for (P, W ), (P1, P2), (η11, η22) and (η01, η02),

the authenticity of results in the infinite-horizon case can be verified easily by comparing

with Figures 4.2, 4.3, 4.4 and 4.5, respectively while we consider the time parameter, k→
∞, in the finite-horizon case.

Fig. 4.6 shows the response of the system with a state trajectory. It should be noted that

w(k) is chosen as the stochastic-process-dependent random disturbance such that E[w(k)] =

0 and |w(.)| ≤ 30. Furthermore, Fig. 4.6 represents that the state variables x(k) can stabilize

the given system, which implies that the proposed method is very useful and reliable.

4.6.2 A simple practical example

In order to demonstrate the efficiency of our proposed strategies, an R–L–C electrical circuit

that can be represented stochastic system in Fig. 4.7 is considered. In this network, Ri, ri,

i = 1, 2, R and L are the resistances and the inductance, respectively. The capacitances are

denoted by Ci, i = 1, 2. Moreover, E01(t) := u01(t), E02(t) := u02(t) and E1(t) := u1(t),

E2(t) := u2(t) denote the applied voltages, that is, the control inputs as the leaders and the

followers, respectively. i(t) denote the electric current in the inductance L.

Fig. 4.7: Circuit diagram.
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According to Fig. 4.7, for the Follower 1, current through the resistor:

i11 =
V −E1

R1
, (4.86)

and current into the capacitor:

i12 =C1
dV
dt

. (4.87)

Let us consider,

i1 = i11 + i12, (4.88)

which implies that the current trough the Follower 1 is,

i1 =
V −E1

R1
+C1

dV
dt

, (4.89)

Similarly, current trough the Follower 2 is,

i2 =
V −E2

R2
+C2

dV
dt

, (4.90)

The voltage drop across the inductor is L di
dt . If we consider the total current flow through

the circuit is,

i = i1 + i2, (4.91)

we can get the following differential equation:

E01 +E02−L di
dt −V

R+ r1 + r2
= (C1 +C2)

dV
dt

+
V −E1

R1
+

V −E2

R2
, (4.92)

or,

dV
dt

=
1

C1 +C2

[
−
(

1

R1
+

1

R2
+

1

R+ r1 + r2

)
V

+
E01 +E02

R+ r1 + r2
+

E1

R1
+

E2

R2
− L di

dt
R+ r1 + r2,

]
. (4.93)

For this system, let us consider di(t)/dt = v(t) as an external disturbance and the volt-

age drop across the circuit, V := x, as a state with initial voltage x(0) = x0. It should be

noted that, in any electronic device, thermal noise is unavoidable at non-zero temperatures.

This means the system can be represented as a stochastic differential equation (SDE) with a

random noise term. If this noise is treated as a real-valued state-dependent Wiener process
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w(t) with coefficient Ap, then the stochastic system can be written, in simplified notation,

as

dx(t) =

[
Āx(t)+

2

∑
i=1

[B̄0iu0i(t)+ B̄iui(t)]+ D̄v(t)

]
dt + Āpx(t)dw(t), x(0) = x0. (4.94)

where

Ā :=− 1

CT

(
1

R1
+

1

R2
+

1

RS

)
,

B̄01 = B̄02 :=
1

CT RS
,

B̄1 :=
1

CT R1
,

B̄2 :=
1

CT R2
,

D̄ :=− L
CT RS

,

Āp := 0.1Ā,

CT :=C1 +C2,

RS := R+ r1 + r2.

It should be noted that the system noise has been added to the deterministic system by

describing it stochastically in the SDE (4.94). It is assumed that 1% of the magnitude of the

state coefficient can be represented by a Wiener process based on stochastic perturbations.

Suppose that we wish to solve this SDE (4.94) for some time interval [0, T ]. By

the Euler-Maruyama approximation, the stochastic continuous-time system (4.94) can be

transformed into a stochastic discrete-time system with Tf equal sub-intervals of width

Δt = T/Tf , as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x(k+1) = A(k)x(k)+
2

∑
j=1

[
B0 j(k)u0 j(k)+B j(k)u j(k)

]
+D(k)v(k)+Apx(k)N(0,1), x(0) = x0,

z(k) =
[

x(k) u01(k) u02(k) u1(k) u2(k)
]T

,

(4.95)

where

A := 1+ ĀΔt,

B01 := B̄01Δt,

B02 := B̄02Δt,

B1 := B̄1Δt,
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B2 := B̄2Δt,

D := D̄Δt,

Ap := Āp
√

Δt,

and N(0,1) denotes a normally distributed random variable with zero mean and unit vari-

ance.

In this problem, it is assumed that the leader will control the voltage sources in such a

way that the team-optimal solution will be achieved, attenuating the external disturbance

under the H∞ constraint. On the contrary, the followers will simultaneously optimize their

own costs using Nash equilibrium strategies, with respect to the leader’s incentive Stackel-

berg strategy (4.46).

In order to solve this problem numerically, the simulation data are assigned to the pa-

rameters as follows:

R1 = 2 MΩ, R2 = 3 MΩ, R = 600 Ω, r1 = 2 Ω, r2 = 3 Ω,

C1 = 1 μF, C2 = 2μF, L = 0.01 H, x0 = 5 V, Δt = 1 ms.

The weight matrices of the cost functionals of the leader and followers can be defined as in

R001 = 2, R002 = 4, R01 = 3, R02 = 2, R011 = 4, R022 = 4,

R11 = 3, R22 = 2, Q0 = 1, Q1 = 2, Q2 = 4.

Now, we choose as γ = 3 to design the incentive Stackelberg strategy-set.

Fig. 4.8: Percentage of voltage discharging.
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The H∞-constrained team-optimal state-dependent strategies of the voltage sources can

be determined to be

u01(k) =−1.1563e-1x(k),

u02(k) =−5.7815e-2x(k),

u1(k) =−2.3319e-5x(k),

u2(k) =−3.4978e-5x(k).

In addition, the incentive Stackelberg strategies announced by the leader can be found to

be

u01(k) =−1.1563e-1x(k)+1.1464e-2u1(k),

u02(k) =−5.7815e-2x(k)−3.0250e-4u2(k).

Finally, Fig. 5 shows the exponential decay of the capacitors’ voltage over time, calculated

using our current method.

Remark 4.4. As we know, LQ is a control scheme that provides optimal performance for

certain given quadratic objective functions. However, it cannot be used for hierarchical

decision making and optimal collaboration of multiple decision making problems. The

results of our proposed method show that by applying the incentive Stackelberg strategy,

the leader can impose his control over the followers.

In many real-world control problems, most physical systems and processes contain un-

detected uncertainties in the deterministic exogenous disturbances. In contrast to stochas-

tic perturbations due to the Wiener process, they introduce serious difficulties in the control

and design of the system. Moreover, engineering practices not only reduce the impact of

disturbances, but also minimize the desired objective in the presence of disturbance. Con-

sidering all of the above possible constraints, we propose such a solution to the problem

reflecting the real-life system in more general.

For example, [Luo et al. (2016)] investigates the problem of stimulating users to par-

ticipate in mobile crowdsourcing applications through personal devices such as smart-

phones/tablets/laptops. However, motivating enough users to provide their personal device

resources to achieve the good quality of service is a challenge. To solve this problem,

the authors propose an incentive framework based on Stackelberg game to simulate the

interaction between the server and users.

112



4.7 Conclusion

This chapter investigates the incentive Stackelberg game for discrete-time stochastic sys-

tems. The motivation is to choose the incentive Stackelberg game is an engineering ap-

plication of a packet switch that works in the loop structure [Saksena and Cruz (1985)].

The above problem comes from a static game. However, this chapter only studies dynamic

games. This chapter involves one leader and multiple followers incentive Starkberg game.

For this game, incentive Stackelberg strategy is the idea in which leader can implement his

team-optimal solution in a Stackelberg game. In the followers’ group, players are supposed

to be non-cooperative, and Nash equilibrium is investigated. Unlike the previous chapter,

this chapter examines the stochastic system.

The deterministic disturbances and their attenuation to stochastic systems under the H∞

constraint is the main attraction of this chapter. Problems involving deterministic distur-

bance must be attenuated at a given target called disturbance attenuation level γ > 0. Sur-

prisingly, the concept of solving the disturbance reduction problem under the H∞ constraint

seems like a Nash equilibrium between the disturbance input and the control input. In this

game, an incentive structure is developed in such a way that leader achieve team-optimal so-

lution attenuating the disturbance under H∞ constraint. Simultaneously, followers achieve

their Nash equilibrium ensuring the incentive Stackelberg strategies of the leaders while

the worst-case disturbance is considered. Results based on both finite- and infinite- time

domains are shown in this chapter. The structure of the incentive Stackelberg game is the

same in both finite- and infinite-horizon problems. The main focus of the infinite hori-

zon situation is stochastic Lyapunov stability theory. Using stochastic Lyapunov stability

theory, several lemmas have been proved. A computational algorithm based on Lyapunov

iterations is developed to obtain the incentive Stackelberg strategy-set.

This chapter studies the most common linear quadratic (LQ) optimal control in the

game problems. In order to solve the LQ problem, discrete-time stochastic dynamic pro-

gramming (SDP) is deeply studied. Several basic lemmas are completely proved and useful

for this chapter. The solution sets for incentive Stackelberg strategy are found by solving

a set of stochastic backward difference Riccati equations (SBDREs) in the finite-horizon

case. On the other hand, it is shown that the results of the infinite-horizon case are found

by solving a set of stochastic algebraic Riccati equations (SAREs). In order to ensure the

stability of the system, the state trajectory figure is presented. To demonstrate the effective-

ness of the proposed method, an academic example and a practical example are presented.

However, this chapter only investigates one leader game problem, which leads many lead-

ers to further study.
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Chapter 5

Infinite-Horizon Multi-Leader-Follower
Incentive Stackelberg Games for Linear
Stochastic Systems with H∞ Constraint

This chapter is based on a previously published article [Ahmed et al. (2017b)].

5.1 Introduction

Through the last four decades, incentive Stackelberg games are the grow-

ing interest in research (see, e.g., [Basar and Olsder (1980), Ho et al. (1982),

Ishida and Shimemura (1983), Zheng et al. (1984), Mizukami and Wu (1987),

Mizukami and Wu (1988)], and references therein). In a Stackelberg games, when

the leader’s strategy induces the follower’s decision such that the leader’s pre-

specified optimal solution or equilibrium (e.g., team-optimul, Nash equilibrium) can

be achieved - called the incentive Stackelberg strategy. In [Mizukami and Wu (1987)] and

[Mizukami and Wu (1988)], incentive Stackelberg strategies were derived for LQ differen-

tial games, where the two leaders and one follower to the first paper and one leader and two

followers to the second paper were considered. Recently, in [Mukaidani and Xu (2018)],

one leader with multiple followers was considered for stochastic linear system with H∞

constraint. Moreover, the similar structure also applied for deterministic discrete-time case

in [Ahmed and Mukaidani (2016)]. On the other hand, multiple leaders and one follower

incentive Stackelberg games were investigated in [Mukaidani (2016)] for infinite-horizon

stochastic linear system. However, in practical engineering or social systems, it is generally

assumed that there exists multiple leaders and a large number of followers, with the leaders

being multiple players. Thus, it is natural to consider possible decision patterns among the

multiple leaders and followers.
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Fig. 5.1: Two-level multi-leader-follower hierarchy.

In this chapter, an infinite-horizon continuous-time incentive Stackelberg game for

a class of linear stochastic systems governed by the Itô’s differential equation involv-

ing multi-leader-follower is investigated. In this game, a deterministic exogenous dis-

turbance is also observed, which is attenuating under H∞ constraint. Recently, in

[Mukaidani et al. (2017b)], incentive Stackelberg strategy with multiple leaders and mul-

tiple followers are considered for the stochastic Markov jumping control problem. To the

best of our knowledge, there have been no studies on exogenous disturbance and its atten-

uation under H∞ constraint, which makes the game more complicated to deal with. Hence,

our current research is not simply a trivial extension of existing studies. Moreover, unlike

the deterministic system [Mizukami and Wu (1987)], [Mizukami and Wu (1988)], stochas-

tic incentive Stackelberg games involving state-dependent noise with deterministic external

disturbance are studied for the first time. It should be noted that we only discuss two-level

hierarchical games with M leaders and N followers.

To illustrate such a multi-players hierarchical game, we consider that M leaders and

N followers are belonging to two groups. L1, L2, . . . ,LM are in the leader’s group and

F1, F2, . . . ,FN are in the follower’s group. Note that, when M = 1 the structure of the game

is the same as the structure used in [Mukaidani and Xu (2018)] depicted in Fig. 5.1(a). On

the other hand, if N = 1 the structure of the game will be same as [Mukaidani (2016)]

depicted in Fig. 5.1(b). Furthermore, tuning the value of M and N, we can form any

convenient hierarchical game. That’s why, we have termed it as a generalized structure.

We establish the following patterns for this game,

• Each leader achieves Nash equilibrium solution attenuating the exterior disturbance

under H∞ constraint.

• Each leader declares incentive Stackelberg strategies for each follower, individually.
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• Each follower will adopt the Nash equilibrium strategy regarding leader’s incentive

strategies declared in advance.

• Leaders and followers act non-cooperatively in their own group.

In our work, the conditions for the leader’s Nash equilibrium strategy under the H∞ con-

straint are derived based on the existing results for the infinite-horizon stochastic H2/H∞

control problem in [Chen and Zhang (2004)]. It is shown that the strategy-set can be found

by solving some cross-coupled stochastic algebraic Riccati equations (CCSAREs) and ma-

trix algebraic equations (MAEs). The leader’s and the follower’s strategies are established

in such a way that simultaneously leaders achieve Nash equilibrium strategies attenuat-

ing the external disturbance under H∞ constraint ensuring the follower’s Nash equilibrium

strategy while worst-case disturbance is considered. However, the derivation of the CC-

SAREs seems not so easy; the solution can be found easily by Lyapunov based iterations.

A simple numerical example is provided to illustrate our findings.

Notation: The notations used in this chapter are fairly standard. In denotes the n×n iden-

tity matrix. col[·] denotes a column vector. diag[·] denotes a diagonal matrix. blockdiag[·]
denotes a block diagonal matrix. ‖ · ‖ denotes the Euclidean norm. E[·] denotes the expec-

tation operator. L 2
F (R+, R

�) denotes the space of nonanticipative stochastic processes.

Finally, for an N-tuple

γ = (γ1, . . . ,γN) ∈ Γ1× . . .×ΓN ,

and for given sets Γi, we write

γ∗−i(α) := (γ∗1 , . . . ,γ
∗
i−1,α,γ∗i+1, . . . ,γ

∗
N),

with α ∈ Γi.

5.2 Definitions and preliminaries

In this section, we will introduce stochastic H2/H∞ control problem and exact observability.

Consider the following stochastic linear system:

dx(t) = [Ax(t)+Bu(t)+Ev(t)]dt +Ap(t)x(t)dw, x(0) = x0 (5.1a)

z(t) = col
[
Cx(t) Du(t)

]
, DT D = I, (5.1b)

where, x(t) ∈ R
n is the state vector, u(t) ∈ L 2

F (R+, R
nu) is the control input, v(t) ∈

L 2
F (R+, R

nv) is the deterministic disturbance, w(t) ∈ R is a one-dimensional wiener pro-

cess and z(t) ∈ R
nz is the controlled output. The infinite-horizon stochastic H2/H∞ control

problem can be stated as follows [Chen and Zhang (2004)],
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Definition 5.1. Given the disturbance attenuation level γ > 0, to find u∗(t)∈L 2
F (R+, R

nu)

and a worst-case disturbance v∗(t) ∈L 2
F (R+, R

nv) such that

(i) when the optimal state feedback control u∗(t) = K∗x(t) is applied, then

‖L‖∞ : = sup
v ∈L 2

F (R+, R
nv)

v �= 0, x0 = 0

‖z‖
‖v‖

= sup
v ∈L 2

F (R+, R
nv)

v �= 0, x0 = 0

√
E

[∫ ∞

0
{xTCTCx+uT u}dt

]
√

E

[∫ ∞

0
vT v dt

] < γ, (5.2)

where L(v) =
[
Cx(t,u∗,v,0)

Du∗

]
is called the perturbed operator of (5.1).

(ii) u∗(t) stabilizes the system (5.1) internally, i.e.

lim
t→∞

E‖x(t,u∗,0,x0)‖2 = 0. (5.3)

(iii) when the worst-case disturbance v∗(t) = K∗γ x(t) is applied, u∗(x) minimizes the output

cost

Ju(u,v∗) = ‖z‖2
2 = E

[∫ ∞

0

{
xTCTCx+uT u

}
dt
]
. (5.4)

Here, worst-case disturbance means

v∗(t) = argmin
v

Jv(u∗,v), (5.5)

with

Jv(u∗,v) = E

[∫ ∞

0
(γ2‖v‖2−‖z‖2)dt

]
. (5.6)

If the above mentioned (u∗(t), v∗(t)) exists, then we say that the infinite-horizon H2/H∞

control admits a pair of solutions.

Remark 5.1. The infinite-horizon stochastic H2/H∞ control strategy pair (u∗(t), v∗(t)) is

associated with the Nash equilibrium strategies.

Lemma 5.1. [Chen and Zhang (2004)] For the system (5.1), suppose the CCSAREs:

XAl +AT
l X +AT

p XAp +XSlX +CTC = 0, (5.7a)

YAl +AT
l Y +AT

pYAp− γ−2Y TY +XSlX +CTC = 0, (5.7b)
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with

Al := A−SlX + γ−2TY, Sl := BBT , T := EET ,

have solutions X > 0, Y > 0. If [A, Ap|C] and [A−γ−2DDTY, Ap|C] are exactly observable,

then the stochastic H2/H∞ control problem admits a solution set:

u∗(t) = K∗x(t) =−BT Xx(t), (5.8)

v∗(t) = K∗γ x(t) = γ−2ETY x(t). (5.9)

Proof. This lemma has been proved earlier as Theorem 2.8 in Chapter 2.

5.3 Problem formulation

Consider a linear stochastic system governed by the Itô differential equation defined by

dx(t) =
[

Ax(t)+
M

∑
i=1

[BLi1uLi1(t)+ . . . +BLiNuLiM(t)]

+
N

∑
j=1

[BF j1uF j1(t)+ . . . +BF jMuF jM(t)]+Dv(t)
]

dt +Apx(t)dw(t), x(0) = x0,

(5.10a)

z(t) = col
[
Cx(t) uc1(t) . . . ucM(t)

]
, (5.10b)

uci(t) = col
[
uLi1(t) . . . uLiN(t) uF1i(t) . . . uFNi(t)

]
, (5.10c)

where x(t) ∈ R
n represents the state vector; z(t) ∈ R

nz represents the controlled output;

uLi j(t)∈R
mLi j represents the leader Li’s control input for the follower F j, i= 1, . . . ,M, j =

1, . . . ,N; uF ji(t) ∈ R
mF ji represents the follower F j’s control input according to the leader

Li, i = 1, . . . ,M, j = 1, . . . ,N; v(t) ∈ R
mv represents the exogenous disturbance signal;

w(t)∈R represents a one-dimensional standard Wiener process defined in the filtered prob-

ability space (Ω, F , P, Ft) with Ft = σ{w(s) : 0 ≤ s ≤ t} [Chen and Zhang (2004)].

Cost functionals of the leaders Li, i = 1, . . . ,M, are given by

JLi (uLi1, . . . ,uLiN , uF1i, . . . ,uFNi, v)

:=
1

2
E

[∫ ∞

0

{
xT (t)QLix(t)+

N

∑
j=1

[
uT

Li j(t)RLi juLi j(t)+uT
F ji(t)RLF jiuF ji(t)

]}
dt

]
,

(5.11)

where QLi = QT
Li ≥ 0, RLi j = RT

Li j > 0, RLF ji = RT
LF ji ≥ 0, i = 1, . . . ,M, j = 1, . . . ,N.

