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Abstract. In this paper, we study about estimating the probabilities of misclas-
sification in the high-dimensional data. In many cases, the cross-validation (CV) is
often used for estimations of the probabilities of misclassification. CV provides a
nearly unbiased estimate, using the original data when the sample sizes are large.
On the other hand, the properties of CV are unknown when the dimension is large
as compared to the sample sizes. Therefore, we investigate asymptotic properties
of CV when the dimension and the sample sizes tend to be large. Furthermore, we
suggest the three methods for correcting the bias by using CV which is usable in the
high-dimensional data. We show performances of the estimators in the simulation
studies.

1. Introduction

In this paper, we consider estimating the probabilities of misclassification
for a classification rule constructed from a training data. The probabilities of
misclassification are expressed by

P (2|1) = Pr(the rule classifies x to Π2| x ∈ Π1),

P (1|2) = Pr(the rule classifies x to Π1| x ∈ Π2).

For k = 1, 2, the training data Xk = (xk1, . . . ,xkNk)
⊤ consists of Nk obser-

vations where a⊤ is the transpose of a, and xik is ith p-variate feature vector
belonging to kth population Πk. For observation x, the statistician wishes to
estimate the probabilities of misclassification for a classification rule. In this pa-
per, we consider the following classification rule using the discriminant function
dX(x) = d(x). It is to classify x as coming from Π1 if d(x) > c and from Π2 if
d(x) ≤ c, where c is a cut-off point. For example, Fisher’s discriminant function
is given by

dF (x) = (x̄1 − x̄2)
⊤S−1

{
x− 1

2
(x̄1 + x̄2)

}
,

where x̄k is the sample mean of Xk for (k = 1, 2), and S is the pooled sample
covariance matrix (Fisher, 1936). As another sample, we consider the following

2010 Mathematics Subject Classification. Primary 62H30; Secondary 62H12.
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discriminant function,

Db(x) = (x− x̄2)
⊤S−1(x− x̄2)− b(x− x̄1)

⊤S−1(x− x̄1),

where b is a constant. Db is introduce in Fujikoshi and Seo (1998) and includes
various discriminant functions, for example Db is the same as dF when b = 1.
Then, by using the discriminant function d, the probabilities of misclassification
are given by

P (2|1) = Pr {d(x) ≤ c | x ∈ Π1} ,
P (1|2) = Pr {d(x) > c | x ∈ Π2} .

The probabilities of misclassification are natural risks to measure the good-
ness of discrimination. If we had the exact evaluation of the probabilities of
misclassification for all classifiers, we could select the best classifier and make
accurate discrimination. So, we want to obtain the probabilities of misclassi-
fication. However, in general, it is hard to obtain the exact evaluation of the
probabilities of misclassification, therefore it is necessary to estimate the prob-
abilities of misclassification from the observation. Estimation methods of the
probabilities of misclassification are separated to the parametric and the non-
parametric methods. In the parametric methods, we assume a distribution and
a classification rule and derives an approximation formula of the probabilities
of misclassification. It is given by Okamoto(1963) and Tonda, et al. (2017)
etc. However, since it is necessary to assume a distribution and a classification
rule, the parametric methods can only be applied to restrictively classification.
Hence, an approximation formula needs to be derived for each assumption. On
the other hand, estimators of the probabilities of misclassification are used for
the Cross-validation (CV) for a long time (see Lachenbruch and Mickey, 1968;
Stone, 1974). CV is one of the non-parametric methods and is so useful that
the method of CV does not need assumption of a distribution and a classifi-
cation rule. Furthermore, CV provides a nearly unbiased estimate, using the
original data when sample sizes are large (see McLachlan, 1974; Efron, 1997).
In recently, the data whose the dimension is large are observed, for example,
the image data and the genetic data. However, asymptotic properties of CV are
not known well in the high-dimensional case. Hence, we investigate asymptotic
properties of CV when the dimension and the sample sizes tend to be large.
Furthermore, it is known that the bias of CV increases with the dimension in
the simulation studies. Therefore, we suggest three methods for correcting the
bias by using CV which usable in the high-dimensional data.

This paper is organized as follows: In section 2, we investigate asymptotic
properties of CV by using an asymptotic expansion in the high-dimensional case.
In section 3, we suggest three methods for correcting the bias by using CV. In
section 4, we show performances of the estimators in simulation studies.
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2. Asymptotic properties

In this section, we investigate asymptotic properties of CV for estimating
the probabilities of misclassification. Most of the asymptotic results of CV are
based on the large samples (LS) framework:

p is fixed, N1, N2 → ∞,
N

Nk
= O(1) (k = 1, 2),

where N = N1 + N2. Regarding the estimation of the probabilities of misclas-
sification, it is also known that the bias is O2 based on the LS framework (see
McLachlan, 1974), where Ok means a term of the kth order with respect to
(N−1

1 , N−1
2 , p−1, (N − p)−1). However, the data whose the dimension is large

as compared to the sample sizes have been observed in recently. Therefore we
consider an asymptotic theory based on the high-dimensional (HD) framework:

p,N1, N2 → ∞,
N

Nk
= O(1) (k = 1, 2),

p

N
→ c0 ∈ (0, 1),

and N − p− 2 > 0.

Remark 1. The Mahalanobis distance ∆ = {(µ1−µ1)⊤Σ−1(µ1−µ1)}1/2
may tend to infinity depending on p. However, since P (2|1) → 0 with ∆ → ∞,
we assume that ∆ = O(1) even when p → ∞ in this paper.

In this section we assume that Πk is the normal population with the mean
vector µk and the covariance matrix Σ for k = 1, 2, that is

Π1 : Np(µ1,Σ), Π2 : Np(µ2,Σ). (1)

Firstly, we consider the bias of the estimator by CV. The estimator P̂CV of the
probability of misclassification using CV expresses as

P̂CV = N−1
1

N1∑

i=1

1(d(−i)(x1i) ≤ c),

where 1(·) is the indicator function and d(−i) is the discriminant function con-
structed without x1i. Then we have the following theorem.

Theorem 1. If the expansion of the probability of misclassification P (2|1)
is given by

P (2|1) = Q0

(
p

N1
,
p

N2

)
+

1

N
Q1

(
p

N1
,
p

N2

)
+O2, (2)

where Q0(x1, x2) and Q1(x1, x2) are C1 class functions around (p/N1, p/N2),
then

E[P̂CV (2|1)]− P (2|1) = O1.
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Proof. From (2), an expectation of the estimator by CV is given by

E[P̂CV (2|1)] = Q0

(
p

N1 − 1
,
p

N2

)
+

1

N − 1
Q1

(
p

N1 − 1
,
p

N2

)
+O2

= Q0

(
p

N1
,
p

N2

)
+

1

N
Q1

(
p

N1
,
p

N2

)

+
p

N1(N1 − 1)

∂

∂x1
Q0

(
p

N1
,
p

N2

)
+O2.

SinceQ0 is a C1 class function, ∂Q0/∂x1 is the continuous function and ∂Q0/∂x1(p/N1, p/N2)
is bounded as N1, N2, p → ∞. Therefore

E[P̂CV (2|1)]− P (2|1) = p

N1(N1 − 1)

∂

∂x1
Q0

(
p

N1
,
p

N2

)
+O2 = O1.

The proof of this theorem does not need to assume normality of the popu-
lations. From the proof of this theorem, the estimator by CV is an asymptotic
unbiased estimator in the HD framework but the order of its bias is larger than
the LS framework. For the classification with dF , the following theorem is given
in Tonda et al. (2017).

Theorem 2. Let x ∈ Π1, then P (2|1) can be expanded as

P (2|1) = Φ(ν) + φ(ν)F1(∆) +O2,

where φ(·) is the density function of N(0, 1),

ν = ν
(
∆2
)

= −1

2

(
N − p

N − 1

)1/2{
∆2 +

(N1 −N2)(p− 1)

N1N2

}{
∆2 +

N(p− 1)

N1N2

}−1/2

.

Moreover the F1(∆) is given as follows:

F1(∆) = T(2) −
T(0)

2
T(1),
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where m = N1N2/N and

q1 =
(N − 1)m2∆2(p− 1 +m∆2)

N(N − p− 1)3(N − p)
, q2 =

m(N − 1)(N1 −N2)(p− 1 +m∆2)2

N(N − p− 1)3(N − p)
,

T(0) = q1 + q2,

T(1) =
T 2
(0)

4

(
2(p− 1) + 4m∆2

(p− 1 +m∆2)2
+

8

N − p− 1
+

2(p− 1)

(N − p)(N − 1)

)

+ q21

{
1

m∆2

(
1 +

(p− 1)2

(N − p)(p− 2)

)
+

2

N − p− 1

}

+ q22

(
2(p− 1) + 4m∆2

(p− 1 +m∆2)2
+

2

N − p− 1

)
+

1

N

− q1T(0)

(
2

p− 1 +m∆2
+

4

N − p− 1

)

− q2T(0)

(
2(p− 1) + 4m∆2

(p− 1 +m∆2)2
+

4

N − p− 1

)

+ 2q1q2

(
2

p− 1 +m∆2
+

2

N − p− 1

)
,

T(2) =
T(0)

8

(
2(p− 1) + 8m∆2

(p− 1 +m∆2)2
− 2(p− 1)

(N − p)(N − 1)

)

+ q1
1

p− 1 +m∆2
− q2

m∆2

(p− 1 +m∆2)2
.

Therefore, we obtain the following corollary.

Corollary 1. In the case of classification with dF , the bias of CV has
order O1.

