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Abstract 

Recently, the penetration of renewable distributed generation (DG) technologies 

has dramatically increased in distribution systems. The most notable DG types are wind 

power, photovoltaic, and solar systems. These DG units are often distributed according to 

load centers in distribution systems. Renewable DG technologies are described as 

intermittent sources, for the reason that their output power varies depending on 

environmental conditions. Consequently, the performances distribution systems are greatly 

affected by these DG units. These resources may have positive or negative technical 

impacts on the grid, according to their selected sizes, locations, and types. 

The main objective of this work is to perform comprehensive modeling, analysis of 

distribution systems and optimally install multiple DG technologies. The methodology of 

DG allocation must be generic, where different DG technologies are incorporates to the 

optimization process. In addition, the performance of the developed method must be 

efficient in terms of CPU time and accuracy. To represent the allocation problem from a 

practical view, distribution system constraints, such as voltage limits, line flow limits, and 

maximum DG penetration are required to be completely considered.  

For this purpose, firstly, distribution system component models are developed using 

state of the art phase and sequence components frame of references. An efficient power 

flow method for analyzing distribution systems is presented. The proposed method utilizes 

efficient quadratic-based (QB) models for various components of distribution systems. The 

power flow problem is formulated and solved by a backward/forward sweep (BFS) 

algorithm. The proposed QBBFS method accommodates multi-phase laterals, different 

load types, capacitors, distribution transformers, and distributed generation (DG). The 

advantageous feature of the proposed method is robust convergence characteristics against 

ill conditions, guaranteeing lower iteration numbers than the existing BFS methods. The 

proposed method is tested and validated on several distribution test systems. The accuracy 

is verified using OpenDSS. Comparisons are made with other commonly used BFS 

methods. The results confirm the effectiveness and robustness of the proposed QBBFS 

with different loading conditions, high R/X ratio, and/or excessive DG penetration. 

Secondly, an efficient analytical (EA) method is proposed for optimally installing 

multiple distributed generation (DG) technologies to minimize power loss in distribution 

systems. Different DG types are considered, and their power factors are optimally 

calculated. The proposed EA method is also applied to the problem of allocating an 
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optimal mix of different DG types with various generation capabilities. Furthermore, the 

EA method is integrated with the optimal power flow (OPF) algorithm to develop a new 

method, EA-OPF that effectively addresses overall system constraints. The proposed 

methods are tested using 33-bus and 69-bus distribution test systems. The calculated results 

are validated using the simulation results of the exact optimal solution obtained by an 

exhaustive OPF algorithm for both distribution test systems. The results show that the 

performances of the proposed methods are superior to existing methods in terms of 

computational speed and accuracy. 
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Chapter 1: Introduction 

 

 

 

 

 

 

 

 

1.1 Background 

In recent years, the use of distributed generation (DG) technologies has remarkably 

increased worldwide due to their potential benefits. DG units generate power near load 

centers, avoiding the cost of transporting electric power through transmission lines. 

Another benefit of DG is cost savings in electricity production compared with large 

centralized generation stations [1]. Furthermore, renewable DG technologies, such as wind 

power, photovoltaic (PV), and solar thermal systems, are considered to be one of the 

fundamental strategies in the fight against climate change, as they can reduce dependence 

on fossil fuels [2]–[5]. Figure 1.1 describes the structures of traditional and modern (i.e., 

without and with DG integration) power systems. 
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With the rapid increase of DG penetration, distribution systems are being converted 

from passive to active networks. Normally, DG units are small in size and modular in 

structure. Therefore, their impacts on distribution system operation, control, and stability 

vary depending on their locations and sizes [6], [7]. One of the most common positive 

impacts of DG is the ability to reduce distribution system losses [8]. However, 

inappropriate DG allocation may lead to increased system losses and system operation 

costs [9], [10]. It is also a fact that most of the electrical power losses in electric power 

systems are dissipated in distribution systems due to heavy currents flowing in primary and 

secondary feeders. Therefore, there is a critical need to develop efficient tools that can 

optimally allocate different DG types in distribution systems, thereby reducing losses. 
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Figure 1.1  Traditional and modern power system structures. 
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Several methods have recently been proposed for the planning of distribution 

systems with DG to minimize losses. These methods can be classified as numerical-based 

