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Chapter 1

Introduction

1.1 Background

The control theories develop fast these years, especially, some control

theories aim to perform a control process by replacing workers and some con-

trol theories borrow ideas from biological systems become applicable. The

control theories that achieve their control ability by emulating biological

intelligence can be defined as ”intelligent control” [1]. Intelligent control

contains many areas, main of them are fuzzy control, artificial neural net-

works, expert and planning system, and genetic algorithms. This dissertation

will explain some intelligent controllers that developed based on a kind of

artificial neural networks (ANN) in detail.

In reference [2], ANN is defined as ”A neural network is an intercon-

nected assembly of simple processing elements, units or nodes, whose func-

tionality is loosely based on the animal neuron. The processing ability of the

network is stored in the interunit connection strengths, or weights, obtained

by a process of adaptation to, or learning from, a set of training patterns.”
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Figure 1.1: A simple structure of a neuron

From the definition, it is known that the ANNs are inspired by neurons.

To understand the basic structure of ANNs, some simple neurobiology are

explained according to Fig. 1.1.

In human brain, there are almost 1011 nerve cells or neurons [3]. There

are about 1015 connections between these neurons, these connections are

called synapses, the branches of neurons are referred to as dendrites. For

a neuron, it receives thousands of incoming signals from other neurons, all

these signals are finally reach cell body. All these signals are then integrated

together in some way, and if the resulting signal exceeds some threshold, the

neuron will be activated and its signal will be transferred to other neurons

through axon.

Based on the above explanation, a single-input neuron, a multiple-input

neuron and a multiple-layer network can be constructed [4] [5] [6]. A figure

shows the structure of single-input neuron is given in Fig. 1.2. The input u is

multiplied by weight w, in the summer, wu is added with bias b, through a
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Figure 1.2: Structure of a single-input neuron

activation function the output value y can be calculated. y can be expressed

as:

y = f(wu+ b). (1.1)

The activation function is decided by the users, particularly, log-sigmoid

function which is given in (1.2) is a commonly used activation function.

1

1 + e−n
, (1.2)

where, n represents the order. This function takes the input into the range

0 to 1.

Multiple-input neuron is an extension of single-input neuron, it has more

than one input. Each input is weighted by the corresponding weight, Fig.

1.3 shows the structure of a multiple-input neuron. The output of the neuron

can be expressed as:

y = f(WU + b), (1.3)

where, W and U are as follows:

W = [w1, w2, · · · , wn], (1.4)

U = [u1, u2, · · · , un]
T . (1.5)
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Figure 1.3: Structure of a multiple-input neuron

Figure 1.4: Structure of a multiple-layered neural network

A multiple-layered network is a neural network with several layers. Each

layer has its weights, bias and activation function. As an example, a structure

of a multiple-layer neural network is shown in Fig. 1.4. The number of

neurons for each layer can be different, in this example, number of neurons

for first layer, second layer and mth layer are i, j and k. The weights of

each layer can be expressed as a weight matrix, for the first layer, the weight
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matrix can be as:

W1 =

⎡
⎢⎢⎢⎣
w1

1,1 w1
1,2 · · · w1

1,i

w1
2,1 w1

2,2 · · · w1
2,i

...
...

. . .
...

w1
n,1 w1

n,2 · · · w1
n,i

⎤
⎥⎥⎥⎦ . (1.6)

Bias can be expressed as a bias vector:

B1 = [b1,1, b1,2, · · · , b1,i]T . (1.7)

The output vector y of this multiple-layer neural network can be calculated

according to the following equation:

y = fm(Wm · · · f2(W2f1(W1U +B1) +B2) · · ·+Bm). (1.8)

The basic structure of ANNs is introduced from the above statement.

Based on such structure, the ANNs achieve their functions through training

of weights. However, for the conventional ANNs, there is a shortcoming that

limits the application of them, the training of weights costs too much time.

1.2 Cerebellar Model Articulation Controller

Cerebellar model articulation controller (CMAC) is a kind of ANNs, it

is utilized in modeling, classification and control fields; in control field, it is

a popular choice, because it has a shorter learning time than other ANNs [7]

[8] [9] [10] [11] [12].

CMAC is inspired by cerebellum, it proposed by Albus [13] [14] [15].

Albus proposed a cerebellum model, it is given in Fig. 1.5. In the figure, P

denotes the Purkinje cell, S represents the stellate b cell and B stands for

the basket cell [16]. For cerebellum, mossy fibers are one of the major inputs.

Informations are transfered from mossy fibers to the granule cells, through

the parallel fibers, finally they reach the Purkinje cells for processing [17].
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Figure 1.5: Albus’ cerebellum model

Figure 1.6: Two-dimensional CMAC structure

CMAC can be treated as a look-up table with partial learning ability

and generalization ability, based on an example of CMAC which is shown in

Fig. 1.6, these abilities are explained in detail. In the figure, S denotes the
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input signals, M represents the Memory Cells, W stands for the Weight

Tables (actual memory) and P is the response output. The above structure

can be formalized as: ⎧⎨
⎩

f : S → M
g : M → W
h : W → P.

The partial learning ability and generalization ability of CMAC will be

introduced based on Fig. 1.6. In the figure, there are three input signals,

the learning process is going to be stated based on S2, the partial learning

ability of CMAC is going to be explained based on input signals S2 and S3,

and the generalization ability of CMAC is going to be introduced according

to input signals S1 and S2.

The weights of CAMC are updated through its learning process, from

Fig. 1.6, S2 is mapped to [C, c], [H, h] and [L, l] in M , and the weights 3, 1

and 8 are select in A, the output of the system is sum of selected weights as:
∑N

i=1 Wi, in this equation, Wi denotes the selected weights. In this example,

the output is 12, the reference value (Rv) is 9, compare with the output

value (Ov) 12, the difference is 3, the number of weight tables (Nw) is 3, the

selected weights are updated according to the following equation:

W new
i = W old

i − Ov −Rv

Nw

, (1.9)

therefore, there is a −3
3
added to the selected weights.

The partial learning ability is a feature of CMAC, in Fig. 1.6, S2 and

S3 are two input signals, S2 activates [C, c], [H, h] and [L, l] and S3 activates

[A, a], [F, f ] and [I, i], on each coordinate, the projections of two input sig-

nals are dissimilar, thus, they are using different parts of CMAC and their

updating of weights do not influence each other. This kind of ability is the

partial learning ability of CMAC.
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The generalization ability is another feature of CMAC, this ability re-

sults CMAC a fast learning ability. In Fig. 1.6, S2 and S1 are similar input

signals, for S2, [C, c], [H, h] and [L, l] are selected, for S1, [C, c], [G, g] and

[K, k] are chosen, they have a common activated unit [C, c], that is to say,

when the weights for S2 are updated, part of S1’s weights is also being up-

dated, this kind of ability is local generalization ability of CMAC.

However, CMAC has its drawbacks, such as the requirement of memory

increases exponentially and the generalization ability decreases, as the learn-

ing accuracy increases. Hence, an optimized structure named as hierarchical-

clustering(HC) CMAC is proposed.

In this dissertation, HC-CMAC is utilized as a “controller parameter

tuner” for all the proposed schemes, the structure of HC-CMAC is going to

be explained in detail in Chapter 2 [18][19][51].

1.3 Dissertation Outline

The thesis consists of five chapters, they are roughly introduced as fol-

lows.

In Chapter 2, a HC-CMAC is proposed and a HC-CMAC based PID

controller is introduced.

The HC-CMAC focus on the improvement of conventional CMAC’s

shortcomings. In the conventional CMAC, as the learning accuracy increases

the requirement of memory increases exponentially, simultaneously, the gen-

eralization ability decreases. To overcome such disadvantages, a HC-CMAC

is proposed. The HC-CMAC can balance the requirement of memory, learn-

ing accuracy and generalization ability of a CMAC network. In this chapter,

a PID controller that its gains are tuned on-line by using a HC-CMAC is
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designed. The effectiveness of the controller is verified through some simu-

lations and experiments, the comparison between the proposed method and

conventional CMAC based PID controller is also demonstrated.

In Chapter 3, a HC-CMAC PID controller using closed-loop data is

designed.

In the proposed method, the fictitious reference iterative tuning (FRIT)

it utilized to enable the controller gains are tuned in an off-line manner. By

combining FRIT with HC-CMAC, the tuning of controller gains achieves

in an off-line manner, and model of control objective is unnecessary. The

advantage of the controller is shown by comparing the proposed method

with a previous study through both simulations and experiments.

In Chapter 4, a HC-CMAC Performance Driven(PD) PID controller is

proposed.

The controller improves control performances for transient state and

steady state. For transient state, the controller gains are tuned to minimize

the difference between fictitious output and output of closed-loop data. For

steady state, a Minimum Variance Control based index (MV index) Control

Performance Assessment (CPA) is proposed, and the controller gains are

tuned to minimize the difference between CPA and fictitious CPA. Since then,

the controller gains that improve control performance for both transient and

steady state are learned. The effectiveness of the controller is shown by some

simulation examples and experimental results, some comparisons between

the proposed method and some previous works are also given.

In Chapter 5, the conclusion of the dissertation is stated.
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Chapter 2

Design of Hierarchical
Clustering(HC) CMAC Based
Controllers

2.1 Introduction

As explained in the introduction of this thesis, cerebellar model articu-

lation controller (CMAC) is a type of ANNs. Comparing CMAC with con-

ventional ANNs, the CMAC and has a faster learning speed, since its local

generalization ability. Thus, CMAC network is utilized to optimize control

performance in some studies [20] [21] [22]. In the previous studies, CMAC

is not only utilized to generate system input but also it is applied to tune

controller parameters as a ‘controller parameter tuner’. Furthermore, when

CMAC is selected as a controller parameter “tuner”, if the controller includes

an integral element, for untrained signals, there exists an improvement of con-

trol performance, due to its generalization ability. Treating CMAC as a PID

controller “tuner”, some methods are proposed [23] [24] [25] [26] [27].

However, CMAC has its shortcoming. When a high learning accuracy
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Figure 2.1: Relationship between memory requirements and the number of
labels in each weight table for a three-dimensional CMAC

is required, a larger number of labels for each weight table is demanded, and

then, for a conventional CMAC a higher quantization of its input space is

needed, because the quantization of conventional CMAC is uniform. For a

three-dimensional CMAC, a relationship between memory requirements and

the number of labels in each weight table is demonstrated in Fig.2.1. From

the figure, it is clear that as the requirement for accuracy increases, the

requirement for memory increases rapidly.

Additionally, when the number of labels in each weight table increases,

a degeneration of CMAC’s generalization ability takes place. To improve

the drawbacks mentioned above, a CMAC in which the number of labels

for each weight table can be set individually is proposed. Such structure

allows weight tables with more labels to boost the accuracy of the CMAC

and weight tables with less labels to improve the generalization ability of the
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CMAC. Thus, learning accuracy requirements, memory requirements and the

generalization ability of CMAC can be balanced. In this novel CMAC, for

each weight table, hierarchical clustering is employed to determine its labels,

the number of labels for each weight table are specified by users. In this

study, the newly proposed CMAC is called HC-CMAC.

In this chapter, the proposed controller considers to tune PID controller

parameters using HC-CMAC in an on-line manner as a controller param-

eter “tuner” [51]. This controller focus on improving control performance

for transient state, some simulation examples and experiments are demon-

strated, and this controller is compared with a conventional CMAC based

PID controller which is proposed in [25] to show its effectiveness.