Secondly, we consider evaluating the mean squared error (MSE) of P̂CV (2|1).
The straightforward calculations give

MSE
(
P̂CV (2|1)

)
= Bias

(
P̂CV (2|1)

)2
+Var

(
P̂CV (2|1)

)
,

Var
(
P̂CV (2|1)

)

= Pr
(
d(−1)(x11) ≤ c, d(−2)(x12) ≤ c

)
− Pr

(
d(−1)(x11) ≤ c

)2

+
1

N1

[
Pr
(
d(−1)(x11) ≤ c

)
− Pr

(
d(−1)(x11) ≤ c, d(−2)(x12) ≤ c

)]
.

Note that P̂CV (2|1) has consistency if d(−1)(x11) and d(−2)(x12) are asymptoti-
cally independent, that is

Pr
(
d(−1)(x11) ≤ c, d(−2)(x12) ≤ c

)
− Pr

(
d(−1)(x11) ≤ c

)2
→ 0, (3)

as N1, N2, p → ∞.
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Example 1. In the case of the LS framework, the classification rule using
the discriminant function Db clearly satisfies condition (3) from the Slutsky’s
theorem.

Hereafter, we show that MSE of CV for the discriminant function Db in the
HD framework.

Lemma 1. Let x ∈ Π1, then Db(x) is expressed as

Db(x) = tr(AU) (4)

where U = TV −1
1 T⊤, V1 ∼ W3(N − p, I3), V2 = TT⊤ ∼ W3(p, I3,Ω), and V1

and T are independent, and

A =

⎛

⎝
n/N2 0 −n/

√
N2

0 −nb/N1 nb/
√
N1

−n/
√
N2 nb/

√
N1 n(1− b)

⎞

⎠ ,

n = N − 2.

The proof is given in the appendix.

Theorem 3. Let x ∈ Π1 and b = 1 + O1, then P (2|1) is expanded as
follows:

P (2|1) = Φ(ν) +O1. (5)

where

ν = s−1(c− η)

η and s are given in the appendix.

The proof is given in Fujikoshi and Seo (1998) and Fujikoshi (2000). In this
paper, we can show the different way of the proof in the appendix. This theorem
means that the estimator of the probabilities of misclassification by using CV is
an asymptotic unbiased estimator in the case of classification with Db and the
order of its bias is O1 in the HD framework.

Lemma 2. The sample mean and the sample covariance matrix of Π1 are
expressed as follows:

x̄k =
n1

N1
x̄(−i)
k +

1

N1
xki,

n1S1 = (n1 − 1)S(−i)
1 +

n1 − 1

n1

(
x− x̄(−i)

1

)(
x− x̄(−i)

1

)⊤
,
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for k = 1, 2. Moreover,

nS = (n− 1)S(−i) +
n1 − 1

n1

(
x− x̄(−i)

1

)(
x− x̄(i)

1

)⊤
,

S−1 =
n

n− 1

[{
S(−i)

}−1
− T−1

{
S(−i)

}−1 (
x− x̄(−i)

1

)(
x− x̄(−i)

1

)⊤ {
S(−i)

}−1
]
,

T =
N1(n− 1)

n1
+
(
x− x̄(−i)

1

)⊤ {
S(−i)

}−1 (
x− x̄(−i)

1

)
,

where n1 = N1 − 1, n2 = N2 − 1, and x̄(−i)
k , S(−i)

k and S(−i) are the sample
mean, the sample covariance matrix and the pool covariance matrix without xki,

for example, x̄(−i)
k , S(−i)

k and S(−i) for k = 1 express as

x̄(−i)
1 = n−1

1

N1∑

j ̸=i

x1j ,

S(−i)
1 = (N1 − 2)−1

N1∑

j ̸=i

(
x1j − x̄(−j)

1

)(
x1j − x̄(−j)

1

)⊤
,

S(−i) = (N1 − 2)S(−i)
1 + n2S2.

It is easy to proof of Lemma 2 so that we leave out its proof. Suppose that

D(−i)
b is Db constructed without x1i. From Lemma 2, we have the following

lemma.

Lemma 3. D(−i)
b (x1i) and D(−j)

b (x1j) are expressed by

D(−i)
b (x1i) = tr(A1U)− T−1

1 a⊤
1 UA1Ua1, (6)

T1 =
N1 − 1

N1 − 2
+ tr(B1U),

D(−j)
b (x1j) = tr(A2U)− T−1

2 a⊤
2 UA2Ua2, (7)

T2 =
N1 − 1

N1 − 2
+ tr(B2U),

where U = TV −1
1 T⊤, V1 ∼ W4(N − p, I4), V2 = TT⊤ ∼ W4(p, I4,Ω), and

V1 and T are independent, and a1 = (0,−n−1/2
1 , 0, 1)⊤, a2 = (0,−n−1/2

1 , 1, 0)⊤,
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Bi = aia⊤
i (i = 1, 2),

A1 = (n− 1)

⎛

⎜⎜⎜⎝

N−1
2 0 −N−1/2

2 0
0 −b(n1 − 1)n−2

1 b(n1 − 1)1/2n−1
1 b(n1 − 1)1/2n−2

1

−N−1/2
2 b(n1 − 1)1/2n−1

1 1− b bn−1
1

0 b(n1 − 1)1/2n−2
1 bn−1

1 −bn−2
1

⎞

⎟⎟⎟⎠
,

A2 = (n− 1)

⎛

⎜⎜⎜⎝

N−1
2 0 0 −N−1/2

2

0 −b(n1 − 1)n−2
1 b(n1 − 1)1/2n−2

1 b(n1 − 1)1/2n−1
1

0 b(n1 − 1)1/2n−2
1 −bn−2

1 bn−1
1

−N−1/2
2 b(n1 − 1)1/2n−1

1 bn−1
1 1− b

⎞

⎟⎟⎟⎠
.

The proof is given by the appendix. Using this lemma, we obtain the
following theorem.

Theorem 4. Let b = 1 +O1 then

Pr
(
D(−1)

b (x11) ≤ c,D(−2)
b (x12) ≤ c

)
− Pr

(
D(−1)

b (x11) ≤ c
)2

= O1.

Therefore, it holds that

MSE(P̂CV (2|1)) = O1.

Proof. The characteristic function φ(t) = φ(t1, t2) of the joint distribu-

tion of D(−1)
b (x11) and D(−2)

b (x12) is expanded as

φ(t) = exp

{
it1η1 −

t2

2
λ11

}
exp

{
it1η2 −

t2

2
λ22

}
+O1

Therefore, it is used the inversion formula

Pr
(
λ−1/2
11

(
D(−1)

b (x11)− η1
)
≤ x1,λ

−1/2
22

(
D(−2)

b (x12)− η2
)
≤ x2

)
= Φ(x1)Φ(x2) +O1.

From this formula,

Pr
(
D(−1)

b (x11) ≤ c,D(−2)
b (x12) ≤ c

)

= Φ
(
λ−1/2
11 (c− η1)

)
Φ
(
λ−1/2
22 (c− η2)

)
+O1

= Φ
(
λ−1/2
11 (c− η1)

)2
+O1.

Since Theorem 3,

Pr
(
D(−1)

b (x11) ≤ c
)2

= Φ
(
λ−1 (c− η)

)2
+O1

Therefore, we complete the proof of this theorem.

From this theorem, the estimator of CV has a consistency to P (2|1) in the
HD framework. On the other hand, we obtain the following theorem in Tonda
et al. (2017).
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Theorem 5. MSE of the propose estimator tends to 0 as O1 order in the
normal populations.

Therefore, Theorems 4 and 5 mean that MSE of CV is the same order
as MSE of the estimator in Tonda et al. (2017) and the two estimators have
consistency to P (2|1).

3. Correcting the bias of CV

In this section, we suggest three methods for correcting the bias of the
estimator using CV. The previous section, we showed that if the sample sizes
are sufficiently large, the estimator of CV is good estimator even for the high-
dimension. However, the bias of CV estimator is large for the small sample sizes
and increases with the dimension. Therefore, it is necessary to correct the bias
of CV estimator in the HD framework.

P (2|1) = Q0

(
p

N1
,
p

N2

)
+

1

N
Q1

(
p

N1
,
p

N2

)
+O2

3.1. Method I : Using the leave-two-out CV. The method I is one of
the non-parametric methods for correcting the bias of the information criterion
proposed by Yanagihara and Fujisawa (2012). In this section, we consider using
this idea to the estimation of the probabilities of misclassification. The leave-
two-out CV is expressed by

P̂CV2(2|1) =
1

N1C2

N1∑

i<j

1

2

∑

k∈{i,j}

1
(
d(−i,−j)(x1k) ≤ c

)

where N (−ℓ)
j = Nj − ℓ, N (−ℓ) = N − ℓ and d(−i,−j) is the discriminant function

constructed without x1i and x1j . Then

E
[
P̂CV (2|1)

]
= Q0

(
p

N1
,
p

N2

)
+

1

N
Q1

(
p

N1
,
p

N2

)

+
p

N1N
(−1)
1

∂

∂x1
Q0

(
p

N1
,
p

N2

)
+O2

E
[
P̂CV2(2|1)

]
= Q0

(
p

N1
,
p

N2

)
+

1

N
Q1

(
p

N1
,
p

N2

)

+
2p

N1N
(−2)
1

∂

∂x1
Q0

(
p

N1
,
p

N2

)
+O2

E
[
P̂CV (2|1)

]
− P (2|1) = p

N1N
(−1)
1

∂

∂x1
Q

(
p

N1
,
p

N2

)
+O2,

E
[
P̂CV2(2|1)− P̂CV (2|1)

]
=

p

N (−1)
1 N (−2)

1

∂

∂x1
Q

(
p

N1
,
p

N2

)
+O2.
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Therefore, a new estimator is given by

P̂I(2|1) =
{
P̂CV (2|1)−

N (−2)
1

N1

(
P̂CV2(2|1)− P̂CV (2|1)

)}
.