(NB), heuristic-based (HB), and analytical-based (AB) methods [10]. The most common 

examples of NB methods are gradient search (GS) [11] , linear programming (LP) [12], 

optimal power flow (OPF) [13], and exhaustive search (ES) [14], [15]. The GS, LP, and 

OPF algorithms are considered efficient ways for obtaining the optimal DG sizes at certain 

locations. The ES algorithm is based on searching for the optimal DG location for a given 

DG size or under different load models. Therefore, these methods fail to represent the 

accurate behavior of a DG optimization problem that involves two continuous variables, 

both optimal DG size and optimal DG location. The HB methods are based on employing 

advanced artificial intelligence (AI) techniques, such as genetic algorithms (GAs) [16], 

[17], particle swarm optimization (PSO) [18], harmony search (HS) [19], and tabu search 

[20] The main feature of these methods is their computational robustness. They can 

provide near-optimal solutions but involve intensive computational efforts. 

It is notable that great interest is directed to the AB methods, as they are easy to 

implement and fast. AB methods often follow various strategies to simplify the 

optimization problem, either by assuming uniformly distributed loads as in [21] or by 

allocating only a single DG unit in the entire system [21], [22]. Reference [23] has 

proposed a method for determining the optimal locations of multiple DG units, while the 

corresponding optimal DG sizes are obtained by the Kalman filter algorithm. A load 

centroid concept [24] is proposed in [25] for allocating multiple DG units. The authors of 

[26] have proposed an approach to allocate a single DG unit that operates at unity power 

factor, which has recently been extended to an improved analytical (IA) method [27]. The 

IA method involves allocating a single DG with various capabilities to generate both active 

and reactive power. More recently, the IA method has been upgraded to solve the multiple 

DG allocation problem [28] and validated by comparison with the exhaustive power flow 

solution. The main idea of the IA method for allocating multiple DG units is to update the 

load data after each time the DG is allocated to determine the next DG location. After each 

DG placement, the calculated DG size is corrected by using the exhaustive power flow 

method until the optimal point is reached. Although this method is relatively fast compared 

with the exhaustive solution, the obtained optimal DG locations are erroneous. This is 

mainly due to the cumulative procedure for selecting sequentially optimal locations for 
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multiple DG units, where the errors are accumulated. Furthermore, this method assumes 

that the multiple DG units have equal and specified power factors. 

Based on the above review, it is clear that considerable research has been 

conducted to resolve the DG allocation problem; however, the AB methods and most of the 

other methods assume that DG power factors are not state variables but specified values. In 

addition, these methods cannot provide the optimal solution for allocating a mix of 

different DG types. 

 

1.2 Objectives and Scopes of the Study 

The main objective of this work is to optimally allocate different DG technologies 

in distribution systems. This objective is achieved through the following sub-objectives: 

1.2.1 Efficient Power Flow Analysis Tool  
To assess and analysis the impacts of DG on distribution systems, an efficient 

three-phase power-flow tool is firstly required. The developed power flow algorithm 

should be able to effectively solve distribution systems with different configurations and 

structures. Efficient load flow performance requires superior convergence rate, low 

memory allocation, and ability to solve large scale distribution systems. The developed 

power flow models are recommended to include following distribution system 

components: 

- Asymmetric four-wires, three-phase, two-phase, and single-phase laterals. 

- Different load types including CP, CC, and CI loads with different 

connections.  

- Uniformly distributed loads. 

- Capacitor banks. 

- Three-phase transformers with various connection configurations. 

- Voltage regulators. 

