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Introduction:  
Among the cereal crops growing today, rice (Oryza sativa L.) is regarded as the most 
important, feeding a large share of the world’s population. Rice cultivars with enhanced 
phosphorus (P)-use efficiency are increasingly important for sustainable food production, as 
P is a prominent nutritional constraint to global rice production. Alternative and sustainable 
approaches are needed to decrease agriculture’s overdependence on P fertilizers, and include 
manipulating crops by: (i) enhancing the ability of its roots to acquire limiting inorganic P 
(Pi) from the soil (i.e. increased P-acquisition efficiency), and/or (ii) increasing the total 
biomass/yield that is produced per molecule of P assimilated from the soil (i.e. increased 
P-use efficiency or PUE).  
 
Research Objectives: 
Aims of the study were to examine (1) low-P tolerance mechanisms exhibited by rice plant 
under P-deficient conditions, (2) molecular mechanisms that drive P remobilization in rice, 
(3) partitioning of acquired P among different vegetative and reproductive organs by low-P 
tolerant and sensitive rice genotypes, (4) genotypic differences of yield components, grain 
yield, and grain P loading of low-P tolerant and sensitive rice genotypes, and (5) genomic 
regions associated with low-P tolerance of Japonica rice 
     
Research Methodology: 
The entire study comprised of two experiments with Akamai (low-P tolerant) and 
Koshihikari (low-P sensitive) cultivars done in pots with Regosol soil and another 
experiment with F5 mapping population originated from crossing Akamai with Koshihikari. 
Supporting hydroponic experiment was done. For experiments in Regosol, two P fertilizer 
treatments: P0 (no P supply) and P100 (P supply to a rate of 100 mg P kg-1 soil 
Ca(H2PO4)2•H2O). Supporting experiment was done in nutrient solutions either with (64 µM/ 
+P) or without (0 µM/-P) P. In first experiment with Regosol, Plants were harvested at three 
consecutive sampling times; 28 days after transplanting (DAT), 49 DAT, and at the start of 
the panicle initiation. Shoots were partitioned into bottom, middle, and top leaves. Biomass 
and P accumulation in these different tissues, P remobilization from mature/senescing leaves 
to upper young leaves were measured. In second soil experiment, plants were harvested at 
physiological maturity and shoots were partitioned into stems, fully senesced, partly senesced, 



and green leaves, and panicles. Soil column in the pot was divided into two equal portions 
(13 cm each) and were considered as upper and lower soil layers in which root dry weight 
(DW) and length were measured in each layer.!Grain yield and yield components were also 
determined. In supporting experiment, plants were sampled at four-leaf stage in which 
bottom two leaves were considered as lower leaves and top two leaves as upper leaves. 
Membrane lipid components of different leaves were separated by two-dimensional 
thin-layer chromatography (2D TLC). To identify the genomic regions associated with low-P 
tolerance of Japonica rice, F5 mapping population was grown in Andosol without P addition 
for 23 days. Top 10 plants and bottom 10 plants in terms of shoot length were selected as 
low-P tolerance and low-P sensitive sets, respectively. DNA extracted from young leaves of 
each set was used to perform quantitative trait loci (QTL) – sequence. 
 
Results and Discussion: 
Plasticity of root growth and shoot growth response: 
Low-P tolerant Akamai is capable of acquiring more P and producing higher plant biomass 
than low-P sensitive Koshihikari. At all harvesting times, Akamai grown under P0 could 
produce biomass similar to that of Koshihikari in a P-supplied condition. Akamai shares this 
similarity with Koshihikari in terms of the total P uptake highlighting the ability of Akamai 
for growth and strong establishment under P-deprived conditions in soil. The specific 
adaptation associated with bellow ground part of Akamai to P-deficiency is the more plastic 
nature of root growth. Akamai exhibited more explorative root growth behavior (enhanced 
root DW and length). It attained approximately 3-fold greater root DW and length than those 
of Koshihikari under P0. This probably helps to explore greater volumes of soil to acquire 
more P under P-deficient conditions.  
 