Cost functionals of the followers Fi, i = 1, . . . ,N are given by

JFi (uL1i, . . . ,uLMi, uFi1, . . . ,uFiM, v)
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:=
1

2
E

[∫ ∞

0

{
xT (t)QFix(t)+

M

∑
j=1

[
uT

L ji(t)RFL jiuL ji(t)+uT
Fi j(t)RFi juFi j(t)

]}
dt

]
,

(5.12)

where QF j = QT
F j ≥ 0, RFi j = RT

Fi j > 0 and RFL ji = RT
FL ji≥ 0, i = 1, . . . ,N, j = 1, . . . ,M.

For a two-level incentive Stackelberg game, leaders announce the following incentive strat-

egy to the followers in ahead of time:

uLi j(t) =Λ jix(t)+Ξ jiuF ji(t), i = 1, . . . ,M j = 1, . . . ,N, (5.13)

where the parameters Λ ji and Ξ ji are to be determined associated with the Nash equilib-

rium strategies uF ji(t) of the followers for i, . . . ,M j = 1, . . . ,N. In this game, leaders

will achieve a Nash equilibrium solution attenuating the external disturbance with H∞ con-

straint. The infinite-horizon multi-leader-follower incentive Stackelberg games for linear

stochastic systems with H∞ constraint can be formulated as follows.

For any disturbance attenuation level γ > 0, to find, if possible, the state feedback

strategy u∗Li j(t) = Kci jx(t) and u∗F ji(t) = KF jix(t) such that

(i) the trajectory of the closed-loop system (5.10) satisfies the Nash equilibrium condi-

tions (5.14a) of the leaders with H∞ constraint condition (5.14b):

JLi(u∗c1, . . . ,u
∗
cM, v∗)≤ JLi(γ∗−i(uci)), v∗), (5.14a)

0≤ Jv(u∗c1, . . . ,u
∗
cM, v∗)≤ Jv(u∗c1, . . . ,u

∗
cM, v), (5.14b)

where i = 1, . . . ,M,

Jv(uc1, . . . ,ucM, v) = E

[∫ ∞

0

{
γ2‖v(t)‖2−‖z(t)‖2

}
dt

]
, (5.15)

‖z(t)‖2 = xT (t)CTCx(t)+
M

∑
i=1

uT
ci(t)uci(t), (5.16)

∀ v(t) �= 0 ∈ R
mv ,

(ii) with a worst-case disturbance v∗(t) ∈ R
mv , follower’s decision u∗F ji(t)) ∈ R

mF ji; i =

1, . . . ,M, j = 1, . . . ,N satisfies the following Nash equilibrium conditions:

JF j(u∗F1, . . . ,u
∗
FN , v∗)≤ JF j(γ∗− j(ûF j)), v∗), (5.17)

where

ûF j(t) = col
[
uF j1(t) . . . uF jM(t)

]
, j = 1, . . . ,N.

It should be noted that uLi j(t) depend on uF ji(t) according to the incentive Stackelberg

structures assumed in (5.13).
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Remark 5.2. If the inequality (5.14b) holds, we say that it satisfies the condition for H∞

constraint,

‖L‖∞ = sup
v∈Rmv , v�=0, x0=0

‖z‖2

‖v‖2
< γ. (5.18)

A set of decision (u∗c1(t), . . . ,u
∗
cM(t),v∗) is said to constitute a Nash equilibrium solu-

tion for a two-level hierarchical game with H∞ constraint.

Without loss of generality, some assumptions for the following decision process are

made [Basar and Selbuz (1979), Mizukami and Wu (1987)].

Assumption 5.1. Leader Li announces his/her own strategy of the feedback pattern (5.13)

ahead of time to the followers F j as the incentive strategies.

Assumption 5.2. Followers F j decide their optimal strategies once they know the strategy

announced by Li.

Assumption 5.3. Li and F j at the same level act non-cooperatively and they decide Nash

equilibrium.

5.4 Main results

Let us define the space of admissible strategies for the players Li j by ΓLi j and for the

players F ji by ΓF ji, i = 1, . . . ,M, j = 1, . . . ,N. For each pair (uLi j, uF ji) ∈ ΓLi j×ΓF ji,

it is supposed that the linear stochastic systems (5.10) has a unique solution on 0 ≤ t < ∞
for all x0 ∈ R

n and the values of JLi and JF j are well defined.

5.4.1 Leader’s Nash equilibrium strategy

First, the H∞ constraint Nash equilibrium solutions (u∗c1(t), . . . ,u
∗
cM(t),v∗) for the leaders

are investigated. By composing the stochastic system (5.10a), the following centralized

systems can be obtained.

dx(t) =
[

Ax(t)+
M

∑
i=1

Bciuci(t)+Dv(t)
]

dt +Apx(t)dw(t), x(0) = x0, (5.19)

where

Bci =
[
BLi1 . . . BLiN BF1i . . . BFNi

]
, i = 1, . . . ,M.

Furthermore, the cost functional (5.11) can be modified as

JLi (uci(t)) =
1

2
E

[∫ ∞

0

{
xT (t)QLix(t)+uT

ci(t)Rciuci(t)
}

dt

]
, i = 1, . . . ,M, (5.20)
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where

Rci = block diag
[
RLi1 . . . RLiN RLF1i . . . RLFNi

]
.

Therefore, for the Nash equilibrium solution with H∞ constraint, the following result

can be obtained from Lemma 5.1.

For the system (5.19), suppose the CCSAREs:

PciAc +AT
c Pci +AT

p PciAp +PciSciPci +QLi = 0, (5.21a)

WAc +AT
c W +AT

pWAp− γ−2WTW +QL = 0, (5.21b)

with

Ac := A−
M

∑
i=1

SciPci + γ−2TW, Sci := BciR−1
ci BT

ci, T := DDT , QL =
M

∑
i=1

PciSciPci +CTC,

have solutions Pci > 0, W > 0. If [A, Ap|C] and [A− γ−2DDTW, Ap|C] are exactly observ-

able, then the stochastic H∞ constraint problem admits a solution set:[
u∗ci(t)
v∗(t)

]
=

[
K∗ci
K∗γ

]
x(t) =

[−R−1
ci BT

ciPci
γ−2DTW

]
x(t), (5.22)

where

K∗ci =
[
K∗TLi1 . . . K∗TLiN K∗TF1i . . . K∗TFNi

]T
, i = 1, . . . ,M.

It should be noted that the relation between Λ ji and Ξ ji, i = 1, . . . ,M, j = 1, . . . ,N can

be derived from (5.13) as

Λ ji = K∗Li j−Ξ jiK∗F ji,

=−R−1
Li jB

T
Li jPci +Ξ jiR−1

LF jiB
T
F jiPci, i = 1, . . . ,M, j = 1, . . . ,N. (5.23)

So, the leader’s incentive Stackelberg strategy for the followers can be determined by

uLi j(t) =
[
K∗Li j−Ξ jiK∗F ji(t)

]
x(t)+Ξ jiuF ji(t),

=K∗Li jx(t)+Ξ ji
[
uF ji−K∗F ji(t)x(t)

]
i = 1, . . . ,M, j = 1, . . . ,N. (5.24)

To determine Ξ ji, i = 1, . . . ,M, j = 1, . . . ,N, which satisfy (5.13), let us consider

the following optimization problem.
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5.4.2 Follower’s Nash equilibrium strategy

To establish the Nash equilibrium for the followers according to the leader’s incentive

Stackelberg strategy (5.13) and worst-case disturbance v∗(t), we get the following system

from the system (5.10a),

dx(t) =
[

Ax(t)+
N

∑
i=1

[BFi1uFi1(t)+ . . . +BFiMuFiM(t)]

+
M

∑
j=1

[BL j1uL j1(t)+ . . . +BL jNuL jN(t)]+Dv(t)
]

dt +Apx(t)dw(t), x(0) = x0,

=

[
Ax(t)+

N

∑
i=1

[BFi1uFi1(t)+ . . . +BFiMuFiM(t)]

+
M

∑
j=1

[BL j1(Λ1 jx(t)+Ξ1 juF1 j(t))+ . . . +BL jN(ΛN jx(t)+ΞN juFN j(t))]

+ γ−2DDTWx(t)
]

dt +Apx(t)dw(t), x(0) = x0,

=

[
Âx(t)+

N

∑
i=1

B̂FiûFi(t)
]

dt +Apx(t)dw(t), x(0) = x0, (5.25)

where

Â := A+
M

∑
j=1

[BL j1Λ1 j + . . . +BL jNΛN j]+ γ−2DDTW,

ûFi := col
[
uFi1 . . . uFiM

]
,

B̂Fi :=
[
B̄Fi1 . . . B̄FiM

]
,

B̄Fi j := BFi j +BL jiΞi j, i = 1, . . . ,N, j = 1, . . . ,M.

The cost functional of i-th follower can written as

JFi (uL1i, . . . ,uLMi, uFi1, . . . ,uFiM, v)

=
1

2
E

[∫ ∞

0

{
xT (t)QFix(t)+

M

∑
j=1

[
[Λi jx(t)+Ξi juFi j(t)]T RFL ji[Λi jx(t)+Ξi juFi j(t)]

+uT
Fi j(t)RFi juFi j(t)

]}
dt

]
, i = 1, . . . ,N, (5.26)

or, equivalently,

JFi(ûFi) =
1

2
E

[∫ ∞

0

{
xT (t)Q̂Fix(t)+2xT (t)ŜFiûFi(t)+ ûT

Fi(t)R̂FiûFi(t)
}

dt
]
, (5.27)
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where

Q̂Fi := QFi +
M

∑
j=1

ΛT
i jRFL jiΛi j,

R̂Fi := block diag
[
R̄Fi1 . . . R̄FiM

]
,

R̄Fi j := RFi j +ΞT
i jRFL jiΞi j,

ŜFi :=
[
S̄Fi1 . . . S̄FiM

]
,

S̄Fi j := ΛT
i jRFL jiΞi j, i = 1, . . . ,N, j = 1, . . . ,M.

It should be noted that there exists a cross-coupling term 2xT (t)ŜFiûFi(t) in the cost

functional (5.27). By using the technique similar to the one used in the stochastic optimal

control problem [Chen and Zhang (2004)], follower’s Nash strategy uFi(t) = ûFi(t) can be

obtained.

ûFi(t) =−R̂−1
Fi (PFiB̂Fi + ŜFi)

T x(t) = K†
Fix(t) =

⎡
⎢⎣K†

Fi1x(t)
...

K†
FiMx(t)

⎤
⎥⎦ (5.28)

where

K†
Fi =−R̂−1

Fi (PFiB̂Fi + ŜFi)
T , (5.29)

and PFi, i = 1, . . . N are the symmetric non-negative solution of the following CCSAREs:

PFiAFi +AT
FiPFi +AT

p PFiAp− (PFiB̂Fi + ŜFi)R̂−1
Fi (PFiB̂Fi + ŜFi)

T + Q̂Fi = 0, (5.30)

where

AFi = Â+
N

∑
k=1, k �=i

B̂FkK†
Fk, i = 1, . . . ,N. (5.31)

Furthermore, from (5.22) we can find

K∗cFi =

⎡
⎢⎣K∗Fi1

...

K∗FiM

⎤
⎥⎦=

⎡
⎢⎣ −R−1

LFi1BT
Fi1Pc1

...

−R−1
LFiMBT

FiMPcM

⎤
⎥⎦ i = 1, . . . ,N. (5.32)

Furthermore, Ξi j satisfies the equivalence relation K∗cFi ≡ K†
Fi can establish from (5.29) and

(5.32) as follows: ⎡
⎢⎣ −R−1

LFi1BT
Fi1Pc1

...

−R−1
LFiMBT

FiMPcM

⎤
⎥⎦=−R̂−1

Fi (PFiB̂Fi + ŜFi)
T . (5.33)
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Equivalently,⎡
⎢⎣RFi1 +ΞT

i1RFL1iΞi1
. . .

RFiM +ΞT
iMRFLMiΞiM

⎤
⎥⎦
⎡
⎢⎣ R−1

LFi1BT
Fi1Pc1

...

R−1
LFiMBT

FiMPcM

⎤
⎥⎦

=

⎡
⎢⎣
(
BT

Fi1 +ΞT
i1BT

L1i
)

PFi
...(

BT
FiM +ΞT

iMBT
LMi
)

PFi

⎤
⎥⎦+
⎡
⎢⎣ ΞT

i1RFL1iΛi1
...

ΞT
iMRFLMiΛiM

⎤
⎥⎦ . (5.34)

Comparing each rows from both sides of (5.34), we get

[RFi j +ΞT
i jRFL jiΞi j]R−1

LFi jB
T
Fi jPc j = BT

Fi jPFi +ΞT
i jB

T
L jiPFi +ΞT

i jRFL jiΛi j. (5.35)

By using relation (5.23) for Λi j, we get

RFi jR−1
LFi jB

T
Fi jPc j +ΞT

i jRFL jiΞi jR−1
LFi jB

T
Fi jPc j =

BT
Fi jPFi +ΞT

i jB
T
L jiPFi−ΞT

i jRFL jiR−1
L jiB

T
L jiPc j +ΞT

i jRFL jiΞi jR−1
LFi jB

T
Fi jPc j. (5.36)

Canceling the term ΞT
i jRFL jiΞi jR−1

LFi jB
T
Fi jPc j from both sides of (5.36) we get

RFi jR−1
LFi jB

T
Fi jPc j = BT

Fi jPFi +ΞT
i jB

T
L jiPFi−ΞT

i jRFL jiR−1
L jiB

T
L jiPc j, (5.37)

and after simplification, the following MAEs can be found:

ΞT
i j(B

T
L jiPFi−RFL jiR−1

L jiB
T
L jiPc j) = RFi jR−1

LFi jB
T
Fi jPci−BT

Fi jPFi, i = 1, . . . ,N, j = 1, . . . ,M.

(5.38)

Remark 5.3. It should be noted that the incentive parameter Ξi j can be uniquely deter-

mined if and only if (BT
L jiPFi−RFL jiR−1

L jiB
T
L jiPc j) is non-singular.

Theorem 5.1. Suppose that the CCSAREs in (5.21), CCSAREs (5.30) and the MAEs (5.38)

have solutions. Then the strategy-set (5.13) under (5.22) and (5.29) constitutes the two-

level incentive Stackelberg strategies with H∞ constraint.

5.5 Numerical example

In order to demonstrate the efficiency of our proposed strategies, a numerical example is

investigated. Let us consider the following system matrices:

A =

[
0.92 0

1.23 −2.9

]
, Ap = 0.1A,

BL11 =

[
0.13 0.20

−0.55 0.81

]
, BL12 =

[
0.31 1.20

−1.25 1.02

]
,
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BL21 =

[
0.28 0.12

5.32 0

]
, BL22 =

[
0.12 0.56

1.0 0.32

]
,

BF11 =

[
0.15 −0.11

0.55 1.32

]
, BF12 =

[
0.51 0.54

0.21 1.21

]
,

BF21 =

[
0.23 −0.45

0.28 2.96

]
, BF22 =

[
0.21 0.21

2.11 1.86

]
,

D =

[
0.054 0.043

0.023 0.013

]
, C =

[
1 2

]
,

QL1 = diag
[

1 2
]
, QL2 = diag

[
3.1 2.4

]
,

QF1 = diag
[
2.1 1.3

]
, QF2 = diag

[
1.3 4.2

]
,

RL11 = diag
[

1.5 2.5
]
, RL12 = diag

[
1.5 2.2

]
,

RL21 = diag
[

2.1 1.3
]
, RL22 = diag

[
2.1 2.2

]
,

RF11 = diag
[

2.3 1.1
]
, RF12 = diag

[
1.8 4.2

]
,

RF21 = diag
[

3.1 2.1
]
, RF22 = diag

[
3.1 1.2

]
,

RLF11 = diag
[

1.5 2.5
]
, RLF12 = diag

[
2.1 1.2

]
,

RLF21 = diag
[

2.1 1.3
]
, RLF22 = diag

[
1.5 2.4

]
,

RFL11 = diag
[

2.3 1.1
]
, RFL12 = diag

[
1.9 1.2

]
,

RFL21 = diag
[

3.1 2.1
]
, RFL22 = diag

[
1.4 6.2

]
,

We choose the disturbance attenuation level as γ = 5. First, the CCAREs (5.21) are solved.

These solutions attain the H∞-constrained Nash equilibrium solutions set (5.22) as given

below:

Pc1 =

[
7.0074e-1 −7.3498e-2

−7.3498e-2 1.3855e-1

]
,

Pc2 =

[
2.6369e+0 −8.4572e-3

−8.4572e-3 1.9503e-1

]
,

W =

[
1.7829e+0 1.6902e-1

1.6902e-1 3.0249e-1

]
,

Kc1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−8.7680e-2 5.7171e-2

−3.2246e-2 −3.9010e-2

−2.0607e-1 1.3065e-1

−3.4815e-1 −2.4146e-2

−4.3125e-2 −4.3451e-2

6.9640e-2 −7.6388e-2

−6.6948e-2 −1.0423e-2

4.0991e-1 −3.4091e-1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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Kc2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3.3016e-1 −4.9294e-1

−2.4341e-1 7.8066e-4

−1.4665e-1 −9.2387e-2

−6.6999e-1 −2.6215e-2

−6.3955e-1 −1.7449e-2

−1.1781e+0 −1.9285e-1

−3.5727e-1 −2.7315e-1

−2.2418e-1 −1.5041e-1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Kγ =

[
4.0065e-3 6.4338e-4

3.1544e-3 4.4801e-4

]
,

Second, the CCAREs (5.30) and the MAEs (5.38) are solved as follows:

PF1 =

[
3.2114e+0 5.0554e-2

5.0554e-2 1.3704e-1

]
,

PF2 =

[
2.0458e+0 −1.0578e-1

−1.0578e-1 2.9737e-1

]
,

Ξ11 =

[
1.6632e+0 −2.9164e+0

−1.1162e+0 1.1706e+0

]
,

Ξ12 =

[
6.9087e-2 −1.0437e+0

4.0327e+0 −2.6264e+1

]
,

Ξ21 =

[
4.7540e-2 1.3001e+0

−1.3020e-1 −5.9341e-2

]
,

Ξ22 =

[
1.2908e+0 −2.2264e+0

−3.2405e-1 3.6127e-2

]
.

Finally, the remaining parameter matrix (5.23) can be determined as,

Λ11 =

[
1.8714e-1 −9.3337e-2

−1.6190e-1 1.9065e-3

]
,

Λ12 =

[−7.3580e-1 5.7434e-1

−3.3254e-1 −4.5733e-2

]
,

Λ21 =

[−1.5156e+0 −6.9301e-1

−2.8605e+1 −4.9937e+0

]
,

Λ22 =

[−1.8459e-1 −7.4664e-2

−7.7766e-1 −1.0930e-1

]
.

The MATLAB code is developed on the basis of Lyapunov iterations which converges to

the required solutions of CCSAREs (5.30) with an accuracy of 1.0e− 12 order after 76

iterations. It should be noted that the incentive strategy (5.13) that will be announced by

the leader can calculated at this time.

Through this incentive, the follower will select the same strategy-set by applying the

standard LQ theory,

uFi j(t) =−R̄−1
Fi j(PFiB̄Fi j + S̄i j)

T x(t). (5.39)
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Fig. 5.2: Trajectory of the state x(t).

Namely, it can be confirmed that the followers take the Nash equilibrium solution with H∞

constraint eventually. Finally, the response is depicted in Fig. 5.2. As a result, it can be

observed that the state attains the mean-square stable.