- DG models including diesel engines, PV and wind generating systems.  
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1.2.2 Comprehensive Analyses of Distribution Systems with DG  
Generic and efficient mathematical formulations for studying the impacts of 

different DG technologies on distribution systems are developed. By employing these 

formulations, a fast assessment of the contribution of renewable energy penetration can be 

handled. In addition, comprehensive analysis of large scales distributions systems with 

different DG technologies is performed. Moreover, internal modeling features of special 

DG types are included. 

1.2.3 Generic and Effective DG Allocation  
In this thesis, an allocation problem of multiple DG types is formulated and solved 

by an efficient analytical (EA) method. The proposed EA method is based on deriving a 

generalized formula that efficiently estimates the amount of reduction in real power loss 

due to the contributions of DG units. In addition, a combined EA-OPF method is proposed 

to minimize system losses. The main contributions of this paper can be summarized here. 

 The proposed EA method is intended for the installation of DG technologies 

in distribution systems. A new advantageous feature of this method is the 

ability to accurately provide the optimal solution with fast computational 

speed. A direct solution can be obtained for installing any number of DG 

units without using the iterative process of power flow computations. 

 Unlike conventional AB methods, the optimal DG power factors can be 

accurately computed mathematically using the EA method. 

 The proposed EA-OPF method can handle highly constrained DG allocation 

problems. 

 Both methods can be used for determining the optimal mix of different 

types of DG technologies to minimize losses. They are also useful for 

computing the optimal number of DG units for minimizing losses. 

1.3 Thesis Organization 

The thesis consists of seven chapters. The research topics are mainly distributing among 

the chapters as follows: 
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Chapter 1 presents the introduction to distribution systems, research objectives, scope of 

the research and organization of the thesis. 

Chapter 2 provides comprehensive review about power flow analysis techniques, 

modeling and analysis of distribution systems. 

Chapter 3 presents an improved Quadratic-based (QB) power flow method for solving the 

nonlinear iterative process in active distribution systems. The proposed method is validated 

via the OpenDSS software, and its performance is tested evaluated against existing 

methods. 

Chapter 4 presents generic formulations for expressing the loss reduction with integrating 

multiple DG units in distribution systems. In addition, comprehensive analyses of several 

distribution systems are included, and the impacts of different DG units are deeply 

addressed.  

Chapter 5 provides two new methods, namely EA and EA-OPF methods, for optimally 

allocating multiple DG units to minimize power loss in distribution systems. The proposed 

methods are tested on many test systems and compared with existing methods. The results 

demonstrate the effectiveness of the EA and EA-OPF methods. 

Chapter 6 deals with allocating different DG types in distribution systems for reducing the 

losses. Different scenarios with different DG types to be allocated are studied and 

compared.  

Chapter 7 provides a conclusion part, where contributions of the study are discussed. In 

addition, some recommendations for further research in the future are presented. 

 To facilitate understanding the contents and the distribution of contributions among 

the seven chapters, Figure 1.2 is provided, which describes the work flow in the thesis. 

According to the figure, the contents of the thesis are divided into three parts, namely, Part 

I, Part II, and Part III. 
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Chapter 2: Distribution System Analysis  

 

 

 

 

 

 

 

2.1 Introduction 

 Distribution system analysis plays a vital role in power system design, analysis, and 

operation. There are many methods in the literature that are used for solving power flow 

problem. Most of these classical methods may become inefficient in the analysis of 

distribution systems that are characterized by high R/X ratios or special network structures. 