2.1.1 Hierarchical Clustering CMAC

In a conventional CMAC, the input space is quantized uniformly. This

means that if high-accuracy learning is required, the number of labels for

each weight table grows. This leads to larger memory requirements and a

decrease in generalization ability.

Therefore, a method in which each weight table can have a different

number of labels for creating a CMAC is proposed. In this case, the weight

tables with more labels boost the learning accuracy of the CMAC; while the

weight tables with less labels improve the generalization ability of the CMAC

and reduce memory requirements.

A CMAC generates similar outputs from similar inputs. Thus, it is im-

portant to separate similar inputs and dissimilar inputs into different groups.

In the HC-CMAC, hierarchical clustering is utilized to achieve this separa-

tion [26]. By using hierarchical clustering, various clusters are created and

12



the center points of these clusters are calculated. The center points are used

to represent the clusters, and each center point represents a label in the

HC-CMAC. During the learning and control processes, the current data for

each input dimension selects the closest center point so that the appropriate

weights can be selected. These centers are determined based on the following

process :

[Step1]

Initial closed-loop data are collected by applying a fixed PID controller to a

controlled objective. For each input dimension, the distances between each

data are calculated. For each data point, n neighbors are selected based on

the distance. n is a user specified parameter, it should be mentioned that

n ≤ Nod
Udnl

. Nod is short for “Number of data”, Udnl is short for “User desired

number of labels”

[Step2]

The data processing is utilized to create processed data by calculating the

average value of sum of each initial data point and its n neighbors. Because

neighbors of a data has similar property with the data, thus, it is considered

the processed data remain the property of initial data. As an example, in

Fig.2.2, pdata1=(data1 + data2)/(1 + n). In this case, n = 1.

[Step3]

Processed data are clustered using the ward method. The clustering process

continues until the user specified number of clusters is achieved. The number

of clusters is the user-specified number of labels. In Fig.2.2, the user-specified

number of labels is two.

[Step4]

The process stops until the requirements for each weight table are satisfied.

13



Figure 2.2: Label decision process

In [Step2], the initial data is considered to be processed because the

hierarchical clustering technique may leads to the clustering results shown in

Fig.2.3. The clustering results within the dashed circle provides an influence

presented by the dashed circle in the input space. In the input space, the

final labels of second and third layers are the same, which decreases the

generalization ability of the CMAC. Therefore, the initial data need to be

processed before the labels were created for each weight table.

For [Step3], the distance between two clusters is calculated using the

following equation:

D(A,B) =
NANB

NA +NB

d(μA, μB)
2, (2.1)

where NA and NB denote the number of data points belonging to clusters A

and B, μA and μB denote the centers of the two clusters. D(A,B) represents

14



Figure 2.3: Clustering results that may appears when using the initial data

the distance between cluster A and cluster B, while d(μA, μB) is the distance

between the center of cluster A and the center of cluster B.

Through the steps above, the center points for each input dimension

are created. The inputs can then be evaluated as similar or dissimilar by

judging whether they are close to the same center points. As the center

points for each input dimension are determined, the HC-CMAC structure

is created. An example of a two-dimensional HC-CAMC is presented in

Fig.2.4. The dots in the figure represent center points. The figure illustrates

a situation where the collected data is concentrated around coordinates with

small values. Thus, more labels are distributed in the part of the coordinate

space with smaller values in Fig.2.4. In this example, the user specified

two, three, and four as the numbers of labels for each weight table. In this

case, the first weight table provides the network with better generalization

15



Figure 2.4: Example of a two-dimensional HC-CMAC

ability and the third weight table provides the network with better learning

accuracy.

Because the HC-CMAC is utilized to tune PID gains in the proposed

method, the following PID control structure is considered:

Δu(t) = KI(t)e(t)−KP (t)Δy(t)−KD(t)Δ
2y(t)

= C(1)r(t)− C(z−1)y(t), (2.2)

e(t) := r(t)− y(t), (2.3)

C(z−1) = KI(t) +KP (t)Δ +KD(t)Δ
2, (2.4)

where e(t) denotes the control error signal, r(t) is the reference signal, y(t)

represents the signal of the system output, and u(t) represents the signal of

16



the system input. KP , KI , and KD are the controller gains of the propor-

tional, integral, and derivative, respectively. C(z−1) denotes the controller.

The controller parameters are the output of HC-CMAC:

KP (t) =
K∑

h=1

WP,h

KI(t) =
K∑

h=1

WI,h

KD(t) =
K∑

h=1

WD,h, (2.5)

where h=1,2,...,K and K denote the total number of the weight tables in the

HC-CMAC and WPID,h are the weights of the HC-CMACs.

2.2 Design of a HC-CMAC-PID controller

In the proposed method, when the following error criterion is minimized,

the desired control performance can be obtained:

J(t) =
1

2
ε(t)2, (2.6)

ε(t) = ym(t)− y(t), (2.7)

where, ym denotes a reference model, it is a desired system output.

This method is an improvement of some controller parameters that are

already applied to controlled objective, thus, the initial weights W ini
P,I,Dh are

determined as:

W ini
P,I,Dh = Kini

P,I,D

1

K
, (2.8)

where, Kini
P,I,D is a set of PID gains that are applied to controlled object, they

can be calculated from some methods or determined by experts.
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The weights are updated on-line through steepest descent method, to

minimize the error criterion:

W new
P,I,Dh = W old

P,I,Dh − ηP,I,D(t)
∂J(t)

∂KP,I,D(t)

1

K
, (2.9)

where,

∂J(t)

∂KP (t)
=

∂J(t)

∂ε(t)

∂ε(t)

∂y(t)

∂y(t)

∂u(t)

∂u(t)

∂KP (t)

= −(ym(t)− y(t))(y(t)− y(t− 1))
∂y(t)

∂u(t)

∂J(t)

∂KI(t)
=

∂J(t)

∂ε(t)

∂ε(t)

∂y(t)

∂y(t)

∂u(t)

∂u(t)

∂KI(t)

= −(ym(t)− y(t))e(t)
∂y(t)

∂u(t)

∂J(t)

∂KD(t)
=

∂J(t)

∂ε(t)

∂ε(t)

∂y(t)

∂y(t)

∂u(t)

∂u(t)

∂KD(t)

= −(ym(t)− y(t))(y(t)− 2y(t− 1)

+y(t− 2))
∂y(t)

∂u(t)
. (2.10)

In (2.10), ∂y(t)/∂u(t) is a system Jacobian, and the sign(∂y(t)/∂u(t)) is

considered as constant. Consider a relationship: x = |x|sign(x), thus, the
system Jacobian can be expressed as:

∂y(t)

∂u(t)
= |∂y(t)

∂u(t)
| sign(∂y(t)

∂u(t)
), (2.11)

where, sign(x) = 1(x > 0) and sign(x) = −1(x < 0), | ∂y(t)
∂u(t)

| is assumed as a

constant and the learning coefficients ηP,I,D include it.

Theorem 1. When the following situation is satisfied, e(t) converges

to zero gradually:

When sign( ∂y(t)
∂u(t)

) = 1,

0<ηP,I,D(t)<
2∣∣∣ ∂y(t)∂u(t)

∣∣∣ ((Δy(t))2 + e(t)2 + (Δ2y(t))2)
. (2.12)
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When sign( ∂y(t)
∂u(t)

) = −1,

−2∣∣∣ ∂y(t)∂u(t)

∣∣∣ ((Δy(t))2 + e(t)2 + (Δ2y(t))2)
<ηP,I,D(t)<0. (2.13)

The proof is demonstrated in Appendix in detail.

Remark In practice, to save calculation time, ηP,I,D(t) are not calculated at

each step, it can be set as a value which is small enough [27]. In Fig.2.5,

control schematic figure is given. In this chapter, a HC-CMAC with 3-

dimension is used, it is utilized as a ’PID parameter tuner’, the structure of

the ’tuner’ is shown in Fig.2.6. There are 3 input signals of ’PID parameter

tuner’, they are the reference signal r(t), the control error signal e(t) and

the difference of control error signal Δe(t). Δ is a differencing operator, it is

defined as:

Δ := 1− z−1. (2.14)

The reference model is designed from reference[30]:

Gm(z
−1) =

z−1P (1)

P (z−1)
, (2.15)

P (z−1) := 1 + p1z
−1 + p2z

−2, (2.16)

p1 = −2 exp(− ρ
μ
) cos(

√
4μ−1
2μ

ρ)

p2 = exp(− ρ
μ
)

ρ := TS

σ

μ := 0.25(1− δ) + 0.51δ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

., (2.17)

where, Ts represents the sampling time, σ and δ are parameters related to the

rise-time and the damping oscillation. And they are determined according
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Figure 2.5: Block diagram of HC-CMAC-PID control system

Figure 2.6: Structure of PID parameter tuner

to the requirements of users. Then the reference model ym(t) is calculated

as:

ym(t) = Gm(z
−1)r(t)

=
z−1(1 + p1 + p2)

1 + p1z−1 + p2z−2
r(t). (2.18)

Since ym can be calculated, the error criterion J can be obtained.
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Figure 2.7: Static properties of the control object

2.3 Simulation Examples

The effectiveness of the proposed method are numerically evaluated by

using some simulations in this part. PID controller, CMAC-PID controller

and HC-CMAC-PID controller are employed to a Hammerstein Model, it is a

nonlinear system, the control performances of these controllers are compared.

A Hammerstein Model is described as:

y(t) = 0.6y(t− 1)− 0.1y(t− 2)
+1.2x(t− 1)− 0.1x(t− 2)

x(t) = 1.5u(t)− 1.5u2(t) + 0.5u3(t)

⎫⎬
⎭ . (2.19)

Static property of Hammerstein system is given in Fig.2.7. The PID gains

that calculated by using Chien, Hrones & Reswick (CHR) method are firstly

applied to the controlled objective [29]. The PID gains are calculated as:

KP = 0.069, KI = 0.076, KD = 0.035 (2.20)
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Figure 2.8: Control performance using CHR method

The reference signals r(t) are decided as:

r(t) =

⎧⎨
⎩

1(1 ≤ t ≤ 100)
2(101 ≤ t ≤ 200)
3(201 ≤ t ≤ 300).

(2.21)

Due to the nonlinearity of controlled object, in Fig.2.8, the system output

can not track reference signal ideally. Then the CMAC-PID controller is

employed to the controlled objective, in this example, a CMAC with 3 weight

tables and 4 labels is utilized, it is set that when the Integral Squared Error

(ISE) is less than 5, the learning process stops. Initial weights in the weight

tables are calculated by using the previous PID gains. The learning rates for

PID gains are calculated at each step through the following equation:

ηP,I,D(t) =
1

c+ a · exp(−b|ym(t)− y(t)|) , (2.22)

a = 1000, b = 1000, c = 2000. (2.23)
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Figure 2.9: Control performance using CMAC-PID method

Simulation result by using CMAC-PID controller is given in Fig.2.9 and the

ISE can be obtained from the following formula:

ISE =
k∑

t=1

(ym(t)− y(t))2 (2.24)

where, k denotes the number of step at each trials. According to the control

performance, the system output tracks reference model ideally. Trajectories

of PID gains is shown in Fig.2.10, and for each learning trail, an evaluation

of ISE is presented, Fig.2.11 shows it. In Fig.2.11, 211 trials are needed to

make the ISE small enough.