Membrane lipid remodeling based P remobilization: 
Results confirm that Akamai grown under P-deprived conditions posses an efficient P 
remobilization that supports redistribution of acquired P based on the demand of the different 
segments within the plant. The P remobilization efficiency of Akamai shifted from 56% to 
72% during the period from 28 DAT to panicle initiation. At maturity, the value shifted to 
85% and Akamai in P0 achieved similar green leaf P concentration to that grown in P100 
condition. Akamai utilizes acquired P more efficiently through investing lesser amount of P 
to lower senescing leaves and markedly greater proportion to upper young leaves and 
panicles under P-limitation driven by its efficient P remobilization. Supporting experiment 
reveals that efficient P remobilization of Akamai under P-deficiency is partly related to 
membrane lipid remodeling (replacement of phospholipids with lipids that do not contain P). 
Among the two rice cultivars, only Akamai made this replacement strongly only in lower 
leaves when it is grown without external P supply whereas under same conditions, 
Koshihikari did not alter phospholipid content among lower and upper leaves. In lower 
leaves of Akamai, phospholipids were mainly replaced by galactolipids. However, 
phospholipids in upper leaves of Akamai between treatments with and without P addition did 
not differ. From these results, it is evident that, under P-deficient conditions, Akamai 
maintains lower level of phospholipid pool and use lipids that do not contain P instead in 
lower leaves while investing more phospholipids to upper region of the plant where leaf 
emergence and expansion occur.  
  
Grain yield, yield components, and loading of P into grains:  
Both cultivars tended to show higher grain yield when they were grown under P100 and this 



happening was more prominent with Koshihikari. The highest grain yield was produced by 
Koshihikari in P100 whereas the lowest was recorded when it is grown in P0. The reduction 
of grain yield of plants grown in P0 compared to those in P100 was 20% for Akamai and 
45% for Koshihikari. Under P100 condition, Koshihikari showed 20% more grain yield than 
that of Akamai. In contrast, Akamai recorded 22% and 59% greater grain yield and grain P 
concentration, respectively, than those of Koshihikari under P0 condition. The number of 
filled grains per panicle appeared to be the key yield component determining the grain yield 
difference of two cultivars under two P treatments where under P100 conditions, this 
parameter was higher in Koshihikari. Under P0 conditions, Akamai had a higher value. For 
that reason, P-deficiency had a stronger impact on grain filling of Koshihikari where the 
filled grain percentage of Koshihikari under P0 was lower by 29% than that under P100. 
However, for Akamai, it was only 11% lower.  
 
 
Genomic regions associated with low-P tolerance of Japonica rice: 
Genomic region associated with low-P tolerance of Akamai rice cultivar was identified in 
chromosome 12 in the region from 23.6 Mb to 27.5 Mb (lower end) and was named as QTL 
for Low-P Tolerance 1 (qLPT1). Novel genes responsible for low-P tolerance could exist in 
qLPT1 and further molecular examination of qLPT1 would clarify those novel genes 
associated with the low-P tolerance of Akamai.  
  
Conclusions: 
In response to P-deficient conditions, low-P tolerant Akamai rice cultivar develops an 
extensive root system and explores greater volumes of soil to acquire more soil P than low-P 
sensitive Koshihikari. This development and exploration helps Akamai to support its 
enhanced shoot growth. Akamai starts to remobilize part of the P in lower mature leaves to 
upper younger leaves starting from early growth stage and at maturity, it allocates remarkably 
lower P concentrations to roots, fully and partly senesced leaves, and stems while investing a 
greater amounts to more active green leaves and panicles. Efficient leaf P remobilization of 
Akamai is partly related to lipid remodeling in lower mature leaves in which phospholipids 
were mainly replaced with galactolipids. Akamai could attain the yield advantage over 
Koshihikari under P-deficient conditions and the key yield component determining the grain 
yield difference between two cultivars is the number of filled grains per panicle. Low 
P-tolerance trait of Akamai is attributed by QTL for Low-P Tolerance 1 (qLPT1) located in 
chromosome 12. P efficient rice genotypes could be achieved by: (i) developing cultivars 
having explorative root growth to acquire more soil P under P-deficiency, and (ii) producing 
high-yielding plants having overall lower P concentrations or by increasing the redistribution 
of P within the plant so as to maximize growth and biomass allocation to the developing 
organs. Significant reductions in rice P pools may be achieved by replacing membrane 
phospholipids with galacto- and sulfolipids, which do not contain P. Improved PUE would 
also be achieved by increasing P remobilization from senescing tissues to young, expanding 
organs, including the developing grains. 

 