So, there are some efficient methods which are developed specially to solve the nonlinear 

model of the distribution systems. These methods have the capability of solving the power 

flow analysis problem without convergence problems, especially for ill distribution 

systems, including high R/X ratios and different loading conditions. For exploring these 

systems, this chapter presents an overview about the main features of such electrical 

distribution systems and summarizes mathematical formulations of some distribution 

power flow methods. 
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 The contribution of this chapter is directed to developing an efficient quadratic-

based BFS power flow method for analyzing active DSs. The LV lines with neutral 

circuits, MV lines, and MV-LV transformers are represented explicitly. A generic 

decoupled quadratic-based model for both LV and MV lines are developed. For the 

interfaced MV-LV transformer, a sequence model is efficiently utilized, and hence a 

quadratic-based model is created. Furthermore, power flow models of PV and wind 

generation systems are developed. For wind units, quadratic equations are used to represent 

the nonlinearity of their models. By using the proposed method, a complete power flow 

solution can be handled to accurately study the behavior of active DSs. In addition, the 

developed power flow method has good performances in terms of accuracy, computational 

speed, and convergence characteristics. 

 

2.2 Distribution System Characteristics 

Generally, distributions systems have unique features, configurations, and 

characteristics. These systems are constructed in order to transmit electrical power from the 

terminals of transmission systems (i.e., load centers) to the low voltage consumers. Unlike 

transmission systems, distributions systems has normally neither radial structure or 

sometimes weakly meshed systems where the electrical power flows in one direction from 

the distribution stations towards loads through distribution lines. It is demonstrated that the 

computation processes in distribution systems are a challenge task due to their special 

characteristics, which requires comprehensive modeling of different components. The main 

characteristics of electrical distribution systems can be summarized as follows [39]: 

 Their configurations are often radial or weakly meshed; 

 High R/X ratios; 

 Unsymmetrical phases (i.e., transposed lines); 

 They contain a mix of four wire (three-phase and neutral wire), three-phase, two-

phase and one-phase lines as well as under grounded cables; 

 Isolated or multi-grounded configurations; 

 Three-phase transformers and voltage regulators; 

 High penetration of different types of DG technologies; 
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 Various combinations of different load types, where they are unbalanced and 

voltage dependent loads; 

 Distribution systems are normally large-scale systems. 

 

Driven by these features, the convergence of computation methods are negatively 

affected and the computational burdens are expected to be degraded. Therefore, the 

analysis of distribution systems requires detailed modeling of different components and 

efficient calculation methods. The increase of penetration of DG technologies in 

distribution systems also represents another challenge, where it is essential to accurately 

assess their impacts and contributions. These DG sources can improve or worsen system 

performance, and therefore, an efficient software tools are needed by DSO to effectively 

investigate their effects. It is important to notice that the DG units affect not only 

distribution systems but also transmission systems caused by the reverse power flow at the 

peak DG generation points which vary with environmental conditions (i.e., PV and wind 

units). The reverse power flow during the maximum generation powers of the distributed 

resources as well as high loading conditions.  

   

2.3 Power Flow Analysis methods 

Power flow computation is considered a vital numerical analysis for controlling and 

optimizing the operation of electrical power systems. A power flow program is a very 

helpful tool for distribution system operators (DSO) to study the steady state operation of 

modern distribution systems. Such distribution systems are characterized with unbalanced 

loads, unsymmetrical lines, and high distribution generation (DG) penetration [57], [58]. 

Fast power flow calculation is an important requirement for an effective distribution 

management system (DMS) [59]. The essential requirements for developing an efficient 

power-flow algorithm are shown in Figure 2.1 [60]. These requirements must be 

considered for selecting a proper power flow method for solving and analysing an 

electrical distribution system. 
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Figure 2.1 Requirements for power flow methods. 
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Efficeint 
Power flow 

Requirements  

High 
computation 

speed 

Low memory 
allocation 

Versatility of 
solution  

Simplicity  

High  
accuracy 

Reliability of 
solution  



Chapter (2)                                                                                   Distribution System Analysis 

                                                               
 
 

13 

By considering these requirements in the figure, an efficient power flow can be 

attained. Low memory allocation is required especially for large scale systems, whereas 

high computation speed is important for on line control of distribution systems and DMS 

applications. The important of reliability of the power flow solution appears when dealing 

with ill-conditioned or highly stressed distribution systems. So, the key point for evaluating 

a power flow method is based on system’s size and its condition in terms of loading level 

and complexity. 