Then it holds that

E
[
P̂I(2|1)

]
− P (2|1) = O2.

Hence, we can correct the bias of CV by using the leave-two-out CV in the HD
framework. Furthermore, the similar method for correcting the bias can be done
by using the two estimators of leave-k-out CV of different k.

3.2. Method II : Leave-λ-out CV. We consider leaving out λ instead of one
from a training data by CV method. This idea was proposed by Yanagihara et al.
(2006) and Yanagihara et al. (2013) for correcting the bias of the information
criterion. In this section, we use this idea to estimating the probabilities of

misclassification. Suppose that F (−i)
N−1 and Fi are the empirical distributions of

x11, . . . ,x1i−1,x1i+1 . . . ,x1N1 and x1i, respectively. The discriminant function

d̂(−i;λ) is constructed by using (1−uλ)F
(−i)
N−1+uλFi where uλ = (1−λ)/(N1−λ).

For example, assuming the discriminant function dθ is parameterized, MLE of
parameter θ is given as follows:

θ̂(−i;λ) = argmax
θ∈Θ

⎧
⎨

⎩
1

N1 − λ

N1∑

k ̸=i

log f(x1k; θ) +
1− λ

N1 − λ
log f(x1i; θ)

⎫
⎬

⎭ ,

where f is a probability density function of x1i. Then d̂(−i;λ) is the same as

dθ̂(−i;λ) . In the normal case, the estimators of mean x̄(−i;λ)
1 and covariance

matrix S(−i;λ) are given by

x̄(−i;λ)
1 =

N1 − 1

N1 − λ
x̄(−i)
1 +

1− λ

N1 − λ
x1i

S(−i;λ) =
1

N (−λ)

{(
N (−3)

)
S(−i) +

N (−1)
1

N (−λ)
1

(1− λ)
(
x1i − x̄(−i)

1

)(
x1i − x̄(−i)

1

)⊤
}

(8)

In the case λ = 1, this method is the same as usually CV (leave-one-out CV).
We define by using d̂(i;λ) as

P̂CVλ(2|1) =
1

N1

N1∑

i=1

1(d̂(−i;λ)(x1i) ≤ c).

This method is called leave-λ-out CV in this paper. Let λ = 1− κ/N , and if we
obtain an expansion by

E[P̂CVλ(2|1)] = Q∗
0

(
p

N1
,
p

N2
,λ

)
+

1

N
Q∗

1

(
p

N1
,
p

N2
,λ

)
+O2,
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whereQ∗
0(x1, x2, x3) andQ∗

1(x1, x2, x3) are C1 class functions around (p/N1, p/N2, 1).
Then, it is hold that

E[P̂CVλ(2|1)] = Q∗
0

(
p

N1
,
p

N2
,λ

)
+

1

N
Q∗

1

(
p

N1
,
p

N2
,λ

)
+O2

= Q0

(
p

N1 − 1
,
p

N2

)
− κ

N

∂

∂x3
Q∗

0

(
p

N1
,
p

N2
, 1

)

+
1

N
Q1

(
p

N1 − 1
,
p

N2

)
+O2.

Therefore, the bias of leave-λ-out CV is given by

E[P̂CVλ(2|1)]− P (2|1)

=
p

N1(N1 − 1)

∂

∂x1
Q0

(
p

N1
,
p

N2

)
− κ

1

N

∂

∂x3
Q∗

0

(
p

N1
,
p

N2
, 1

)
+O2

Thus, we can correct a bias by deciding κ so that the term of O1 is 0, that is, κ
is decided as follows:

κ̂ =
pN

N1(n1)

∂

∂x1
Q0

(
p

N1
,
p

N2

)/ ∂

∂x3
Q∗

0

(
p

N1
,
p

N2
, 1

)

Example 2. In the case of dF and c = 0, λ is decided as follows:

λ = 1− κ(∆)/N,

κ(∆) =
N

4N1

{
2−

(
∆2 +

p

N1
+

p

N2

)−1(
∆2 +

p

N2
− p

N1

)}
(9)

A derivation of this κ is given in the appendix.

This method has the same calculation load as CV and can correct the bias
of CV. On the other hand, we must derive λ for correcting the bias.

3.3. Method III : Modified a cutoff point. We propose a method for
correcting the bias by modifying a cut-off point c.

P (2|1) = Pr(d(x) ≤ c+ c1/N |x ∈ Π1)

= Q†
0

(
p

N1
,
p

N2
, c+

c1
N

)
+Q†

1

(
p

N1
,
p

N2
, c+

c1
N

)
+O2,

whereQ†
0(x1, x2, x3) andQ†

1(x1, x2, x3) are C1 class functions around (p/N1, p/N2, c).

E
[
P̂CVc(2|1)

]
= Q†

0

(
p

N1 − 1
,
p

N2
, c+

c1
N

)
+Q†

1

(
p

N1 − 1
,
p

N2
, c+

c1
N

)
+O2

= Q0

(
p

N1 − 1
,
p

N2

)
+

c1
N

∂

∂x3
Q†

0

(
p

N1
,
p

N2
, c

)

+
1

N
Q1

(
p

N1 − 1
,
p

N2

)
+O2.
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Therefore, the bias of P̂CVc(2|1) is given by

E[P̂CVc(2|1)]− P (2|1)

=
p

N1(N1 − 1)

∂

∂x1
Q0

(
p

N1
,
p

N2

)
− c1

1

N

∂

∂x3
Q†

0

(
p

N1
,
p

N2
, c

)
+O2.

Thus, we can correct the bias by deriving c1 so that the term of O1 is 0, that is,
c1 is derived as follows:

ĉ1 =
pN

N1(n1)

∂

∂x1
Q0

(
p

N1
,
p

N2

)/ ∂

∂x3
Q†

0

(
p

N1
,
p

N2
, c

)
.

From Theorem 3, we have the following.

Example 3. In the case of Db, we can have c1 as follows;

η(1) =
n− 1

N − p− 1

(
∆2 +

p

N2
− bp

n1
+ p(1− b)

)
= η + η1 +O2

(λ(1))2 = 4
(n− 1)2(N − 1)

(N − p− 1)3

(
∆2 +

pb2

n1
+

p

N2

)

= λ2 + λ1 +O2

c1(∆) =
N

λ

{
λ1

2
(c− η)− λη1

}
.

where η and λ2 are given by Theorem 3

η1 =

(
1

N − p
+

n

(N − p)2

)(
∆2 +

p

N2
− bp

N1
+ p(1− b)

)
− bnp

(N − p)N2
1

,

λ1 = 4
Nn2

(N − p)3

(
3

N − p
− 2

n
− 1

N

)(
∆2 +

pb2

N1
+

p

N2

)
+ 4

pb2Nn2

N2
1 (N − p)3

.

This method have the same the calculation load as CV and can correct the
bias of CV. On the other hand, we must derive c1.

4. Numerical study

In this section, we investigate performances of CV and the three methods
for the classification rule with dF by the Monte Carlo method. Without loss of
generality, we can assume that µ1 = ∆(1, ..., 1)′/2

√
p, µ2 = −∆(1, ..., 1)′/2

√
p

and Σ = Ip. CV, I, II, III, and TNW indicate the cross-validation, the methods
I, II, III in section 3, and the estimator in Tonda et al. (2017), respectively. The
configuration of the values of N1, N2, p and ∆ were N1, N2 = 15, 20, 25, 30, 35,
p/N = 1/5, 3/5 and∆ = 1.05, 1.68, 2.56, 3.29 satisfying N−p−2 > 0. The values
of ∆ correspond to the values 0.30, 0.20, 0.10, 0.05 of Φ(−∆/2), respectively. an
estimator of ∆ is necessary to use the methods II and III, so that ∆̂2 was given
by

∆̂2 =
n− p− 3

n
D2 − pN

N1N2
.
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where D2 = (x̄1− x̄2)⊤S−1(x̄1− x̄2). ∆̂2 is unbiased and a consistent estimator
of ∆2 under both of the approximation frameworks (see Tonda et al. (2017)). In
the tables, the 1–2 columns indicate the rate of the dimension p and the sample
size N and ∆, respectively. The 3–4 columns indicate the dimension p and the
sample size N1, respectively. In table 1, the 5–9 columns indicate 100 times the
biases of the estimators for CV, I, II, III, and TNW in the case N1 = N2. In the
table 2, the 5–9 columns indicate 100 times the MSEs of the estimators for CV,
I, II, III, and TNW in the case N1 = N2.

In table 1, we can see that the biases of the three methods I, II, III are
small than CV and TNW. On the other hand, we can see that MSE of TNW
is smaller than other estimators in table 2. From figure 1 and 2, a bias of all
estimators tend to 0 when N is large in both case p/N = 1/5 and 3/5. From
figure 3 and 4, we can see that MSEs of all estimators also tend to 0 when N
is large, and MSE of the estimators in the case p/N = 1/5 are smaller than the
case p/N = 3/5. Moreover, from figure 5 and 6, we can see that a variance of
TNW is smaller than other estimators and a variance of the method I is larger
than other estimators. The results mean that a variance of CV is large so that
MSE of CV is large, and a variance of the method I is larger than CV.

