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The successive magnetic phase transitions in DyB4 have been studied in detail by micro-
scopic measurements using resonant X-ray diffraction and neutron scattering. It is shown that
the ab-plane component of the magnetic moment is short-range-ordered in the intermediate
phase where the c-axis component is long-range-ordered. It is estimated that this short-range
order is dynamically fluctuating with a time scale between ∼ 10−8 to ∼ 10−11 s. Crystal field
excitation has also been investigated by inelastic neutron scattering. To qualitatively under-
stand the phase-transition phenomenon, we have studied a simple two-sublattice model with
an antiferromagnetic interaction by mean-field calculation. The calculation, though without a
quadrupolar interaction, successfully explains the occurrence of double phase transition, mag-
netic specific heat and entropy, magnetic susceptibility, and the huge elastic softening in the
intermediate phase. The general success of the mean-field calculation, except for the short-
range order, suggests that there is little effect of geometrical frustration on the macroscopic
properties at zero magnetic field.

Journal Ref: J. Phys. Soc. Jpn., 80, 074701 (2011).
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1. Introduction

Geometrically frustrated magnetic materials have at-
tracted much interest because of their exotic ordering
phenomena. A macroscopic number of degenerate ground
states disturb long-range order (LRO) down to very low
temperatures. Even when the system exhibits a LRO by
second- and further-neighbor interactions, the ordering
process sometimes becomes quite exotic. A successive
phase transition is one of such phenomena. Typical ex-
amples are ATX3 (A=alkali metal, T=transition metal,
X=halogen) compounds where the T atoms form a tri-
angular lattice. In the intermediate phase of CsCoCl3,
between TN1 = 21 K and TN2 = 9 K, spins on two of the
three sublattices are antiferromagnetically ordered but
the rest remains paramagnetic, which is called a partial
disordered phase.1,2) In CsNiCl3, the c-axis and ab-plane
components of the magnetic moments order separately at
TN1 = 4.8 K and TN2 = 4.4 K, respectively.3) These be-
haviors are closely associated with the triangular lattice.

Rare-earth tetraborides, RB4, have been studied re-
cently as a system in which the geometrical frustra-
tion of magnetic dipole and electric quadrupole mo-
ments may play important roles. The R ions in RB4,
with a tetragonal structure belonging to the space group
P4/mbm, form a network in the ab-plane that is topolog-
ically equivalent to the so called Shastry-Sutherland lat-
tice (SSL),4) where a spin-singlet ground state can take
place in two-dimensional quantum spin systems such as
SrCu2(BO3)2 with S = 1/2.5) Although RB4 is a three-
dimensional classical moment system with a strong cou-
pling also along the c-axis and has relatively large J-
values, RB4 compounds attract interest because most

of them exhibit successive magnetic transitions.6) For
R=Tb and Tm, the anomalous transitions in magnetic
fields have recently been discussed from the viewpoint of
frustration.7–11) The double magnetic transition at zero
field for R=Nd, Tb, Dy, and Ho, in addition, are also con-
sidered to be associated with the interplay between mag-
netic dipole and electric quadrupole interactions.12–16)

The purpose of the present study is to clarify the origin
of the double transition in DyB4 and examine the possi-
bility of a frustration effect that was discussed in previ-
ous studies.14,15,17) DyB4 is an antiferromagnet with two
transitions at TN1 = 20.3 K and TN2 = 12.7 K.14) Be-
low TN1, the c-axis component of the magnetic moment
orders into a simple collinear antiferromagnetic struc-
ture.15,17,18) The ab-plane components order at TN2 into
a non-collinear structure. Hereafter, the paramagnetic
phase above TN1 is referred to as phase I, the intermedi-
ate phase between TN1 and TN2 as phase II, and the low-
temperature phase below TN2 as phase III. What is in-
triguing is that the softening of the C44 mode of the elas-
tic constant is significantly enhanced on entering phase
II.14) Moreover, a strong ultrasonic attenuation occurs in
phase II, suggesting a large fluctuation in the quadrupo-
lar moments. This remarkable fluctuation in phase II has
also been observed by resonant X-ray diffraction (RXD)
as a short-range order (SRO) of 〈Jx〉, the ab-plane com-
ponent of the magnetic moment, or of the 〈Ozx〉-type
electric quadrupole moment.15) Since the magnetic en-
tropies of R ln 2 and R ln 4 are released at TN2 and TN1,
respectively, it has been considered that the quadrupo-
lar degeneracy of the pseudo-quartet ground state is not
lifted even in the magnetically ordered phase II. The
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mechanism of these unusual phenomena and their rela-
tion to the SSL in DyB4 have not been understood yet.

In the present study, we have investigated the succes-
sive transitions of DyB4 by RXD and neutron scattering.
After describing the experimental procedure in §2, the
experimental results are presented in §3. First, in RXD,
the resonant signal is identified as of magnetic dipole
origin, which remained unclear in the previous work dis-
cussed in ref. 15. Second, by neutron diffraction (ND),
the temperature dependence of each magnetic compo-
nent along the c-axis and ab-plane is deduced, which is
consistent with the result of RXD. Third, the dynamical
aspect of magnetic moments are investigated by inelastic
neutron scattering. Crystal field excitations, low-energy
excitations, and critical scattering are described in de-
tail. In §4, the mechanism of double transition is dis-
cussed on the basis of a mean-field calculation for a two-
sublattice system. We adopt the crystalline electric field
(CEF) scheme proposed by Tanaka in which the fourth-
order term plays a fundamental role.19) Magnetic en-
tropy, magnetic susceptibility, and elastic constants can
be understood qualitatively by this calculation without
consideration of SSL. We discuss the role of SSL in §5,
and present the conclusion drawn in the present study in
§6.