5.6 Conclusion

This chapter investigates the incentive Stackelberg game for continuous-time stochastic

systems. The multiple leaders and multiple followers in an incentive Starkberg game are

the main features of this chapter. For this game, leaders implement Nash equilibrium in

their own group. In the followers’ group, players are supposed to be non-cooperative;

subsequently, Nash equilibrium is investigated.

A deterministic disturbance input, multiple non-cooperative leaders, and multiple non-

cooperative followers have also been considered in this chapter which is different from the

previous chapters. An incentive structure is developed in such a way that leaders achieve

Nash solution attenuating the disturbance under H∞ constraint. Simultaneously, followers

achieve their Nash equilibrium ensuring the incentive Stackelberg strategies of the leaders

while the worst-case disturbance is considered. As far as we know, this is the first time

study for a linear stochastic system with H∞ constraint involving such multi-leader-follower

complicated structure.

This chapter studies the most common linear quadratic (LQ) optimal control in the

game problems. Results based on only infinite time domains are shown in this chapter. A

computational algorithm based on Lyapunov iterations is used to solve some matrix-valued

algebraic equations. In this study, some CCAREs and MAEs in the infinite-horizon case

were established, so that the incentive Stackelberg strategy can be achieved with an easy
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numerical simulation. Several theorems and lemmas are designed to study the incentive

Stackelberg game problems. In order to demonstrate the effectiveness of the proposed

method, a numerical example is demonstrated with the state trajectory figure.

However, the structure of the game is complex, this chapter only investigates the incen-

tive Stackelberg game with state feedback. This complex structure with output feedback

will make the game more interesting in further research. In addition, Markov jump param-

eters in this study have not been fully investigated and this will be converged in the future

study. Finally, a lot of matrix variables are needed to solve the multi-player game problem

that takes up a lot of computer memory. Therefore, the number of players can be increased

in such a limit so that the computer memory does not fail.
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Chapter 6

H∞-Constrained Pareto Optimal
Strategy for Stochastic LPV Systems
with Multiple Decision Makers

This chapter is based on a previously published article [Ahmed et al. (2018)].

6.1 Introduction

The dynamic games and the many related applications in practical control problems have

been widely investigated by several researchers (see, e.g., [Başar and Bernhard (2008),

Başar and Olsder (1999), Engwerda (2005)], and references therein). Starting from the de-

terministic cases for the continuous and discrete-time, systems have been extended to the

stochastic case. Moreover, recent advances in the game theory for a class of stochastic

systems revisit the robust and multi-objective control problems [Chen and Zhang (2004),

Zhang et al. (2008), Huang et al. (2008)]. The stochastic dynamic games can be solved

even if the systems dynamics include a noisy process known as the Wiener process. Addi-

tionally, the influence of the deterministic disturbance in the systems model can be reduced

by applying the H∞ control method. Although these results comprise an elegant theory

and despite the possibility of obtaining an equilibrium strategy-set, the treatment of uncer-

tainties in the systems state equations continue to remain an issue to be considered in the

dynamic games. In other words, the essential core implementation of this strategy-set will

determine the notations of the system’s unmodeled dynamics.

In robust control design and synthesis, there exists a wide class of dynamic systems

that are subject to arbitrary smooth or discontinuous variations in the systems uncertain-

ties. In order to capture these variations in the parameters, linear parameter varying (LPV)
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systems are reliable to model a large number of parameter variations and these systems of-

fer adequate mathematical models for numerous and phenomena [Apkarian et al. (1995)].

The gain-scheduled design technique is among the most popular methods for designing a

robust control by adjusting the scheduling parameters, which describe the changes in plant

dynamics. With the maturity of gain-scheduling (GS) control, several results have been

reported across various control fields [Sato (2011), Mahmoud (2002), Ku and Wu (2015),

Rotondo (2015)]. Stability and H∞-filtering problems for a class of LPV discrete-time

systems in which the state-space matrices depend affinely on time-varying parameters

have been investigated in [Mahmoud (2002)]. A new design method for Gain-Scheduled

Output Feedback (GSOF) controllers for continuous-time LPV systems via parameter-

dependent Lyapunov functions has been tackled in [Sato (2011)]. A GS controller design

method has been proposed for LPV stochastic systems subject to H∞ performance con-

straint [Ku and Wu (2015)]. Linear quadratic control (LQC) using linear matrix inequali-

ties (LMls) to LPV systems has been extended [Rotondo (2015)]. Although fruitful results

on LPV control design can be found in recent publications, most of them are focused on

one control input as a unique decision maker. Considering the fact that the game theory in

robust control has become a priority research topic, investigation of the stochastic dynamic

games for LPV systems with multiple decision makers is extremely attractive.

Chapter 6 discusses the Pareto optimal strategy for stochastic LPV system with multi-

ple decision makers. In the dynamic game of uncertain stochastic systems, multiple par-

ticipants can be used for more realistic plants. The system includes disturbances that

are attenuated under the H∞ constraint. This chapter can be seen as an extension of

[Mukaidani (2017a)]. This is because the fixed gain controller is also considered here to

understand the practical implementation. In this chapter, we design a method for Pareto op-

timal solution that satisfies the H∞ norm condition. We redesigned the stochastic bounded

real lemma [Ku and Wu (2015)] and the linear quadratic control [Rotondo (2015)] to find

the solution. Solvability conditions are established using LMIs. For multiple decision mak-

ers, a Pareto optimal strategy-set is designed. The Pareto optimal strategy-set can be found

by solving a set of cross-coupling matrix inequalities (CCMI). Academic and practical nu-

merical examples are provided to demonstrate the effectiveness of the proposed model of

the LPV system. In the practical point of view, the advantages of the method proposed in

this chapter are:

• to alleviate of propagation of uncertainty in stochastic plants;

• to operte linear time-invariant (LTI) plants subject to time-varying parametric uncer-

tainty θ(t);
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• they can be modeled with linear time-varying plants or linearized by nonlinear plants

along the trajectory of parameter θ ;

• to explain the time-varying nature of the plant through gain-scheduling techniques;

• to process the whole parameter range of the plant with one shot without performing

extensive simulation;

• to develop worst-case controller design of linear plants with additive disturbances

and plant uncertainties, including problems of disturbance attenuation;

• to minimize multi-objective optimization plant-size and maximize target coverage

with Pareto approach.

Notation: The notations used in this Chapter are fairly standard. E[·] denotes the expecta-

tion operator. In denotes the n× n identity matrix. ‖ · ‖ denotes the Euclidean norm of a

matrix. L2
F([0, ∞], Rk) denotes the space of nonanticipative stochastic process φ(t) ∈ R

k

with respect to an increasing σ -algebras Ft , t ≥ 0 satisfying E[
∫ ∞

0 ‖φ(t)‖2dt]< ∞.

6.2 Preliminaries

Consider the following stochastic LPV system.

dx(t) = [A(θ(t))x(t)+Bu(t)+Dv(t)]dt +Ap(θ(t))x(t)dw(t), x(0) = x0, (6.1a)

z(t) = E(θ(t))x(t), (6.1b)

where x(t) ∈ R
n denotes the state vector. u(t) ∈ R

m denotes the control input.

v(t) ∈ R
nv denotes the external disturbance. z(t) ∈ R

nz denotes the controlled out-

put. w(t) ∈ R denotes a one-dimensional standard Wiener process defined in the fil-

tered probability space [Chen and Zhang (2004), Zhang et al. (2008), Huang et al. (2008),

Rami and Zhou (2000)]. θ(t)∈R
r denotes the time-varying parameters. r is the number of

time-varying parameters. It is assumed that the stochastic system (6.1) has a unique strong

solution x(t) = x̃(t,x(0)) [Arapostathis et al. (2010)]. The coefficient matrices A(θ(t)) and

Ap(θ(t)) are parameter dependent matrices and these matrices can be expressed as

[
A(θ(t)) Ap(θ(t))

]
=

M

∑
k=1

αk(t)
[
Ak Apk

]
, (6.2a)

E(θ(t)) =
M

∑
k=1

αk(t)Ek, (6.2b)
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where αk(t)≥ 0, ∑M
k=1 αk(t) = 1, M = 2r.

It should be noted that for simplifying the context of this Chapter, the above-mentioned

descriptions are used. Furthermore, many problems involving the synthesis of controllers

in the case of a constant B can be reformulated as a varying B(θ) involving augmented

plants [Rotondo (2015)]. The following definition on stochastic stability will be needed.

Definition 6.1. [Ku and Wu (2015)] A stochastic LPV autonomous system governed by the

Itô differential equotion (6.1) without u(t) is called mean square stable if the trajectories

satisfy

lim
t→∞

E[‖x(t)‖2] = 0,

for any initial condition.

The H∞ norm, which is an essential assumption, is introduced in [Ku and Wu (2015)].

Definition 6.2. The H∞ norm of stochastic LPV autonomous system (6.1) with mean square

stable is given by

‖L‖2
∞ = sup

v ∈ L2
F ([0, ∞), Rnv ),

v �= 0, x0 = 0

Jz

Jv
, (6.3)

where

Jz := E

[∫ ∞

0
‖z(t)‖2dt

]
,

Jv := E

[∫ ∞

0
‖v(t)‖2dt

]
.

Lemma 6.1. Let us consider an autonomous system such that u(t)≡ 0. For a given atten-

uation performance level γ > 0, if there exists matrix Z > 0 satisfying the following linear

matrix inequalities (LMIs) (6.4), the stochastic LPV system (6.1) is mean square stable with

‖L‖∞ < γ under x0 = 0.

Γk :=

⎡
⎢⎢⎣

ZAk +AT
k Z ZD AT

pkZ ET
k

DT Z −γ2Inv 0 0

ZApk 0 −Z 0

Ek 0 0 −Inz

⎤
⎥⎥⎦< 0, k = 1, · · · ,M. (6.4)

Moreover, the worst-case disturbance is given by

v∗(t) = γ−2DT Zx(t). (6.5)
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Proof. The following parameter independent Lyapunov function is chosen:

Vv(x(t)) =Vv(x) = xT (t)Zx(t), (6.6)

where Z = ZT > O.

The following derivation can be obtained along the trajectories of the stochastic LPV

system (6.1) by using Itô’s formula.

dVv(x) = LVv(x)dt +2xT AT
p (θ)Zxdw(t), (6.7)

where

LVv(x) := xT (ZA(θ)+AT (θ)Z +AT
p (θ)ZAp(θ)x

)
+2xT ZDv.

In this case, we have the following.

LVv(x)− γ2‖v‖2 +‖z‖2

= xT Φ(θ)x− γ2
(
v− γ−2DT Zx

)T (
v− γ−2DT Zx

)
, (6.8)

where

Φ(θ) := ZA(θ)+AT (θ)Z +AT
p (θ)ZAp(θ)+ET (θ)E(θ)+ γ−2ZDDT Z.

Hence, if

v(t) = v∗(t) =−γ−2DT Zx(t)

holds, we have

LVv(x)− γ2‖v‖2 +‖z‖2 ≤ xT Φ(θ)x. (6.9)

Thus, the worst-case disturbance (6.5) can be obtained. Moreover, Φ(θ)< 0 is equivalent

to the following LMI by using the Schur complement.

Λ(θ(t)) :=

[
Ψ(θ) ZD
DT Z −γ2Inv

]
, (6.10)

where

Ψ(θ) := ZA(θ)+AT (θ)Z +AT
p (θ)ZAp(θ)+ET (θ)E(θ).

By integrating and taking the expectation both sides of the equality (6.7) from 0 to t f , the

following equation holds under the assumption that LVv(x)−γ2‖v‖2+‖z‖2 < xT Φ(θ)x < 0

from (6.8):

E

[∫ t f

0
dVv(x)

]
=Vv(x(t f ))−Vv(x(0)) =Vv(x(t f ))
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< E

[∫ t f

0
γ2‖v(t)‖2 +‖z(t)‖2

]
. (6.11)

From (6.11), it is easy to see that if Λ(θ) < 0 then ‖L‖∞ < γ because Jz < γ2Jv and

Vv(x(t f )) > 0 as t f → 0. Therefore, Λ(θ) < 0 is considered. By applying the Schur com-

plement, inequality (6.10) is seen to be equivalent to the LMI as

Λ(θ(t)) :=

[
Ψ(θ) ZD
DT Z −γ2Inv

]
< 0,

which implies[
ZA(θ)+AT (θ)Z +AT

p (θ)ZAp(θ)+ET (θ)E(θ) ZD
DT Z −γ2Inv

]
< 0,[

ZA(θ)+AT (θ)Z ZD
DT Z −γ2Inv

]
+

[
AT

p (θ)ZAp(θ)+ET (θ)E(θ) 0

0 0

]
< 0,[

ZA(θ)+AT (θ)Z ZD
DT Z −γ2Inv

]

−
[

AT
p (θ)Z ET (θ)

0 0

][ −Z 0

0 −Inz

]−1[ ZAp(θ) 0

E(θ) 0

]
< 0,⎡

⎢⎢⎣
ZA(θ)+AT (θ)Z ZD AT

p (θ)Z ET (θ)
DT Z −γ2Inv 0 0

ZAp(θ) 0 −Z 0

E(θ) 0 0 −Inz

⎤
⎥⎥⎦< 0,

⎡
⎢⎢⎣

ZA(θ)+AT (θ)Z ZD AT
p (θ)Z ET (θ)

DT Z −γ2Inv 0 0

ZAp(θ) 0 −Z 0

E(θ) 0 0 −Inz

⎤
⎥⎥⎦< 0. (6.12)

If the parameter dependent coefficient matrices are changed by applying (6.2), the inequal-

ity (6.12) can be written as follows:

Γk :=

⎡
⎢⎢⎣

ZAk +AT
k Z ZD AT

pkZ ET
k

DT Z −γ2Inv 0 0

ZApk 0 −Z 0

Ek 0 0 −Inz

⎤
⎥⎥⎦< 0, k = 1, · · · ,M.

Thus, the proof of Lemma 6.1 is completed.

On the other hand, the standard linear quadratic control (LQC) problem for the stochas-

tic LPV system with v(t)≡ 0 or D(θ(t))≡ 0 is given [Rotondo (2015)].

Definition 6.3. Let us consider the stochastic LPV system with v(t) ≡ 0 in (6.1). The

following cost performance is defined by

J(u, x0) = E

[∫ ∞

0
[xT (t)Qx(t)+uT (t)Ru(t)]dt

]
, (6.13)
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where Q = QT > 0 and R = RT > 0.

In this situation, the LQC problem is to find a state feedback control

u(t) = K(θ(t))x(t) =
M

∑
k=1

αk(t)Kkx(t) (6.14)

such that the quadratic cost functional (6.13) is minimized.

Lemma 6.2. If there exists the matrix X > 0 and Yk, k = 1, · · · , M satisfying the LMI

(6.15): ⎡
⎢⎢⎣

Ξk X Y T
k XAT

pk
X −Q−1 0 0

Yk 0 −R−1 0

ApkX 0 0 −X

⎤
⎥⎥⎦< 0, (6.15a)

⎡
⎢⎢⎣

Ξkl X Y T
kl XAT

pkl
X −1

2Q−1 0 0

Ykl 0 −1
2R−1 0

ApklX 0 0 −1
2X

⎤
⎥⎥⎦< 0, (6.15b)

where

k < l, k = 1, · · · ,M,

Ξk = AkX +XAT
k +BYk +Y T

k BT ,

Ξkl = (Ak +Al)X +X(Ak +Al)
T +BYk +Y T

k BT +BYl +Y T
l BT ,

Kk = YkX−1, Kl = YlX−1,

Apkl :=
1

2
(Apk +Apl),

Ykl :=
1

2
(Yk + yl),

then

u(t) =
M

∑
k=1

αk(t)Kkx(t) =
M

∑
k=1

αk(t)YkX−1x(t), (6.16a)

J(u, x0)< E
[
xT (0)X−1x(0)

]
. (6.16b)

Proof. First, the following parameter independent Lyapunov function is introduced:

Vu(x(t)) =Vu(x) = xT (t)Px(t), (6.17)

where P = PT > 0 with P = X−1.
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Let us consider the closed-loop stochastic LPV system With the control (6.14). By

using a similar technique to that in [Mukaidani (2009)], if there exists P > 0 such that

P(A(θ)+BK(θ))+(A(θ)+BK(θ))T P

+AT
p (θ)PAp(θ)+Q+KT (θ)RK(θ)< 0, (6.18)

then, the following equation holds.

J(u, x0)< E
[
xT (0)Px(0)

]
(6.19)

In this case, by rearranging equation (6.18), we have the following.

M

∑
k=1

α2
k

(
P(Ak +BKk)+(Ak +BKk)

T P+AT
pkPApk +Q+KT

k RKk

)

+
M−1

∑
k=1

M

∑
l=k+1

αkαl
(
PGkl +GT

klP+Hkl +2Q+Tkl
)
< 0, (6.20)

where

Gkl := Ak +BKk +Al +BKl,

Hkl := AT
pkPApl +AT

plPApk,

Tkl := KT
k RKl +KT

l RKk.

On the other hand, applying Schur complement on the inequality (6.15a) and (6.15b), the

following matrix inequalities hold.

⎡
⎢⎢⎣

AkX +XAT
k +BYk +Y T

k BT X Y T
k XAT

pk
X −Q−1 0 0

Yk 0 −R−1 0

ApkX 0 0 −X

⎤
⎥⎥⎦< 0, (6.21a)

⎡
⎢⎢⎢⎢⎣

(Ak +Al)X +X(Ak +Al)
T +BYk

+Y T
k BT +BYl +Y T

l BT X Y T
kl XAT

pkl
X −1

2Q−1 0 0

Ykl 0 −1
2R−1 0

ApklX 0 0 −1
2X

⎤
⎥⎥⎥⎥⎦< 0, (6.21b)

where

Kk := YkX−1,

Kl := YlX−1,
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Apkl :=
1

2
(Apk +Apl),

Ykl :=
1

2
(Yk + yl).

Or, ⎡
⎣ AkX +XAT

k
+BYk +Y T

k BT X
X −Q−1

⎤
⎦−[Y T

k XAT
pk

0 0

][−R−1 0

0 −X

]−1[ Yk 0

ApkX 0

]
< 0, (6.22a)

[
(Ak +Al)X +X(Ak +Al)

T +BYk +Y T
k BT +BYl +Y T

l BT X
X −1

2Q−1

]

−
[
Y T

kl XAT
pkl

0 0

][−1
2R−1 0

0 −1
2X

]−1[
Ykl 0

ApklX 0

]
< 0, (6.22b)

where

Kk = YkX−1, Kl = YlX−1, Apkl :=
1

2
(Apk +Apl), Ykl :=

1

2
(Yk + yl).

Or,

AkX +XAT
k +BYk +Y T

k BT +XQ−1X +Y T
k RYk +AT

pkXApk < 0, (6.23a)

(Ak +Al)X +X(Ak +Al)
T +BYk +Y T

k BT +BYl +Y T
l BT

+X
1

2
Q−1X +

1

2
Y T

kl RYkl +
1

2
AT

pklXApkl < 0, (6.23b)

where

Kk = YkX−1, Kl = YlX−1, Apkl :=
1

2
(Apk +Apl), Ykl :=

1

2
(Yk + yl).

Pre- and post- multiplying both sides on inequality (6.23) by P yields,

P(Ak +BKk)+(Ak +BKk)
T P+AT

pkPApk +Q+KT
k RKk < 0, (6.24a)

PGkl +GT
klP+2AT

pklPApkl +2Q+2

(
Kk +Kl

2

)T

·R · Kk +Kl

2
< 0, (6.24b)

where Kk = YkX−l = YkP.

Furthermore, it is well known that the following inequalities hold.

2AT
pklPApkl ≥ Hkl, (6.25a)

2

(
Kk +Kl

2

)T

·R · Kk +Kl

2
≥ Tkl. (6.25b)

Hence, inequality (21b) can be changed as follows.