5. Conclusion

In this paper, we showed that CV is an asymptotic unbiased and a consistent
estimator even if the dimension is large. However, the bias of CV increases with
the dimension. Furthermore, we proposed the three methods for correcting the
bias of CV in the HD framework and investigated the performances of the three
methods in the simulation studies. While the method I can be applied to many
cases, its MSE is larger than MSE of other methods. On the other hand, while
MSEs of the methods II and III are the same as CV, it is necessary to derive the
parameters κ and c1. We consider that CV is better than other methods if the
sample sizes are sufficiently large. The method I makes the bias smaller than CV
without assumptions, it is a good method if only bias correction is considered.
On the other hand, the methods II, III are better than other methods if we can
derive the optimal value of κ and d. Moreover, when the sample sizes are small,
we consider that an approximation formula is better than the non-parametric
methods. In the future work, we need to show asymptotic properties of CV for
various cases (e.g. the non-normal case and the quadratic discriminant) and
consider the non-parametric methods for decreasing MSE.

Acknowledgement

The author would like to express the deepest gratitude to Professor Hirofumi
Wakaki and Professor Hirokazu Yanagihara of Hiroshima University for their
support, helpful comments, and suggestions throughout this research. Finally,
the author would like to thank the referees and the editor for their valuable
comments and suggestions, which helped to improve this paper.



14 Tomoyuki Nakagawa

Table 1. (Bias of estimators) ×100

p/N ∆ p N1 CV I II III TNW
1/5 1.05 6 15 0.451 -0.021 0.043 0.015 1.402

10 25 0.300 -0.021 -0.049 -0.023 0.839
14 35 0.223 0.028 0.040 0.021 0.604

1.68 6 15 0.392 0.030 0.083 0.038 1.309
10 25 0.186 -0.030 0.009 -0.033 0.753
14 35 0.163 0.004 0.038 0.007 0.556

2.56 6 15 0.275 0.035 0.101 0.045 0.978
10 25 0.112 -0.041 0.014 -0.025 0.554
14 35 0.104 0.001 0.037 0.003 0.404

3.29 6 15 0.157 -0.015 0.058 0.013 0.662
10 25 0.072 -0.028 0.019 -0.017 0.393
14 35 0.075 0.004 0.039 0.009 0.293

3/5 1.05 18 15 0.807 0.043 0.166 0.275 1.086
30 25 0.516 0.047 0.132 0.126 0.652
56 35 0.335 0.002 0.067 0.042 0.434

1.68 18 15 0.912 0.040 0.303 0.282 1.301
30 25 0.516 -0.024 0.168 0.069 0.758
56 35 0.396 0.024 0.156 0.061 0.554

2.56 18 15 0.953 0.002 0.466 0.302 1.355
30 25 0.583 0.019 0.324 0.137 0.862
56 35 0.397 0.003 0.219 0.055 0.609

3.29 18 15 0.910 -0.039 0.539 0.323 1.255
30 25 0.538 -0.008 0.346 0.120 0.784
56 35 0.377 -0.004 0.253 0.061 0.544
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Table 2. (MSE of estimators) ×100

p/N ∆ p N1 CV I II III TNW
1/5 1.05 6 15 1.437 1.704 1.424 1.429 0.877

10 25 0.846 0.978 0.838 0.839 0.496
14 35 0.607 0.687 0.602 0.603 0.357

1.68 6 15 1.111 1.294 1.092 1.094 0.625
10 25 0.664 0.755 0.657 0.658 0.366
14 35 0.473 0.529 0.470 0.470 0.259

2.56 6 15 0.733 0.846 0.720 0.720 0.369
10 25 0.433 0.487 0.429 0.429 0.212
14 35 0.308 0.341 0.306 0.306 0.150

3.29 6 15 0460 0.530 0.454 0.452 0.199
10 25 0.274 0.307 0.272 0.271 0.116
14 35 0.194 0.215 0.193 0.193 0.081

3/5 1.05 18 15 1.679 2.187 1.671 1.709 1.033
30 25 0.996 1.238 0.990 1.005 0.611
56 35 0.707 0.856 0.703 0.711 0.437

1.68 18 15 1.578 2.029 1.546 1.578 0.967
30 25 0.920 1.132 0.908 0.921 0.565
56 35 0.654 0.784 0.647 0.654 0.400

2.56 18 15 1.367 1.737 1.331 1.348 0.826
30 25 0.793 0.964 0.781 0.786 0.482
56 35 0.564 0.669 0.558 0.560 0.341

3.29 18 15 1.142 1.435 1.110 1.112 0.676
30 25 0.660 0.797 0.649 0.649 0.388
56 35 0.460 0.542 0.455 0.454 0.270
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Figure 1. The figures plot the biases of the estimators for each
∆ in the case of p/N = 1/5. CV, I, II, III, and TNW indicate
the cross-validation, the methods I, II, III in section 3, and the
estimator in Tonda et al. (2017), respectively.
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Figure 2. The figures plot the biases of the estimators for each
∆ in the case of p/N = 3/5. CV, I, II, III, and TNW indicate
the cross-validation, the methods I, II, III in section 3, and the
estimator in Tonda et al. (2017), respectively.
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Figure 3. The figures plot MSEs of the estimators for each ∆
in the case of p/N = 1/5. CV, I, II, III, and TNW indicate
the cross-validation, the methods I, II, III in section 3, and the
estimator in Tonda et al. (2017), respectively
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Figure 4. The figures plot MSEs of the estimators for each ∆
in the case of p/N = 3/5. CV, I, II, III, and TNW indicate
the cross-validation, the methods I, II, III in section 3, and the
estimator in Tonda et al. (2017), respectively
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Figure 5. The figures are the boxplots of P̂ (2|1)− P (2|1) for
each ∆ in the case of N1 = 35 and p/N = 1/5. CV, I, II, III,
and TNW indicate the cross-validation, the methods I, II, III
in section 3, and the estimator in Tonda et al. (2017), respec-
tively
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Figure 6. The figures are the boxplot of P̂ (2|1) − P (2|1) for
each ∆ in the case of N1 = 35 and p/N = 3/5. CV, I, II, III,
and TNW indicate the cross-validation, the methods I, II, III
in section 3, and the estimator in Tonda et al. (2017), respec-
tively
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Appendix

A.1. Lemma of moments. In this section, we show key lemmas for the proof
of theorems.

Lemma A.4. Let A and B be p × p symmetric matrices, and let Z be
an n × p random matrix and have a normal distribution with E[Z] = M and
Cov(vec(Z⊤)) = Σ⊗ In, denoted by Z ∼ Nn×p(M ,Σ⊗ In). Then, we have the
following moments,

E[tr(AZ⊤Z)] = tr
{
A
(
nΣ+M⊤M

)}
,

E[tr(AZ⊤ZBZ⊤Z)] = ntr(AΣ)tr(BΣ) + n(n+ 1)tr(AΣBΣ)

+ (n+ 1)tr(AM⊤MBΣ) + (n+ 1)tr(AΣBM⊤M)

+ tr(AΣ)tr(BM⊤M) + tr(AM⊤M)tr(BΣ) + tr(AM⊤MBM⊤M),

E[tr(AZ⊤Z)tr(BZ⊤Z)] = n2tr(AΣ)tr(BΣ) + 2ntr(AΣBΣ)

+ ntr(AM⊤M)tr(BΣ) + ntr(AΣ)tr(BM⊤M)

+ 2tr(AΣBM⊤M) + 2tr(AM⊤MBΣ) + tr(AM⊤M)tr(BM⊤M).

The proof of the lemma is given in Gupta and Nagar (2000). From Lemma
A.4, we have the following lemma.

Lemma A.5. Let A and B be p × p symmetric matrices, and let W be a
p × p random matrix and have a central Wishart distribution with n degrees of
freedom, covariance matrix Σ, denoted by W ∼ Wp(n,Σ). Then, we have the
following moments,

E[tr(AW )] = ntr(AΣ),

E[tr(AW )tr(BW )] = 2ntr(AΣBΣ) + n2tr(AΣ)tr(BΣ),

E[tr(AWBW )] = n(n+ 1)tr(AΣBΣ) + ntr(AΣ)tr(BΣ).

Lemma A.6. Let A and B be p × p symmetric matrices, and let Z ∼
Nn×p(M , Ip ⊗ In) and

W =
√
n

(
1

n
Z⊤Z −Ω

)
.

Then, it holds that

E[exp{tr(AW )}g(Z⊤Z)] =

∣∣∣∣Ip −
2√
n
A

∣∣∣∣
−n/2

E[g(Z̃⊤Z̃)]

× exp

[
−n1/2tr (AΩ) + n−1/2tr

{
M⊤MA

(
Ip −

2
√
p
A

)−1
}]

,
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where Ω = Ip + n−1M⊤M and

Z̃ ∼ Nn×p

(
M

(
Ip −

2√
n
A

)−1

,

(
Ip −

2√
n
A

)−1

⊗ In

)
.

A.2. Proof of Lemma 1. Suppose that

u = Σ−1/2(x− µ1) ∼ Np(0, Ip),

W = nΣ−1/2SΣ−1/2 ∼ Wp(n, Ip),

z1 =
√
N1Σ

−1/2(x̄1 − µ1) ∼ Np(0, Ip),

z2 =
√
N2Σ

−1/2(x̄2 − µ1) ∼ Np(
√
N2δ, Ip),

where δ = Σ−1/2(µ2 − µ1), Ω = M⊤M and M = (
√
N2δ,0,0). Let Q =

(u, z1, z2), then

V2 = Q⊤Q ∼ W3(p, I3,Ω),

V1 = T (Q⊤W−1Q)−1T⊤ ∼ W3(N − p, I3),

Q⊤W−1Q = TV −1
1 T⊤.

where T is Bartlett’s decomposition of V2, that is, V2 = TT⊤. Let U = (uij) =
Q⊤W−1Q then we show that D(x) is expressed by uij . Therefore, we easily
have (4).