2. Experimental Procedure

The RXD experiment was performed using a four-
circle diffractometer at Beamline 16A2 of the Photon
Factory in the High Energy Accelerator Research Or-
ganization (KEK), Tsukuba. A sample with a mirror-
polished (100) surface was mounted in a helium-gas
closed-cycle refrigerator. The incident X-ray was tuned
near the LIII absorption edge of Dy (∼7.79 keV), where
the resonance between the 2p and 5d orbitals occurs.
Polarization analysis was performed using a pyrolytic
graphite (PG) analyzer crystal.

A neutron scattering experiment was performed using
the Tohoku University triple-axis thermal neutron spec-
trometer TOPAN installed at the beam hole 6G of the
research reactor JRR-3, Japan Atomic Energy Agency,
Tokai. A monochromatized incident beam was obtained
using the 002 Bragg reflection of PG crystals. The energy
of the scattered beam was also analyzed using a PG-002
analyzer. Neutrons with higher harmonic energies were
cut with PG filters. The conditions of the collimators and
neutron energies are shown in the corresponding figures.

Single-crystalline samples were grown by the floating
zone method using a high-frequency furnace. For neutron
scattering experiments, an enriched 11B isotope was used
to prevent the absorption of neutrons by the 10B isotope
contained in natural boron. Then, the severe absorption
coefficient of 767 barn for natural boron was reduced to a
negligible level. However, the absorption by natural dys-
prosium (994 barn) was not prevented because of the cost
and the availability of Dy isotope; 994 barn means that
86% of the incident neutrons are absorbed by a sample
with a thickness of 1 mm. To overcome this severe diffi-
culty, we sliced the sample into plates with a thickness of
0.5 mm to make the scattering probability maximum. We
prepared four such plates and aligned them together in
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Fig. 1. Two models (I and II) of the magnetic structure of DyB4

and their domain states.
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Fig. 2. (Color online) Incident energy dependences of the peak-
top intensity of the (h, 0, 0) reflection for σ-π′ at (a) Ψ = 0◦ and

T = 25 K in phase I, (b) Ψ = 0◦ and T = 15 K in phase II, and
(c) Ψ = 90◦ and T = 15 K in phase II. Scattering geometries for
Ψ = 0◦ and Ψ = 90◦ are shown on the right top corner.

the same orientation so that the diffraction peaks form
a single peak. The widths of the rocking scan for each
sample ranged from 0.3 to 0.5◦, and the final width of
the aligned samples was 0.54◦.

3. Results

3.1 Resonant X-ray diffraction
Two models of magnetic and quadrupolar structures

were proposed in ref. 15. The magnetic structures and
their domain states are shown in Fig. 1.20) There are
100- and 010-domains corresponding to the directions of
the propagation of the c-axis magnetic component. The
quadrupolar structure has a one-to-one correspondence
with the magnetic structure through the spin-orbit in-
teraction (see Fig. 17 of ref. 16). The unit cell structure
factor of the (h = odd, 0, 0) Bragg reflection for the E1
resonance, σ-π′ channel, and the 100-domain is written
as

F
(E1)
σπ′ = 2k1b cos θ(

√
2〈Jz〉 cosΨ − 〈Jx〉 sinΨ)

∓ 2k2a cos θ(
√

2〈O22〉 cosΨ + 〈Ozx〉 sin Ψ), (1)

where a = cos(2πhx) and b = sin(2πhx); x = 0.3175 is
the position parameter of the 4g site of Dy.21) k1 and
k2 are constant real numbers and θ is the Bragg angle.
The definition of the local xyz-axis is the same as that
in ref. 15; the direction of the magnetic moment in the
ab-plane is taken as the local x-axis and that along the c-
axis as the z-axis. The upper and lower signs correspond
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Fig. 3. (Color online) (a), (b), (c) Azimuthal-angle dependences
of |Fσπ′ |2 at resonance for σ-π′ at three temperatures in phases
I, II, and III, respectively. The lines are fits to cos2 Ψ and
sin2 Ψ. (d), (e), (f) h dependence of |Fσπ′ |2. The line in (d)

represents cos2(2πhx) cos2 θ and those in (e) and (f) represent
sin2(2πhx) cos2 θ.

to models I and II, respectively. The structure factor for
the 010-domain is written as

F
(E1)
σπ′ = −2k1b cos θ〈Jx〉 sinΨ

+ 2k2a(∓
√

2 cos θ〈O22〉 cosΨ − sin θ〈Ozx〉 cos 2Ψ).
(2)

There is no domain structures for 〈O22〉 or 〈Jx〉.
Figure 2 shows the incident energy dependences of the

(h, 0, 0) forbidden reflections for the σ-π′ channel at
25 K in phase I and at 15 K in phase II. This is an
extension of the measurement performed in ref. 15. The
result for (1, 0, 0) and its temperature dependence has
already been reported in ref. 15. By comparison with
the calculated structure factor, it was concluded that the
signal at Ψ = 0◦ reflects 〈Jz〉 and the signal at Ψ = 90◦

reflects 〈Jx〉 or 〈Ozx〉. The point here is that the signal
at Ψ = 90◦ reflecting 〈Jx〉 or 〈Ozx〉, which orders at TN2,
is observed in phase II as a result of SRO.