PGkl +GT
klP+Hkl +2Q+Tkl < 0. (6.26)
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Thus, if inequalities (6.24a) and (6.26) are satisfied, then inequality (6.20) holds. In other

words, if inequalities (6.15a) and (6.15b) are satisfied, then (6.18) holds and this inequality

implies the cost bound (6.16b).

It should be noted that the obtained result corresponding to Lemma 6.1 is

not a necessary and sufficient condition as compared with the existing result of

[Apkarian et al. (1995)] but the conditions of (6.15) are the sufficient conditions.

6.3 Problem Formulation

Consider a stochastic LPV system governed by Itô differential equation with multiple de-

cision makers defined by

dx(t) =

[
A(θ(t))x(t)+

N

∑
j=1

B ju j(t)+Dv(t)

]
dt +Ap(θ(t))x(t)dw(t), x(0) = x0, (6.27a)

z(t) =

⎡
⎢⎢⎢⎣

E(θ(t))x(t)
G1u1(t))

...

GNuN(t)

⎤
⎥⎥⎥⎦ , (6.27b)

where ui(t) ∈ R
mi , i = 1, · · · ,N denote the i-th control inputs. Other variables are defined

by stochastic equation (6.1). It should be noted that Gi does not depend on the time-varying

parameter because the controlled output can be chosen by the controller designer. Hence,

without loss of generality, it may be assumed that Gi is a constant matrix.

Assumption 6.1. GT
i Gi = Im, i = 1, · · · ,N, Gi ∈ R

gi×mi.

The cost performances are defined by

Jv(u1, · · · , uN , v, x0) = E

[∫ ∞

0

[
γ2‖v(t)‖2−‖z(t)‖2

]
dt
]
, (6.28a)

Ji(u1, · · · , uN , v, x0) = E

[∫ ∞

0

[
xT (t)Qix(t)+uT

i (t)Riui(t)
]

dt
]
, (6.28b)

where Qi = QT
i > 0 and Ri = RT

i > 0.

The infinite horizon gain-scheduled H∞ constraint Pareto optimal control strategy

[Engwerda (2005)] for the stochastic LPV system (6.27) is described as follows.

Definition 6.4. For given γ > 0, v(t) ∈ L2
F([0, ∞), Rmv), find a state feedback strategy-set

ui(t) = u∗i (t) ∈ L2
F([0, ∞)), i = 1, · · · ,N such that

(i) The trajectory of the closed-loop system of stochastic system (6.27) satisfies

0≤ Jv(u∗1, · · · ,u∗N , v∗, x0)≤ Jv(u∗1, · · · ,u∗N , v, x0), (6.29)
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where v∗(t) is the worst-case disturbance.

(ii) When the worst-case disturbance v∗(t) is implemented in (6.27), ui(t), i = 1, · · · ,N
minimizes a sum of the cost of function of all decision makers denoted by

J(u1, · · · ,uN , v∗, x0) =
N

∑
j=1

r jJ j(u1, · · · ,uN , v∗, x0), (6.30)

where 0 < ri < 1, ∑N
j=1 r j = 1 for some ri.

It should be noted that Pareto optimality is not necessarily equivalent to the weighted

sum minimization [Engwerda (2005)].

For the next we will establish the solution of the above-mentioned problem which is

called the H∞ constraint Pareto optimal strategy.

6.4 Gain-Scheduled H∞ Constrained Pareto Optimal So-
lution

6.4.1 Main Result

We now in give the main contribution of this Chapter.

Theorem 6.1. Let us consider the stochastic LPV system (6.27) with multiple decision

makers ui(t) and the disturbance v(t). For a given attenuation performance level γ > 0,

assume that there exists a solution set for the real symmetric matrices X > 0, Yk, Yl and

Z > 0 such that the following CCMIs are satisfied:⎡
⎢⎢⎣

ΞΞΞk X Y T
k XAT

pk
X −QQQ−1 0 0

Yk 0 −RRR−1 0

ApkX 0 0 −X

⎤
⎥⎥⎦< 0, (6.31a)

⎡
⎢⎢⎣

ΞΞΞkl X Y T
kl XAT

pkl
X −1

2QQQ−1 0 0

Ykl 0 −1
2RRR−1 0

ApklX 0 0 −1
2X

⎤
⎥⎥⎦< 0, (6.31b)

⎡
⎢⎢⎣

ZAAA−Fk +AAAT
−FkZ ZD AT

pkZ EEET
k

DT Z −γ2Inv 0 0

ZApk 0 −Z 0

EEEk 0 0 −Inzg

⎤
⎥⎥⎦< 0, (6.31c)

where

k < l, k = 1, · · · ,M,
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ΞΞΞk := AAAkX +XAAAT
k +BYk +Y T

k BT ,

ΞΞΞkl := (AAAk +AAAl)X +X(AAAk +AAAl)
T +BYk +Y T

k BT +BYl +Y T
l BT ,

A−Fk := Ak +
N

∑
j=1

B jKjk,

AAAk := Ak +DF,

Ek :=
[
ET

k (G1K1k)
T · · · (GNKNk)

T ]T ,
nzg := nz +

N

∑
j=1

gi,

Kk := YkX−1,

Kl := YlX−1,

Ykl :=
1

2
(Yk +Yl),

F := γ−2DT Z,

QQQ :=
N

∑
j=1

r jQ j,

RRR := block diag(r1R1 · · · rNRN).

Then, the following controllers comprise the Pareto optimal strategy-set.

u(t) = Ki(θ)x(t) =
M

∑
k=1

αk(t)Kikx(t) =
M

∑
k=1

αk(t)YkiX−1x(t), (6.32)

where Kk :=
[
KT

1k · · · KT
Nk
]T . Furthermore, the optimal cost bound is given by

J(u∗1, · · · ,u∗N , v∗, x0)≤ E
[
xT (0)X−1x(0)

]
, (6.33)

where v∗(t) = Fx(t).

Proof. First, the H∞ constraint condition is investigated. The Pareto optimal strategy-set

(6.32) is applied to original stochastic LPV system (6.27) and we have the following closed

loop stochastic system.

dx(t) =

[(
A(θ(t))+

N

∑
j=1

B jKj(θ(t))

)
x(t)+Dv(t)

]
dt +Ap(θ(t))x(t)dw(t), x(0) = x0,

(6.34a)

z(t) = EEE(θ(t))x(t). (6.34b)

Hence, by the term-wise comparison between (6.1) and (6.34), we have

A(θ)← A(θ)+
N

∑
j=1

B jKj(θ) =
M

∑
k=1

αkAAA−Fk, (6.35a)
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E(θ)← EEE(θ) =
M

∑
k=1

αkEEEk. (6.35b)

Thus, by applying Lemma 6.1 to this problem, LMI (6.31c) can be obtained. Moreover, the

condition of the existence of the Pareto optimal strategy-set is derived. The following LQC

problem is considered.

min J(u, v, x0) = min
u

E

[∫ ∞

0

[
xT (t)QQQx(t)+uT (t)RRRu(t)

]
dt
]
, (6.36)

where u(t) =
[
uT

1 · · · uT
N
]T

such that

dx(t) = [(A(θ(t))+DF)x(t)+Bu(t)]dt +Ap(θ(t))x(t)dw(t), x(0) = x0, (6.37)

where B =
[
B1 · · · BN

]
.

Hence, as the similar step of the H∞ constraint problem, by the term-wise comparison

between (6.1) and (6.36) with (6.52), we have

A(θ)← A(θ(t))+DF +BK(θ(t)) =
M

∑
k=1

αkAAAk, (6.38a)

Q← QQQ, R← RRR. (6.38b)

Therefore, by applying Lemma 6.2 to this problem, CCMIs (6.31a) and (6.31b) can be

obtained.

It should be noted that the Existence of the solutions in inequality (6.31) is not guar-

anteed and these conditions are conservative in general. It may also be pointed out that a

weakly sufficient condition (dense in the set of all Pareto equilibria) that usually asserts the

statement based on the Arrow-Barankin-Blackwell theorem [Arrow et al. (1953)].

6.4.2 Numerical Algorithm for Solving CCMIs

In order to construct the Pareto optimal strategy-set of (6.32), we must solve the CCMIs

(6.31). It should be noted that since these matrix inequalities are coupled, it is very com-

plicated if an ordinary scheme such as Newton’s method is applied. In this section, a

numerical algorithm via the semidefinite programming problem (SDP) is considered.

Step 1. As the first step, any weight ri for the cost function (6.30) and solve the following

SDP.

minimize Tr
[
α(0)
]
, (6.39)
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subject to ⎡
⎢⎢⎢⎣

ΞΞΞ(0)
k X (0) Y (0)T

k X (0)AT
pk

X (0) −QQQ−1 0 0

Y (0)
k 0 −RRR−1 0

ApkX (0) 0 0 −X (0)

⎤
⎥⎥⎥⎦< 0, (6.40a)

⎡
⎢⎢⎢⎣

ΞΞΞ(0)
kl X (0) Y (0)T

kl X (0)AT
pkl

X (0) −1
2QQQ−1 0 0

Y (0)
kl 0 −1

2RRR−1 0

ApklX (0) 0 0 −1
2X (0)

⎤
⎥⎥⎥⎦< 0, (6.40b)

[−α(0) xT (0)

x(0) −X (0)

]
< 0, (6.40c)

where

k < l, k = 1, · · · ,M,

ΞΞΞ(0)
k := AkX (0) +X (0)AT

k +BY (0)
k +Y (0)T

k BT ,

ΞΞΞ(0)
kl := (Ak +Al)X (0) +X (0)(Ak +Al)

T +BY (0)
k +Y (0)T

k BT +BY (0)
l +Y (0)T

l BT ,

Y (0)
kl :=

1

2
(Y (0)

k +Y (0)
l ),

K(0)
k := Y (0)

k [X (0)]−1,

K(0)
l := Y (0)

l [X (0)]−1.

Choose any γ and solve Z(0), where

F(0) := γ−2DT Z(0),

Z(0)Ā+ ĀT Z(0) + ĀT
p Z(0)Āp + γ−2Z(0)DDT Z(0) + ĒT Ē = 0,

Ā :=
1

N

M

∑
k=1

Ak,

Āp :=
1

N

M

∑
k=1

Apk,

Ē :=
1

N

M

∑
k=1

Ek.

Step 2. Solve the following SDP.

minimize Tr
[
α(p)
]
, (6.41)
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subject to ⎡
⎢⎢⎢⎣

ΞΞΞ(p)
k X (p) Y (p)T

k X (p)AT
pk

X (p) −QQQ−1 0 0

Y (p)
k 0 −RRR−1 0

ApkX (p) 0 0 −X (p)

⎤
⎥⎥⎥⎦< 0, (6.42a)

⎡
⎢⎢⎢⎣

ΞΞΞ(p)
kl X (p) Y (p)T

kl X (p)AT
pkl

X (p) −1
2QQQ−1 0 0

Y (p)
kl 0 −1

2RRR−1 0

ApklX (p) 0 0 −1
2X (p)

⎤
⎥⎥⎥⎦< 0, (6.42b)

[−α(p) xT (0

x(0) −X (p)

]
< 0, (6.42c)

where

p = 1, 2, · · · ; k < l, k = 1, · · · ,M,

ΞΞΞ(p)
k := AAAkX (p) +X (p)AAAT

k +BY (p)
k +Y (p)T

k BT ,

ΞΞΞ(p)
kl := (AAAk +AAAl)X (p) +X (p)(AAAk +AAAl)

T +BY (p)
k +Y (p)T

k BT +BY (p)
l +Y (p)T

l BT ,

AAA(p)
k := Ak +DF(p−1) +BK(p−1)

k ,

Y (p)
kl :=

1

2
(Y (p)

k +Y (p)
l ),

K(p−1)
k := Y (p−1)

k [X (p−1)]−1,

K(p−1)
l := Y (p−1)

l [X (p−1)]−1.

Step 3. Solve the following SDP.

minimize Tr
[
xT (0)Z(p)x(0)

]
, (6.43)

subject to ⎡
⎢⎢⎢⎣

Γ(p) Z(p)D AT
pkZ(p) E(p)T

k
DT Z(p) −γ2Inv 0 0

Z(p)Apk 0 −Z(p) 0

EEE(p)
k 0 0 −Inzg

⎤
⎥⎥⎥⎦< 0, (6.44)

where

p = 1, 2, · · · ; k = 1, · · · ,M,

Γ(p) := Z(p)AAA(p)
−Fk +AAA(p)

−FkZ(p),

AAA(p)
−Fk := Ak +BK(p−1)

k ,

EEE(p)
k :=

[
ET

k (G1K(p−1)
1k )T · · · (GNK(p−1)

Nk )T
]T

,
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F(p) := γ−2DT Z(p).

Step 4. If the algorithm converges, then X (p) → X , Y (p)
k → Yk and Z(p) → Z as p → ∞.

They are the solution of CCMIs (6.31), STOP. That is, stop if any norm of the error of

difference between the iterative solutions of (6.42), (6.44) and the exact solutions of (6.31)

is less than a precision. Otherwise, increment p→ p+1 and go to Step 2. If the algorithm

does not converge, declare the algorithm failed.

It should be noted that convergence of the above algorithm cannot be guaranteed. How-

ever, we found that the proposed algorithm works well in practice.

6.5 Fixed Gain Pareto Strategy

In this section, we discuss the fixed gain Pareto optimal strategy-set to enable easy con-

troller design. Consider a stochastic LPV system by Itô differential equation with multiple

decision makers defined by

dx(t) =

[
A(θ(t))x(t)+

N

∑
j=1

B j(θ(t))u j(t)+Dv(t)

]
dt +Ap(θ(t))x(t)dw(t), x(0) = x0,

(6.45a)

ui(t) = K̄ix(t). (6.45b)

where

Bi(θ(t)) =
M

∑
k=1

αk(t)Bik.

Other variables are defined by stochastic equation (6.27). It should be noted that ui(t) does

not depend on θ(t) in this section.

Theorem 6.2. Let us consider stochastic LPV system (6.45). For a given attenuation per-

formance level −γ > 0, assume that there exists a solution set for the real symmetric ma-

trices X̄ > 0, Ȳ and Z̄ > 0 such that the following CCMIs (6.46) are satisfied:⎡
⎢⎢⎣

X̄XXik X̄ Ȳ T X̄AT
pk

X̄ −QQQ−1 0 0

Ȳ 0 −RRR−1 0

ApkX̄ 0 0 −X̄

⎤
⎥⎥⎦< 0, (6.46a)

⎡
⎢⎢⎣

X̄XXikl X̄ Ȳ T X̄AT
pkl

X̄ −1
2QQQ−1 0 0

Ȳ 0 −1
2RRR−1 0

ApklX̄ 0 0 −1
2 X̄

⎤
⎥⎥⎦< 0, (6.46b)
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⎡
⎢⎢⎣

Z̄AAA−Fk +AAAT
−FkZ̄ Z̄D AT

pkZ̄ ĒEET
k

DT Z −γ2Inv 0 0

Z̄Apk 0 −Z̄ 0

ĒEEk 0 0 −Inzg

⎤
⎥⎥⎦< 0, (6.46c)

where

k < l, k = 1, · · · ,M,

X̄XXik := ĀAAkX̄ + X̄ ĀAAT
k +BkȲ + Ȳ T BT

k ,

X̄XXikl := (ĀAAk + ĀAAl)X +X(ĀAAk + ĀAAl)
T +BkȲ + Ȳ T BT

k +BlȲ + Ȳ T BT
l ,

ĀAA−F̄k := Ak +
N

∑
j=1

B jkK̄ jk,

ĀAAk := Ak +DF̄ ,

Bk :=
[
B1k · · · BNk,

]
ĒEEk :=

[
ET

k (G1K1k)
T · · · (GNKNk)

T ]T ,
F̄ := γ−2DT Z̄.

Then, the following controllers comprise the Pareto optimal strategy-set.

u∗(t) = K̄x(t) = Ȳ X̄−1x(t) =

⎡
⎢⎣K̄∗1

...
K̄∗N

⎤
⎥⎦x(t) =

⎡
⎢⎣u∗1(t)

...
u∗N(t)

⎤
⎥⎦ , (6.47)

where u∗i (t) = K̄∗i x(t).

Furthermore, the optimal cost bound is given by

J(u∗1, · · · ,u∗N , v∗, x0)≤ E
[
xT (0)X̄−1x(0)

]
, (6.48)

where v∗(t) = F̄x(t).

Proof. By using the similar technique in the previous section, the proof can be completed.

Applying (6.45b) to the stochastic LPV system, we have

dx(t) =
[
Ā−F̄(θ(t))x(t)+Dv(t)

]
dt +Ap(θ(t))x(t)dw(t), x(0) = x0, (6.49a)

z(t) = ĒEE(θ(t))x(t). (6.49b)

where

Ā−F̄(θ(t)) := A(θ(t))+
N

∑
j=1

B j(θ(t))K̄ j =
M

∑
k=1

αk(t)ĀAA−F̄k,
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ĒEE(θ(t)) :=
M

∑
k=1

αk(t)ĒEEk.

Hence, by the term-wise comparison between (6.1) and (6.49), we have

A(θ)← ĀAA−F̄(θ) =
M

∑
k=1

αkĀAA−F̄k, (6.50a)

E(θ)← ĒEE(θ) =
M

∑
k=1

αkĒEEk, (6.50b)

Thus, LMI (6.46c) can be obtained. Second, the following LQC problem is considered.

min
u

J(u, v̄∗, x0) := min
u

E

[∫ ∞

0

[
xT (t)QQQx(t)+uT (t)RRRu(t)

]
dt
]
, (6.51)

such that

dx(t) =
[
ĀAA(θ(t))x(t)+B(θ(t))u(t)

]
dt +Ap(θ(t))x(t)dw(t), x(0) = x0, (6.52)

where

v̄∗(t) := F̄x(t) = γ−2DT Z̄x(t),

ĀAA(θ(t)) :=
M

∑
k=1

αkĀAAk,

B(θ(t)) :=
[
B1(θ(t)) · · · BN(θ(t))

]
.

As the similar argument of the LQC problem in Lemma 6.1, if the following inequality

holds, the closed-loop stochastic LPV system is mean square stable and it has a cost bound.

P̄
(
ĀAA(θ)+B(θ)K̄

)
+
(
ĀAA(θ)+B(θ)K̄

)T P̄

+AT
p (θ)P̄Ap(θ)+Q+ K̄T RRRK̄ < 0, (6.53)

where u(t) = u∗(t) = K̄x(t), K̄ =
[
K̄1 · · · K̄N

]
.

That is, the following equation holds.

J(x, x0)< E
[
xT (0)P̄x(0)

]
. (6.54)

On the other hand, we have the following inequality by rearranging (6.53).

M

∑
k=1

α2
k

(
P̄(ĀAAk +BkK̄)+(ĀAAk +BkK̄)T P̄+AT

pkP̄Apk +QQQ+ K̄T RRRK̄
)

M−1

∑
k=1

M

∑
l=k+1

αkαl
(
P̄Ḡkl + ḠT

klP̄+Hkl +2QQQ+2K̄T RRRK̄
)
< 0, (6.55)
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where

Ḡkl := ĀAAk +BkK̄ + ĀAAl +BlK̄.

Therefore, as the sufficient conditions, if the following inequalities hold, inequality (6.55)

is satisfied.

P̄
(
ĀAAk +BkK̄

)
+
(
ĀAAk +BkK̄

)T P̄+AT
pkP̄Apk +Q+ K̄T RRRK̄ < 0, (6.56a)

P̄Ḡkl + ḠT
klP̄+Hkl +2QQQ+2K̄T RRRK̄

≤ P̄Ḡkl + ḠT
klP̄+2AT

pklPApkl +2QQQ+2K̄T RRRK̄ < 0. (6.56b)

Thus, if inequalities (6.56) are satisfied, then inequality (6.55) holds. In other words, if

inequalities (6.46a) and (6.46b) are satisfied, then (6.53) holds and this inequality implies

the cost bound (6.54).