A.3. Proof of Theorem 3. Let

W1 =
√
N − p

(
1

N − p
V1 − I3

)
= Op(1).

From Lemma 1,

U = TV −1
1 T⊤

=
p

N − p

{
Ṽ2 − (N − p)−1/2T̃W1T̃

⊤ + (N − p)−1T̃W 2
1 T̃

⊤
}
+Op((N − p)3/2),

tr(AU) =
p

N − p

{
tr(AṼ2) + a0 + a1

}
+Op((N − p)−1),

where T̃ = p−1/2T and Ṽ2 = p−1V2,

aℓ =
p

N − p
(−1)ℓ+1(N − p)−(ℓ+1)/2tr

(
AT̃W ℓ+1

1 T̃⊤
)
.

Then it can be expanded as

E [exp {ittr (AU)} |V2 ]

= E

[
exp

[
it

p

N − p

{
tr
(
AṼ2

)
+ a0 + a1

}]∣∣∣∣V2

]
+Op((N − p)−1)

= exp

{
it

p

N − p
tr
(
AṼ2

)}
E
[
eita0(1 + b1) |V2

]
+Op((N − p)−1),
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where i =
√
−1,

b1 = it
p

N − p
a1.

From V1 ∼ W3(N − p, I3), a0 = tr(M0W1) and Lemma A.6,

E
[
eita0g(V1) |V2

]

=

∣∣∣∣I3 −
2√

N − p
M0

∣∣∣∣
−(N−p)/2

exp
{
−
√
N − ptr(M0)

}
E[g(Z̃⊤

1 Z̃1)]

= exp
{
tr
(
M2

0

)}{
1 +

4

3
√
N − p

tr
(
M3

0

)}
E[g(Z̃⊤

1 Z̃1)] +Op((N − p)−1),

where

Z̃1 ∼ N(N−p)×3

(
O,

(
I3 −

2√
N − p

M0

)−1

⊗ IN−p

)
,

Z̃⊤
1 Z̃1 ∼ W3

(
N − p,

(
I3 −

2√
N − p

M0

)−1
)
,

are independent of V2, and M0 = −itp(N − p)−3/2T̃⊤AT̃ and g(V1) = 1 + b1.
The moments are given by

E[b1|V2] = it
p

N − p
E[a1|V2],

E[a1|V2] = E

[
tr

{
T̃⊤AT̃

(
1

N − p
Z̃⊤

1 Z̃1 − I3

)2
}]

=
1

N − p

[
4tr
(
AṼ2

)
+ 3tr

(
T̃⊤AT̃M0

)]
+Op((N − p)−1)

=
1

N − p

[
4tr(AṼ2)− 3it

p

(N − p)3/2
tr

{(
AṼ2

)2}]
+Op((N − p)−1).

Secondly, let

W2 =
√
p

(
1

p
V2 −Ω∗

)
,
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then W2 = Op(1) from the central limit theorem where Ω∗ = I3 + p−1Ω. We
can obtain the following expansions:

V2 = p
(
Ω∗ + p−1/2W2

)
,

tr(M0) = itp(N − p)−3/2tr(AṼ2),

tr(AṼ2) = tr(A(Ω∗ + p−1/2W2))

= tr (AΩ∗) + p−1/2tr(AW2),

tr(M2
0 ) = (it)2p2(N − p)−3tr

{(
AṼ2

)2}
,

tr

{(
AṼ2

)2}
= tr

{(
A(Ω∗ + p−1/2W2)

)2}

= tr
{
(AΩ∗)2

}
+ 2p−1/2tr(AΩ∗AW2) +Op(1),

tr(M3
0 ) = −(it)3p3(N − p)−9/2tr{(AṼ2)

3},

tr{(AṼ2)
3} = tr{(AΩ∗)3}+Op(p

−1/2) = O1/2.

Since V2 ∼ W3(p, I3,Ω), we obtain the following expansions:

exp

{
it

p

N − p
tr(AṼ2) + tr(M2

0 )

}

= exp

{
it

p

N − p
tr(AΩ∗) + it

p1/2

N − p
tr(AW2) + (it)2p2(N − p)−3tr

{
(AΩ∗)2

}}

× exp
{
2(it)2p3/2(N − p)−3tr(AΩ∗AW2) +Op((N − p)−1)

}
,

exp
{
2(it)2p3/2(N − p)−3tr(AΩ∗AW2) +Op((N − p)−1)

}

= 1 + 2(it)2p3/2(N − p)−3tr(AΩ∗AW2) +O1.

Put M∗
0 = itp3/2(N − p)−3A. From Lemma A.6, we can have

E
[
exp {tr(M∗

0W2)}h(Z⊤
2 Z2)

]
=

∣∣∣∣I3 −
2
√
p
M∗

0

∣∣∣∣
−p/2

E[h(Z̃⊤
2 Z̃2)]

× exp

[
−p1/2tr(M∗

0Ω
∗) + p−1/2tr

{
ΩM∗

0

(
I3 −

2
√
p
M∗

0

)−1
}]

= exp
[
tr
{(

I3 + 2p−1Ω)(M∗
0

)2}]
E[h(Z̃⊤

2 Z̃2)]

×
[
(1 +

4

3
√
p
tr
{(

I3 + 3p−1Ω))(M∗
0

)3}
]
+O1.
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Moreover, since tr{(I3 + 3p−1Ω))(M∗
0 )

3} = O1/2,

E
[
exp {tr(M∗

0W2)}h(Z⊤
2 Z2)

]

= exp
[
tr
{(

I3 + 2p−1Ω)(M∗
0

)2}]
E[h(Z̃⊤

2 Z̃2)] +O1,

where h(Z⊤
2 Z2) = (1 + 2(it)2p−1/2(N − p)−1tr(AΩ∗AW2)), and Z1 and Z̃ are

the random matrices that satisfy

V2 = Z⊤
2 Z2,

Z2 ∼ Np×3(M , I3 ⊗ Ip),

Z̃2 ∼ Np×3

(
M
(
I3 − 2p−1/2M∗

0

)−1
,
(
I3 − 2p−1/2M∗

0

)−1
⊗ Ip

)
.

The moments are given by

E[h(Z̃⊤
2 Z̃2)] = 1 + 2(it)2p−1/2(N − p)−1tr

(
AΩ∗AE

[
W̃2

])
,

E[W2] =
√
p

{(
I3 +

2
√
p
M∗

0

)−1

+p−1

(
I3 +

2
√
p
M∗

0

)−1

Ω

(
I3 +

2
√
p
M∗

0 )
−1

)}
−Ω∗ = O1/2,

where

W̃2 =
√
p

(
1

p
Z̃⊤

2 Z̃2 −Ω∗
)
.

From above result, we have

η =
p

N − p
tr(AΩ∗) =

n

N − p

(
∆2 +

p

N2
− bp

N1
+ p(1− b)

)
,

s2 = 2

[
p2(N − p)−3tr

{
(AΩ∗)2

}
+

p

(N − p)2
tr
{(

I3 + 2p−1Ω
)
A2
}]

= 4
n2N

(N − p)3

(
∆2 +

pb2

N1
+

p

N2

)
.

Therefore, we have the characteristic function φ(t) of Db(x) as

φ(t) = exp(itη − t2s2/2) +O1.

From this expansion, we can have the result of Theorem 3 by using the inversion
formula.
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A.4. Proof of Lemma 3. The proof of Lemma 3 imitates the proof of Lemma
1. Suppose that

u1i = Σ−1/2(x1i − µ1) ∼ Np(0, Ip),

u1j = Σ−1/2(x1j − µ1) ∼ Np(0, Ip),

W = (n− 2)Σ−1/2S(i,j)Σ−1/2 ∼ Wp(n− 2, Ip),

z1 =
√
n1 − 1Σ−1/2

(
x̄(i,j)
1 − µ1

)
∼ Np(0, Ip),

z2 =
√
N2Σ

−1/2(x̄2 − µ1) ∼ Np(
√
N2δ, Ip),

where δ = Σ−1/2(µ2 − µ1), Ω = M⊤M and M = (
√
N2δ,0,0,0).

Let Q = (u1i,u1j , z1, z2), then

V2 = Q⊤Q ∼ W4(p, I4,Ω),

V1 = T⊤(Q⊤W−1Q)−1T ∼ W4(N − p, I4),

Q⊤W−1Q = TV −1
1 T⊤,

where T is Bartlett’s decomposition of V2, that is, V2 = TT⊤. Let U = (uij) =
Q⊤W−1Q then D(i)(x1i) and D(j)(x1j) are expressed by uij from Lemma 2.
Therefore, we easily have (6), (7).

A.5. Expansion of φ(t). Let

W1 =
√
N − p

(
1

N − p
V1 − I4

)
,

then W1 = Op(1) from the central limit theorem. From Lemma 2,

V1 = (N − p)

(
I4 +

1√
N − p

W1

)
,

D(−i)
b (x1i) = tr(AiU)− T−1

i a⊤
i UAiUai, (i = 1, 2).