The simulation result of HC-CMAC-PID controller is performed in the

following part.

Firstly, a HC-CMAC with 3 weight tables is constructed by using the

closed-loop data which are collected by applying fixed PID controller to con-

trolled objective, in each weight table, the number of labels are set as 2, 3
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Figure 2.10: Trajectories of PID gians for CMAC-PID
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Figure 2.11: Evaluation of ISE for CMAC-PID
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Figure 2.12: Control performance using HC-CMAC-PID method

and 4. Control performance by using HC-CMAC-PID controller is demon-

strated in Fig.2.12. It is verified that the tracking performance of system

output is ideally. Trajectories of PID gains for the proposed HC-CMAC-PID

controller are given in Fig.2.13, the figure evaluates ISE for the proposed

method is shown in Fig.2.14. The learning coefficients are also determined

through (2.23). According to Fig.2.14, in order to achieve a small enough ISE

value, 181 learning times are required. From Fig.2.14 and Fig.2.11, the HC-

CMAC-PID controller costs less learning trails to obtain a sufficient small

value of ISE, it evaluates HC-CAMC-PID controller a higher generalization

ability. In Table 2.1, total memory requirements(TM) of two methods are

compared, it shows that the HC-CMAC-PID controller requires a less mem-

ory the CMAC-PID controller.
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Figure 2.13: Trajectories of PID gains for HC-CMAC-PID method
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Figure 2.14: Evaluation of ISE for the proposed HC-CMAC-PID method

2.4 Experimental Results

Furthermore some experiments are conducted to evaluate the effective-

ness of the HC-CMAC-PID controller. The photograph of the equipment is
26



Table 2.1: Comparison of CMAC and HC-CMAC

CMAC HC-CMAC

TM 4680 bytes 2376 bytes

Figure 2.15: Photograph of an experimental temperature control system

shown in Fig.2.15. There are two heaters in this equipment, in this experi-

ment, two heaters are both used. In Fig.2.16, the static property of the con-

trolled objective is demonstrated. The cooler in the figure switches on/off

to create the nonlinearity of system. The cooler works for the first reference

value and it does not work for the second reference value. The PID gains

decided by using CHR method are as follows: KP = 0.375 KI = 0.011

KD = 1.910. The control performance is shown in Fig.2.17. The sign(∂y(t)
u(t)

)

of the controlled objective is known as 1, the controller gains’ learning coef-
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Figure 2.16: Static properties of the control object

ficients and the reference model’s parameters are determined as:

ηP = 1× 10−4 ηI = 2× 10−7 ηD = 1× 10−3

σ = 28 δ = 0 Ts = 1, (2.25)

Reference signals are set as:

r(t) =

{
70(1 ≤ t ≤ 300) (with cooler)
120(301 ≤ t ≤ 600) (without cooler)

Then, the control abilities of CMAC-PID controller and HC-CMAC-PID

controller are examined through some experiments. The trajectories of ISE

(from the first trail to the trail with smallest ISE) for learning process of

CMAC-PID controllers and HC-CMAC-PID controller are shown in Fig.2.18,

and the smallest values of ISE are summarized in Table 2.2 The calculation

of ISE bases on the following formula:

ISE =
k∑

t=1

(ym(t)− y(t))2. (2.26)
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Figure 2.17: Control performance by using CHR method for experiment

In this experimental example, the number of labels included in each weight

table in the proposed HC-CMAC-PID controller are six, seven and eight.

From Fig. 2.18, the HC-CMAC-PID controller converges to its minimum

ISE faster than the CMAC-PID controller with three weight tables and eight

labels. At the same time, the HC-CMAC-PID controller has a higher learn-

ing accuracy than the CMAC-PID controllers that have three weight tables

and six and seven labels for each. It is proved that the proposed HC-CMAC-

PID controller balances its control accuracy and the generalization ability.

In Fig.2.19 and Fig.2.21, the experimental result of the CMAC-PID con-

troller with three weight tables and eight labels and the experimental result

of the HC-CMAC-PID controller are demonstrated. Moreover, the trajecto-

ries of the PID gains for the mentioned two controllers are shown in Fig.2.20

and Fig.2.22, respectively. The number of labels includes in each weight
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Figure 2.18: Learning performance by using CMACs with three weight ta-
bles(W3) and six, seven, eight labels(L6, L7, and L8) and HC-CMAC-PID

Table 2.2: Final value of ISE

The smallest value of ISE

CMAC PID W3 L6 926.7

CMAC PID W3 L7 949.7

CMAC PID W3 L8 891.1

HC-CMAC-PID 906.9

table(NLW) and the total memory(TM) required in the HC-CMAC-PID con-

troller and CMAC-PID controller are compared in Table2.3. From the table,

the proposed method uses less memory. In addition, the HC-CMAC-PID con-

troller and CMAC-PID controller which are trained for the reference signals

70 and 120 are applied to control untrained signals to verify the generaliza-
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Figure 2.19: Control performance by using CMAC with three weight tables
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Figure 2.21: Control performance by using HC-CMAC-PID controller
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Figure 2.22: Trajectories of PID gains by using HC-CMAC-PID controller
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Table 2.3: Comparison of CMAC and HC-CMAC

CMAC HC-CMAC

NLW 8, 8, 8 6, 7, 8

TM 36864 bytes 25704 bytes

tion ability of them, the control performances are shown in Fig. 2.23. The

untrained reference signals are set as:

r(t) =

{
75(1 ≤ t ≤ 300) (with cooler)
125(301 ≤ t ≤ 600) (without cooler)

.

From the experimental results, the HC-CMAC-PID controller shows a better

control ability than that of CMAC-PID controller, it certificates that HC-

CMAC-PID controller has a better generalization ability than the CMAC-

PID controller.

2.5 Conclusions

In this chapter, a novel CMAC which is named as the HC-CMAC is

proposed, it is utilized to tune PID gains as a ‘gain tuner’. In the proposed

HC-CMAC-PID controller, for each weight table, the number of labels is de-

termined individually, so that the control accuracy is compatible with the

generalization ability and the requirement of memory. With the application

of the proposed method, the requirement of memory reduces and the learn-

ing trials for the learning process are reduced, also the control ability for

untrained reference signal is improved.
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2.6 Appendix

To obtain the conditions that are shown in (2.12) and (2.13), the follow-

ing statement are given [30] [31]:

Consider

Θ = [KP KI KD]
T , (2.27)

η =

⎡
⎣ηKP

0 0
0 ηKI

0
0 0 ηKD

⎤
⎦ . (2.28)

Let Lyapunov function be

V (t) =
1

2
e(t)2, (2.29)
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then

ΔV (t) := V (t+ 1)− V (t) (2.30)

ΔV (t) =
1

2
e(t+ 1)2 − 1

2
e(t)2

=
1

2
(e(t+ 1)− e(t))(e(t+ 1) + e(t)).

Consider the following relationship

e(t+ 1) = e(t) + Δe(t), (2.31)

then

ΔV (t) =
1

2
{Δe(t)}{2e(t) + Δe(t)} (2.32)

=
1

2
Δe(t)2 + e(t)Δe(t). (2.33)

Δe can be expressed as:

Δe(t) =
∂e(t)

∂ΘT
ΔΘ (2.34)

=
∂e(t)

∂y(t)

∂y(t)

∂u(t)

∂u(t)

∂ΘT
ΔΘ. (2.35)

Furthermore, ΔΘ is calculated as:

ΔΘ = −η(t)
∂J(t)

∂ε(t)

∂ε(t)

∂y(t)

∂y(t)

∂u(t)

∂u(t)

∂Θ
. (2.36)

sign( ∂y(t)
∂u(t)

) and
∣∣∣ ∂y(t)∂u(t)

∣∣∣ are included in η(t), (2.36) can be expressed as:

ΔΘ = −∂J(t)

∂ε(t)

∂ε(t)

∂y(t)
η(t)

∂u(t)

∂Θ
. (2.37)

From (2.3) and (2.7), based on (2.11) and (2.37)

Δe(t) = −∂J(t)

∂ε(t)

∣∣∣∣∂y(t)∂u(t)

∣∣∣∣ sign(∂y(t)∂u(t)
)(
∂u(t)

∂ΘT
η(t)

∂u(t)

∂Θ
). (2.38)
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Substitute (2.38) into (2.33)

ΔV (t) =
1

2
Δe(t)2 +Δe(t)e(t) (2.39)

=
1

2
(
∂J(t)

∂ε(t)
)2
∣∣∣∣∂y(t)∂u(t)

∣∣∣∣
2

(sign(
∂y(t)

∂u(t)
))2

(
∂u(t)

∂ΘT
η(t)

∂u(t)

∂Θ
)2

− ∂J(t)

∂ε(t)

∣∣∣∣∂y(t)∂u(t)

∣∣∣∣ sign(∂y(t)∂u(t)
)(
∂u(t)

∂ΘT
η(t)

∂u(t)

∂Θ
)e(t).

When t → ∞, ε(t) = e(t), since (sign( ∂y(t)
∂u(t)

))2 = 1 and ∂J(t)
∂ε(t)

= ε(t), (2.39)

can be rewritten as:

ΔV (t) =
1

2
(e(t))2

∣∣∣∣∂y(t)∂u(t)

∣∣∣∣
2

(
∂u(t)

∂ΘT
η(t)

∂u(t)

∂Θ
)2 (2.40)

− e(t)2
∣∣∣∣∂y(t)∂u(t)

∣∣∣∣ sign(∂y(t)∂u(t)
)(
∂u(t)

∂ΘT
η(t)

∂u(t)

∂Θ
).

To make sure ΔV (t)<0, sign of η(t) and sign( ∂y(t)
∂u(t)

) must be same. When

sign( ∂y(t)
∂u(t)

) = 1, the following equation can be obtained by

ΔV (t) =
1

2
(e(t))2

∣∣∣∣∂y(t)∂u(t)

∣∣∣∣
2

(
∂u(t)

∂ΘT
η(t)

∂u(t)

∂Θ
)2 (2.41)

− e(t)2
∣∣∣∣∂y(t)∂u(t)

∣∣∣∣ (∂u(t)∂ΘT
η(t)

∂u(t)

∂Θ
)<0.

Then the following condition is obtained by

∂u(t)

∂ΘT
η(t)

∂u(t)

∂Θ
<

2∣∣∣ ∂y(t)∂u(t)

∣∣∣ . (2.42)

There exists a max value ηx such that the following equation holds

∂u(t)

∂ΘT
ηxI

∂u(t)

∂Θ
=

2∣∣∣ ∂y(t)∂u(t)

∣∣∣ . (2.43)

Based on PID structure in (2.2), (2.43) can be calculated as

ηx =
2∣∣∣ ∂y(t)∂u(t)

∣∣∣ (Δ2y(t) + e(t)2 +Δ4y(t))
. (2.44)
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From above, to guarantee (2.42) holds

0<ηi(t)<ηx =
2∣∣∣ ∂y(t)∂u(t)

∣∣∣ ((Δy(t))2 + e(t)2 + (Δ2y(t))2)
, (2.45)

where, ηi(t) is a value belongs to ηKP
(t), ηKI

(t) and ηKD
(t). When sign( ∂y(t)

∂u(t)
) =

−1, η(t) should be negative, the range of ηi(t) should be

− 2∣∣∣ ∂y(t)∂u(t)

∣∣∣ ((Δy(t))2 + e(t)2 + (Δ2y(t))2)
<ηi(t)<0. (2.46)

The
∣∣∣ ∂y(t)∂u(t)

∣∣∣ can be estimated by
∣∣∣Δy(t)
Δu(t)

∣∣∣.
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Chapter 3

Design of HC-CMAC PID
Controller Using Closed-Loop
Data

3.1 Introduction

In the previous chapter, a HC-CMAC is introduced and an on-line tuning

method of PID gains based on it is discussed. The on-line learning controllers

always needs a large time cost for its learning process. Therefore, the off-line

tuning methods of controllers are needed to be designed.