6.6 Numerical Examples

In order to demonstrate the efficiency of our proposed strategies, an academic numerical

example and a practical example based on air-path system of diesel engines are investi-

gated.

6.6.1 Academic example

The system matrices are given as follows:

A1 =

[−1.5 1

−1 −1.6

]
, Ap1 = 0.1A1,

A2 =

[−1.5 1

−1 −1.8

]
, Ap2 = 0.1A2,

α1(t) = sin t, α2(t) = 1− sin t,

B1 =

[
0

2

]
, B2 =

[
0

1

]
,

D =

[
0.22

0.2

]
, E1 =

[
0.4 0

0 0.3

]
, E2 =

[
0.6 0

0 0.3

]
,

Q1 =

[
1 0

0 6

]
, Q2 =

[
3 0

0 3

]
, R1 = 5, R2 = 4.

The disturbance attenuation is chosen as γ = 5. The CCMIs (6.31) are by using algorithm

of the previous subsection. The strategy-set (6.32) which attains the Pareto optimal solution

with H∞ constraint is given below.

K1 =

[
K11

K21

]
=

[
2.9247e-2 −7.0586e-1

1.8279e-2 −4.4116e-1

]
,
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Fig. 6.1: Simulation results for the closed-loop system under the time-varying gain.

K2 =

[
K12

K22

]
=

[
2.9247e-2 −7.0586e-1

1.8279e-2 −4.4116e-1

]
,

Fγ =
[
1.0680e-3 8.9609e-4

]
.

The proposed algorithm converges to the required solution with an accuracy of 1.0e-8

order only after 5 iterations. In order to verify the performance constraint condition by the

value of the following ratio function is computed.

‖L‖2
[0, t f ]

=

E

[∫
t f

0
‖z(t)‖2dt

]
E

[∫
t f

0
‖v(t)‖2dt

] = 2.8131e-2 < γ2 = 25.

It can be observed that the value of the above ratio function (6.45) is small when γ = 5.

Hence, the constraint condition is satisfied. Second, the time histories with x(0) =
[
1 0.5

]
are depicted from Fig. 6.1.

It should be noted that the disturbance is chosen as v(t) = [1 1]sin2 t. From Fig. 6.1,

one can find that the asymptotic stability can be achieved. In other words, one can succeed

in reducing the influence of the deterministic disturbance v(t) by means of the designed

Pareto optimal strategy-set.

6.6.2 Practical example (air-path system of diesel engines)

In order to demonstrate the effectiveness of the proposed method, we show results for the

control problem on the air-path system of the diesel engine [Ku and Wu (2015)] with some

trivial modifications. In [Ku and Wu (2015)], the gain-scheduled H∞ control for stochastic
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LPV system was set so that the disturbance does not affect the performance output more

than performance index γ > 0. Although in [Ku and Wu (2015)] used state feedback con-

trol to stabilize the system (6.27), include the Pareto optimal control assuming a quadratic

cost functional for each control input. The idea is based on [Zeng et al. (2017)], where a

linear quadratic (LQ) controller design used to minimize the tracking errors of both exhaust

gas re-circulation (EGR) mass flow rate and boost pressure through variable geometry tur-

bocharger (VGT).

According to [Ku and Wu (2015)], x =
[
x1(t) x2(t) x3(t)

]T
and u(t) =[

u1(t) u2(t)
]T

denote the state vector and control input, respectively. Furthermore,

x1(t) denotes intake manifold pressure; x2(t) denotes exhaust manifold pressure; x3(t)

denotes compressor air mass flow; u1(t) denotes EGR valve position; u2(t) denotes VGT

vane position; and v(t) is chosen as zero-mean white noise with variance one. Thus, the

disturbed air-path of diesel engines can be described as stochastic system (6.27a), where

A(θ) =

⎡
⎣ −12.6 8.2 0

1.01+4θ1 −2.08 0

0.12+4.04θ1 −0.37−0.44θ2 −1.33

⎤
⎦ ,

B1 =

⎡
⎣ 0

−25.65

−18.27

⎤
⎦ , B2 =

⎡
⎣ 0

40.32

0

⎤
⎦ , D =

⎡
⎣0

0

1

⎤
⎦ ,

Ap(θ) = 0.01A(θ), θ = θ(θ1, θ2),

It should be noted that exact function of parameter θ(t) is generally unknown in this ex-

ample and several cases should be simulated. According to the air-path system of diesel

engines, the two scheduling parameters θ1(t) and θ2(t) vary within the following ranges

[Liu et al. (2007)]:

θ1(t) ∈ [−0.15, 0.15],

θ2(t) ∈ [−0.84, 0.16].

In this example, the following parameters are applied as a special case.

θ1(t) = 0.15sin(ωt),

θ2(t) =−0.34−0.5sin(ωt),

where, ω is the frequency determined by the frequency response. After several trials,

[Liu et al. (2007)] shows air mass flow step response and boost pressure step response for

θ1(t) = 0.15sin(10t), (6.57)
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Fig. 6.2: Simulation results for LPV system under practical plant.

θ2(t) =−0.34−0.5sin(10t), (6.58)

LPV controller achieves much better performance. It can be seen that they change very

quickly and cover the entire range of two scheduling variables, while rapid changes in

scheduling variables have only a slight effect on the system response.

Since the number of time-varying parameters is 2, the number M = 2r = 4. So, the

parameter dependent coefficient matrices (6.2) can be decomposed as follows:

A1 =

⎡
⎣ −12.6 8.2 0

0.41 −2.08 0

−0.486 −0.0004 −1.33

⎤
⎦ , A2 =

⎡
⎣ −12.6 8.2 0

0.41 −2.08 0

−0.486 −0.4404 −1.33

⎤
⎦ ,

A3 =

⎡
⎣−12.6 8.2 0

1.61 −2.08 0

0.726 −0.0004 −1.33

⎤
⎦ , A4 =

⎡
⎣−12.6 8.2 0

1.61 −2.08 0

0.726 −0.4404 −1.33

⎤
⎦ ,

Apk = 0.01Ak, for k = 1, 2, 3, 4.

Without loss of generality, we can assume E1 =E2 =E3 =E4 = I3. The weight matrices for

the cost functionals are assumed as Q1 = diag( 7 5 10 ), Q2 = diag( 6 21 5 ), R1 =

9, R2 = 9. It should be noted that, the performance of the resulting closed-loop system

can be adjusted by appropriately selecting the LQ weighting matrices [Zeng et al. (2017)].

The values for α1 = a(1− b), α2 = ab, α3 = (1− a)(1− b) and α4 = (1− a)b, where

a = (0.15−θ1)/0.3 and b = θ2 +0.84. The disturbance attenuation is chosen as γ = 2.

The CCMIs (6.31) are by using algorithm of the previous subsection. The strategy-set

(6.32) which attains the Pareto optimal solution with H∞ constraint is given below.

K1 =

[
K11

K21

]
=

[
1.2070e-1 7.4273e-1 1.1100e+0

−2.5075e-1 −1.5599e+0 5.5093e-1

]
,
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K2 =

[
K12

K22

]
=

[
1.2070e-1 7.4273e-1 1.1100e+0

−2.5075e-1 −1.5599e+0 5.5093e-1

]
,

K3 =

[
K13

K23

]
=

[
1.2070e-1 7.4273e-1 1.1100e+0

−2.5075e-1 −1.5599e+0 5.5093e-1

]
,

K4 =

[
K14

K24

]
=

[
1.2070e-1 7.4273e-1 1.1100e+0

−2.5075e-1 −1.5599e+0 5.5093e-1

]
,

Fγ =
[−3.1441e-4 −2.5139e-3 1.5667e-2

]
.

The proposed algorithm converges to the required solution with an accuracy of 1.0e-6

order after 6 iterations. In order to verify the performance constraint condition by the value

of the following ratio function is computed.

‖L‖2
[0, t f ]

=

E

[∫
t f

0
‖z(t)‖2dt

]
E

[∫
t f

0
‖v(t)‖2dt

] = 9.1315e-2 < γ2 = 4.

It can be observed that the value of the above ratio function is small when γ = 2. Hence,

the constraint condition is satisfied. Second, the time histories with x(0) =
[
1 0 1

]
are

depicted from Fig. 6.2. From Fig.6.2, it can be observed that the asymptotic stability can

be achieved. In other words, one can succeed in reducing the influence of the deterministic

disturbance v(t) by means of the designed Pareto optimal strategy-set.

Remark 6.1. Diesel engines generate Nitrogen Oxides (NOx) emissions that are toxic and

cause health problems. To reduce NOx emissions, an effective means is to regulate transient

exhaust gas re-circulation (EGR) using control strategies. On the other hand, by control-

ling the variable geometry turbine (VGT) vane position, the boost pressure is adjusted to

save fuel efficiently. The VGT absorbs the waste-heat energy and recycling gas from the

EGR to drive the compressor. On the other hand, when VGT vane is closed, the exhaust

gas flowing into the EGR increases. So, there is a correlation between these two controls.

However, [Zeng et al. (2017)] used LQ controllers to minimize the tracking errors of the

EGR mass flow and boost pressure through VGT. Our idea is to associate these two con-

trols to a cooperative game with a common objective and to adapt to Pareto optimality.

The advantage of this an idea is that it not only minimizes the individual tracking errors,

but also optimizes the overall performance of the diesel engine with disturbance attenu-

ation under H∞-constraint. Therefore, by applying the proposed scheme, it is possible to

generate a more sophisticated, environmentally friendly fuel-efficient diesel engine.
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6.7 Conclusions

This chapter discusses the Pareto optimal strategy for stochastic LPV system with multiple

decision makers. In the dynamic game of uncertain stochastic systems, multiple partici-

pants can be used for more realistic plants. The deterministic disturbances and their at-

tenuation to stochastic LPV systems under the H∞ constraint is the main attraction of this

chapter. Problems involving deterministic disturbance must be attenuated at a given target

called disturbance attenuation level γ > 0. This chapter can be seen as an extension of

[Mukaidani (2017a)] in the sence that the fixed gain controller is also considered here. In

this chapter, we design a method for Pareto optimal solution for multiple decision makers

that satisfies the H∞ norm condition.

Unlike the existing Pareto optimal strategy-set, the gain-scheduled controllers have

been adopted for the first time. As a result, even though the deterministic time-varying

parameters in the stochastic systems exist, a strategy-set can be designed. We redesigned

the stochastic bounded real lemma [Ku and Wu (2015)] and the linear quadratic control

[Rotondo (2015)] to find the solution. The Pareto optimal strategy-set can be found by solv-

ing a set of cross-coupling matrix inequalities (CCMIs). The modified stochastic bounded

real lemma and linear quadratic control (LQC) for the stochastic LPV systems are refor-

mulated by means of linear matrix inequalities (LMIs). The solvability conditions of the

problem are established from cross-coupled matrix inequalities (CCMIs). Since these ma-

trix inequalities are coupled, it is very complicated if an ordinary scheme such as New-

ton’s method is applied. A numerical algorithm via the semidefinite programming problem

(SDP) is developed to solve this problem.

The proof of convergence for the method based on the SDP (6.39) is not discussed.

Moreover, the uniqueness of the solution was not proved. These problems will be ad-

dressed in future investigations. Academic and practical numerical examples show the

feasibility of the proposed method. In order to demonstrate the real life application of the

proposed method, we show results for the control problem on the air-path system of the

diesel engine. Although we have not implemented the H∞ constraint incentive Stackelberg

game for stochastic LPV systems, this will be our future research. However, in our current

research, the information structure is used as state feedback; the output feedback pattern

will be investigated in our future studies.
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Chapter 7

Conclusion

This thesis investigates the incentive Stackelberg game for discrete-time systems and

continuous-time systems. Prior to this, the basic terminologies of the dynamic game are in-

troduced. The motivation is to choose the incentive Stackelberg game to be an engineering

application of a packet switch that works in a loop structure [Saksena and Cruz (1985)].

The above problem comes from a static game. However, this thesis studies only dynamic

games.

For discrete time case, both deterministic and stochastic systems are investigated. Re-

sults based on finite and infinite time domains are shown in discrete time. However,

stochastic systems are only considered in the case of continuous time. It should be noted

that the generalized results given by stochastic investigation can also be applied to deter-

ministic cases. To simplify the calculation, only the infinite time domain in the case of

continuous time is emphasized. In most cases, the linear differential equation governed by

Ito’s differential equation is used in the theory of this research. This is a very common

phenomenon in the field of control theory research and is simple to operate.

This thesis studies the most common linear quadratic (LQ) optimal control in game

problems. To solve the LQ problem, stochastic dynamic programming (SDP) and stochas-

tic maximum principle are deeply studied. Cooperative and non-cooperative game prob-

lems are solved based on the concepts of Pareto optimality and Nash equilibrium solutions,

respectively. Several basic problems are completely solved and useful for the current re-

search. The main task to solve the LQ problem is to find a matrix solution of algebraic

Riccati equations. However, the Newton’s method is very effective for fast convergence,

the Lyapunov’s iterative method is most popular for a simple built-in function ‘lyap(·)’.
Among the various styles for presenting results, figures for the trajectories of the states are

the most attractive and reliable to ensure that the system is stable.

The deterministic disturbances and their attenuation to stochastic systems under the H∞

constraint is the main attraction of this thesis. Problems involving deterministic disturbance
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must be attenuated at a given target called disturbance attenuation level γ > 0. Surprisingly,

the concept of solving the disturbance reduction problem under the H∞ constraint seems

like a Nash equilibrium between the disturbance input and the control input.

In the incentive Stackelberg game, players are divided into two categories; the leader

group and the follower group. For a single leader game, incentive Stackelberg strategy is

an extensive idea in which the leader can achieve his/her team-optimal solution in a Stack-

elberg game. Multiple leaders and multiple followers have made the game more complex

and challenging. In the leaders’ and the followers’ groups, the players are supposed to

be non-cooperative; subsequently, the Nash equilibrium is investigated. Several novel the-

orems and lemmas are designed to study the incentive Stackelberg game problems. In

this game, an incentive structure is developed in such a way that leaders achieve Nash

equilibrium by attenuating the disturbance under H∞ constraint. Simultaneously, followers

achieve their Nash equilibrium ensuring the incentive Stackelberg strategies of the lead-

ers while the worst-case disturbance is considered. Interestingly, for all cases, some sets

of cross-coupled matrix algebraic and Riccati equations can be derived to find the set of

strategies. To solve those matrix equations, algorithms based on Lyapunov iterations are

developed. In addition, several academic and real-life numerical examples have also been

resolved to demonstrate the usefulness of our proposed scheme.

This thesis discusses the incentive mechanism of the Stackelberg game in detail, but it

also gives a small description of the ordinary Stackelberg game. A detailed survey shows

that over the past four decades, several studies have been conducted on the incentive Stack-

elberg game. However, the main objective of this research is to investigate the incentives

Stackelberg strategy, preliminary research and synthesis of LPV systems for multiple deci-

sion makers. We aim to better understand to implement our current idea for LPV systems

in the future. H∞ constraint Pareto optimal strategy for stochastic linear parameter vary-

ing (LPV) systems with multiple decision makers is investigated. The modified stochastic

bounded real lemma and LQ control for the stochastic LPV systems are reformulated by

means of linear matrix inequalities (LMIs). To decide the strategy set of multiple decision

makers, the Pareto optimal strategy is considered for each player and the H∞ constraint

is imposed. The solvability conditions of the problem are established from cross-coupled

matrix inequalities (CCMIs).

The basics of LMIs are discussed as an appendix. However, the results and discussion

on LMIs already exist. It gives an important idea in the formulation and solution of the

control problems. The appendix discusses how to solve convex optimization problems us-

ing LMIs and special cases to solve systems and control theory problems. We consider the

original problem from solution system and control theory. Although the appendix mainly
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covers system and control theory, there is a possibility to pose problems for convex op-

timization as well. The method described in that appendix has great practical value for

control engineering. MATLAB LMI toolbox is an essential feature of the control theory

research to solve LMI system.

In fact, through this thesis, stochastic games of multiple decision makers with distur-

bances open a new dimension of optimal control research. Several academic and practical

numerical examples show the feasibility of the proposed method. Although we have not

implemented the H∞ constraint incentive Stackelberg game for stochastic LPV systems,

this will be our future research. In our current research, the information structure is used as

state feedback; the output feedback pattern will be investigated in our future studies.

Some preliminary results on static output feedback optimal control are given in Ap-

pendix B. The linear quadratic optimal cost control problem for static output feedback

optimal control for stochastic Itô differential equations is considered. Several definitions,

theorems, and lemmas are studied for future research. To solve the output feedback con-

trol problem, the Newton’s algorithm and corresponding codes are already developed. A

numerical example of fundamental problems has been solved. The problem is already for-

mulated for future investigation.

In that problem, an infinite-horizon incentive Stackelberg game with multiple leaders

and multiple followers will be investigated for a class of linear stochastic systems with H∞

constraint. An incentive structure will be developed in such a way that leaders will achieve

the Nash equilibrium by attenuating the disturbance under H∞ constraint. Simultaneously,

followers will achieve their Nash equilibrium ensuring the incentive Stackelberg strate-

gies of the leaders while the worst-case disturbance will be considered. In that research,

some cross-coupled stochastic algebraic Riccati equations (CCSAREs) and matrix alge-

braic equations (MAEs) will be derived for static output feedback case so that the incentive

Stackelberg strategy-set can be found. Unlike current research, static output feedback con-

trol will be considered. However, [Mukaidani et al. (2018)] studied discrete-time linear

stochastic systems with infinite time-domain incentives by means of Markov jump param-

eters and external disturbances through static output feedback. Multiple leader-follower

problems with output feedback in continuous-time linear stochastic systems will be our

future study. Moreover, in the future, we have plans to extend the proposed results to the

output feedback by means of the state observer. Also, the information that the leader can

utilize may be different from that the followers can utilize.
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Appendix A

Linear Matrix Inequalities (LMIs)

The basic topic in this appendix is how to solve convex optimization problems using linear

matrix inequalities (LMIs) and special cases to solve systems and control theory problems.

Although this appendix mainly covers system and control theory, there is a possibility to

pose problems for convex optimization as well. The method described in this appendix

has great practical value for control engineering. LMI is a matrix inequality that is linear

or affine within a set of matrix variables. Since they are convex constraints themselves,

many existing software can efficiently and easily solve many convex objective functions

and optimization problems of LMI constraints. This method has become very popular

among control engineers in recent years. This is because various control issues can be

formulated as LMI issues.

The LMI format is as follows:

G(x) = G0 + x1G1 + · · · + xmGm > 0. (A.1)

Where x ∈ R
m is the vector of decision variables, G0, G1, . . . , Gn are constant Symmetric

matrices, that is

Gi = GT
i , i = 0, 1, . . . , m. (A.2)

The inequality used in equation (A.1) means the positive definiteness of G(x), i.e.,

uT G(x)u > 0, for all u ∈ R
n.

Definition A.1. [Rami and Zhou (2000)] Let G0, G1, . . . , Gm ∈S n be constant symmetric

matrices. Inequalities consisting of any combination of the following relations:

G(x) := G0 +
m

∑
i=1

xiGi > 0 (A.3a)

G(x) := G0 +
m

∑
i=1

xiGi ≥ 0 (A.3b)
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are called LMI’s for variable x = (x1, . . . , xm)
T ∈ R

m. If there is at least one x ∈ R
m that

satisfies them, LMI is called feasible, and point x is called a feasible point.

LMIs is basically used in dynamical system of Lyapunov theory.