Then, we obtain an expansion of U as follows:

U = TV −1
1 T⊤

=
p

N − p
T̃

{
I4 −

1√
N − p

W1 +
1

N − p
W 2

1 − 1

(
√
N − p)3

W 3
1

}
T̃⊤ +Op(N

−2),
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where T̃ = p−1/2T = Op(1). From above result, it can be expanded as

tr(AiU) =
p

N − p

{
tr
(
AiṼ2

)
+ ai,0 + ai,1

}
+Op(N

−3/2),

Ti =
N1 − 1

N1 − 2
+ tr(BiU) = bi,0 + bi,1 + bi,2 +Op(N

−3/2),

a⊤
i UAiUai =

p2

(N − p)2

{
a⊤
i Ṽ2AiṼ2ai + ci,0 + ci,1 + ci,2

}
+Op(N

−3/2),

T−1
i = si,0 + si,1 + si,2 +Op(N

−3/2),

where Ṽ2 = p−1V2 and

ai,ℓ = (−1)ℓ+1(N − p)−(ℓ+1)/2tr
(
AiT̃W ℓ+1

1 T̃⊤
)
, (ℓ = 0, 1, 2),

bi,0 =
N1 − 1

N1 − 2
+

p

N − p
tr
(
BiṼ2

)
,

bi,ℓ = (−1)ℓ(N − p)−ℓ/2 p

N − p
tr
(
BiT̃W ℓ

1 T̃
⊤
)
, (ℓ = 1, 2),

ci,0 = −(N − p)−1/2a⊤
i

(
Ṽ2AiT̃W1T̃

⊤ + T̃W1T̃
⊤AiṼ2

)
ai,

ci,1 = (N − p)−1a⊤
i

(
T̃W1T̃

⊤AiT̃W1T̃
⊤ + Ṽ2AiT̃W 2

1 T̃
⊤ + T̃W 2

1 T̃
⊤AiṼ2

)
ai,

si,0 = b−1
i,0 , si,1 = bi,1b

−2
i,0 si,2 = b−3

i,0

(
b2i,1 − bi,0bi,2

)
.

Then D(−i)
b is expanded as follows:

D(−i)
b (x1i) =

p

N − p
tr
(
AiṼ2

)
− si,0

p2

(N − p)2
a⊤
i Ṽ2AiṼ2ai

+Di,0 +Di,1 +Op(N
−1),

where

Di,0 =
p

N − p
ai,0 −

p2

(N − p)2

(
si,0ci,0 + si,1a

⊤
i Ṽ2AiṼ2ai

)
,

Di,1 =
p

N − p
ai,1 −

p2

(N − p)2

(
si,0ci,1 + si,1ci,0 + si,2a

⊤
i Ṽ2AiṼ2ai

)
.

We consider the characteristic function of joint distribution of D(−1)
b (x11) and

D(−2)
b (x12), that is,

φ(t) = E
[
exp

{
it1D

(−1)
b (x11) + it2D

(−2)
b (x12)

}]
,

where t = (t1, t2)⊤ and i =
√
−1.
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Firstly, we consider the following conditional expectation given Ṽ2,

E
[
exp

{
it1D

(−1)
b (x11) + it2D

(−2)
b (x12)

}∣∣∣Ṽ2

]

= exp

[
it1

{
p

N − p
tr
(
A1Ṽ2

)
− s1,0

p2

(N − p)2
a⊤
1 Ṽ2A1Ṽ2a1

}

+it2

{
p

N − p
tr
(
A2Ṽ2

)
− s2,0

p2

(N − p)2
a⊤
2 Ṽ2A2Ṽ2a2

}]

× E
[
exp

(
it1D1,0 + it2D2,0 + it1D1,1 + it2D2,1 +Op(N

−1)
)∣∣Ṽ2

]
.

We expand the following conditional expectation,

E
[
exp

(
it1D1,0 + it2D2,0 + it1D1,1 + it2D2,1 +Op(N

−1)
)∣∣Ṽ2

]

= E
[
exp (it1D1,0 + it2D2,0) (1 + it1D1,1 + it2D2,1)| Ṽ2

]
+Op(N

−1).

Let

M0 = it1M1,0 + it2M2,0,

Mj,0 = (N − p)−1/2T̃⊤
[
− p

N − p
Aj

+
p2

(N − p)2
sj,0

{
BjṼ2Aj +AjṼ2Bj + sj,0

p

N − p
ajṼ2AjṼ2ajBj

}]
T̃ .

Then

exp (it1D1,0 + it2D2,0) = exp {tr(M0W1)} .

From V1 ∼ W4(N − p, I4) and and Lemma A.6,

E [exp {tr (M0W1)} g(V1)|V2]

=

∣∣∣∣I4 −
2√

N − p
M0

∣∣∣∣
−(N−p)/2

exp
{
−
√

N − ptr (M0)
}
E
[
g
(
Z̃⊤

1 Z̃1

)∣∣∣V2

]
,

where

Z̃1 ∼ N(N−p)×4

(
O,

(
I4 −

2√
N − p

M0

)−1

⊗ IN−p

)
,

Z̃⊤
1 Z̃1 ∼ W4

(
N − p,

(
I4 −

2√
N − p

M0

)−1
)

are independent of V2, and

g(V1) = 1 + it1D1,1 + it2D2,1.
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h(V2) = E
[
g
(
Z̃⊤

1 Z̃1

)∣∣∣V2

]
= 1 + it1E [D1,1|V2] + it2E [D2,1|V2] ,

E [Di,1|V2] =
p

N − p
E [ai,1 |V2 ]

− p2

(N − p)2

(
si,0E [ci,1 |V2 ] + E [si,1ci,0 |V2 ] + a⊤

i Ṽ2AiṼ2aiE [si,2 |V2 ]
)
.

The moments are given by

E [ai,1 |V2 ] = E

[
tr

{
T̃⊤AiT̃

(
1

N − p
Z̃⊤

1 Z̃1 − I4

)2
}∣∣∣∣∣V2

]

=
1

N − p

[
5tr
(
AiṼ2

)
+ 4tr

(
T̃⊤AiT̃M2

0

)]
+Op

(
(N − p)−1

)
,

E [ci,1 |V2 ] = E

[
tr

{
T̃⊤BiT̃

(
1

N − p
Z̃⊤

1 Z̃1 − I4

)
T̃⊤AiT̃

(
1

N − p
Z̃⊤

1 Z̃1 − I4

)}

+ tr

{(
T̃⊤BiṼ2AiT̃ + T̃⊤AiṼ2BiT̃

)( 1

N − p
Z̃⊤

1 Z̃1 − I4

)2
}∣∣∣∣∣V2

]

=
1

N − p

{
tr
(
BiṼ2AiṼ2

)
+ 4tr

(
T̃⊤BiT̃M0T̃

⊤AiT̃M0

)

+ tr
(
BiṼ2

)
tr
(
AiṼ2

)
+ 5tr

(
T̃⊤BiṼ2AiT̃ + T̃⊤AiṼ2BiT̃

)

+4tr
((

T̃⊤BiṼ2AiT̃ + T̃⊤AiṼ2BiT̃
)
M2

0

)}
+Op

(
(N − p)−1

)
,

E [si,1ci,0 |V2 ] = b−2
i,0E [bi,1ci,0 |V2 ] ,

E [si,2 |V2 ] = b−3
i,0

(
E
[
b2i,1 |V2

]
− bi,0E [bi,2 |V2 ]

)
,

E [bi,1ci,0 |V2 ] =
p

N − p
E

[
tr

{
T̃⊤BiT̃

(
1

N − p
Z̃⊤

1 Z̃1 − I4

)}

×tr

{(
T̃⊤BiṼ2AiT̃ + T̃⊤AiṼ2BiT̃

)( 1

N − p
Z̃⊤

1 Z̃1 − I4

)}∣∣∣∣V2

]

=
2p

(N − p)2

[
tr
{
Bi

(
Ṽ2BiṼ2AiṼ2 + Ṽ2AiṼ2BiṼ2

)}

+ 2tr
(
T̃⊤BiT̃M0

)
tr
{(

T̃⊤BiṼ2AiT̃ + T̃⊤AiṼ2BiT̃
)
M0

}]
+Op

(
(N − p)−1

)
,

E
[
b2i,1 |V2

]
=

p2

(N − p)2
E

[(
tr

{
T̃⊤BiT̃

(
1

N − p
Z̃⊤

1 Z̃1 − I4

)})2
∣∣∣∣∣V2

]

=
2p2

(N − p)3

[
tr

{(
BiṼ2

)2}
+ 2

{
tr
(
T̃⊤BiT̃M0

)}2
]
+Op

(
(N − p)−3/2

)
,
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E [bi,2 |V2 ] =
p

(N − p)
E

[
tr

{
T̃⊤BiT̃

(
1

N − p
Z̃⊤

1 Z̃1 − I4

)2
}∣∣∣∣∣V2

]

=
p

(N − p)2

[
5tr
(
BiṼ2

)
+ 4tr

(
T̃⊤BiT̃M2

0

)]
+Op

(
(N − p)−3/2

)
.

Secondly, let

W2 =
√
p

(
1

p
V2 −Ω∗

)
, (A.10)

then W2 = Op(1) from the central limit theorem where Ω∗ = I4 + p−1Ω. We
obtain the following expansion by using (A.10).