Some off-line controller tuning methods are proposed [34] [35] [36]. As

one of them, a CMAC based PID controller that its weights are updated in

an off-line manner is going to be explained. The method considers modeling

controlled objectives is nontrivial and modeling errors are difficult to avoid,

thus, the fictitious reference iterative tuning (FRIT) algorithm is utilized [37]

[38]. FRIT is a method used to calculate control parameters directly by using

closed-loop data so that the control parameters can be obtained in an off-line

manner. In this previous study, the combining of conventional CMAC and
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FRIT was introduced, it is called the CMAC-FRIT-PID controller [39] [40].

This chapter proposes a method called the HC-CMAC-FRIT-PID controller

as an improvement of remedy various drawbacks of the conventional method.

The effectiveness of the proposed method is verified by some simulations and

experiments.

The chapter is organized as follows: First, the FRIT algorithm is ex-

plained. Second, the HC-CMAC-FRIT and its learning process are discussed.

Finally, some simulations and experiments are provided.

3.2 HC-CMAC based PID Controller using

FRIT

3.2.1 Fictitious Reference Iterative Tuning

FRIT algorithm generates controller gains without building a model of

controlled objective, based on a set of closed-loop data, the calculation of

controller parameters is achievable. Such method is different from the model

based controller calculation algorithms, since the model is not established,

the negative influences that caused by modeling error can not be considered.

To collect closed-loop data of a controlled objective, some methods

should be applied, such as a PID controller.

The schematic block diagram of FRIT is demonstrated in Fig.3.1, some

explanations of FRIT is given in the following part. u0(t) is system input

and y0(t) denotes system output of closed-loop data in the figure. Gm(z
−1)

is user-desired tracking performance, it is a reference model. When the dif-

ference of yr(t) and y0(t) is minimized, the optimized controller gains can be

generated by using FRIT. Under the effect of such optimized controller gains,

the portion in the dotted square converges to the reference model Gm(z
−1).
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Figure 3.1: Block diagram of FRIT

The design of reference model bases on the following formulas:

Gm(z
−1) =

z−1P (1)

P (z−1)
, (3.1)

P (z−1) := 1 + p1z
−1 + p2z

−2, (3.2)

p1 = −2 exp(− ρ
μ
) cos(

√
4μ−1
2μ

ρ)

p2 = exp(− ρ
μ
)

ρ := TS

σ

μ := 0.25(1− δ) + 0.51δ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (3.3)

In (3.3), σ and δ are designed parameters influence rise-time and damping

oscillation, respectively. The sample time is represented by Ts. To calculate

yr(t), the fictitious system output, the following equations are taken into

consideration:

yr(t) = Gm(z
−1)r̃(t)

=
z−(k+1)(1 + p1 + p2)

1 + p1z−1 + p2z−2
r̃(t). (3.4)

In this chapter, the following PID algorithm is used:

Δu(t) = KI(t)e(t)−KP (t)Δy(t)−KD(t)Δ
2y(t)

= C(1)r(t)− C(z−1)y(t), (3.5)
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Figure 3.2: Block diagram of HC-CMAC-FRIT

e(t) := r(t)− y(t), (3.6)

C(z−1) = KI(t) +KP (t)Δ +KD(t)Δ
2. (3.7)

From formulas (3.5) - (3.7), r̃(t) which represents the fictitious reference

signal, can be derived as:

r̃(t) =
Δu0(t) + C(z−1)y0(t)

C(1)
. (3.8)

3.2.2 HC-CMAC-FRIT

The HC-CMAC is combined with FRIT to enable updating of HC-

CMAC in off-line. The details are explained in this section. The block

diagram of HC-CMAC-FRIT is given in Fig. 3.2. e0(t), r0(t), Δe0(t),

and y0(t) denote signals of closed-loop data in the figure. Three signals,

the control error signal e0, reference signal r0 and difference in control er-

ror signal Δe0 are chosen as coordinates of HC-CMAC. From equation:

KP,I,D =
∑K

h=1 WP,I,D,h, PID controller gains are generated, WP,I,D,h are se-

lected weights, controller gains are summation of these weights. The weights’
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updating rule is given in the following equation:

W new
P,I,D,h = W old

P,I,D,h − ηP,I,D
∂J(t+ 1)

∂KP,I,D(t)

1

K
, (3.9)

where J(t) denotes an error criterion. It is utilized to judge whether the

controller gains are optimized enough. The following formula shows the

criterion:

J(t) =
1

2
(y0(t)− yr(t))

2 (t = 1, ..., N), (3.10)

where, number of closed-loop data points is represented by N . In (3.9), the

parameter ηP,I,D denotes the learning coefficients for controller gains KP , KI

and KD, partial differentials contained in the formula can be extended as:

∂J(t+ 1)

∂KP,I,D(t)
=

∂J(t+ 1)

∂yr(t+ 1)

∂yr(t+ 1)

∂r̃(t)

∂ r̃(t)

∂KP,I,D(t)
. (3.11)

In appendix, an expansion of (3.11) is explained in detail. Based on such

learning algorithm, weights of HC-CMAC can be updated in off-line manner.

In the following section, some simulations and experiments are demon-

strated to verify the effectiveness.

3.3 Simulation Examples

The controlled objective utilized in the simulation is a Hammerstein

Model. The demonstration of control performances using a fixed PID con-

troller, CMAC-FRIT-PID controller, and HC-CMAC-FRIT-PID controller

is given. The Hammerstein Model is given as:

y(t) = 0.6y(t− 1)− 0.1y(t− 2)
+1.2x(t− 1)− 0.1x(t− 2)

x(t) = 1.5u(t)− 1.5u2(t) + 0.5u3(t)

⎫⎬
⎭ . (3.12)

Fig.3.3 presents static properties of this Hammerstein model. Around y(t)=1.1,
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Figure 3.3: Static properties of the control object

the system has a strong nonlinearity. At first, Chien, Hrones & Reswick

(CHR) method is utilized to calculated controller parameters. The calcu-

lated PID gains are KP=0.101, KI=0.111 and KD=0.052. Reference signal

r(t) is decided as:

r(t) =

{
1.5(1 ≤ t ≤ 50)
0.6(51 ≤ t ≤ 100)

. (3.13)

Fig.3.4 shows the result. It can be observed that the tracking ability is not

desirable.

The closed-loop data by using CHR method is collected to train the

CMAC and HC-CMAC, thus, controller gains can be optimized. Some design

parameters for the CMAC-FRIT controller and HC-CMAC-FRIT controller

are summarized in Table.3.1. By employing CMAC-FRIT-PID controller,

control performance that presents in Fig.3.5 can be obtained. In this CMAC-

FRIT-PID controller, the selected CMAC has three weight tables and four
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Figure 3.4: Control performance using CHR method

Table 3.1: Coefficients

Learning coefficients ηP=0.1

ηI=0.05

ηD=0.1

Sampling time TS=1

Rise time σ=3.64

Damping oscillation δ=0

labels for each. From the figure, desired tracking performance is obtained

when the CMAC-FRIT-PID controller is utilized. PID gains’ trajectories

when using CMAC-FRIT-PID controller are given in Fig.3.6. In Fig.3.7, the

control result using HC-CMAC-FRIT-PID controller is shown. For this HC-

CMAC-FRIT-PID controller, it has three weight tables include two, three,

and four labels for each. The proposed method requires less memory and
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Figure 3.5: Control performance using CMAC-FRIT method
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Figure 3.6: Trajectories of PID gains using CMAC-FRIT method

achieves similar control performance as CMAC-FRIT-PID controller. The

trajectories of the PID gains when using HC-CMAC-FRIT-PID controller
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Figure 3.7: Control performance using proposed method
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Figure 3.8: Trajectories of PID gains using proposed method

are demonstrated in Fig.3.8. Utilization of memory is explained in detail in

Table 3.2.
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Table 3.2: Comparison of memory requirement

CMAC HC-CMAC

NLW 4, 4, 4 2, 3, 4

TM 4680 bytes 2376 bytes

In Table 3.2, NLW is short for number of labels for each weight table

and TM is short for total required memory.

Additionally, in order to verify the generalization ability of the proposed

and CMAC-FRIT-PID controller, the trained CMAC and HC-CMAC are

applied to control untrained reference signal, they are determined as:

r(t) =

{
1.7(1 ≤ t ≤ 50)
0.4(51 ≤ t ≤ 100)

. (3.14)

Fig.3.9 shows a comparison of the HC-CMAC-FRIT-PID controller and CMAC-

FRIT-PID controller. Fig.3.10 shows the trajectories of the PID gains cor-

responds to Fig.3.9. The verification of the HC-CMAC-FRIT-PID controller

has a better generalization ability is certificated from the above results.

3.4 Experimental Results

Some experiments are demonstrated in this section to verify the effec-

tiveness of the HC-CMAC-FRIT-PID controller. The controlled objective is

a temperature control system, its photograph is shown in Fig.3.11. There are

two heaters on the machine, in this experiment only heater 1 is used. The

static properties of the controlled objective are presented through Fig.3.12.

The dashed line shows a property of a system without cooler and the solid

line shows a property of a system with cooler. The cooler designs the nonlin-

47



0 20 40 60 80 100
0

1

2

t [step]
y

0 20 40 60 80 100
0

1

2

t [step]

u

Proposed method
Reference model
CMAC FRIT
Reference signal

Figure 3.9: Control performance for untrained reference signals using pro-
posed method and CMAC-FRIT
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Figure 3.10: Trajectories of PID gains for untrained reference signals using
proposed method and CMAC-FRIT
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Figure 3.11: Photograph of an experimental temperature control system

earity for the controlled objective during control process. In some controlled

objective in industrial control process, there is a cooler for a system, if the

temperature changes within some range, the cooler is not working and if the

temperature changes out of the set range, the cooler starts working. This

experiment aims to simulate a such situation. For this experiment, the cooler

does not work for the first value of reference signal and works for the second

value of reference signal. The reference signals are decided as:

r(t) =

{
40(1 ≤ t ≤ 300) (with cooler)
55(301 ≤ t ≤ 600) (without cooler)

. (3.15)

To collect a set of closed-loop data, at first, CHR method is used to calculate

a set of PID gains. The PID gains are KP = 5.353, KI = 0.102, and

KD = 15.141. The result shown in Fig.3.13 demonstrates the control ability

of such set of PID controller gains. Based on the collected closed-loop date,

CMAC and HC-CMAC are trained in an off-line manner. Some designed

parameters for two methods are given in Table. 3.3.
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Figure 3.12: Static properties of the temperature control system
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Figure 3.13: Experimental control performance using CHR method

The control performance when using the HC-CMAC-FRIT-PID con-

troller is shown in Fig. 3.14and the control performance by using CMAC-
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Table 3.3: Coefficients

Learning coefficients ηP=0.01

ηI=0.003

ηD=0.01

Sampling time TS=1

Rise time σ=25

Damping oscillation δ=0
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Figure 3.14: Experimental control performance using proposed method

FRIT-PID controller is presented in Fig. 3.15. For the HC-CMAC-FRIT-

PID controller, a HC-CMAC with three weight tables include two, three,

and four labels for each is selected. For the CMAC-FRIT-PID controller, a

CMAC with three weight tables and four labels for each is used. Through

the results of HC-CMAC-FRIT-PID controller and the CMAC-FRIT-PID

controller, without sacrificing control ability, the proposed method requires

51



100 200 300 400 500
0

10

20

30

40

t [step]

u
100 200 300 400 500

20

30

40

50

60

t [step]
y

System output
Reference model
Reference signal

Figure 3.15: Experimental control performance using CMAC-FRIT-PID con-
troller

less memory. The trajectories of the PID gains shown in Fig. 3.16 and Fig.