One remaining problem in RXD is that the origin of
the signal, i.e., whether magnetic or quadrupolar origin,
has not been identified yet. As shown in eqs. (1) and (2),
the signals of the magnetic and quadrupolar origins over-
lap at the same Ψ. This can be identified by measuring
the intensities for higher index h. As shown in Figs. 2(b)
and 2(c), the resonance intensity for (3, 0, 0) and (5, 0,
0) is much weaker than that for (1, 0, 0). This is because
of the factors a and b in eqs. (1) and (2).

Figure 3 shows the Ψ and h dependences of the struc-
ture factor squared for the σ-π′ channel, |Fσπ′ |2, which
was deduced from the integrated intensity of the rocking
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Fig. 4. (Color online) (a) Temperature dependences of the inte-
grated intensities of the magnetic diffraction peaks. The intensi-

ties are normalized to unity at the lowest temperature. The lines
are calculation results. (b) Temperature dependences of the to-
tal magnetic moment µ, and its c-axis and ab-plane components,
from which the lines in (a) are calculated.

scan of the resonant peak. The intensity I is proportional
to |Fσπ′ |2 and can be expressed as I = α|Fσπ′ |2/ sin θ,
where sin θ is the Lorentz factor. The constant α for (1,
0, 0) was deduced from the (2, 0, 0) fundamental peak,
α for (3, 0, 0) from the average of (2, 0, 0) and (4, 0, 0),
and α for (5, 0, 0) from the average of (4, 0, 0) and (6,
0, 0), respectively. |Fσπ′ |2 in Fig. 3 roughly reflects the
absolute value, e.g., |F |2 for the nonresonant Thomson
scattering by a Dy atom is |66|2 for the forward scatter-
ing.

Figures 3(a) and 3(d) are for the resonant peak at
7.802 keV at 25 K in phase I. This resonance is caused
by the anisotropic tensor susceptibility (ATS) scatter-
ing that reflects the local anisotropy of the surrounding
boron atoms. This gives rise to the 〈O22〉 term in eqs. (1)
and (2), as directly inferred from the crystal structure.
Therefore, |Fσπ′ |2 due to the ATS scattering exhibits a
cos2 Ψ dependence for Ψ and a cos2(2πhx) cos2 θ depen-
dence for h, which are demonstrated in Figs. 3(a) and
3(d), respectively.

In the same manner, the signals at Ψ = 0◦ and Ψ = 90◦

can be identified as of magnetic dipole origin, as demon-
strated in Figs. 3(e) and 3(f). The h dependence follows
sin2(2πhx) cos2 θ, as expected from eqs. (1) and (2). The
signal at Ψ = 0◦ in Fig. 3(e) arises from 〈Jz〉 of the
100-domain and that at Ψ = 90◦ in Fig. 3(f) from 〈Jx〉
of both domains. Thus, the temperature dependences of
the intensity and width reported in ref. 15 show that
〈Jz〉 exhibits a LRO below TN1 and 〈Jx〉 exhibits a SRO
below TN1, which develops into a LRO below TN2.
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Table I. Squares of the magnetic structure factors for the c-axis

and the ab-plane components. There are 100- and 010-domains
for the c-axis component.

Q = (h, 0, l) |F 100
c |2 |F 010

c |2 |Fab|2
(1, 0, 0) 5.645 0 2.823
(2, 0, 0) 0 3.351 0
(1, 0, 1) 1.192 0 2.460

(1, 0, 2) 0.248 0 1.677
(1, 0, 3) 0.066 0 0.954

3.2 Neutron diffraction
From the macroscopic properties of magnetic suscepti-

bility and elastic constant, the ab-plane component seems
paramagnetic in phase II.14) However, in RXD, it is ob-
served as a SRO. This is considered to be due to the
difference in the time scale between the measurements.
RXD can be considered an instantaneous measurement
with a time scale of approximately 10−15 ∼ 10−16 s, an
inverse of the lifetime of the intermediate state, probing a
snapshot of the target. If the time scale of the fluctuation
of the SRO is longer than this but much shorter than the
inverse of ultrasonic frequency, it seems paramagnetic in
the elastic constant measurement. Therefore, using ND,
with a time scale of approximately 10−12 ∼ 10−13 s for
thermal neutrons, it may be possible to estimate the time
scale of the fluctuation in more detail.

In order to deduce the c-axis and ab-plane compo-
nents by ND, we compared the intensities of (1, 0, 0),
(2, 0, 0), (1, 0, 1), (1, 0, 2), and (1, 0, 3) reflections.
In ND, the scattering probability is proportional to the
magnetic component perpendicular to the scattering vec-
tor. Therefore, in the (1, 0, l) reflections, the contribu-
tion of the ab-plane component to the intensity becomes
stronger as the index l increases. This situation is shown
in Table I. The structure factors for the ab-plane compo-
nent become the same for models I and II in Fig. 1.20)

There is no domain for the ab-plane component. For (2,
0, 0), the magnetic structure factor consists of the c-axis
component only.