V2 = p

(
Ω∗ +

1
√
p
W2

)
,

p

N − p
tr
(
AiṼ2

)
− si,0

p2

(N − p)2
a⊤
i Ṽ2AiṼ2ai

=
p

N − p
tr (AiΩ

∗)− si,0,0
p2

(N − p)2
a⊤
i Ω

∗AiΩ
∗ai

+ a∗i,0 + a∗i,1 +Op(p
−1),

bi,0 = bi,0,0 + bi,0,1,

si,0 = si,0,0 + si,0,1 + si,0,2 +Op(p
−3/2),

tr
(
M2

0

)
= tr

{
(Ξ0Ω

∗)2
}
+ 2tr

{
Ξ0Ω

∗
(
p−1/2Ξ0W2 +Ξ1Ω

∗
)}

+Op(p
−1),

tr
(
M3

0

)
= tr

{
(Ξ0Ω

∗)3
}
+Op(p

−1/2),

h(V2) = h(pΩ∗) +Op(p
−1/2(N − p)−1/2)

= 1 +O1,

where

a∗i,0 = − p2

(N − p)2
si,0,1a

⊤
i Ω

∗AiΩ
∗ai +

1
√
p

{
p

N − p
tr (AiW2)

− p2

(N − p)2
si,0,0

(
a⊤
i Ω

∗AiW2ai + a⊤
i W2AiΩ

∗ai

)}
,

a∗i,1 = − p2

(N − p)2
si,0,2a

⊤
i Ω

∗AiΩ
∗ai −

p

(N − p)2
si,0,0a

⊤
i W2AiW2ai

− p3/2

(N − p)2
si,0,1

(
a⊤
i Ω

∗AiW2ai + a⊤
i W2AiΩ

∗ai

)
,

bi,0,0 =
n1

n1 − 1
+

p

N − p
tr (BiΩ

∗) =
n1

n1 − 1
+

p

N − p

(
1 +

1

n1

)
,
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bi,0,1 =

√
p

N − p
tr (BiW2) ,

si,0,0 = b−1
i,0,0 =

n1(n1 − 1)(N − p)

n2
1(N − p) + p(n1 − 1)(n1 + 1)

,

si,0,1 = −b−2
i,0,0bi,0,1, si,0,2 = b−3

i,0,0b
2
i,0,1,

Ξs = it1Ξ1,s + it2Ξ2,s,

Ξj,0 = (N − p)−1/2

[
− p

N − p
Aj

+
p2

(N − p)2
sj,0,0

{
BjΩ

∗Aj +AjΩ
∗Bj + sj,0,0

p

N − p
ajΩ

∗AjΩ
∗ajBj

}]
,

Ξj,1 = (N − p)−1/2 p2

(N − p)2
sj,0,1

(
BjΩ

∗Aj +AjΩ
∗Bj + sj,0,0a

⊤
j Ω

∗AjΩ
∗ajBj

)

+
1
√
p
s2j,0,0

(
a⊤
j Ω

∗AjW2ajBj + a⊤
j W2AjΩ

∗ajBj

)
+ sj,0,1a

⊤
j Ω

∗AjΩ
∗ajBj .

Let

M∗
0 = it1M

∗
1,0 + it2M

∗
2,0

M∗
j,0 =

√
p

N − p

{
p2

(N − p)2
s2j,0,0a

⊤
j Ω

∗AjΩ
∗ajBj +Aj

− p

N − p
sj,0,0 (BjΩ

∗Aj +AjΩ
∗Bj)

}
.

Then

exp(it1a
∗
1,0 + it2a

∗
2,0) = exp {tr (M∗

0W2)} .

Therefore, we can expand φ(t) as follows:

φ(t) = E

[
exp

[
it1

{
p

N − p
tr
(
A1Ṽ2

)
− s1,0

p2

(N − p)2
a⊤
1 Ṽ2A1Ṽ2a1

}

+ it2

{
p

N − p
tr
(
A2Ṽ2

)
− s2,0

p2

(N − p)2
a⊤
2 Ṽ2A2Ṽ2a2

}]

× exp
{
tr
(
M2

0

)}{
1 +

4

3
√
N − p

tr
(
M3

0

)}
h(V2)

]
+O((N − p)−1)

= exp{(Ξ0Ω
∗)2}

[
1 + tr

{
(Ξ0Ω

∗)3
}]

h(pΩ∗)

× exp

[
it1

{
p

N − p
tr (A1Ω

∗)− s1,0,0
p2

(N − p)2
a⊤
1 Ω

∗A1Ω
∗a1

}

it2

{
p

N − p
tr (A2Ω

∗)− s2,0,0
p2

(N − p)2
a⊤
2 Ω

∗A2Ω
∗a2

}]

× E
[
exp {tr (M∗

0W2)}
[
1 + it1a

∗
1,1 + it2a

∗
2,1
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+2tr
{
Ξ0Ω

∗
(
p−1/2Ξ0W2 +Ξ1Ω

∗
)}]]

+O1.

From above result and and Lemma A.6,

E [exp {tr (M∗
0W2)}h∗ (V2)]

=

∣∣∣∣I4 −
2
√
p
M∗

0

∣∣∣∣
−p/2

E
[
h∗
(
Z̃⊤

2 Z̃2

)]

× exp

{
−p1/2tr (M∗

0Ω
∗) + p−1/2tr

[
ΩM∗

0

(
I − 2

√
p
M∗

0

)−1
}]

= exp
[
tr
{
(I4 + 2p−1Ω)(M∗

0 )
2
}]

E
[
h∗
(
Z̃⊤

2 Z̃2

)]

×
[
1 +

4

3
√
p
tr
{
(I4 + 3p−1Ω)(M∗

0 )
3
}]

+O(p−1),

where

Z̃2 ∼ Np×4

(
M

(
I − 2

√
p
M∗

0

)−1

,

(
I − 2

√
p
M∗

0

)−1

⊗ Ip

)
.

The moments are given by

E
[
tr
{
Ξ0Ω

∗
(
p−1/2Ξ0Z̃

⊤
2 Z̃2 +Ξ1Ω

∗
)}]

= O(p−1),

E
[
a∗j,1
]
= − p2

(N − p)2
E[sj,0,2]a

⊤
j Ω

∗AjΩ
∗aj −

p

(N − p)2
sj,0,0E

[
a⊤
j W̃2AjW̃2aj

]

− p3/2

(N − p)2
E
[
sj,0,1

(
a⊤
j Ω

∗AjW̃2aj + a⊤
j W̃2AjΩ

∗aj

)]
,

E[sj,0,2] = b−3
j,0,0

p

(N − p)2
E
[{

tr(BjW̃2)
2
}]

,

E
[{

tr(BjW̃2)
2
}]

= 4 {tr(BjM
∗
0 )}

2 +O(p−1/2) = O(p−1/2),

E
[
a⊤
j W̃2AjW̃2aj

]
= E

[
tr
(
BjW̃2AjW̃2

)]
= 4tr (M∗

0BjM
∗
0Ω

∗AjΩ
∗) +O(1) = O(1),

E
[
sj,0,1a

⊤
j Ω

∗AjW̃2aj

]
=

√
p

N − p
b−2
j,0,0E

[
tr(BjW̃2)tr(BjΩ

∗AjW̃2)
]
,

E
[
tr(BjW̃2)tr(BjΩ

∗AjW̃2)
]
= 4tr(BjM

∗
0 )tr(BjAjΩ

∗M∗
0 ) +O(1) = O(1),

where

W̃2 =
√
p

(
1

p
Z̃⊤

2 Z̃2 −Ω∗
)
.

Since (I4 + 3p−1Ω)(M∗
0 )

3 = O1/2, we have the following expansion:

E
[
exp

(
it⊤Db

)]
= exp

{
it⊤η − t⊤Λt/2

}
+O1, (A.11)
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where η = (η1, η2)⊤ and

ηj =
p

N − p
tr (AjΩ

∗)− sj,0,0
p2

(N − p)2
a⊤
j Ω

∗AjΩ
∗aj ,

=
n− 1

N − p

{
∆2 +

p

N2
− b

p(n1 − 1)

n2
1

+ p

(
1− b

(
1 +

1

n2
1

))}

+
bp2(n1 − 1)(n− 1)

n3
1(N − p)2 + n1(N − p)p(n1 − 1)(n1 + 1)

(
1 +

2(n1 − 1)1/2

n1/2
1

+
n1 − 1

n1

)

=
n− 1

N − p

{
∆2 +

p

N2
− b

p(n1 − 1)

n2
1

+ p

(
1− b

(
1 +

1

n2
1

))}
+O1,

Λ =

(
λ11 λ12

λ21 λ22,

)
, λij = 2

[
tr (Ξi,0Ω

∗Ξj,0Ω
∗) + tr

{(
I4 + 2p−1Ω

)
M∗

i,0M
∗
j,0

}]
,

λjj = tr
{
(Ξj,0Ω

∗)2
}
+ tr

{(
I4 + 2p−1Ω

) (
M∗

j,0

)2}

= 4

(
(n− 1)2N

(N − p)3

)(
∆2 +

p

N2
− b2

p

n2
1

+ b2
p

n1

)
+O1,

λ12 = tr (Ξ1,0Ω
∗Ξ2,0Ω

∗) + tr
((
I4 + 2p−1Ω

)
M∗

1,0M
∗
2,0

)

= O1.