Theorem A.1. The following differential equation,

ẋ(t) = Ax(t) (A.4)

is asymptotically stable iff there exists a matrix P > 0 such that the following the Lyapunov

inequality holds:

AT P+PA < 0. (A.5)

Proof. Let us consider the Lyapunov candidate

V (t) = xT (t)P(t)x(t), (A.6)

where P is a symmetric positive definite matrix. Therefore,

V̇ (t) = ẋT (t)Px(t)+ xT (t)Pẋ(t)

= xT (t)AT Px(t)+ xT (t)PAx(t)

= xT (t)[AT P+PA]x(t). (A.7)

According to Lyapunov stability theorem, for a Lyapunov function V (t), the system (A.4)

is asymptotically stable if and only if V (t) < 0. Comparing equations (A.6) and (A.7) we

can obtain

AT P+PA < 0. (A.8)

Hence Theorem A.1 is proved.

If we consider a matrix Q = QT > 0 such that

AT P+PA =−Q,

the LMI turns to be a matrix algebraic equation.
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A.1 Formation of LMIs

Many control problems can be expressed as LMI problems, but some of them cause non-

linear matrix inequalities. Specific techniques can be used to convert these nonlinear in-

equalities to the appropriate LMI format. Here, we will use appropriate examples to de-

scribe some of the techniques that are often used for control.

Let us consider a state feedback optimal control problem in which we have to find a

state feedback gain matrix K ∈ R
m×n and a symmetric positive definite matrix P ∈ R

n×n

such that the following inequality holds:

(A+BK)T P+P(A+BK)< 0, (A.9)

equivalently,

AT P+PA+KT BT P+PBK < 0. (A.10)

It should be noted that the matrices K and P are contained in the same product terms make

the inequality nonlinear or bilinear. To make it linear, suppose that X = P−1, which gives

XAT +AX +XKT BT +BKX < 0. (A.11)

This is also a matrix inequality containing a new variable X . However, the inequality is still

nonlinear. Let us consider another new variable L = KX , which gives

XAT +AX +LT BT +BL < 0. (A.12)

This is a LMI feasibility problem with respect the variable X > 0 and L ∈ R
m×n. Solving

this LMI problem, the feedback gain matrix K can be found from the relation K = LX−1 and

P = X−1. This shows that by changing variable of a nonlinear matrix inequality problem

into an LMI problem.

The Schur Complement can be used to transform nonlinear inequalities of convex type

LMI problem.

Lemma A.1. (Schur’s lemma)[Rami and Zhou (2000)] Let matrices Q = QT , S, and

R = RT > 0 be given with appropriate dimensions. Then the following conditions are

equivalent:

1) Q−SR−1ST > 0;

2)

[
Q S
ST R

]
> 0;

3)

[
R ST

S Q

]
> 0.
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For example, let us consider the following quadratic matrix inequality

[Boyd et al. (1994)]:

AT P+PA+PBR−1BT P+Q < 0, (A.13)

where A, B, Q = QT , R = RT > 0 are given matrices of appropriate sizes, and P = PT is

the variable. It should be noted that this is a quadratic matrix inequality in the variable P.

It can be expressed as the linear matrix inequality as follows:[−AT P−PA−Q PB
BT P R

]
> 0, (A.14)

or, [
R BT P

PB −AT P−PA−Q

]
> 0. (A.15)

The MATLAB LMI toolbox provides some convenient functions for solving LMI prob-

lems. Now we present an example for solving a control problem by using MATLAB LMI

toolbox.

Consider the following continuous-time stochastic linear quadratic optimal control

problem:

dx(t) = [Ax(t)+Bu(t)]dt +Apx(t)dw(t), x(0) = x0, (A.16a)

J(x0, u) :=
1

2
E

[∫ ∞

0

(
xT (t)Qx(t)+uT (t)Ru(t)

)
dt
]
, (A.16b)

where x(t) ∈L 2
F (R+, R

n) is the state vector; u(t) ∈L 2
F (R+, R

nu) is the control input;

w(t) ∈ R is a one-dimensional wiener process; A, B, Ap, Q = QT ≥ 0, R = RT > 0 are

the coefficient matrices of suitable dimensions. For the stochastic optimal control problem

(A.16), suppose that the following stochastic ARE has the solution PT = P > 0:

PA+AT P+Q−PBR−1BT P+AT
p PAp = 0. (A.17)

then the optimal control problem admits a state feedback solution,

u∗(t) = Kx(t) =−R−1BT Px(t). (A.18)

LMI associated to (A.17) can be written as:[
AT P+PA+Q+AT

p PAp PB
BT P R

]
≥ 0, (A.19)

with respect to the symmetric matrix variable P. It should be noted that Definition A.1 can

be applied to LMI (A.19) by a simple transformation. Consider P1, . . . , Pn(n+1)/2 be any

basis of Sn. The variable matrix P can be written as

P :=
n(n+1)/2

∑
i=1

xiPi.
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Considering (x1, . . . ,xn(n+1)/2) as a new variable, we can see that (A.19) is followed by

Definition A.1.

A.2 Some standard LMI problems

Given an LMI F(x)> 0, the corresponding LMI problem is to find x f eas so that F(x f eas)> 0

or determine that the LMI is infeasible. For example, let us consider the following the

simultaneous Lyapunov stability problem:

P > 0, AT
i P+PAi < 0, i = 1, . . . ,L, (A.20)

where Ai ∈ R
n×n, i = 1, . . . ,L. It is needed to find P that satisfies the LMI (A.20) or to

determine such P does not exist.

For the linear stochastic system

dx(t) = [Ax(t)+Bu(t)]dt +Apx(t)dw(t), x(0) = x0, (A.21)

the following theorem will verify the stability with some equivalence conditions.

Theorem A.2. [Rami and Zhou (2000)]

1. System (A.21) is mean-square stable.

2. There is a matrix K and X = XT > 0 such that

(A+BK)T X +X(A+BK)+AT
p XAp < 0. (A.22)

The state feedback u(t) = Kx(t) is stable, in this case.

3. There is a matrix K and X = XT > 0 such that

(A+BK)X +X(A+BK)T +ApXAT
p < 0. (A.23)

The state feedback u(t) = Kx(t) is stable, in this case.

4. There exists a matrix K such that for any matrix Y there is a unique solution X to the

following equation

(A+BK)T X +X(A+BK)+AT
p XAp +Y = 0. (A.24)

Furhtermore, if Y > 0 (respectively, Y ≥ 0), then X > 0 (respectively, X ≥ 0). More-

over, the state feedback u(t) = Kx(t) is stable, in this case.
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5. There exists a matrix K such that for any matrix Y there is a unique solution X to the

following equation

(A+BK)X +X(A+BK)T +ApXAT
p +Y = 0. (A.25)

Furhtermore, if Y > 0 (respectively, Y ≥ 0), then X > 0 (respectively, X ≥ 0). More-

over, the state feedback u(t) = Kx(t) is stable, in this case.

6. There is a matrix Y and a symmetric matrix X such that[
AX +XAT +BY +Y T BT ApX

XAT
p −X

]
< 0. (A.26)

In this case, the state feedback u(t) = Y X−1x(t) is stable.

Proof. For any matris K ∈ R
nu×n, define the following operator

φ : Sn →Sn, (A.27)

by

φ(X) = (A+BK)X +X(A+BK)T +ApXAT
p . (A.28)

If x(·) satisfies the following state feedback equation

dx(t) = [A+BK]x(t)dt +Apx(t)dw(t), x(0) = x0, (A.29)

where, K is a feedback gain, then applying Itô’s formula, the matrix X(t) = E[xT (t)x(t)]

satisfies the differential matrix system Ẋ(t) = φ(X(t)). Applying the results given in

[Ghaoui and Rami (1996)], we have the equivalence between the mean-square stabiliz-

ability and each of the assertions 2–5. Furthermore, with Y = KX and X > 0, (A.23) is

equivalent to

AX +XAT +BY +Y T BT +ApXAT
p < 0. (A.30)

All other equivalence relations can be established by applying the Schur’s lemma, as shown

in Lemma A.1 here.
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Appendix B

Future Research

B.1 Static output feedback optimal control

In this section, we consider the problem of linear quadratic optimal cost control via static

output feedback optimal control. The technique can be described by the stochastic differ-

ential equation of state as follows:

dx(t) = [Ax(t)+Bu(t)]dt +Apx(t)dw, x(0) = x0, (B.1a)

y(t) =Cx(t). (B.1b)

where, x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the control input, w(t) ∈ R is a one-

dimensional wiener process, y(t) ∈ R
� is the output, A, Ap ∈ R

n×n, B ∈ R
n×m, C ∈ R

�×n

are given coefficient matrices.

Definition B.1. [Dragan et al. (2006)] The system (B.1) or (A, B, Ap) is called stochastic

stabilizable (in mean-square sense), if there exists a output feedback control u(t) =Ky(t) =

KCx(t) with K being a constant matrix, such that the closed-loop system

dx(t) = [A+BKC]x(t)dt +Apx(t)dw(t), x(0) = x0, (B.2)

is asymptotically mean-square stable, i.e.

lim
t→∞

E[‖x(t)‖2] = 0. (B.3)

Remark B.1. Under the condition B≡ 0, (A, Ap) is called stable, if equation (B.3) holds.

Definition B.2. [Chen and Zhang (2004)] The state-measurement system (B.1) or

(A, Ap | C) is called stochastically detectable, if there exists a constant matrix X such

that (A+XC, Ap) is asymptotically mean-square stable.
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Lemma B.1. [Chen and Zhang (2004)] If (A, C | √Q) is stochastic detectable, then the

autonomous system (A, Ap) is stable if and only if the following stochastic algebraic Lya-

punov equation (SALE) (B.4) has a unique solution P≥ 0:

AT P+PA+AT
p PAp +Q = 0, (B.4)

with cost functional

J(x0) = E

[∫ ∞

0
xT (t)Qx(t)dt

]
= xT

0 Px0, (B.5)

where Q = QT ≥ 0.

Proof. To prove the first part of Lemma B.1, the same procedure as Lemma 2.2 can be

applied. To prove the second part

E

[∫ t

0
xT (s)Qx(s)ds

]
=−E

[∫ t

0
xT (s)[AT P+PA+AT

p PAp]x(s)ds
]

=−E
[∫ t

0
xT (s)Ṗx(s)ds

]
[Itô’s formula for finite-horizon.]

= xT
0 Px0−E[xT (t)Px(t)]→ xT

0 Px0, when t → ∞.

Now, consider the stochastic optimal control problem (B.1) with the following cost

functional:

J(u, x0) = E

[∫ ∞

0
[xT (t)Qx(t)+uT (t)Ru(t)]dt

]
, (B.6)

where Q = QT ≥ 0 and R = RT > 0. Suppose that there exists an optimal state feedback

control

u∗(t) = KCx(t), (B.7)

where K is the feedback gain matrix of the static output feedback control problem (B.1)

with (A, Ap |C) is stochastically detectable.

Applying Lemma B.1, there exists a positive semi-definite matrix P, which is the solu-

tion of the following algebraic Riccati equation:

G1(P, K) := (A+BKC)T P+P(A+BKC)+AT
p PAp +CT KT RKC+Q = 0. (B.8)

To find the feedback gain K, consider the following Lagrangian:

L (P, V, K) =Tr[x0xT
0 P]+Tr

[
G1(P, K)V

]
, (B.9)
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where V = V T ; V ∈ R
n×n is the Lagrange multiplier. On the other hand, P ∈ R

n×n and

K ∈R
m×� are the optimization variables. Taking partial derivatives of (B.9) with respect to

V, P and K we can find the following results:

∂L (P, V, K)

∂V
:= [(A+BKC)T P+P(A+BKC)+AT

p PAp +CT KT RKC+Q]T , (B.10a)

∂L (P, V, K)

∂P
:= (A+BKC)V +V (A+BKC)T +ApVAT

p +(xT
0 x0)I, (B.10b)

∂L (P, V, K)

∂K
:= 2BT PVCT +2RKCVCT . (B.10c)

By setting ∂L /∂V , ∂L /∂P, and ∂L /∂K equal to zero, we can find

(A+BKC)T P+P(A+BKC)+AT
p PAp +CT KT RKC+Q = 0, (B.11a)

(A+BKC)V +V (A+BKC)T +ApVAT
p +(xT

0 x0)I = 0, (B.11b)

K =−R−1BT PVCT (CVCT )−1. (B.11c)

By solving the resulting equations of (B.11) at the same time, the optimal solution for K

can be found. Newton’s algorithm is proposed to solve the system (B.11).

B.1.1 Newton’s algorithm
Inputs:

Let P = P(0), V = V (0) and K = K(0) be the given initial matrices; IT ER is the maximum

number of iterations; TOL is the tolerance of convergence.

Outputs:

Solution matrices P, V and K.

Step 1 Let us consider the following nonlinear matrix functions.

G1(P,V,K) =(A+BKC)T P+P(A+BKC)+AT
p PAp +CT KT RKC+Q, (B.12a)

G2(P,V,K) =(A+BKC)V +V (A+BKC)T +ApVAT
p +(xT

0 x0)I, (B.12b)

G3(P,V,K) =RKCVCT +BT PVCT , (B.12c)

Step 2 For k = 1, 2, · · · , IT ER do Step 3 to Step 4.

Step 3 Calculate the following newtons formula:

vecX (k+1) = vecX (k)−
[

∂vecG (X)

∂ (vecX)T

∣∣∣∣
X=X (k)

]−1

vecG (X (k)), (B.13)
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where

vecG (X) =

⎡
⎣vecG1(P,V,K)

vecG2(P,V,K)
vecG3(P,V,K)

⎤
⎦ and X =

⎡
⎣vecP

vecV
vecK

⎤
⎦ .

Step 4 If ‖X (k+1)−X (k)‖< TOL, stop.

Step 5: Output

Step 6: End

It should be noted that to compute (B.13), Jacobian
∂vecG (X)
∂ (vecX)T can be defined as follows:

∂vecG (X)

∂ (vecX)T =

⎡
⎢⎢⎣

∂vecG1(X)
∂ (vecP)T

∂vecG1(X)
∂ (vecV )T

∂vecG1(X)
∂ (vecK)T

∂vecG2(X)
∂ (vecP)T

∂vecG2(X)
∂ (vecV )T

∂vecG2(X)
∂ (vecK)T

∂vecG3(X)
∂ (vecP)T

∂vecG3(X)
∂ (vecV )T

∂vecG3(X)
∂ (vecK)T

⎤
⎥⎥⎦ ,

where

∂vecG1(X)

∂ (vecP)T = (A+BKC)T ⊗ In + In⊗ (A+BKC)T +AT
p ⊗AT

p ,
∂vecG1(X)

∂ (vecV )T = 0,

∂vecG1(X)

∂ (vecK)T =CT ⊗PB+(PB⊗CT )Um�+CT ⊗CT KT R+(CT KT R⊗CT )Um�,

∂vecG2(X)

∂ (vecP)T = 0,
∂vecG2(X)

∂ (vecV )T = In⊗ (A+BKC)+(A+BKC)⊗ In +Ap⊗Ap,

∂vecG2(X)

∂ (vecK)T =VCT ⊗B+(B⊗VCT )Um�,

∂vecG3(X)

∂ (vecP)T =CV ⊗BT ,
∂vecG3(X)

∂ (vecV )T =C⊗ (RKC+BT P),
∂vecG3(X)

∂ (vecK)T =CVCT ⊗R,

Um� denotes a permutation matrix in Kronecker matrix sense

[Henderson and Searle (1981)] such that Um�vecK = vecKT , K ∈ R
m×�.

B.1.2 Numerical example

Let us consider the following system matrices:

A =

⎡
⎢⎢⎣
−2.98 0.93 0 −0.034

−0.99 −0.21 0.035 −0.0011

0 0 0 1

0.39 −5.555 0 −1.89

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣
−0.032

0

0

−1.6

⎤
⎥⎥⎦ ,

C =

[
0 0 1 0

0 0 0 1

]
, Ap = 0.1A, R = 1, Q = I4, x0 =

[
1 0.5 −0.5 −1

]T
.
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Applying Newton’s Algorithm B.1.1 through MATLAB simulations that meet the appro-

priate initial conditions of Newton-Kantorovich’s theorem, the Algorithm B.1.1 provides

the following results:

P =

⎡
⎢⎢⎣

1.0310 −2.7190 −1.9989 −0.3816

−2.7190 11.4489 2.7210 −0.7817

−1.9989 2.7210 −8.6677 −1.4500

−0.3816 −0.7817 −1.4500 0.4378

⎤
⎥⎥⎦ ,

V =

⎡
⎢⎢⎣

0.5193 0.7023 −2.0968 −7.6932

0.7023 2.8654 1.1328 −1.9652

−2.0968 1.1328 1.3150 −1.2389

−7.6932 −1.9652 −1.2389 −2.2189

⎤
⎥⎥⎦ ,

K =
[−4.5034 −1.3158

]
, Tr[x0xT

0 P] = 0.1786.

k ‖G (X (k))‖
0 3.7675

1 3.2866×10−2

2 5.0958×10−4

3 2.9617×10−10

4 8.052×10−15

Table B.1: Error in each iteration.

It should be noted that algorithm B.1.1 converges to the exact solution with an accuracy

of ‖G (X (k))‖ < 10−14 only after four iterations. From Table B.1, it can be observed that

Newton’s method attains quadratic convergence under the appropriate initial conditions.

B.1.3 Future investigation

In this section, I would like to formulate a problem of H∞-constrained multiple leaders,

multiple followers incentive Stackelberg game with static output feedback. However, the

results and discussions on this issue will be future investigations. Consider a linear stochas-

tic system governed by the Itô differential equation defined by

dx(t) =
[

Ax(t)+
M

∑
i=1

[BLi1uLi1(t)+ . . . +BLiNuLiM(t)]

+
N

∑
j=1

[BF j1uF j1(t)+ . . . +BF jMuF jM(t)]+Dv(t)
]

dt +Apx(t)dw(t), x(0) = x0,

(B.14a)

z(t) = col
[
Cx(t) uc1(t) . . . ucM(t)

]
, (B.14b)
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y(t) = Ex(t), (B.14c)

uci(t) = col
[
uLi1(t) . . . uLiN(t) uF1i(t) . . . uFNi(t)

]
, (B.14d)

where x(t) ∈ R
n represents the state vector; z(t) ∈ R

nz represents the controlled output;

y(t) ∈R
ny represents the measured output; uLi j(t) ∈R

mLi j represents the leader Li’s control

input for the follower F j, i = 1, . . . ,M, j = 1, . . . ,N; uF ji(t) ∈ R
mF ji represents the

follower F j’s control input according to the leader Li, i = 1, . . . ,M, j = 1, . . . ,N; v(t) ∈
R

mv represents the exogenous disturbance signal; w(t) ∈ R represents a one-dimensional

standard Wiener process defined in the filtered probability space (Ω, F , P, Ft) with

Ft = σ{w(s) : 0 ≤ s ≤ t} [Chen and Zhang (2004)]. Cost functionals of the leaders

Li, i = 1, . . . ,M, are given by

JLi (uLi1, . . . ,uLiN , uF1i, . . . ,uFNi, v)

:=
1

2
E

[∫ ∞

0

{
xT (t)QLix(t)+

N

∑
j=1

[
uT

Li j(t)RLi juLi j(t)+uT
F ji(t)RLF jiuF ji(t)

]}
dt

]
,

(B.15)

where QLi = QT
Li ≥ 0, RLi j = RT

Li j > 0, RLF ji = RT
LF ji ≥ 0, i = 1, . . . ,M, j = 1, . . . ,N.