In Fig. 4(a), the temperature dependences of the in-
tensities are shown for the magnetic reflections shown
in Table I. The magnetic structure factors for these re-
flections can be calculated with two parameters, i.e., µc

and µab, which are the c-axis and ab-plane components
of the magnetic moment, respectively. If we assume the
temperature dependences of µc and µab as those shown
in Fig. 4(b), the intensities of all the magnetic reflections
are calculated as those shown by the lines in Fig. 4(a).
All of them show good agreements with the experimen-
tal data, which strongly supports the notion that the ab-
plane component indeed exists in phase II as concluded
from the results of RXD. The temperature dependence
of µab is also consistent with that obtained from RXD.15)

If the ab-plane component were completely paramag-
netic in phase II, there should occur critical scattering
at TN2 when the moments in the ab-plane are ordered.
Figure 5 shows the energy spectrum around the elastic
condition at Q = (1.05, 0, 0), slightly away from the
Bragg point at (1, 0, 0). It is clearly demonstrated that
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Fig. 5. (Color online) Energy spectrum around the elastic con-
dition for Q = (1.05, 0, 0) at temperatures around TN1. The
dotted line represents the incoherent scattering that is indepen-

dent of temperature and the scattering vector. Inset (a) shows
the temperature dependence of the intensity measured at the en-
ergy transfer of 0.3 meV. Inset (b) is a schematic representation

of the energy scan at Q = (1.05, 0, 0), where the resolution el-
lipsoid passes through the region of diffuse scattering at around
E = 0.

the incoherent-like scattering around E = 0 is enhanced
on approaching TN1. This is the magnetic critical scatter-
ing due to the antiferromagnetic fluctuation of phase II,
giving rise to a very broad diffuse scattering around the
Bragg point Q = (1, 0, 0). Although this intrinsically has
a finite energy width around E = 0, it is much smaller
than the resolution, and the observed width becomes al-
most the same as that of the incoherent scattering. At
T = 19 K below TN1 the critical scattering disappears
and a Bragg peak appears at E = 0; in actuality, this is
the tail of the Bragg peak at (1, 0, 0) as seen from the
finite resolution width.

The inset (a) of Fig. 5 shows the temperature depen-
dence of the critical scattering as measured at E = 0.3
meV. This exhibits a large anomaly at TN1. In contrast,
no anomaly was observed at TN2, which was also the case
for other reflection points listed in Table I.22) These re-
sults indicate that the diffuse, or quasi-elastic, scattering
due to the fluctuation of the ab-plane component in phase
II has shrunk within the energy and Q resolutions of the
Bragg peak. From the energy resolution of 0.11 meV for
the Bragg peak, we can estimate that the time scale of
the fluctuation in phase II is longer than approximately
~/∆E ∼ 6 × 10−12 s.

3.3 Inelastic neutron scattering
We have performed an inelastic neutron scattering ex-

periment to obtain information on CEF excitations and
their variation with the phase transitions. The measure-
ment was performed for energy transfer up to 10 meV
under the condition of a constant final energy of 13.5
meV. The result is shown in Fig. 6. The magnetic part
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Fig. 6. (Color online) Inelastic neutron scattering spectra for
Q = (1.05, 0, 0) at three temperatures in phases I (25 K), II

(15 K), and III (4 K). The lines are fits to Lorentzian spectral
functions. The dashed line represents the background due to the
incoherent scattering.

of the excitation has been fitted to the function,

S(Q, E) =
E

∑
i fiP (E; Ei)

1 − exp(−E/kBT )
, (3)

where P (E; Ei) represents a Lorentzian spectral function
centered at E = Ei and fi is the strength of the i-th ex-
citation. The width of the Lorentzian was fixed to the
instrumental resolution at the corresponding energy be-
cause it was difficult to determine the intrinsic width due
to the low statistics.

At 25 K in phase I, there are three excitations at
E3 = 6.4 meV, E2 = 4.3 meV, and below 2 meV. The
peak position of the low-energy excitation below 2 meV
was estimated to be E1 = 1.3 meV from the fitting,
though it does not show a peak shape because of the
overlap with the huge incoherent scattering. At 15 K in
phase II, the second peak shifts to 4.9 meV and the inten-
sity decreases. It is noted that the low-energy excitation
does not change between phases I and II. On entering
phase III, a clear gap appears in the low-energy exci-
tation; a peak structure is clearly observed at approxi-
mately 2 meV. The second peak becomes invisible and
the third peak shifts to 7.2 meV.