A.6. Derivation of κ(∆) in the case of dF . In this section, we show that

κ(∆) is decided as (9) in the case of dF and c = 0. d(−λ)
F is estimator of dF for

the method II and is derived as

d(−λ)
F (xk) = (x̄(−k,λ)

1 − x̄2)
⊤
{
S(−k,λ)

}−1
{
x− 1

2
(x̄(−k,λ)

1 + x̄2)

}

= tr(AλU)− (1− λ)T−1
λ a⊤UAλUa,

Tλ =
N (λ)

1

N (1)
1

+ (1− λ)tr(BU),

where x̄(−k,λ)
1 and S(−k,λ) are given by (8), and U is the same as U in Lemma

1, and a = (0, n−1/2
1 , 1)⊤, B = aa⊤ and

Aλ =
N (−λ)

2

⎛

⎜⎜⎜⎝

N−1
2 0 −N−1/2

2

0 −n1

{
N (−λ)

1

}−2
n3/2
1

{
N (−λ)

1

}−2

−N−1/2
2 n3/2

1

{
N (λ)

1

}−2
1−λ

N(−λ)
1

(
2− 1−λ

N(−λ)
1

)

⎞

⎟⎟⎟⎠
.
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Put W1 =
√
N − p{(N − p)−1V1 − I3}. From 1 − κ/N , we have an expansion

of d(−λ)
F (x) as

Tλ =
N (−λ)

1

N (−1)
1

+Op

(
N−1

)
,

tr(AλU)− (1− λ)T−1
λ a⊤UAλUa =

p

N − p
tr(AλṼ2) + a0 + a1 +Op

(
(N − p)−1

)
,

a0 = − p

(N − p)3/2
tr(T̃⊤AλT̃W1),

a1 =
p

(N − p)2
tr(T̃⊤AλT̃W 2

1 ) +
κ

N

p2

(N − p)2
a⊤Ṽ2AλṼ2a,

where T̃ = p−1/2T and Ṽ2 = T̃ T̃⊤. Then, the characteristic function of d(λ)F (x)
is expressed as

E
[
eitd

(λ)
F (x)

]
= E

[
E

[
exp

{
it

(
p

N − p
tr(AλṼ2) + a0 + a1

)
+Op

(
(N − p)−1

)}∣∣∣∣V2

]]
,

E

[
exp

{
it

p

N − p
tr(AλṼ2) + a0 + a1 +Op

(
(N − p)−1

)}∣∣∣∣V2

]

= exp

{
it

p

N − p
tr(AλV2)

}
E
[{

eita0(1 + ita1)
}∣∣V2

]
+Op

(
(N − p)−1

)
.

Put M0 = itp(N − p)−3/2T⊤AλT . From Lemma A.6,

E
[{

eita0(1 + ita1)
}∣∣V2

]

=

∣∣∣∣I3 −
2√

N − p
M0

∣∣∣∣
−(N−p)/2

exp
{
−
√
N − ptr(M0)

}
E[g(Z̃⊤

1 Z̃1)]

= exp
{
tr
(
M2

0

)}{
1 +

4

3
√
N − p

tr
(
M3

0

)}
E[g(Z̃⊤

1 Z̃1)] +Op((N − p)−1),

where

Z̃1 ∼ N(N−p)×3

(
O,

(
I3 −

2√
N − p

M0

)−1

⊗ IN−p

)
,

Z̃⊤
1 Z̃1 ∼ W3

(
N − p,

(
I3 −

2√
N − p

M0

)−1
)



36 Tomoyuki Nakagawa

are independent of V2, and M0 = −itp(N − p)−3/2T̃⊤AT̃ and g(V1) = 1+ ita1.
The moments are given by

E[a1|V2] =
p

N − p
E

[
tr

{
T̃⊤AλT̃

(
1

N − p
Z̃⊤

1 Z̃1 − I3

)2
}]

+
κ

N

p2

(N − p)2
a⊤Ṽ2AλṼ2a

=
1

N − p

[
4tr
(
AλṼ2

)
+ 3tr

(
T̃⊤AλT̃M0

)]

+
κ

N

p2

(N − p)2
a⊤Ṽ2AλṼ2a+Op((N − p)−1)

=
1

N − p

[
4tr(AλṼ2)− 3it

p

(N − p)3/2
tr

{(
AλṼ2

)2}]

+
κ

N

p2

(N − p)2
a⊤Ṽ2AλṼ2a+Op((N − p)−1).

Secondly, let

W2 =
√
p

(
1

p
V2 −Ω∗

)
,

then W2 = Op(1) from the central limit theorem where Ω∗ = I3 + p−1Ω. We
can obtain the following expansions:

V2 = p
(
Ω∗ + p−1/2W2

)
,

tr(M0) = itp(N − p)−3/2tr(AṼ2),

tr(AṼ2) = tr(A(Ω∗ + p−1/2W2))

= tr (AΩ∗) + p−1/2tr(AW2),

tr(M2
0 ) = (it)2p2(N − p)−3tr

{(
AṼ2

)2}
,

tr

{(
AṼ2

)2}
= tr

{(
A(Ω∗ + p−1/2W2)

)2}

= tr
{
(AλΩ

∗)2
}
+ 2p−1/2tr(AλΩ

∗AλW2) +Op(1),

a⊤Ṽ2AλṼ2a = a⊤Ω∗AλΩ
∗a+Op(1) = Op(1),

tr(M3
0 ) = −(it)3p3(N − p)−9/2tr{(AλṼ2)

3},

tr{(AλṼ2)
3} = tr{(AΩ∗)3}+Op(p

−1/2) = O1/2.



Estimating the probabilities of misclassification using CV 37

Since V2 ∼ W3(p, I3,Ω), we obtain the following expansions:

exp

{
it

p

N − p
tr(AλṼ2) + tr(M2

0 )

}

= exp

{
it

p

N − p
tr(AλΩ

∗) + it
p1/2

N − p
tr(AλW2) + (it)2p2(N − p)−3tr

{
(AλΩ

∗)2
}}

× exp
{
2(it)2p3/2(N − p)−3tr(AλΩ

∗AλW2) +Op((N − p)−1)
}
,

exp
{
2(it)2p3/2(N − p)−3tr(AλΩ

∗AλW2) +Op((N − p)−1)
}

= 1 + 2(it)2p3/2(N − p)−3tr(AλΩ
∗AλW2) +O1.

Put M∗
0 = itp3/2(N − p)−3Aλ. From Lemma A.6, we can have

E
[
exp {tr(M∗

0W2)}h(Z⊤
2 Z2)

]
=

∣∣∣∣I3 −
2
√
p
M∗

0

∣∣∣∣
−p/2

E[h(Z̃⊤
2 Z̃2)]

× exp

[
−p1/2tr(M∗

0Ω
∗) + p−1/2tr

{
ΩM∗

0

(
I3 −

2
√
p
M∗

0

)−1
}]

= exp
[
tr
{(

I3 + 2p−1Ω)(M∗
0

)2}]
E[h(Z̃⊤

2 Z̃2)]

×
[
(1 +

4

3
√
p
tr
{(

I3 + 3p−1Ω))(M∗
0

)3}
]
+O1.

Moreover, since tr{(I3 + 3p−1Ω))(M∗
0 )

3} = O1/2,

E
[
exp {tr(M∗

0W2)}h(Z⊤
2 Z2)

]

= exp
[
tr
{(

I3 + 2p−1Ω)(M∗
0

)2}]
E[h(Z̃⊤

2 Z̃2)] +O1,

where h(Z⊤
2 Z2) = (1 + 2(it)2p−1/2(N − p)−1tr(AλΩ∗AλW2)), and Z1 and Z̃

are the random matrices that satisfy

V2 = Z⊤
2 Z2,

Z2 ∼ Np×3(M , I3 ⊗ Ip),

Z̃2 ∼ Np×3

(
M
(
I3 − 2p−1/2M∗

0

)−1
,
(
I3 − 2p−1/2M∗

0

)−1
⊗ Ip

)
.

The moments are given by

E[h(Z̃⊤
2 Z̃2)] = 1 + 2(it)2p−1/2(N − p)−1tr

(
AλΩ

∗AλE
[
W̃2

])
,

E[W2] =
√
p

{(
I3 +

2
√
p
M∗

0

)−1

+p−1

(
I3 +

2
√
p
M∗

0

)−1

Ω

(
I3 +

2
√
p
M∗

0 )
−1

)}
−Ω∗ = O1/2.
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where

W̃2 =
√
p

(
1

p
Z̃⊤

2 Z̃2 −Ω∗
)
.

From the above result, we have

ηλ =
p

N − p
tr(AλΩ

∗) =
N (−λ)

2(N − p)

⎛

⎜⎝∆2 +
p

N2
− n1p{

N (−λ)
1

}2 − (1− λ)2p
{
N (−λ)

1

}2 +
2(1− λ)p

N (−λ)
1

⎞

⎟⎠ ,

s2λ = 2

[
p2(N − p)−3tr

{
(AλΩ

∗)2
}
+

p

(N − p)2
tr
{(

I3 + 2p−1Ω
)
A2

λ

}]

=

{
N (−λ)

}2
N

(N − p)3

⎛

⎜⎝∆2 +
pn3

1{
N (−λ)

1

}4 +
p

N2

⎞

⎟⎠ .

Therefore, we have the characteristic function φ(t) of d(−λ)
F (x) as

φ(t) = exp(itηλ − t2s2λ/2) +O1.

By using the inversion formula, we have the following formula

Pr
(
d(−1;λ)
F (xi1) ≤ 0

)
= Φ(−s−1

λ ηλ) +O1.

From Theorem 3, the probability of misclassification P (2|1) of dF is given as

Pr
(
d(−1)
F (x) ≤ 0|x ∈ Π1

)

= Φ

(
−1

2

(
N − p

N

)1/2(
∆2 +

p

N2
− p

N1

)(
∆2 +

p

N1
+

p

N2

)−1/2
)

+O1.

Since λ = 1− κ/N ,

s−1
λ ηλ = −1

2

(
N − p

N

)1/2(
∆2 +

p

N2
− p

N1

)(
∆2 +

p

N1
+

p

N2

)−1/2

+
1

4

p

n1N1

(
N − p

N

)1/2(
∆2 +

p

N1
+

p

N2

)−1/2

×
{
2−

(
∆2 +

p

N1
+

p

N2

)−1(
∆2 +

p

N2
− p

N1

)}

− κp

n1N

(
N − p

N

)1/2(
∆2 +

p

n1
+

p

N2

)−1/2

+O2

= −1

2

(
N − p

N

)1/2(
∆2 +

p

N2
− p

N1

)(
∆2 +

p

N1
+

p

N2

)−1/2

+O2.

Therefore, κ is given as (9).
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