3.17 corresponds to control performances that are shown in Fig. 3.14 and

Fig. 3.15.

In addition, some experimental results that shows generalization ability

of the proposed method are discussed. The HC-CMAC-FRIT-PID controller

and the CMAC-FRIT-PID controller which are trained for the previous refer-

ence signals are applied to control untrained reference signals. The untrained

reference signals are designed as:

r(t) =

{
45(1 ≤ t ≤ 300) (with cooler)
65(301 ≤ t ≤ 600) (without cooler)

. (3.16)

Fig. 3.18 and Fig. 3.19 show the results of control performances for untrained

signals of the HC-CMAC-FRIT-PID controller and the CMAC-FRIT-PID

controller. The results present that the proposed method has a better
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Figure 3.16: Trajectories of controller gains for HC-CMAC-FRIT-PID con-
troller
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Figure 3.17: Trajectories of controller gains for CMAC-FRIT-PID controller
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Figure 3.18: Experimental control performance using proposed method for
untrained signals
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Figure 3.19: Experimental control performance using CMAC-FRIT-PID con-
troller for untrained signals
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Figure 3.20: Trajectories of controller gains using proposed method for un-
trained signals

control ability for untrained reference signals, it verifies the proposed method

has a superior generalization ability. The trajectories of the PID gains for

Fig. 3.18 and Fig 3.19 are presented in Fig. 3.20 and Fig. 3.21, respectively.

Through the explanations and results above, it is verified that the pro-

posed method achieves the desired control ability with lower memory require-

ments and the propsoed method has a superior generalization ability.

3.5 Conclusions

In this chapter, a HC-CMAC based PID controller and its off-line learn-

ing method is introduced. In the proposed structure of HC-CMAC, the

numbers of labels for each weight table are determined individually. By set-

ting different numbers of labels included in each weight table, the HC-CMAC
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Figure 3.21: Trajectories of controller gains using CMAC-FRIT-PID con-
troller for untrained signals

balances learning accuracy, generalization ability, and memory requirement.

Hierarchical clustering method is used to achieve the user-specified number

of labels for each weight table, so that the input space is adaptively quan-

tized. The combining of FRIT and HC-CMAC enables the HC-CMAC tuns

its weights in an off-line manner. From some simulation and experimental re-

sults, the proposed scheme demands lower memory and it provides a superior

generalization ability than the CMAC-FRIT-PID controller.

3.6 Appendix

The followings are the partial differential of Eq.3.11 in detail:

∂J(t+ 1)

∂KP,I,D(t)
=

∂J(t+ 1)

∂yr(t+ 1)

∂yr(t+ 1)

∂r̃(t)

∂ r̃(t)

∂KP,I,D(t)
(3.17)
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where,

∂J(t+ 1)

∂yr(t+ 1)
= −(y0(t+ 1)− yr(t+ 1)) (3.18)

∂yr(t+ 1)

∂r̃(t)
= 1 + p1 + p2 (3.19)

∂r̃(t)

∂KP (t)
=

(y0(t)− y0(t− 1))KI(t)

KI(t)2
(3.20)

∂r̃(t)

∂KI(t)
=

−Δu0(t)−KP (t)Δy0(t)−KD(t)Δ
2y0(t)

KI(t)2
(3.21)

∂r̃(t)

∂KD(t)
=

(y0(t)− 2y0(t− 1) + y0(t− 2))KI(t)

KI(t)2
(3.22)
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Chapter 4

Design of HC-CMAC based
Performance Driven PID
Controller

4.1 Introduction

In the previous chapter, an off-line learning of HC-CMAC, PID gains

are calculated on-line using HC-CMAC is introduced. In this chapter, the

method is extended to tune controller parameters not only for transient state

but also for steady state.

In industrial processes, it is necessary to produce high-quality products

and to reduce the cost of energy. According to these requirements, the per-

formance of system output is desired to track and maintains the reference

signal ideally. Tracking ability of a controller is always reflected in the tran-

sient state, a fast response shows a desired tracking ability of a controller.

The control ability in steady state of a controller is always a standard to

judge whether a controller has an ideal ability on maintaining system output

to reference signal, in some studies, a small variance of system output is de-
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sired. Thus, in order to obtain ideal control performance, when designing a

controller both of the above two aspects should be taken into consideration.

In the steady state, noise, controller parameters cause variance of system

output [41]. Some studies regard this variance as control performance as-

sessment (CPA), hence, the control performance can be monitored in steady

state[42] [43] [44]. In addition, some schemes considered designing control

systems to minimize the variance of system output, based on CPA, have

been conceived, however, these studies are limited to improving control per-

formance in steady state [45] [46].

In previous study, a CMAC based performance-driven (PD) PID con-

troller has been proposed, it tunes its gains for both transient and steady

state in an off-line manner, its effectiveness is verified by using some simu-

lation and experiments [47] [48]. This method achieves its learning process

based on the partial learning ability of CMAC.

Moreover, in some industrial control processes, if a machine participates

more than one production process, a few reference signals may be set to the

machine due to different requirements. If a controller tunes its gains once

a new reference signal is set, the applicability of controller decreases, hence,

generalization ability for similar reference signals is necessary.

To meet above requirements, the HC-CMAC is utilized to create a HC-

CMAC based performance driven PID controller. Because the HC-CMAC

balances requirement of memory, learning accuracy and generalization ability

of a CMAC network. Additionally, the fictitious reference iterative tuning

(FRIT) is combined with the HC-CMAC, so that the learning of HC-CMAC-

FRIT can be achieved in an off-line manner without system identification.

In learning process, to examine the fitness of HC-CAMC’s weights, some
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criterion should be decided. When using FRIT, the criterion is always set

by examining the difference between selected signals of closed-loop data and

selected fictitious signals. In this study, for transient state, the criterion

is chosen as the difference between system output of closed-loop data and

fictitious system output. For steady state, the criterion is determined as the

difference between signal of “control performance assessment (CPA)” and

signal of “fictitious control performance assessment”. If the criterion are

minimized, the suitable weights of HC-CMAC can be calculated.

In the end of this chapter, some simulations and experiments of proposed

HC-CMAC-PD-PID controller and conventional CMAC-PD-PID controller

are compared.

4.2 HC-CMAC Performance Driven PID Con-

troller

In this study, the selected PID control structure is given as:

Δu(t) = KI(t)e(t)−KP (t)Δy(t)

−KD(t)Δ
2y(t), (4.1)

e(t) := r(t)− y(t). (4.2)

When the suitable controller gains are calculated by using proposed method,

the user desired control performance can be obtained.

(4.2) is further expanded as:

u(t) =
C(1)

Δ
r(t)− C(z−1)

Δ
y(t), (4.3)

C(z−1) = KI +KPΔ+KDΔ
2. (4.4)
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Figure 4.1: Learning process of proposed method

PID controller gains are generated from HC-CMAC according to:

KP,I,D(t) =
K∑

h=1

WP,I,D,h,

(4.5)

where h=1,2,...,K, K is the total number of the weight tables in the HC-

CMAC. WP,I,D,h are the weights of HC-CMACs.

4.2.1 Learning Process

The off-line learning process of HC-CMAC-FRIT-PID controller is in-

troduced in this section. The figure demonstrated in Fig. 4.1 gives a block

diagram of the proposed method’s learning process. In figure, the signals

u0(t), y0(t) are closed-loop data, they denote system input data, and system

output data, respectively, these data can be collected by any methods. In

this chapter, the closed-loop data are collected by a PID controller with fixed

controller gains. Equations (4.1) - (4.3) explain the calculation of fictitious
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reference signal r̃(t):

r̃(t) =
C(z−1)y0(t)−Δu0(t)

C(1)
. (4.6)

Fictitious reference model Gm(z
−1) is designed based on the equations in

reference [6]:

P (z−1) = 1 + p1z
−1 + p2z

−2 (4.7)

,

ρ := TS

σ

μ := 0.25(1− δ) + 0.51δ

p1 = −2 exp(− ρ
μ
) cos(

√
4μ−1
2μ

ρ)

p2 = exp(− ρ
μ
)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (4.8)

Gm(z
−1) =

z−(k+1)P (1)

P (z−1)
, (4.9)

yr(t) = Gm(z
−(k+1))r̃(t)

=
z−(k+1)(1 + p1 + p2)

1 + p1z−1 + p2z−2
r̃(t). (4.10)

Parameters σ and δ in (4.8) describe rise time and damping property of

reference model. Range of parameter δ set as 0≤δ≤2.0. By setting these

parameters, user desired reference model can be determined. The parameter

represents sampling time is Ts. Approximated time-delay is k . yr denotes

fictitious system output in (4.10). For transient state, by minimizing the

difference between y0 and yr the suitable weights of HC-CMAC can be cal-

culated, thus, the controller parameters that enable system output tracking

the reference model are obtained. For transient state, the criterion is decided

as:

Jt(t) = |y0(t)− yr(t)| (4.11)
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In steady state, weights are updated to minimize the difference between

“CPA” κ0 and “fictitious CPA” κ̃. The calculation of κ is explained in detail:

A controlled autoregressive and integrated moving average model (CARIMA

model) is used to describe a control objective. Because in industrial applica-

tions, the noise of a control objective is always non-stationary, and the model

is not only limited for describing a linear system, but also the model can be

used to locally linearized a nonlinear system at a particular operation point

[49]. A CARIMA model is given in the following equation:

A(z−1)y(t) = z−(k+1)B(z−1)u(t) +
ξ(t)

Δ
(4.12)

A(z−1) = 1 + a1z
−1 + · · ·+ anaz

−na ,
B(z−1) = b0 + b1z

−1 + · · ·+ bnb
z−nb ,

}
(4.13)

where, ξ(t) is a white Gaussian noise, it has zero mean and variance σ2
v . na

and nb are orders of A(z−1) and B(z−1).

The proposed method uses minimum variance control(MVC) algorithm.