The appearance of the gap in the low-energy excita-
tion on entering phase III can basically be understood
as a change in the CEF-level scheme by the magnetic
ordering, which will be discussed in the next section. In
Fig. 7, we show the variation of the low-energy excitation
with temperature after subtracting the incoherent back-
ground. The temperature dependence of the excitation
energy E1 is shown in the inset. At high temperatures,
since the peak becomes inseparable from the incoher-
ent scattering because of the energy resolution, E1 was
estimated by fixing the width to the instrumental reso-
lution and fitting the tail structure of the spectrum. Of
course, more detailed measurement using cold neutrons
with higher energy resolution is necessary on this point.
Nevertheless, it is possible to state that E1 exhibits a
steep increase on entering phase III below TN2, whereas
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Fig. 7. (Color online) Variation of the low-energy excitation with
temperature. Only the magnetic part after the subtraction of the

background is shown. The lines are fits to a Lorentzian spectral
function. Inset shows the temperature dependence of the excita-
tion energy.
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Fig. 8. (Color online) Inelastic neutron scattering spectra at 25
K in phase I for three Q-vectors. The lines are fits to Lorentzian
spectral functions. The dashed line represents the background

due to the incoherent scattering for Q = (0, 0, 1).

it shows only a small increase at TN1. This behavior of
E1 is similar to that of the ab-plane magnetic component
shown in Fig. 4.

The intensity of the CEF excitation becomes stronger
near the magnetic ordering propagation vectors, as
shown in Fig. 8. The results for Q = (1.05, 0, 0) and
(1.95, 0, 0) are almost identical except for the difference
in intensity due to the magnetic form factor. On the other
hand, the intensities for Q = (0, 0, 1) are much weaker
and the peak positions are slightly shifted to higher en-
ergies. This is considered as a result of the magnetic ex-
change interaction, which will also be discussed in the
next section.

4. Mean-Field Model Calculation

4.1 Crystalline electric field
To discuss the origin of the successive transition and

analyze the macroscopic properties, let us study if the
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Fig. 9. Top view of the crystal structure of DyB4. The nearest-

and next-nearest-neighbor Dy atoms are linked by the thick solid
and dashed lines, respectively. The neighboring B atoms around
Dy are filled with dark gray. The numbers represent the order of
distance from Dy(a) atom. Dy atoms are on the plane of z = 0,

B(1) atoms on z = ±0.2c, and B(2,3,4,5) atoms on z = ±0.5c,
where c is the c-axis lattice constant.

phenomenon can be explained within a mean-field model
calculation. First, to calculate the physical properties, we
have to define the CEF states of the Dy ion. The Dy3+

ion has nine 4f electrons and the Hund’s rule ground
multiplet is expressed by J = 15/2, which splits into
eight doublets in the CEF. The CEF Hamiltonian for
the Dy ion in Fig. 9 can be expressed as an orthorhombic
type:

HCEF =
6∑

l=2

l∑
m=0

AlmθJ〈rl〉Olm, (4)

where l and m are even integers, θJ the Stevens factor,
and Olm is the operator equivalent.23) The local xyz-axis
for the Dy ion is shown in Fig. 9, which is the same for
Dy(a) and Dy(b), whereas it is rotated by 90◦ for Dy(c)

and Dy(d). Mixing with the 5d-orbitals due to the lack
of inversion symmetry is neglected here.

It is expected that the CEF will be dominated by
second-order terms with l = 2 in a simplistic consid-
eration such as a point-charge calculation. In this case,
one of the x-, y-, and z-axes becomes the easy axis of
magnetization; this is the z-axis in DyB4. Two models
may be considered to reproduce the tilting of the or-
dered moment from the z-axis to the x-axis below TN2.
One is to introduce a stronger magnetic exchange in-
teraction between the xy components than between the
z components to overcome the anisotropy energy. The
other is to introduce a ferroquadrupolar exchange inter-
action between the Ozx moments and equivalently be-
tween the Oyz moments. When the y-axis is the hardest
axis of magnetization, the ordered moment along the z-
axis will tilt to the x-axis below a certain temperature
to gain the quadrupolar exchange energy at the cost of
the anisotropy energy. However, these models cannot ex-
plain the magnetic susceptibility for H ⊥ c below TN1,
which keep increasing with decreasing temperature; the
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Fig. 10. Calculated magnetization of Dy(a) for the CEF state de-

scribed in the text. (a) Angle dependences at several tempera-
tures when the applied field of 4 T is rotated from the z-axis
(0◦) to the x-axis (90◦). (b) Magnetic-field dependences at 5 K
and 25 K for the field angles of 0◦ and 45◦.

calculation inevitably exhibits a cusp.
The third model for explaining the successive tran-

sition is to introduce fourth-order terms as large as
the second-order terms, the importance of which has
been pointed out by Tanaka.19) The role of the fourth-
order term is to modify the easy axis of magnetization
from the z-axis to somewhere in between the z- and x-
axes. Let us assume the CEF parameters for Dy(a) as
A20〈r2〉 = 100 K, A22〈r2〉 = 120 K, A40〈r4〉 = −110 K,
and A42〈r4〉 = A44〈r4〉 = 0 K. The resultant CEF en-
ergy levels are 0 – 16.8 – 42.0 – 83.7 – 141 – 148 – 187
– 240 K. The characteristics of the magnetic anisotropy
for this CEF are demonstrated in Fig. 10. We see that
Mcalc for the 45◦ direction becomes the largest in the low-
temperature and high-field region. On the other hand,
in the high-temperature and low-field region, Mcalc for
the 0◦ direction (H ‖ z) becomes the largest. Therefore,
the first transition at TN1 occurs with the z-axis compo-
nent to achieve the maximum exchange energy. With de-
creasing temperature, the ordered moment and exchange
field increase. When the exchange field increases to about
4 T and the temperature decreases below 15 K, the x-
component takes part in the ordering to achieve a larger
ordered moment and a larger gain in the exchange en-
ergy. This is the second ordering at TN2.