Cost functionals of the followers Fi, i = 1, . . . ,N are given by

JFi (uL1i, . . . ,uLMi, uFi1, . . . ,uFiM, v)

:=
1

2
E

[∫ ∞

0

{
xT (t)QFix(t)+

M

∑
j=1

[
uT

L ji(t)RFL jiuL ji(t)+uT
Fi j(t)RFi juFi j(t)

]}
dt

]
,

(B.16)

where QF j = QT
F j ≥ 0, RFi j = RT

Fi j > 0 and RFL ji = RT
FL ji≥ 0, i = 1, . . . ,N, j = 1, . . . ,M.

For a two-level incentive Stackelberg game, leaders announce the following incentive strat-

egy to the followers in ahead of time:

uLi j(t) =Λ jix(t)+Ξ jiuF ji(t), i = 1, . . . ,M j = 1, . . . ,N, (B.17)

where the parameters Λ ji and Ξ ji are to be determined associated with the Nash equilib-

rium strategies uF ji(t) of the followers for i, . . . ,M j = 1, . . . ,N. In this game, leaders

will achieve a Nash equilibrium solution attenuating the external disturbance with H∞ con-

straint. The infinite-horizon multi-leader-follower incentive Stackelberg games for linear

stochastic systems with H∞ constraint can be formulated as follows.

For any disturbance attenuation level γ > 0, to find, if possible, the static output feed-

back strategy u∗Li j(t) = Kci jy(t) and u∗F ji(t) = KF jiy(t) such that
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(i) the trajectory of the closed-loop system (B.14) satisfies the Nash equilibrium condi-

tions (B.18a) of the leaders with H∞ constraint condition (B.18b):

JLi(u∗c1, . . . ,u
∗
cM, v∗)≤ JLi(γ∗−i(uci)), v∗), (B.18a)

0≤ Jv(u∗c1, . . . ,u
∗
cM, v∗)≤ Jv(u∗c1, . . . ,u

∗
cM, v), (B.18b)

where i = 1, . . . ,M,

Jv(uc1, . . . ,ucM, v) = E

[∫ ∞

0

{
γ2‖v(t)‖2−‖z(t)‖2

}
dt

]
, (B.19)

‖z(t)‖2 = xT (t)CTCx(t)+
M

∑
i=1

uT
ci(t)uci(t), (B.20)

∀ v(t) �= 0 ∈ R
mv ,

(ii) with a worst-case disturbance v∗(t) ∈ R
mv , follower’s decision u∗F ji(t)) ∈ R

mF ji; i =

1, . . . ,M, j = 1, . . . ,N satisfies the following Nash equilibrium conditions:

JF j(u∗F1, . . . ,u
∗
FN , v∗)≤ JF j(γ∗− j(ûF j)), v∗), (B.21)

where

ûF j(t) = col
[
uF j1(t) . . . uF jM(t)

]
, j = 1, . . . ,N.

It should be noted that uLi j(t) depend on uF ji(t) according to the incentive Stackelberg

structures assumed in (B.17).

Remark B.2. Our research plan is to extend the above results of the static output feedback

incentive Stackelberg game for Markov jump linear stochastic system with disturbance.

However, [Mukaidani et al. (2018)] investigated discrete-time linear stochastic systems

with infinite time-domain incentives by means of Markov jump parameters and external

disturbances through static output feedback. To the best of our knowledge, multiple leader-

follower problems with output feedback in continuous-time Markov jump linear stochastic

systems have not been studied yet.

B.2 Observer-based output feedback control

To extend the proposed results to the output feedback by means of the state observer, some

preliminary results have been studied.
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Definition B.3. [Chen and Zhang (2004)] Consider the following autonomous stochastic

system with measurement equation.

dx(t) = Ax(t)dt +Apx(t)dw(t), x(0) = x0, (B.22a)

y(t) =Cx(t), (B.22b)

where x(t) ∈ R
n is the state vector; y(t) ∈ R

� is the measurement output; w(t) ∈ R is a

one-dimensional wiener process; A, Ap ∈ R
n×n and C ∈ R

�×n are the coefficient matrices.

If y(t)≡ 0, ∀ t ≥ 0 implies x0 = 0, (A, Ap |C) is called exactly observable.

To check the exact observability for the system (B.22) we can find the following obsev-

ability matrix [Zhang and Chen (2004)]:

Os =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C
CA
CAp

CApA
CAAp
CA2

CA2
p

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then, (A, Ap|C) is exactly observable iff rank(Os) = n.

B.2.1 Basic problem

Here we consider the problem of linear quadratic optimal cost control via observer-based

control design. The technique can be described by the stochastic differential equation of

state as follows:

dx(t) = [Ax(t)+Bu(t)]dt +Apx(t)dw, x(0) = x0, (B.23a)

y(t) =Cx(t). (B.23b)

where x(t) ∈ R
n is the state vector; u(t) ∈ R

m is the control input; w(t) ∈ R is a one-

dimensional wiener process; y(t)∈R
� is the measurement output; A, Ap ∈R

n×n, B∈R
n×m

and C ∈ R
�×n are coefficient matrices.

Consider stochastic LQ control with the following cost functional:

J = E

[∫ ∞

0
[xT (t)Qx(t)+uT (t)Ru(t)]dt

]
, (B.24)

where Q = QT ≥ 0 and R = RT > 0.
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B.2.2 Preliminary results

If the system state of (B.23) is not fully accessible, the state feedback controller may be

disabled. This is the motivation to propose an output feedback controller; the controller

will be an observer-based controller in the following form [Gao and Shi (2013)]:

dx̂(t) = [Ax̂(t)+Bu(t)]dt +G[ŷ(t)− y(t)]dt, x̂(0) = x0, (B.25a)

ŷ(t) =Cx̂(t), (B.25b)

u(t) = Kx̂(t), (B.25c)

where x̂(t) ∈ R
n is the estimation of x(t); ŷ(t) ∈ R

� is the estimation of y(t); G ∈ R
n×� and

K ∈ R
m×n the observer gain and control gain, respectively.

So, by using (B.23) and (B.25), the following closed loop systems can be obtained:

dx(t) = [Ax(t)+BKx̂(t)]dt +Apx(t)dw, x(0) = x0, (B.26a)

dx̂(t) = [Ax̂(t)+BKx̂(t)]dt +GC[x̂(t)− x(t)]dt, x̂(0) = x0. (B.26b)

The cost functional of the state dynamics and the estimated state dynamics can be written

as:

J = E

[∫ ∞

0
[xT (t)Qx(t)+ x̂T (t)KT RKx̂(t)]dt

]
, (B.27)

where Q = QT ≥ 0 and R = RT > 0. Let e(t) = x(t)− x̂(t) be the error. Then from (B.26),

we can find the error dynamics as

dx(t) = [Ax(t)+BKx̂(t)]dt +Apx(t)dw, x(0) = x0, (B.28a)

de(t) = [Ae(t)+GCe(t)]dt +Apx(t)dw, e(0) = 0 ∈ R
n. (B.28b)

The cost functional of the state and the error dynamics can be written as:

J = E

[∫ ∞

0
[xT (t)(Q+KT RK)x(t)−2xT (t)KT RKe(t)+ eT (t)KT RKe(t)]dt

]
, (B.29)

where Q = QT ≥ 0 and R = RT > 0.

Let x̄(t)= col[x(t) e(t)]. Therefore, form (B.26), a closed loop system can be obtained

as follow:

dx̄(t) = Āx̄(t)dt + Āpx̄(t)dw(t), x̄(0) = x̄0, (B.30)

where

Ā =

[
A+BK −BK

0 A+GC

]
, Āp =

[
Ap 0

Ap 0

]
, x̄0 =

[
x0

0

]
.

170



The cost functional in this case is

J = E

[∫ ∞

0
x̄T (t)Q̄x̄(t)dt

]
, (B.31)

where

Q̄ :=

[
Q+KT RK −KT RK
−KT RK KT RK

]
. (B.32)

Definition B.4. [Dragan et al. (2006)] The closed-loop system (B.30) or (Ā, Āp) is called

asymptotically mean-square stable if

lim
t→∞

E[‖x̄(t)‖2] = 0. (B.33)

Lemma B.2. [Gao and Shi (2013)] If there exists a symmetric positive definite matrix Z̄

such that

ĀT Z̄ + Z̄Ā+ ĀT
p Z̄Āp + Q̄ < 0, (B.34)

then the stochastic system (B.30) is mean-square stable.

Theorem B.1. [Gao and Shi (2013)] The closed-loop system (B.30) is mean-square stable

if there are matrices K, G, X = XT > 0 and Y = Y T > 0, and a positive scalar α such that

the following inequalities hold:[
Λ1 +αAT

pYAp −X(BK)−KT RK
−(BK)T X−KT RK αΛ2 +KT RK

]
< 0, (B.35)

where

Λ1 = (A+BK)T X +X(A+BK)+AT
p XAp +Q+KT RK, (B.36)

Λ2 = (A+GC)TY +Y (A+GC). (B.37)

Proof. Let Z̄ =

[
X 0

0 αY

]
. Then Z̄ = Z̄T > 0 as X > 0 and Y > 0. Using Lemma B.2, we

can derive

ĀT Z̄ + Z̄Ā+ ĀT
p Z̄Āp + Q̄ < 0, (B.38)

which implies[
A+BK −BK

0 A+GC

]T [X 0

0 αY

]
+

[
X 0

0 αY

][
A+BK −BK

0 A+GC

]
(B.39)

+

[
Ap 0

Ap 0

]T [X 0

0 αY

][
Ap 0

Ap 0

]
+

[
Q+KT RK −KT RK
−KT RK KT RK

]
< 0. (B.40)
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Equivalently, [
Λ1 +αAT

pYAp −X(BK)−KT RK
−(BK)T X−KT RK αΛ2 +KT RK

]
< 0, (B.41)

where

Λ1 = (A+BK)T X +X(A+BK)+AT
p XAp +Q+KT RK, (B.42)

Λ2 = (A+GC)TY +Y (A+GC). (B.43)

Hence, the theorem is proved.

Theorem B.2. [Gao and Shi (2013)] For the closed-loop system (B.30), if there exist ma-

trices

(i) U =UT > 0, Z and a positive scalars ρ such that:⎡
⎢⎢⎣

ΓUV UAT
p U ZT

ApU −U 0 0

U 0 −Q−1 0

Z 0 0 −R−1

⎤
⎥⎥⎦< 0, (B.44)

where

ΓUV :=UAT +AU +ZT BT +BZ +ρIn,

(ii) Y = Y T > 0, W and a positive scalar β such that:[
ΓXY −βX(BK)−βKT RK

−β (BK)T X−βKT RK ATY +YA+WC+CTW T +βKT RK

]
< 0, (B.45)

where

ΓXY :=−βρXT X +AT
pYAp,

then control gain K and observer gain G can be obtained as follows:

K = ZU−1, (B.46)

G = Y−1W. (B.47)

Proof. Proof (i): Compared to the Theorem 3 of [Gao and Shi (2013)],

Λ1 <−ρXT X , (B.48)

where

Λ1 = (A+BK)T X +X(A+BK)+AT
p XAp +Q+KT RK. (B.49)
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Multiplying X−1 on the left-hand side and on the right-hand side of (B.48), and letting

U = X−1, we can get

U(A+BK)T +(A+BK)U +UAT
pU−1 +ApU +ρIn +U(Q+KT RK)U < 0. (B.50)

Now letting Z = KU and using Schur complement inequality, (B.50) is implied by⎡
⎢⎢⎣

ΓUV UAT
p U ZT

ApU −U 0 0

U 0 −Q−1 0

Z 0 0 −R−1

⎤
⎥⎥⎦< 0, (B.51)

where

ΓUV :=UAT +AU +ZT BT +BZ +ρIn.

Hence inequality (i) is proved.

Proof (ii): Applying Λ1 <−ρXT X from (B.48) into (B.35), we can write[−ρXT X +αAT
pYAp −X(BK)−KT RK

−(BK)T X−KT RK αΛ2 +KT RK

]
< 0, (B.52)

where

Λ2 = (A+GC)TY +Y (A+GC).

Let W = Y−1G, and α = 1/β , we can obtain[
ΓXY −βX(BK)−βKT RK

−β (BK)T X−βKT RK ATY +YA+WC+CTW T +βKT RK

]
< 0, (B.53)

where

ΓXY :=−βρXT X +AT
pYAp.

This competes the proof.

Furthermore, the corresponding value of the cost function (B.24) satisfies the following

inequality:

J < E[xT
0 U−1x0]. (B.54)

Consequently, solving the following optimization problem allows us to determine the opti-

mal cost bound.

J∗ = minψ, (B.55)

subject to [−ψ xT
0

x0 −U

]
< 0. (B.56)
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B.2.3 Future works

In this section, I would like to formulate a problem of stochastic incentive Stackelberg game

through observer-based control design. However, the results and discussions on this issue

will be future investigations. Consider a stochastic system governed by the Itô differential

equation defined by

dx(t) =
[
Ax(t)+B0u0(t)+B1u1(t)

]
dt +Apx(t)dw(t), x(0) = x0, (B.57a)

y(t) =Cx(t) (B.57b)

where u0(t) ∈ R
m0 denotes the leader’s control input. u1(t) ∈ R

m1 denotes the follower’s

control input. The definitions of the other variables are the same as those in stochastic

system (B.23). The coefficient matrices A, B0, B1, Ap and C are of suitable dimensions. In

the following, we use P0 to represent the leader and P1 to represent the follower.

On the other hand, the cost functions of P0 and P1 are correspondingly given by

J0(u0, u1) =
1

2
E

[∫ ∞

0

{
xT (t)Q0x(t)+uT

0 (t)R00u0(t)+uT
1 (t)R01u1(t)

}
dt
]
, (B.58a)

J1(u0, u1) =
1

2
E

[∫ ∞

0

{
xT (t)Q1x(t)+uT

0 (t)R10u0(t)+uT
1 (t)R11u1(t)

}
dt
]
, (B.58b)

where Q1 = QT
1 ≥ 0, R00 = RT

00 > 0, R01 = RT
01 ≥ 0, R10 = RT

10 ≥ 0 and R11 = RT
11 > 0, are

of suitable dimensions. The game process to determine the incentive Stackelberg strategy

set is as follows.

(i) In the stochastic system (B.57), the leader P0 achieves an observer-based output feed-

back strategy of team-optimal condition (B.59),

J0(u∗0, u∗1) = min
u0, u1

J0(u0, u1). (B.59)

(ii) The leader announces the strategy to the follower in advance through the following

estimated state observer pattern:

u0(t) = u0(t, x̂(t),u1) = Λx̂(t)+Ξu1(t), (B.60)

where Λ ∈ R
m0×n and Ξ ∈ R

m0×m1 are strategy parameter matrices and

dx̂(t) = [Ax̂(t)+Bcuc(t)]dt +G[ŷ(t)− y(t)]dt, x̂(0) = x0, (B.61a)

ŷ(t) =Cx̂(t), (B.61b)

uc(t) =
[

Kc0

Kc1

]
x̂(t) = Kcx̂(t), (B.61c)
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with

Bc :=
[
B0 B1

]
, uc := col

[
u0 u1

]
.

Furthermore, the cost functional in this case is

J0 (uc(t)) :=
1

2
E

[∫ ∞

0

{
x̂T (t)Q0x̂(t)+uT

c (t)Rcuc(t)
}

dt
]
, (B.62)

where

Rc := block diag
[
R00 R01

]
.

(iii) The follower determines the optimal strategy u∗1(t) through the output feedback by

means of the state observer responding to the announced strategy of the leader. i.e., to find

u∗1(t) with

dx̂(t) = [Ax̂(t)+B0[Λx̂(t)+Ξu1(t)]+B1u1(t)]dt +G[ŷ(t)− y(t)]dt, x̂(0) = x0,
(B.63a)

ŷ(t) =Cx̂(t), (B.63b)

u1(t) = K1x̂(t). (B.63c)

The cost functional in this case is

J1(u1) =
1

2
E

[∫ ∞

0

{
x̂T (t)Q1x̂(t)+ [Λx̂(t)+Ξu1(t)]T R10[Λx̂(t)+Ξu1(t)]

+uT
1 (t)R11u1(t)

}
dt
]
. (B.64)

(iv) Using the equivalence relation Kc1 = K1, the leader determines unknown parameters

and the incentive Stackelberg strategy

u∗0(t) = u∗0(t, x̂(t),u1) = Λx̂(t)+Ξu∗1(t), (B.65)

to achieve the team optimal solution (u∗0, u∗1).

Remark B.3. As we saw the state feedback control, when we consider incentive Stackel-

berg games, the coefficients B0 and B1 associated with the control inputs should be square

matrices. The incentive parameter Ξ was determined by the following matrix algebraic

equation:

ΞT (BT
0 P1−R10R−1

01 BT
0 Pc) = R11R−1

01 BT
1 Pc−BT

1 P1, (B.66)
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where P1,Pc ∈R
n×n are symmetric positive semi-definite matrices. The incentive parameter

Ξ can be uniquely determined if and only if (BT
0 P1−R10R−1

01 BT
0 Pc) is non-singular. If B0

is not a square matrix, the statement does not hold. We can also observe that R01 should

have the same size as B0. On the right side, the same dimension of R01 and Pc means

that the dimensions of B1 must be the same and square. However, with the observer-based

output feedback strategy, it can be seen from the preliminary results that no relationship

like (B.66) will occur. Therefore, to avoid this serious drawback, an observer-based output

feedback design can be considered.

B.3 H∞ constrained nonlinear stochastic LQ control

B.3.1 Preliminaries

Consider a nonlinear stochastic system governed by the Itô differential equation defined by

dx(t) =
[

f (x)+
N

∑
j=1

g j(x)u j(t)+h(x)v(t)
]

dt + r(x)dw, x(0) = x0, (B.67a)

z(t) = col
[

Cx(t) u1(t) · · · uN(t)
]
, (B.67b)

where f (0) = 0 and h(0) = 0. Here, x(t) ∈R
n represents the state vector. z(t) ∈R

nz repre-

sents the controlled output. ui(t)∈L 2
F ([0,Tf ], R

mi), i = 1, ... ,N represent the i-th control

inputs. v(t) ∈L 2
F ([0,Tf ], R

mv) represent the exogenous disturbance signal. w(t) ∈ R rep-

resents a one-dimensional standard Wiener process defined in the filtered probability space

(Ω, F , P, Ft) with Ft = σ{w(s) : 0≤ s≤ t} [Zhang et al. (2006), Zhang et al. (2008)].

Now, the finite horizon nonlinear stochastic H∞ control with multiple decision makers

that is based on a stochastic Nash game is given below.

Definition B.5. For any given γ > 0, 0 < Tf < ∞, v(t)∈L 2
F ([0,Tf ], R

mv), find, if possible,

a state feedback strategy set ui(t) = u∗i (t) ∈L 2
F ([0,Tf ], R

mi), i = 1, ... ,N, such that

(i) The trajectory of the closed-loop system (B.67) satisfies

0≤ Jv(u∗1, ... ,u
∗
N , v∗, x0)≤ Jv(u∗1, ... ,u

∗
N , v, x0), (B.68)

where

Jv(u1, ... ,uN , v, x0) = E

[∫ Tf

0
[γ2‖v(t)‖2−‖z(t)‖2]dt

]
, (B.69)

‖z(t)‖2 = xT (t)CTCx(t)+
N

∑
j=1

uT
j (t)u j(t) (B.70)
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for ∀v(t) �= 0 ∈L 2
F ([0,Tf ], R

mv).

(ii) When the worst case disturbance v∗(t) ∈L 2
F ([0,Tf ], R

mv), if existing, is implemented

in (1), ui(t) ∈ L 2
F ([0,Tf ], R

mi), i = 1, ... ,N satisfy the following the Nash equilibria

defined by

Ji(u∗1, ... ,u
∗
N , v∗, x0)≤ Ji(u∗1, ... , u∗i−1, ui, u∗i+1, ... ,u

∗
N , v∗, x0), (B.71)

where

Ji(u1, ... ,uN , v, x0) = E

[∫ Tf

0
[xT (t)Qix(t)+uT

i (t)Riui(t)]dt
]

(B.72)

with Qi = QT
i ≥ 0 and Ri = RT

i > 0.