Cost function can be set as:

J = E [φ2(t+ k + 1)], (4.14)

where E [ • ] denotes expectation φ(t + k + 1) is defined according to the

following equation, it is the difference of system output and reference model:

φ(t+ k + 1) := P (z−1)y(t+ k + 1)− P (1)r(t)

(4.15)

Some Diophantine equation are introduced:

P (z−1) = ΔA(z−1)E(z−1) + z−(k+1)F (z−1) (4.16)
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E(z−1) = 1 + e1z
−1 + · · ·+ ekz

−k (4.17)

F (z−1) = f0 + f1z
−1 + · · ·+ fnaz

−na (4.18)

where P (z−1) is explained in (4.7). From appendix, (4.15) is derived as:

φ(t+ k + 1) =
P (z−1)

T (z−1)
ξ(t+ k + 1) (4.19)

= E(z−1)ξ(t+ k + 1) + S(z−1)ξ(t)

(4.20)

T (z−1) := ΔA(z−1) + z−(k+1)B(z−1)C(z−1) (4.21)

S(z−1) :=
F (z−1)− B(z−1)C(z−1)E(z−1)

T (z−1)
(4.22)

From (4.20), controller does not influence E(z−1). Therefore, to obtain min-

imum variance control performance, S(z−1) should equals 0. The optimized

controller Copt(z
−1) can be derived as:

Copt(z
−1) =

F (z−1)

E(z−1)B(z−1)
(4.23)

When ideal controller is utilized to control the controlled objective, φmin(t+

k + 1) can be calculated as:

φmin(t+ k + 1) = E(z−1)ξ(t+ k + 1) (4.24)

In (4.14), from (4.20), the criterion J should be:

J = E [φ(t+ k + 1)2]

= E [{E(z−1)ξ(t+ k + 1) + S(z−1)ξ(t)}2] (4.25)
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Since ξ(t) is white noise, (4.25) can be rewritten as:

J = E [{E(z−1)ξ(t+ k + 1)}2]

+E [{S(z−1)ξ(t)}2] (4.26)

= Jmin + J0 (4.27)

where

Jmin = E [{E(z−1)ξ(t+ k + 1)}2] (4.28)

J0 = E [{S(z−1)ξ(t)}2] (4.29)

From above, J0 = 0 and J=Jmin when ideal controller Copt(z
−1) is utilized, .

The MVC-based control performance assessment is build as:

κ :=
Jmin

Jmin + J0
= 1− J0

Jmin + J0
(4.30)

The ideal controller can be calculated when J0=0, thus, when κ closes to 1,

the control performance is a “desired control” and when κ closes to 0, the

control performance is an “undesired control”.

In order to calculate Jmin, the approach in reference [50] is utilized to

estimate the parameter of polynomial E(z−1). By using closed-loop data, it

is able to calculate control performance assessment index κ.

φ(t)− φ̄ = ε(t) +
m∑
j=0

αj{φ(t− k − l)− φ̄} (4.31)

ε(t) := E(z−1)ξ(t), (4.32)

where φ̄ is the average value of φ(t); αj denotes autoregressive parameter,

its order ism. Using M data, αj is able to be calculated through the least

squares method, the formulas to calculate αj are given as:

P̃ (t) = Y (t)α(t) +Ξ(t) (4.33)
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φ̃(t) := φ(t)− φ̄ (4.34)

P̃ (t) = [φ̃(t), φ̃(t− 1), · · · , φ̃(t−M + 1)]T (4.35)

α = [α1, α2, · · · , αn]
T (4.36)

Ξ(t) = [ε(t), ε(t− 1), · · · , ε(t−M + 1)]T (4.37)

Y (t)=

⎡
⎢⎢⎢⎣
φ̃(t− k − 1) · · · φ̃(t− k − n)

φ̃(t− k − 2) · · · φ̃(t− k − n− 1)
...

. . .
...

φ̃(t− k −M) · · · φ̃(t− k − n−M + 1)

⎤
⎥⎥⎥⎦

(4.38)

From following equations, α(t) can be determined:

α(t) = (Y (t)TY (t))−1Y (t)TP̃ (t) (4.39)

κ is obtained using the following formulas:

κ =
{P̃ (t)− Y (t)α(t)}T{P̃ (t)− Y (t)α(t)}

P̃ (t)TP̃ (t)
. (4.40)

From above introduction, calculation of κ is possible. When the follow-

ing criterion is minimized, desired controller gains are acquired.

Js(t) = |κ0(t)− κ̃(t)| (4.41)

MATLAB function “fminsearch” is utilized to minimize (4.11) and (4.41).

MATLAB function “fminsearch” is a method to find minimum of uncon-

strained multivariable function, by using this method, optimal PID gains are

obtained.
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Figure 4.2: Static property of control objective

4.3 Simulation Results

To certificate the effectiveness of proposed method, some simulations are

performed. The controlled object is the following Hammerstein model:

y(t) = 0.6y(t− 1)− 0.1y(t− 2) + 1.2x(t− 1)

−0.1x(t− 2) +
ξ(t)

Δ

x(t) = 1.5u(t)− 1.5u(t)2 + 0.5u(t)3 (4.42)

where, ξ(t) is white noise with zero mean and variance σ2
v=0.0012. Ts, the

sampling interval, is set as 1[s]. Fig. 4.2 shows the static property of con-

trolled system. From the static property of system, around y = 1.1, the

system has strong nonlinearity. PID gains calculated by using Chien, Hrones

& Reswick (CHR) method is firstly applied to the controlled objective. The

PID gains are KP = 0.233, KI = 0.117 and KD = 0.117. Control per-

formance using CHR method is demonstrated in Fig. 4.3 and Fig. 4.4.
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Figure 4.3: Control performance using CHR method in transient state

0 500 1000 1500 2000
2.996

2.998

3

3.002

3.004

y

t[step]

Figure 4.4: Control performance using CHR method in steady state

By using such control result as closed-loop data, the CMAC-PD-FRIT-PID

controller and the HC-CMAC-PD-FRIT-PID controller are trained and they

are used to control the controlled objective. Designed parameters of two

methods are given in Table.4.1. The control performance using CMAC-PD-

FRIT-PID in transient state and steady state are demonstrated in Fig. 4.5

and Fig. 4.6, respectively. The control performance shows that by using

CMAC-PD-FRIT-PID controller, the control performance tracks reference
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Table 4.1: Designed parameters of CMAC-PD-FRIT-PID and HC-CMAC-
PD-FRIT-PID

Number of weight tables 3 3
Number of label 4, 4, 4 2, 3, 4
Rise-time σ=2.03 σ=2.03
Damping property δ=0 δ=0
Reference Value r=3 r=3
Number of data N=500 N=500
Order of autoregressive
parameter n=20 n=20
Memory requirement 4680 bytes 2376 bytes
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Figure 4.5: Control performance using CMAC-PD-FRIT-PID in transient
state

model in transient state and in steady state the variance of system output

becomes smaller. PID trajectories correspond to Figs. 4.5 and 4.6 are

given in Figs. 4.7 and 4.8.

By applying the proposed method to controlled objective, Figs. 4.9 and

4.10 show the control performance for transient and steady state, respectively.
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Figure 4.6: Control performance using CMAC-PD-FRIT-PID in steady state
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Figure 4.7: Trajectories of PID gains for CMAC-PD-FRIT-PID in transient
state

Trajectories of PID gains corresponding to Figs. 4.9 and 4.10 are shown

in Figs. 4.11 and 4.12. From results, the HC-CMAC-PD-FRIT-PID

controller uses less memory, obtains similar results with CMAC-PD-FRIT-

PID controller. Control performance assessment when using CHR, CMAC-

PD-FRIT-PID and the proposed method are shown in Fig. 4.13. To verify

the generalization ability of the proposed method, the control performances
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Figure 4.8: Trajectories of PID gains for CMAC-PD-FRIT-PID in steady
state
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Figure 4.9: Control performance using proposed method in transient state
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Figure 4.10: Control performance using proposed method in steady state
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Figure 4.11: Trajectories of PID gains for proposed method in transient state

for untrained reference signal 2.3 are demonstrated in Figs. 4.14 and 4.15.

From Fig. 4.14, the proposed method has a better control performance for

untrained signal. The variance of Fig. 4.15 is 0.0175 for CMAC-PD-FRIT-

PID controller and the variance is 0.0154 for the HC-CMAC-PD-FRIT-PID

controller. It shows a better control ability of proposed method in steady

state for untrained signal.
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Figure 4.12: Trajectories of PID gains for proposed method in steady state
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Figure 4.13: Control process assessment

4.4 Experiment Results

In this section, some experiment results are given, to give some com-

parisons to demonstrate the effectiveness of HC-CMAC-PD-FRIT-PID con-
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Figure 4.14: Comparison of control performance in transient state for the
CMAC-PD-FRIT-PID controller and proposed method for untrained signal
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Figure 4.15: Comparison of control performance in steady state for the
CMAC-PD-FRIT-PID controller and proposed method for untrained signal
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Figure 4.16: Temperature process

troller. Some methods are employed in a temperature control process. Fig.4.16

shows the equipment of the temperature process. The temperature of water

is treated as system output y(t) and the temperature signal can be measured

by the sensor. Through the A/D converter, the system output signal is sent

to the computer. The computer calculates the hot water’s valve aperture as

the input signal; the limitation of input signal is : 0% ≤ u(t) ≤ 100%. The

input of cold water is a constant value, it is set as 10% in this experiment.

The experimental comparisons are given in two parts, in the first part,

a comparison of CMAC-PD-FRIT-PID controller and a PD-FRIT-PID con-

troller is given, to explain the effectiveness of a CMAC-PD-FRIT-PID con-

troller, in the second part, a comparison between CMAC-PD-FRIT-PID con-

troller and a HC-CMAC-PD-FRIT-PID controller is given, to verify the pro-
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Figure 4.17: Control performance using CHR method

posed method is useful.

4.4.1 Comparison between a PD-FRIT-PID controller
and CMAC-PD-FRIT-PID controller

The control performance by using the Chien, Hrones and Reswick method

is shown in Fig.4.17. Additionally, the data is utilized as closed-loop data

for the CMAC-PD-FRIT-PID controller. From the control performance, the

system output can not track the reference model during the transient state

and the variance of system output during steady state is undesired. The PID

gains are calculated as:

KP=5.95 KI=0.32 KD=8.93

As a comparison, a result by using the method mentioned in reference

[41] is shown in Fig. 4.18, it is referred as PD-FRIT-PID method in this

chapter, this method focus to improve the control performance in steady

state, thus, the control performance can not track the reference model in

76



0 100 200 300 400 500

30

40

50

t [step]
y

PD−FRIT
Reference Model

0 100 200 300 400 500
0

50

100

t [step]

u

Figure 4.18: Control performance using PD-FRIT-PID method

Table 4.2: Designed parameters of CMAC-PD-FRIT-PID controller for ex-
perimental result

Number of weight tables 3
Number of label 3
Rise-time σ=35
Damping property δ=0
Reference Value r=45
Number of data N=300
Order of autoregressive parameter n=20
Coefficient related to cost functions β=0.1

transient state, in steady state the variance of system output is improved.