4.2 CEF excitation by inelastic neutron scattering
The three magnetic excitations in Fig. 6 at 25 K are

qualitatively consistent with this CEF-level scheme. By
comparison with the calculated transition strength, it is
possible to associate the low-energy excitation below 2
meV with the excitation from the ground state to the
first excited level at 16.8 K, the excitation at 4.3 meV
from the ground state to the second excited level at 42.0
K, and the excitation at 6.4 meV from the first excited
level to the third excited level at 83.7 K. This situation
is illustrated in the energy-level diagram in Fig. 12(c),
which will be explained in the next subsection. The cal-
culated transition strength for the excitation from the
ground state to the third excited level is negligible. The
pseudo-quartet discussed in ref. 14 is considered a com-
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Fig. 11. Calculated inelastic neutron scattering function S(Q, E)
at 25 K. The width of the Lorentzian spectral functions are fixed

at 0.2 meV.

plex composed of the ground state and first excited level
here.

The weak intensity and shift of the peak position for
Q = (0, 0, 1) shown in Fig. 8 can be explained by the
magnetic exchange interaction. The neutron magnetic
scattering function can generally be expressed as

S(Q, E) =
∑
α,β

(δαβ − Q̃αQ̃β)χ′′
αβ(Q, E)

1 − exp(−E/kBT )
, (5)

where α and β represent x, y, and z. Q̃ is the unit vec-
tor of Q. χ′′(Q, E) is the imaginary part of the gen-
eralized magnetic susceptibility. In mean-field (random
phase) approximation, χ(Q, E) can be expressed as

χαβ(Q, E) =
χ

(0)
αβ(E)

1 − JQχ
(0)
αβ(E)

, (6)

where χ(0)(E) is the single-ion dynamical susceptibil-
ity calculated from the CEF eigenstates and JQ is the
Fourier transform of the real-space magnetic exchange in-
teraction. The calculated scattering functions are shown
in Fig. 11. Here, JQ is treated as a parameter. The fact
that the ordering occurs at Q = (1, 0, 0) means that JQ

becomes the largest at around Q = (1, 0, 0). At around
Q = (0, 0, 1), on the other hand, JQ should have a large
negative value because (0, 0, 1) is far from the magnetic
ordering propagation vector. If we assume JQ = −5 K,
the decrease in intensity and the shift of the peak posi-
tion to the higher energies can be reproduced well.

4.3 Successive phase transition
Let us study the successive phase transition through

a mean-field calculation using the above CEF scheme.
To describe the essence of the phenomenon concisely,
we consider a simple two-sublattice model here, where
only the interactions between the nearest-neighbor Dy
atoms are taken into account; the next-nearest-neighbor
interaction represented by the dashed lines in Fig. 9 is
neglected. Although this might be a crude approxima-
tion, many aspects of the phenomenon can be explained
as shown below. This may be because the moments of
the next-nearest-neighbor ions are orthogonal with each

other at zero field.
The Hamiltonian for the Dy(a) sublattice is expressed

as

Ha = HCEF + HM + HQ + HZ + HS, (7)

HM = −J⊥(Jx〈Jx〉b + Jy〈Jy〉b) − J‖Jz〈Jz〉b, (8)

HQ = −KQ(Ozx〈Ozx〉b + Oyz〈Oyz〉b), (9)

HZ = −µ · H = gµBJ · H, (10)

HS = −
∑

γ

gγεγOγ ; (γ = 20, 22, yz, zx, xy). (11)

HM is the magnetic exchange interaction with tetrag-
onal anisotropy, HQ the quadrupolar exchange interac-
tion for Oyz and Ozx, HZ the Zeeman effect in a uni-
form magnetic field, and HS the quadrupole-strain cou-
pling that causes the local Jahn-Teller effect. The mag-
netic and stain susceptibilities are calculated with HZ

and HS, respectively. The elastic constant for the γ-type
strain field is expressed as Cγ = C0

γ −Ng 2
γ χγ , where C0

γ

represents the nonmagnetic background elastic constant
without f -electron effect, χγ the strain susceptibility de-
fined by the relation of 〈Oγ(εγ)〉 − 〈Oγ(0)〉 = χγgγεγ ,
and N = 2 × 1022 cm−3 the number of Dy ions per unit
volume. γ = 20 and 22 represent the 3z2−r2 and x2−y2

types, respectively.
When both 〈Jz〉 and 〈Jx〉 become nonzero in phase

III, 〈Ozx〉 also becomes nonzero because Ozx is ex-
pressed as

√
3(JzJx+JxJz)/2. Then, 〈Ozx〉 gives rise to a

strain εzx = Ngzx〈Ozx〉/C0
zx through the HS term. Since

〈Jz〉a = −〈Jz〉b, 〈Jx〉a = −〈Jx〉b, and 〈Ozx〉a = 〈Ozx〉b
are satisfied in phase III, εzx for Dy(b) is equal to that of
Dy(a). Therefore, in phase III, the HS term becomes nu-
merically equivalent to the ferroquadrupolar interaction
in the mean-field approximation.