That is, the considered H∞ control problem for stochastic nonlinear systems with mul-

tiple decision makers is to find the v∗ and u∗i such that the inequalities (B.68) and (B.71)

hold, respectively.

Theorem B.3. [Mukaidani et al. (2015b)] Consider the following cross-coupled Hamilton-

Jacobi-Bellman (HJB) equations:

∂V T
v

∂ t
+

∂V T
v

∂x
f̂K(x)− γ−2

4
· ∂V T

v
∂x

h(x)hT (x)
∂Vv

∂x
−m̂T (t,x)m̂(t,x)+

1

2
rT (x)

∂ 2Vv

∂x2
r(x) = 0,

(B.73a)

∂V T
i

∂ t
+

∂V T
i

∂x
f̂−i(x)+ xT (t)Qix(t)−1

4
· ∂V T

i
∂x

gi(x)R−1
i gT

i (x)
∂Vi

∂x
+

1

2
rT (x)

∂ 2Vi

∂x2
r(x) = 0,

(B.73b)

where i = 1, ... ,N, Vv =Vv(t,x), Vi =Vi(t,x), Vv(Tf ,x(Tf )) = 0, Vi(Tf ,x(Tf )) = 0,

f̂K(x(t)) := f (x(t))+
N

∑
j=1

g j(x)Kj(t,x),

f̂−i(x(t)) := f (x(t))+
N

∑
j=1, i�=i

g j(x)Kj(t,x)+h(x(t))Kv(t,x),

m̂T m̂ := xT (t)CTCx(t)+
N

∑
j=1

KT
j (t,x)Kj(t,x).

Suppose there exist a set of solutions (Vv, V1, ... ,VN) then the finite horizon Nash based

H∞ control has a strategy set

v∗(t,x) = K∗v (t,x) =−
γ−2

2
hT ∂V ∗v (t,x)

∂x
, (B.74a)

u∗i (t,x) = K∗i (t,x) =−
1

2
R−1

i gT
i

∂V ∗i (t,x)
∂x

. (B.74b)
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Proof. Let us consider the following H∞ control problem for the closed-loop stochastic

system with arbitrary strategies ui(t,x) = Ki(t,x), i = 1, ... ,N.

dx(t) =
[

f̂K(x(t))+h(x(t))v(t)
]

dt + r(x(t))dw(t), (B.75a)

z(t) = m̂ :=
[

xT (t)CT KT
1 (t,x) · · · KT

N (t,x)
]T

. (B.75b)

Applying Lemma 2.1 of [Zhang et al. (2006)] to the stochastic system (B.75) yields the

HJB equation (B.73a) and a worst case disturbance is (B.74a). Furthermore, in order to

apply LQ problem that is defined by [Zhang et al. (2006)], the following regulator problem

is considered.

minimize J−i(ui), (B.76)

s.t. dx(t) = [ f̂−i(x(t))+gi(x(t))ui(t)]dt + r(x(t))dw(t),

where

J−i(ui) := Ji(K∗1 ... , K∗i−1, ui, K∗i+1, ... ,K
∗
N , v∗, x0)

= E

[∫ Tf
0

[
xT (t)Qix(t)+uT

i (t,x)Riui(t,x)
]

dt
]
.

If there exists a nonnegative Lyapunov function Vi(t,x) solving the HJB equation (B.73b).

Thus, we have

J−i(K∗i )≥ E[Vi(0,x0)] (B.77)

with the optimal strategy (B.74b) can be derived, respectively.

B.3.2 Future works

In this section, I would like to formulate a problem of H∞-constrained incentive Stackelberg

game with stochastic nonlinear system dynamics. However, the results and discussions on

this issue will be future investigations. Consider a nonlinear stochastic system governed by

the Itô differential equation defined by

dx(t) =
[

f (x)+
N

∑
j=1

[
g0 j(x)u0 j(t)+g j(x)u j(t)

]
+h(x)v(t)

]
dt + r(x)dw, x(0) = x0,

(B.78a)

z(t) = col
[

Cx(t) uuu0(t) u1(t) · · · uN(t)
]
, (B.78b)

uuu0(t) = col
[

u01(t) · · · u0N(t)
]
, (B.78c)

where f (0)= 0 and h(0)= 0. Here, uuu0(t)∈L 2
F ([0,Tf ], R

m0), m0 =∑N
j=1 m0 j with u0 j(t)∈

L 2
F ([0,Tf ], R

m0 j) denotes the leader’s control input. ui(t)∈L 2
F ([0,Tf ], R

mi), i= 1 , ... ,N
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denotes the ith follower’s control input. In the following, we use P0 to represent the leader

and Pi, i = 1 , ... ,N to represent the ith follower. The definitions of the other variables are

the same as those in stochastic system (B.67).

On the other hand, the cost functions of P0 and Pi, i = 1, 2, ..., N are given by

J0(u01, ... ,u0N , u1, ... ,uN , v)

=
1

2
E

[∫ Tf

0

{
xT (t)Q0x(t)+

N

∑
i=1

[
uT

0i(t)R00iu0i(t)+uT
i (t)R0iui(t)

]}
dt

]
, (B.79a)

Ji(u01, ... ,u0N , u1, ... ,uN , v)

=
1

2
E

[∫ Tf

0

{
xT (t)Qix(t)+uT

0i(t)R0iiu0i(t)+uT
i (t)Riiui(t)

}
dt

]
, i = 1, ... ,N,

(B.79b)

where Q0 :=CTC, Qi = QT
i ≥ 0, R00i = RT

00i > 0, R0i = RT
0i ≥ 0, R0ii = RT

0ii ≥ 0 and Rii =

RT
ii > 0, i = 1, ... ,N are of suitable dimensions, and the entries are piece-wise continuous

functions of time on the fixed interval [0, Tf ].

The game process to determine the incentive Stackelberg strategy set is as follows:

(i) The leader announces a strategy ahead of time to the followers with the following feed-

back pattern.

u0i(t) = u0i(t,x(t),ui) = Γix(t)+Ξiui(t), (B.80)

for i = 1, ... ,N, where Γi ∈ R
m0i×n and Ξi ∈ R

m0i×mi are strategy parameter matrices of

suitable dimensions. Moreover, their components are piece-wise continuous functions of

time on the interval [0, Tf ].

(ii) The followers determine their strategies to achieve a Nash equilibrium by responding

to the announced strategy of the leader.

(iii) The leader determines the incentive Stackelberg strategy

u∗0i(t) = Γix(t)+Ξiu∗i (t), (B.81)

for i = 1, ... ,N to achieve the team optimal solution (uuu∗0,u
∗
1, ...,u

∗
N), which is associated

with the Nash equilibrium strategy u∗i (t) for i = 1, ... ,N of the followers.

The finite-horizon H∞-constrained incentive Stackelberg game with multiple non-

cooperative followers can be formulated as follows.

For any disturbance attenuation level γ > 0, 0 < Tf < ∞, we need to find an incentive

strategy of P0 by (B.81) and a closed-loop Nash strategy of Pi by

u∗i (t) := Ki(t), i = 1, ... ,N,

considering the worst-case disturbance v∗(t) := Fγ(t) such that
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(i) The trajectory of the closed-loop system (B.78) satisfies the following team-optimal

condition (B.82a) along with H∞ constraint condition (B.82b),

J0(x0,uuu∗0,u
∗
1, ... ,u

∗
N ,v

∗)≤ J0(x0,uuu0,u1, ... ,uN ,v∗), (B.82a)

0≤ Jv(x0,uuu∗0,u
∗
1, ... ,u

∗
N ,v

∗)≤ Jv(x0,uuu∗0,u
∗
1, ... ,u

∗
N ,v). (B.82b)

(ii) A set of decision (u∗0i, u∗i ) ∈ R
m0i+mi , i = 1, ... ,N satisfying the following Nash

equilibrium inequality:

Ji(x0,uuu∗0,u
∗
1, ... ,u

∗
N ,v

∗)≤ Ji(x0,λ ∗−i(u0i),λ ∗−i(ui),v∗) (B.83)

with λ ∗−i(α) := (λ ∗1 , ... ,λ
∗
i−1, α, λ ∗i+1, ... ,λ

∗
N).

Then, the strategy-set (u∗0i, u∗i ) ∈ R
m0i+mi , i = 1, ... ,N constitutes both a team-

optimal incentive Stackelberg strategy with the H∞ constraint of the leader and Nash

equilibrium strategies of the followers for a two-level hierarchical game.

Remark B.4. It should be noted that to implement the proposed method for the nonlinear

stochastic systems, HJB equations like (B.73) will appear, and it is more difficult to find

appropriate solutions numerically than that of the linear systems.
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Appendix C

Stochastic H∞-Control for Small γ

If the disturbance attenuation level is too small, the H∞-control design described in our

thesis will be invalid. To solve such problems [Pan and Başar (1993)] characterizes a class

of stabilizing controllers. Furthermore, the minimum value of γ = γmin can be found until

the system is stable. Consider the following stochastic linear system:

dx(t) = [Ax(t)+Bu(t)+Ev(t)]dt +Apx(t)dw, x(0) = x0 (C.1a)

z(t) = col
[
Cx(t) Du(t)

]
, DT D = I, (C.1b)

where, x(t) ∈ R
n is the state vector, u(t) ∈ L 2

F (R+, R
nu) is the control input, v(t) ∈

L 2
F (R+, R

nv) is the deterministic disturbance, w(t) ∈ R is a one-dimensional wiener pro-

cess and z(t) ∈ R
nz is the controlled output.

With this system, we associate the standard quadratic performance index:

Ju(u, v) = ‖z‖2
2 = E

[∫ ∞

0

{
xTCTCx+uT u

}
dt
]
. (C.2)

The H∞-optimal control problem is the minimization of the quantity

‖L ‖∞ = sup
v ∈L 2

F (R+, R
nv)

v �= 0, x0 = 0

‖z‖2

‖v‖2
. (C.3)

The derivation of a feedback controller u = Kx will ensure a performance within a given

neighborhood of the infimum of (C.3). Let this minimum value be represented by γmin, i.e.

γmin = inf
u∈L 2

F (R+, Rnu)
sup

v ∈L 2
F (R+, R

nv)
v �= 0, x0 = 0

‖z‖2

‖v‖2
. (C.4)

We can associate this to the linear-quadratic differential game [Başar and Bernhard (2008)]

with worst-case disturbance problem, which has the cost functional

J(u, v) = E

[∫ ∞

0
(‖z‖2− γ2‖v‖2)dt

]
. (C.5)
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Definition C.1. [Başar and Bernhard (2008)] A strategy pair (u∗, v∗) ∈ Γu × Γv is in

saddle-point equilibrium if

J(u∗, v)≤ J(u∗, v∗)≤ J(u, v∗)

for all (u∗,v)∈ Γu×Γv and (u, v∗)∈ Γu×Γv, where Γu×Γv means a product vector space.

For each γ > γmin, the differential game allows the saddle-point controller design

[Başar and Bernhard (2008)] with state feedback law. The design can also be transferred as

a state feedback Nash equilibrium strategy [Zhang and Chen (2004)] by changing the sign

of the disturbance performance (C.5) as

Jv(u,v) = E

[∫ ∞

0
(γ2‖v‖2−‖z‖2)dt

]
. (C.6)

Due to the numerical stiffness, the computation of γmin and the corresponding H∞-optimal

controller for small values of γ > 0 have serious difficulties.

The following theorem can be used to design the controller whether such problems of

small disturbance attenuation levels occur.

Theorem C.1. For the system (C.1), suppose the generalized algebraic Riccati equation

(GARE):

AT Z +ZA+AT
p ZAp−ZSZ +CTC = 0, (C.7)

with

S := BBT − γ−2EET ,

has the solution Z > 0 > 0. If [A, Ap|C] is exactly observable, then the stochastic H2/H∞

control problem admits a solution set:

u∗(t) = K∗x(t) =−BT Zx(t), (C.8)

v∗(t) = K∗γ x(t) = γ−2ET Zx(t). (C.9)

Proof. Let u(t) = u∗(t) =−BT Zx(t), then by Lemma 5 of [Zhang and Chen (2004)], there

exist a solution Z > 0 to the following ARE:

Z(A−BBT Z)+(A−BBT Z)T Z +AT
p ZAp +ZBBT Z + γ−2ZEET Z +CTC = 0, (C.10)

which is the same as GARE (C.7).

Now we have to show
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(i) ‖L ‖∞ < γ .

Substituting u(t) = u∗(t) =−BT Zx(t) into (C.1) gives⎧⎪⎨
⎪⎩

dx(t) =
{
(A−BBT Z)x(t)+Ev(t)

}
dt +Apx(t)dw(t),

z(t) =

[
Cx(t)

−DBT Zx(t)

]
,

(C.11)

where x(0) = x0. Applying Ito’s formula to (C.11) and considering GARE (C.10), we have

E

[∫ ∞

0
d(xT Zx)

]
= E

[∫ ∞

0

{(
(A−BBT Z)x+Ev

)
(Zx+ xT Z)+ xT AT

p ZApx
}

dt
]

or, − xT
0 Zx0 = E

[∫ ∞

0

{
xT (Z(A−BBT Z)+(A−BBT Z)T Z +AT

p ZAp)x

+ vT ET Zx+ xT ZEv
}

dt
]

= E

[∫ ∞

0

{
xT ÃT

2 Ã2x+ vT ET Zx+ xT ZEv
}

dt
]

= E

[∫ ∞

0

{
xT (CTC+ γ−2ZEET Z +ZBBT Z)x+ vT ET Zx+ xT ZEv

}
dt
]

= E

[∫ ∞

0

{
zT z+ γ2v∗

T
v∗+ vT ET Zx+ xT ZEv

}
dt
]

[suppose, v∗(t) = γ−2ET Zx(t)]

or, E

[∫ ∞

0

{
γ2vT v− zT z

}
dt
]
= xT

0 Zx0 +E

[∫ ∞

0

{
γ2vT v+ γ2v∗

T
v∗ − γ2vT v∗ − γ2v∗

T
v
}

dt
]

= xT
0 Zx0 + γ2

E

[∫ ∞

0
(v− v∗)T (v− v∗)dt

]
(C.12)

So

Jv(u∗, v) = E

[∫ ∞

0

{
γ2vT v− zT z

}
dt
]

= xT
0 Zx0 + γ2

E

[∫ ∞

0
(v− v∗)T (v− v∗)dt

]
≥ Jv(u∗, v∗) = xT

0 Zx0. (C.13)

Now, if we define an operator L1v = v−v∗, then form (C.13) we have (for x(0) = x0 = 0):

Jv(u∗, v) = γ‖v‖2−‖z‖2 = γ2‖L1v‖2 ≥ ε‖v‖2 > 0

, for some ε > 0, which yields ‖L ‖∞ < γ .

(ii) u∗ minimizes the output energy ‖z‖2
2 when v∗ applied in (C.1), i.e.,

u∗ = argmin
u

Ju(u, v∗), ∀u ∈L 2
F (R+, R

n
u).

When worst-case disturbance v = v∗(t) = γ−2ET Zx(t) is applied to (C.1), we have⎧⎪⎨
⎪⎩

dx(t) =
{
(A+ γ−2EET Z)x(t)+Bu(t)

}
dt +Apx(t)dw(t)

z(t) =

[
Cx(t)
Du(t)

]
,

(C.14)
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where x(0) = x0. Now the H2 optimization problem becomes a standard stochastic LQ

optimal control problem, so we can write [Rami and Zhou (2000)]

On the other hand, let v(t) = v∗(t) = K∗γ x(t) = γ−2ET Zx(t), then by Lemma 6 of

[Zhang and Chen (2004)], there exist a solution Z > 0 to the following ARE:

Z(A+ γ−2ZEET Z)+(A+ γ−2ZEET Z)T Z +AT
p ZAp +ZBBT Z− γ−2ZEET Z +CTC = 0,

(C.15)

which is the same as GARE (C.7). Applying Ito’s formula in (C.14) considering (C.15) we

get,

E

[∫ ∞

0
d(xT Zx)

]
= E

[∫ ∞

0

{(
(A+ γ−2EET Z)x+Bu

)
(Zx+ xT Z)+ xT AT

p ZApx
}

dt
]

or, − xT
0 Zx0 = E

[∫ ∞

0

{
xT ZBBT Zx− xTCTCx+uT BT Zx+ xT ZBu

}
dt
]
[by (C.15)]

or, E

[∫ ∞

0

{
xTCTCx+uT u

}
dt
]

= xT
0 Zx0 +E

[∫ ∞

0

{
uT u+u∗

T
u∗+uT u∗ −uT u∗ −u∗

T
u
}

dt
]

or, Ju(u, v∗) = xT
0 Zx0 +E

[∫ ∞

0
(u−u∗)T (u−u∗)dt

]
. (C.16)

If we put u = u∗, then form (C.16) we get

Ju(u, v∗)≥ Ju(u∗, v∗) = xT
0 Zx0. (C.17)

It can be observed from both (C.10) and (C.15) that these equations can be simplified as

the GARE (C.7). So, the solution of GARE (C.7) can be written as Z > 0.

Using above results we can find from (C.4)

γmin = inf
u∈L 2

F (R+, Rnu)
sup

v ∈L 2
F (R+, R

nv)
v �= 0, x0 = 0

√
E

[∫ ∞

0
{xTCTCx+uT u}dt

]
√

E

[∫ ∞

0
vT v dt

]

= inf
u∈L 2

F (R+, Rnu)
sup

v ∈L 2
F (R+, R

nv)
v �= 0, x0 = 0

√
E

[∫ ∞

0
{xT [CTC+K∗T K∗]x}dt

]
√
E

[∫ ∞

0
xT KT

γ Kγx dt
] .
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Numerical example

In order to demonstrate the efficiency of our proposed strategies, a numerical example is

investigated. Let us consider the following system matrices of the system (C.1):

A =

⎡
⎣ −0.52 1.12 0

0 −0.24 1

0.23 0.85 −0.16

⎤
⎦ , Ap = 0.1A, x(0) =

⎡
⎣ 1

0.5
−0.6

⎤
⎦ ,

B =

⎡
⎣0.15

0.12

3.55

⎤
⎦ , E =

⎡
⎣ 0.23

−0.52

0.28

⎤
⎦ , C = [1 1 1], γ = 3.

If we apply our proposed method to the system (C.1), we get the following numerical

results.

Z =

⎡
⎣2.3417e−01 2.8373e−01 2.4301e−01

2.8373e−01 4.3796e−01 3.7839e−01

2.4301e−01 3.7839e−01 3.3864e−01

⎤
⎦ ,

K =
[−9.3184e−01 −1.4384e+00 −1.2840e+00

]
,

Kγ =
[−2.8487e−03 −6.2811e−03 −5.1173e−03

]
.

0 1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time

x(
t)

x1
x2
x3

Fig. C.1: Trajectory of the state.

The MATLAB code is developed on the basis of Lyapunov iterations which converges

to the required solutions of GARE (C.7) with an accuracy of 1.0e− 14 order only after 7

iterations. It can be observed form the response depicted in Fig. C.1 that the state attains

the mean-square stable.
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γ 3 1.5 · · · 0.09375 0.140625 · · · 0.1532178

Solution exists exist · · · does not exist does not exist · · · exists (γmin)

Table C.1: Bisection method for finding γmin.

By applying the bisection method, it can be found that the minimum value of γ = γmin =

0.1532178 with an accuracy of 1.0e− 11, which is depicted in Table C.1. Therefore, we

can choose any small value of the disturbance level γ > 0.1532178. It should be noted that

for any value of γ < γmin, the solution of GARE (C.7) does not exist and the H∞-control

cannot be designed.
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