The PID gains are calculated as:

KP=3.76 KI=0.38 KD=7.74

The control performance by using the CMAC-PD-FRIT-PID controller

is shown in Fig.4.19 and the designed parameters are summarized in Table

4.2.
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Figure 4.19: Control performance of CMAC-PD-FRIT-PID controller
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Figure 4.20: Trajectories of PID gains for the CMAC-PD-FRIT-PID con-
troller

Trajectories of PID gains, for the CMAC-PD-FRIT-PID controller, are

shown in Fig.4.20. By comparing Fig.4.17, Fig.4.19 and Fig.4.18, when the

CMAC-PD-FRIT-PID controller is utilized, the control performances tracks
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Figure 4.21: Comparison of κ and κ0

reference model in transient state and in steady state the variance of system

output is reduced. Fig.4.21 shows the control performance assessment using

the CHR, PD-FRIT-PID and CMAC-PD-FRIT-PID controller. From the

figure, the value of control performance assessment of the CMAC-PD-FRIT-

PID controller and PD-FRIT-PID controller are between 0.7 and 0.8, the

value of control performance assessment of the CHR method between 0.2

and 0.3. This demonstrates the control ability for the CMAC-PD-FRIT-PID

controller is almost same with PD-FRIT-PID method and better than CHR

method in steady state. From the above, the effectiveness of the CMAC-

PD-FRIT-PID controller has been verified numerically by simulation ands

experiments.
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Table 4.3: Designed parameters of CMAC-PD-FRIT-PID and HC-CMAC-
PD-FRIT-PID controllers

Number of weight tables 3 3
Number of label for each 3, 3, 3 1, 2, 3
Rise-time σ=35 σ=35
Damping property δ=0 δ=0
Reference Value r=40 r=40
Number of data N=300 N=300
Order of autoregressive parameter n=20 n=20
Coefficient related to cost functions β=0.1 β=0.1
Memory requirement M=2484 M=1404

4.4.2 Comparison between CMAC-PD-FRIT-PID con-
troller and HC-CMAC-PD-FRIT-PID controller

The comparison between HC-CMAC-PD-FRIT-PID controller and CMAC-

PD-FRIT-PID controller is demonstrated in the following statement:

The designed parameters and memory requirement of two methods are

given in Table. 4.3.

A set of PID gains calculated form CHR method is applied to control

objective, to gather a set of closed-loop data which is shown in Fig. 4.22:

KP=3.76 KI=0.38 KD=7.74.

Based on the closed-loop data, the HC-CMAC-PD-FRIT-PID and CMAC-

PD-FRIT-PID controller are trained, the control performances of each method

are given in Fig. 4.23 and Fig. 4.24 Form the control performances, it is

known that both of the two methods tacks the reference signal, and the vari-

ance of system output in steady state are improved. Form Table. 4.3, it is

known that proposed method achieves similar control performance with less

memory requirement. The trajectories of PID gains for CMAC-PD-FRIT-

PID controller is shown in Fig. 4.25 and the trajectories of PID gains for
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Figure 4.22: Closed-loop data
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Figure 4.23: Control performance of CMAC-PD-FRIT-PID controller

HC-CMAC-PD-FRIT-PID controller is shown in Fig. 4.26

The generalization ability of two controllers are compared as follows:

The CMAC and HC-CMAC trained for reference signal 40 are then

employed to control reference signal 30, the control performances are shown
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Figure 4.24: Control performance of HC-CMAC-PD-FRIT-PID controller
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Figure 4.25: Trajectories of PID gains using CMAC-PD-FRIT-PID controller

in Fig. 4.27 and Fig. 4.28. In the transient state, the integral absolute

error(IAE) of CMAC-PD-FRIT-PID is 85.32, the IAE for HC-CMAC-PD-

PID controller is 45. It demonstrated that the HC-CMAC-PD-FRIT-PID
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Figure 4.26: Trajectories of PID gains using HC-CMAC-PD-FRIT-PID con-
troller

controller has a better tracking ability than the CMAC-PD-PID controller

for untrained reference signal.

A figure shows the comparison of CPA for untrained reference signal is

given in Fig. 4.29, it shows that the variance of system output in steady

state by using the HC-CMAC-PD-FRIT-PID controller is smaller than the

one for CMAC-PD-FRIT-PID controller.

4.5 Conclusions

This chapter has proposed a HC-CMAC-PD-FRIT-PID controller, the

HC-CMAC enables a different number of labels for each weight table, thus,

the balance of learning accuracy, memory requirement and generalization

ability of CMAC can be achieved. Through some simulations and exper-

iments, the CMAC-PD-FRIT-PID controller improves the control perfor-

mance for both transient state and steady state, the HC-CMAC-PD-PID

83



0 100 200 300 400 500
10

20

30

40

t [step]
y

y
Reference Model

0 100 200 300 400 500
0

50

100

t [step]

u

Figure 4.27: Control performance for untrained signal using CMAC-PD-
FRIT-PID controller
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Figure 4.28: Control performance for untrained signal using HC-CMAC-PD-
FRIT-PID controller

controller remains the advantage of CMAC-PD-FRIT-PID controller with

less memory requirement and better generalization ability.
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Figure 4.29: Comparison of CPA for untrained reference signal

4.6 Appendix

In the following equations, (z−1) is omitted. From (4.3) and (4.12), the

following equation is obtained by

ΔAy(t) = z−(k+1)BC(1)r(t)− z−(k+1)BCy(t) + ξ(t).

(4.43)

Based on (4.21), the following formula is derived:

y(t) =
z−(k+1)BC(1)r(t)

T
+

ξ(t)

T
. (4.44)

Substituting (4.44) into (4.15) yields

φ(t+ k + 1) =
PBC(1)r(t)

T
+

Pξ(t+ k + 1)

T

−P (1)r(t)

=
PBC(1)− P (1)(ΔA− z−(k+1)BC)

T
r(t)

+
Pξ(t+ k + 1)

T
. (4.45)
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Considering the reference value is a constant value, it is known that r(t)=z−1r(t)

=. . .=z−(k+1)r(t). On the right side of (4.45), the first term equals zero.

Hence, (4.19) can be derived by

φ(t+ k + 1) =
P (z−1)

T (z−1)
ξ(t+ k + 1)

In addition, from (4.16) and (4.21) the following equation can be calculated

as

ET = ΔAE + z−(k+1)BCE

= (P − z−(k+1)F ) + z−(k+1)BCE. (4.46)

Multiplying ET for both sides of (4.19) yields

ETφ(t+ k + 1) = EP (z−1)ξ(t+ k + 1). (4.47)

At last, substituting (4.46) into (4.47) and take (4.19) and (4.22) into con-

sideration, the following formulas can be obtained:

φ(t+ k + 1) = Eξ(t+ k + 1) +
F − BCE

T
ξ(t)

= Eξ(t+ k + 1) + Sξ(t). (4.48)
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Chapter 5

Conclusions

In this dissertation, three kinds of Hierarchical Clustering CMAC based

controllers have been proposed.

The proposed HC-CMAC is an optimized structure of a conventional

CMAC, in the conventional CMAC, the memory requirement increases ex-

ponentially and the generalization ability of the network scarifies as the de-

mand of learning accuracy increases, the proposed structure overcomes such

drawbacks, it can balance the memory requirement, generalization ability

and learning accuracy of a network.

In Chapter 2, an on-line tuning method of PID gains using HC-CMAC is

introduced. Compare with the conventional CMAC PID controller, under the

condition that they have similar control performances for a trained reference

signal, the proposed scheme uses less learning cost and less memory, it has

a better control ability for untrained reference signal. From the results, the

HC-CMAC PID controller has a desired control performance for nonlinear

system, and it is a more applicable controller.

In Chapter 3, a HC-CMAC FRIT PID controller is proposed. In this
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chapter, a detail of constructing of an off-line tuning scheme of PID gains is

explained. The FRIT algorithm is utilized so that the modeling of a control

objective is unnecessary and by using a set of closed-loop data, the learning

of HC-CMAC is available. In such case, the time cost of on-line learning can

be avoid. This method is compared with a CMAC FRIT PID controller, and

some advantages are shown in detail.

In Chapter 4, the HC-CMAC is extended to be used to design a performance-

driven controller. The HC-CMAC maintains the partial learning ability of

CMAC network, it is possible to tune controller gains for different state of

a control process. This HC-CMAC PD FRIT PID controller leads a fast

response in transient state and decreases variance of system output in steady

state. The learning of PID gains is also achieved in off-line manner. Some

simulations and experiments are demonstrated to show the effectiveness of

the controller. Some comparisons are given to explain the controller is more

applicable.

From all the contents introduced in the dissertation, the effectiveness of

HC-CMAC based PID controllers are verified. In this thesis, the controllers

are designed without modeling of control objectives, this is an important

feature, since in the application to real systems, some control objectives

would be complex and sometimes modeling of them becomes very difficult.

In the future, the proposed HC-CMAC is considered to be constructed

automatically, which means some user-specified parameters such as number

of weight tables, number of labels for each weight table are going to be

decided based on some conditions, for example, the requirement of memory,

the requirement of learning accuracy and so on.

The HC-CMAC is constructed from data, its structure reflects a distri-
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bution of data, thus, applying the HC-CMAC to classification field is taken

into consideration. Such thinking comes up with the highly developments

of computer science, measurement of hardware and data processing tech-

niques. By using these techniques, the gathering of large amount of data

becomes available, almost everything can be reflected through data. Thus,

when analyzing some problems, multi-dimensional database can be created,

a multi-HC-CMAC that has classification ability can be constructed based

on such database.

The HC-CMAC is also being considered to be utilized in the field of

modeling. Especially, when the gathered data include nonlinear informations;

the HC-CMAC is constructed adaptively by separating data into similar or

dissimilar groups, this feature may helps the modeling for nonlinear system

more accurate and efficient.
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Design”, Martin Hagan, 2014.

[5] S. Haykin, “Neural Networks - A Comprehensive Foundation,” Pearson

Education, 2005.

[6] M. T. Hagan, H. B. Demuth, “Neural networks for control,” Proceedings

of the American Control Conference, 1999.

[7] K. Cheng “CMAC-based neuro-fuzzy approach for complex system mod-

eling,” Neurocomputing, Vol. 72, pp. 1763-1774, 2009.

[8] W. Yu, F. Rodriguze, M. Moreno-Armendariz “Hierarchical Fuzzy

CMAC for Nonlinear Systems Modeling,” IEEE Transactions on Fuzzy

Systems, Vol. 16, No.5, pp. 1302-1314, 2008.

90



[9] M. Yeh, M. Leu “ART-type CMAC network classifier,” Neuroncomput-

ing, Vol. 74, pp. 783-791, 2011.

[10] B. Li, D. Elliman “Fuzzy classification by a CMAC network,” Proceed-

ings of 9th IEEE International Conference on Tools with Artificial In-

telligence, November, 1997.

[11] M. Yeh “Single-input CMAC control system,” Neurocomputing, Vol. 70,

pp. 2638-2644, 2007.

[12] H. Shiraishi, S. L. Ipri and D. -I. D. Cho “CMAC neural network con-

troller for fuel-injection systems,” IEEE Transactions on Control Sys-

tems Technology, Vol. 3, No. 1, pp. 32-38, 1995.

[13] J. S. Albus, “A Theory of Cerebellar Function,” Mathematical Bio-

sciences, No.10, pp. 25-61, 1971.

[14] J. S. Albus, “A New Approach to Manipulator Control: the Cerebellar

Model Articulation Controller (CMAC),” Trans. ASME, Series G. Jour-

nal of Dynamic Systems, Measurement and Control, No.97, Vol 3, pp.

220-233, 1975.

[15] J. S. Albus, “Mechanisms of Planning and Problem Solving in the

Brain,” Mathematical Biosciences, No.45, pp. 247-293, 1979.

[16] Xing, Frank Z. “A Historical Review of Forty Years of Research on

CMAC,” eprint arXiv:1702.02277.