If we set J‖ = −0.67 K, J⊥ = −0.6 K, gzx = 10 K,
and KQ = 0 K, there appear two phase transitions at
TN1 = 20 K and TN2 = 12.5 K, which coincide with
the actual values of DyB4. The quadrupole-strain cou-
pling constant of the order of 10 K should be fixed in
order to explain the paramagnetic softening of the elas-
tic constants reported in ref. 14. If we assume gyz = gzx

and evaluate C44 = C0
44 − N(g 2

yzχyz + g 2
zxχzx)/2 using

the calculated strain susceptibilities χyz and χzx shown
below, the paramagnetic softening of C44 of the order
of 0.3 × 1011 erg/cm3 can be reasonably explained. We
have neglected the HQ term for simplicity because it is
numerically absorbed in the HS term in phase III, and
also because the effect of KQ can be compensated for to
some extent by tuning J⊥.

The temperature dependences of the calculated physi-
cal properties are shown in Fig. 12. With decreasing the
temperature, 〈Jz〉 first appears at TN1 = 20 K, followed
by the appearance of 〈Jx〉 and 〈Ozx〉 at TN2 = 12.5 K.
The magnetic susceptibility for H ⊥ c keeps increasing
with decreasing the temperature through TN1. The calcu-
lated results well reproduce the actual behavior in DyB4

except for the SRO of 〈Jx〉 in phase II. The existence
of 〈Ozx〉 in phase III is confirmed by RXD.17) The cal-
culated strain εzx = Ngzx〈Ozx〉/C0

zx is also consistent
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Fig. 12. Calculated temperature dependences of (a) specific heat,
(b) magnetic entropy, (c) energy level, (d) magnetic susceptibil-
ity, (e) components of ordered magnetic moments, and (f) or-
dered quadrupole moment 〈Ozx〉. The arrows in (c) represent

the three strongest excitations in the calculated neutron scatter-
ing intensity at Q = (1, 0, 0). The thickness roughly represents
the transition strength.

with the monoclinic distortion reported in refs. 15, 17,
and 24; εzx is estimated to be 4.2 × 10−3 at T = 0 K if
we assume C0

zx = 2.3 × 1011 erg/cm3 from the C44 data
in ref. 14. This εzx corresponds to the monoclinic angle
with 90◦−β = 0.26◦ at T = 0 K and 0.18◦ at T = 10 K,
which is consistent with the experimental result.

It should be remarked that the experimental magnetic
entropy is well reproduced in this calculation; R ln 2 is re-
leased at TN2, and R ln 4 at TN1.14) In previous reports,
it has been discussed that a kind of degeneracy, possi-
bly of quadrupolar one, somehow remains even in phase
II and is lifted in phase III.14,15,17) However, the mean-
field calculation here shows that this interpretation is
misdirected. R ln 2 at TN2 is an accidental coincidence.
As shown in Fig. 12(c), all the doublets are split by the
magnetic ordering at TN1 and no degeneracy remains.
The additional ordering at TN2 occurs because the to-
tal free energy can be further reduced by adding the x-
component.

The temperature dependence of E1 shown in Fig. 7
can also be understood qualitatively from the diagram of
Fig. 12(c). In the paramagnetic phase I, the experimen-
tally observed excitation at E1 can purely be ascribed to
the CEF excitation from the ground doublet to the first
excited doublet. On the other hand, in the magnetically
ordered phases II and III, the nature of the excitation at
E1 changes to the transition between the split singlets.
The excitation energy does not change much between
phases I and II, whereas it increases in phase III, well
explaining the experimental result in Fig. 7. With re-
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Fig. 13. Calculated temperature dependences of the strain sus-
ceptibilities. The dashed lines are for the paramagnetic state.
The corresponding elastic-constant mode is shown in (c), (d),

and (f).

spect to the second (E2) and third (E3) excitations, the
agreement with the experimental result shown in Fig. 6
is not satisfactory, especially concerning the change in
intensity. The remaining discrepancies may be due to
the simplicity of the present model neglecting the ac-
tual lattice structure. In addition, in phases II and III,
the spin-wave character is mixed with the CEF excita-
tion, which should be taken into account for a more exact
treatment.25)

Figure 13 shows the temperature dependences of the
calculated strain susceptibilities. It is noted that an in-
crease in χγ corresponds to a softening in Cγ . Also note
that Cγ indicated in Fig. 13 is defined with respect to the
tetragonal crystal axes, whereas χγ with respect to the
local axes. Therefore, C44 corresponds to (χyz + χzx)/2,
(C11 −C12)/2 to χxy, and so on. We see that the param-
agnetic strain susceptibility χzx is much larger than the
others. This is purely a CEF effect and leads to the rela-
tively large paramagnetic softening in the C44 mode, as
reported in ref. 14.