[17] D. Purves; et al. “Neuroscience,” Sunderland, Massachusetts U.S.A.

2004.

91



[18] Y. Liao, K. Koiwai, T. Yamamoto. ”Design of a hierarchical-clustering

CMAC-PID controller.” 2017 International Joint Conference on Neural

Networks (IJCNN 2017), Alaska, American, 2017, May.

[19] Y. Liao, K. Takuya, K. Koiwai, T. Yamamoto. ”Design of a performance-

driven PID controller Using a Hierarchical-Clustering CMAC.” 2017 The

49th ISCIE International Symposium on Stochastic Systems Theory and

Its Applications (SSS’ 17), Hiroshima, Japan, 2017, November.

[20] C. Jia, X. Shan, Y. Cui, T. Bai, F. Cui, ”Modeling and Simulation of

Hydraulic Roll Bending System Based on CMAC Neural Network and

PID Coupling Control Strategy.” Journal of Iron and Steel Research,

International, No. 10, Vol. 20, pp. 17-22, 2013.

[21] H. Zhao, M. Sugisaka, ”Simulation study of CMAC control for the robot

joint actuated by McKibben muscles,” Applied Mathematics and Com-

putation, No. 1, Vol. 203, pp. 457-462, 2008.

[22] L. Wang, X. Fang, S. Duan and X. Liao, ”PID Controller Based on

Memristive CMAC Network,”Abstract and Applied Analysis,vol. 2013,

Article ID 510238, 6 pages, 2013.

[23] R. Kurozumi, T. Yamamoto, S. Fujisawa and O. Sueda “Development

of Training Equipment with Adaptive and Learning Using a Balloon

Actuator-Sensor System” Journal of Robotics and Mechatronics, No. 1,

Vol. 21, pp. 156-163, 2009.

[24] R. Kurozumi, T. Yamamoto, “A Design of CMAC Based Intelligent

PID controllers”, IEEJ trans. EIS, No.4, Vol. 125, pp. 607-615, 2005.

(In Japanese)

92



[25] T. Yamamoto, R. Kurozumi, S. Fujisawa “A Design of CMAC Based

Intelligent PID controllers”, ICANN/ICONIP 2003, Berlin Heidelberg

2003.

[26] Y. Liao, T. Yamamoto , Design and Experimental Evaluation of a

Human Skill-Based PID Controller Journal of Robotics, Networking

and Artificial, Vol.2 No.3 pp.140-143, 2015.

[27] K. Koiwai, Y. Liao, T. Yamamoto, T. Nanjo, Y. Yamazaki, Y. Fujimoto

Feature Extraction for Excavator Operation skill using CMAC Jour-

nal of Robotics and Mechatronics, Vol.28 No.5 pp. 715-721, 2016.

[28] P. Tan, M. Steinbach and V. Kumar ”Introduction to Data Mining,”

Pearson Addison-Wesley, 2006.

[29] S. Cong, Y. Liang, “PID-Like Neural Network Nonlinear Adaptive Con-

trol for Uncertain Multivariable Motion Control Systems,”IEEE Trans-

actions on Industrial Electronics, No.10, Vol. 56, pp.3872-3879, 2009.

[30] T.Yamamoto and S.L.Shah, ”Design and experimental evaluation of a

multivariable self-tunning PID controller,” IEE Proc. of Control Theory

and Applications Vol.151, No.5, 645-652, 2004.

[31] K.L. Chien, J.A. Hrones, and J.B. Reswick, “On the automatic control

of generalized passive systems”, Trans. ASME, Vol.74, pp.175-185, 1972.

[32] M. Farahani, S. Ganjefar and Mo. Alizadeh “A Self-tunning PID De-

sign Based on Wavelet Neural Network Using Lyapunov Method,” 2nd

International Conference on Control, Instrumentation and Automation

(ICCIA) 2011.

93



[33] J. Kang, W. Meng, A. Abraham and H. Liu “An adaptive PID neural

network for complex nonlinear system control,” Neurocomputing, Vol.

135, pp. 79-85, 2014.

[34] Y. Suehiro, Y. Obika and T. Yamamoto, “FRIT-based tuning of PID pa-

rameters using a genetic algorithm,” Proceedings of International Con-

ference on Networking, Sensing and Control, 2009, Japan, Okayama.

[35] M. Demirtas, “Off-line tuning of a PI speed controller for a permanent

magnet brushless DC motor using DSP,” Energy Conversion and Man-

agement, Vol. 52, pp. 264-273, 2011.

[36] M. Villarreal-Cervantes, J. Alvarez-Gallegos, “Off-line PID control tun-

ing for a planar parallel robot using DE variants,” Expert Systems With

Applications, Vol. 64, pp. 444-454, 2016.

[37] O.Kaneko, S.Souma, and T.Fujii, ”Fictitious reference iterative tuning

in the two-degree of freedom control scheme and its application to a

facile closed loop system identification,” Trans. of SICE, Vol. 42, No.

1,pp. 17-25, 2006.

[38] T.Shigemasa, Y.Negishi, and Y.Baba, ”From frit of a pd feedback loop

to process modeling and control system design,” Proc. of 11th IFAC

International Workshop on Adaptation and Learning in Control and

Signal Processing, 2013.

[39] S.Wakitani, Y.Ohnishi, and T.Yamamoto, ”Design of a cmac-based pid

controller using operating data,” Distributed Computing and Artificial

Intelligence Advances in Intelligent and Soft Computing, Vol. 151, pp.

545-552, 2012.

94



[40] S.Wakitani, T.Nawachi, G.R.Martins, and T.Yamamoto, ”Design and

implementation of a data-oriented nonlinear pid controller,” Journal of

Advanced Computational Intelligence and Intelligent Informatics, Vol.

17, No. 5, pp. 690-698, 2013.

[41] T. Yamamoto, T. Kinoshita, Y. Ohnishi, and S. L. Shah ”Design and Ex-

perimental Evaluation of a Performance-Driven PID Controller” Journal

of Robotics and Mechatronics Vol.28 No.5 pp. 616-624, 2016.

[42] T. J. Harris: Assessment of closed loop performance; Canadian Journal

of Chemical Engineering, Vol.67, pp.856-861, 1989.

[43] M. Jelali, ”Control Performance Management in Industrial Automa-

tion,” Springer-Verlag,London, 2013.

[44] B. Huang and S. L. Shah “Performance assessment of control loops:

theory and applications,” Springer, London, 1999.

[45] T. Yamamoto, Y. Ohnishi, and S. L. Shah, ”Design of a Performance-

Adaptive Proportional-Integral-Derivative Controller for Stochastic Sys-

tems,” Proceedings of the Institute of Mechanical Engineering, Part-I:

Journal of Systems and Control Engineering, Vol.222, pp. 691-699, 2008.

[46] Y. Ohnishi, K. Takao, T. Yamamoto, and S. L. Shah,”Design of a PID

Controller with a Performance-Driven Adaptive Mechanism,” Proceed-

ings of American Control Conf., New York, pp.1359-1364, 2007.

[47] Y. Liao,T. Kinoshita, K. Koiwai and T. Yamamoto, “Design of a Perfo-

rmance-Driven CMAC PID Controller,” IEICE Transactions on Funda-

95



mentals of Electrics Communication and Computer Sciences Vol.E100-

A, No.12. pp. 2963-2971, 2017.

[48] Y. Liao, K. Takuya, K. Koiwai and T. Yamamoto. “Design of a

performance-driven PID controller for a nonlinear system.” 2017 6th

International Symposium on Advanced Control of Industrial Processes

(AdCONIP 2017), Taipei, Taiwan, 2017, May.

[49] R. Gao, A. O Dwyer, E. Coyle ”Model Predictive Control of CSTR

Based on Local Model Networks” Proceedings of the Irish Signals and

Systems Conference, University College Cork, pp. 397-402, 2002.

[50] L. Desborough, T. J. Harris: Performance assessment measures for uni-

variate feedback control; The Canadian Journal of Chemical Engineer-

ing, Vol.70, pp.1186-1197, 1992.

[51] Y. Liao, K. Koiwai and T. Yamamoto. “Design and Implementation

of a Hierarchical-Clustering CMAC PID Controller,” Asian Journal of

Control. (in press)

96



Publication Lists

Journal Publications Related to This Thesis

[1] Y. Liao, T. Yamamoto, “Design and Experimental Evaluation of a Hu-

man Skill-Based PID Controller,” Journal of Robotics, Networking and

Artificial, Vol.2 No.3 pp.140-143, 2015.

[2] Y. Liao, T. Kinoshita, K. Koiwai, T. Yamamoto, “Design of a Performance-

Driven CMAC PID Controller,” IEICE Transactions on Fundamentals of

Electronics Communications and Computer Sciences, Vol.E100-A,No.12.

pp. 2963-2971, 2017.

[3] Y. Liao, K. Koiwai and T. Yamamoto, “Design and Implementation of a

Hierarchical-Clustering CMAC PID Controller,” Asian Journal of Con-

trol. (in press)

International Conference Publications Related

to This Thesis (Peer-Reviewed)

[1] Y. Liao, K. Takuya, T. Yamamoto, ”Design and experimental evalu-

ation of a human skill-based controller,” 2014 International Conference

on Advanced Mechatronic Systems (ICAMechS 2014),Kumamoto, Japan,

August, 2014.

97



[2] Y. Liao, K. Koiwai, T. Yamamoto. ”Design of a hierarchical-clustering

CMAC-PID controller.” 2017 International Joint Conference on Neural

Networks (IJCNN 2017), Alaska, American, May, 2017.

[3] Y. Liao, K. Takuya, K. Koiwai, T. Yamamoto. ”Design of a performance-

driven PID controller for a nonlinear system.” 2017 6th International

Symposium on Advanced Control of Industrial Processes (AdCONIP

2017), Taipei, Taiwan, May, 2017.

[4] Y. Liao, K. Takuya, K. Koiwai, T. Yamamoto. ”Design of a performance-

driven PID controller Using a Hierarchical-Clustering CMAC.” 2017 The

49th ISCIE International Symposium on Stochastic Systems Theory and

Its Applications (SSS’ 17), Hiroshima, Japan, November, 2017.

Journal Publications not Related to This The-

sis

[1] K. Koiwai, Y. Liao, T. Yamamoto, T. Nanjo, Y. Yamazaki, Y. Fujimoto,

“Feature Extraction for Excavator Operation skill using CMAC,” Journal

of Robotics and Mechatronics, Vol.28 No.5 pp. 715-721, 2016.

International Conference Publications not Re-

lated to This Thesis (Peer-Reviewed)

[1] K. Koiwai, Y. Liao, T. Yamamoto, T. Nanjo, Y. Yamazaki, Y. Fujimoto

A Consideration on Feature Extraction for Operation Skill Based on

Control Engineering Approach The 2016 International Conference on

Artificial Life and Robotics (ICAROB 2016), Okinawa, Japan, January,

2016.

98



[2] K. Koiwai, Y. Liao, T. Yamamoto, T. Nanjo, Y. Yamazaki, Y. Fujimoto,

“Human Skill Evaluation Based on Control Engineering Approach,” The

13th IFAC/IFIP/IFORS/IEA Symposium on Analysis, Design, and Eval-

uation of Human-Machine Systems (IFAC-HMS 2016), Kyoto, Japan,

September, 2016.

99