The most important result here is that the huge elastic
softening in the C44 mode below TN1 is well reproduced
by the mean-field calculation, as shown in Fig. 13(c).
This huge softening in the calculation is caused by the
abrupt increase in χzx below TN1. The reason for the
abrupt increase in χzx is that the 〈Ozx〉 moment is in-
duced much more effectively in the antiferromagnetic or-
dered state with 〈Jz〉a = −〈Jz〉b than in the paramag-
netic state with 〈Jz〉 = 0. Since the magnetic moments
can be relatively easily canted from the z axis to the x
axis in the present CEF anisotropy, εzx-type strain in-
duces 〈Jx〉a = −〈Jx〉b in phase II, and therefore much
larger 〈Ozx〉 moments are induced than in phase I. The
antiferromagnetic state with 〈Jx〉a = −〈Jx〉b induced by
the external strain is identical to the ordered state be-
low TN2, which leads to the divergent behavior of χzx

towards TN2.
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Finally, we note that the main driving force realizing
phase III is the characteristic CEF anisotropy explained
in §4.1 and the magnetic exchange interaction. The
quadrupole-strain coupling and resultant ferroquadrupo-
lar interaction have little effect on the phase transitions.
Even if we change KQ and gzx and tune J⊥ to keep TN2

at 12.5 K, main features of Figs. 12 and 13 do not change.

5. Discussion

In previous reports, it was discussed that Jx and Ozx

are disordered and that the doublet degeneracy somehow
remains even in phase II in which Jz is ordered.14,15,17)

It was also discussed that this might be associated with
a geometrical frustration. However, we consider that this
interpretation is not the case. The mean-field calculation
simply demonstrates that the magnetic moment along
the z-axis tilts to the x-axis at TN2 simultaneously with
the appearance of 〈Ozx〉 and εzx. In terms of quadrupo-
lar moments, the pancake-like charge distribution of the
O20 moment tilts to the x-axis to give rise to 〈Ozx〉 and
a monoclinic distortion. The double transition in DyB4

can simply be described by the mean-field calculation
performed in §4, even without considering an interionic
quadrupolar interaction explicitly. In spite of the sim-
plicity of the model, most of the macroscopic properties
were explained.

On the other hand, the short-range order of Jx ob-
served by RXD and ND is one of the characteristic phe-
nomena in DyB4, which is beyond the description by the
mean-field calculation. Although this SRO seems static
by RXD and ND, this is actually a dynamic fluctuation
when viewed from magnetic susceptibility and elastic
constant measurements. The increase in χ(T ) for H ⊥ c
and the softening of C44(T ) with decreasing T observed
experimentally would not be expected if the ordering
were completely static. The softening of the C44 shows
that the fluctuation of the SRO can follow the oscillation
of ultrasonic strain field at a frequency of several tens of
MHz, which means that the time scale of the fluctua-
tion is shorter than ∼ 10−8 s. In view of the significant
ultrasonic attenuation in phase II,14) it is expected to
be much longer than the lower limit of ∼ 10−11 s as esti-
mated by ND. In addition, what is anomalous is that the
correlation length of the SRO is quite large; the length
is estimated to be ∼ 1.4 × 103 Å by RXD, although we
have to keep in mind that the correlation length of the
bulk can be different from that in the surface region ob-
served by RXD.15) However, we also note that all the
Bragg peaks in ND experiments were resolution-limited,
indicating that the correlation length of the bulk is also
quite large. Thus, in phase II, the ordered structure fi-
nally accomplished in phase III develops as a large fluc-
tuation with slow dynamics. This may be associated with
the enhanced strain susceptibility of χzx in phase II.

It would be interesting if the SRO of Ozx without the
monoclinic strain were detected in phase II by RXD. This
should be possible in the σ-σ′ channel at Ψ = 45◦, as has
been observed for the static LRO of Ozx in phase III.17)

If 〈Jx〉 exists already in phase II, 〈Ozx〉 is expected to
accompany and should be detected experimentally.

We need to recognize, though contrary to the initial

motivation, that the effect of SSL is hardly observed at
zero field. However, it is definitely necessary to take into
account the actual lattice structure to interpret the com-
plex multistep magnetization process in the RB4 sys-
tems. For DyB4, the magnetic phase diagram reported
in refs. 21 and 26 can never be reproduced by the two
sublattice model studied here. The field-induced mag-
netic phases reported on TbB4 and TmB4 also require
consideration of the actual lattice structure.7–11,19)

6. Conclusions

We have studied the successive phase transition in
DyB4 by RXD and neutron scattering. Both methods
show that the ab-plane component of the magnetic mo-
ment is short-range-ordered in phase II. This is consid-
ered to be a dynamical short-range order since the bulk
properties are paramagnetic. The time scale of the fluc-
tuation in phase II has been discussed from the results of
ND and ultrasonic experiments. We have also succeeded
in observing crystal field excitation by inelastic neutron
scattering.

To interpret the nature of the phase transition, we
studied a simple two-sublattice model by mean-field cal-
culation. By introducing fourth-order terms of the crystal
field Hamiltonian as large as second order terms, we have
shown that the essential aspects of the phenomenon at
zero field can be explained mainly by an antiferromag-
netic exchange interaction. Since most of the macroscopic
properties can be explained by this simple calculation,
the characteristic lattice structure with geometrical frus-
tration and the interionic quadrupolar exchange interac-
tions seem to have little effect at least in zero field.
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