 

2.4 Power Flow for Distribution Systems 

Recently, the integration of distributed generation (DG) technologies in distribution 

systems (DSs) has remarkably increased worldwide due to their environmental and 

technical benefits [1], [10]. Consequently, the characteristic of DSs has changed to be 

active systems that can deliver locally the electric power to load centres. The introduction 

of DG units in medium voltage (MV) and low voltage (LV) distribution networks has 

profound impacts on the system efficiency, operation, and reliability [33], [34]. To assess 

these impacts, an efficient power-flow method is required. 

There are several methods in the literature that have been used for solving the power 

flow problem. Due to the special characteristics of distribution systems, many of these 

methods are inefficient [35], [36]. Popular methods are the backward/forward sweep (BFS) 

methods [37]-[39]. These methods are able to take full advantage of the radial structure of 

distribution systems, easy to implement, and can handle accurate results for large-scale 

distribution systems. In addition, they have been efficiently generalized to solve meshed 

distribution networks [40]. However, the convergence characteristic of these methods is 

very sensitive to load levels and R/X ratios [41]. For instance, the number of iterations in 

BFS algorithms increases considerably for systems with high R/X ratios or heavy loading 

conditions. It is also a fact that the excessive integration of DG units, such as wind 

generators with strong nonlinearity, has a massive impact on load flow results [42], and 

may degrade the performance of the power flow solution process [43]. Figure 2.2 shows a 

brief list of different power flow methods that are employing for both transmission and 

distribution systems.  
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2.5 BFS power Flow Methods 

In general, the BFS methods can be classified as Kirchhoff-based (KB) [44]-[48] and 

quadratic-based (QB) methods [49]-[52]. These methods use a backward sweep step for 

calculating the branch power/current flow for each branch starting from the far ends, and a 

forward sweep step for computing the voltage at each receiving bus staring from slack bus 

to the end of the distribution system. The KB methods are further divided into current-

summation (CS) [44]-[46]  and power-summation (PS) methods [47]-[49]. In this work, we 

focus on the BFS methods due to their effectiveness and robustness for ill distribution 

systems under different conditions.  

To facilitate understanding the BFS methods, they are applied to the IEEE 13-bus 

distribution system [63]. This IEEE standard test system, which are shown in Figure 2.3.a), 

has 13 buses, 12 distribution lines and a single power source (i.e., distribution substation) 

at the reference bus (bus 650). The steps of the BFS algorithms will be investigated using 

this presented system. With specifying of the voltage at the reference bus, an iterative 

solution process can be developed for power flow methods. The solution process of the 

three BFS methods includes the three main steps as in Figure 2.3.b). The details of the 

three BFS methods and their formulations can be founded in the literature. The solution 

steps of these methods are summarized as follows: 

Step 1) Nodal injections: this solution step involves calculating the power/current 

injections at each bus caused by loads, DG, capacitor banks, and/or line 

capacitance. 

Step 2) Backward Sweep: this step is started by calculating the branch 

currents/powers flow summations starting from the far ends until reaching the 

reference bus. 

Step 3) Forward Sweep: with knowing the voltage of the reference bus, the voltage 

of the busses can be updated staring from the receiving bus of Bus-650 until 

the last bus.  
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Figure 2.3 Solution steps of the BFS methods. 
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Figure 2.4 Solution steps of BFS. 

 

 After completing the above three steps, the power/voltage mismatches are 

computed at each bus. If the solution is converged, then terminate the solution process. 

Figure 2.4 shows the solution of the BFS methods. It is important to notice that for all BFS 

power flow methods, the branch power or current are calculated during the backward 

sweep step. 

 Great interest has been directed to the QB methods due to their robust convergence 

characteristics [37], [49]. Table 2.1 compares the convergence rate of the three BFS 

methods under different loading types. It is clear that the QB method has good features, 

especially for CP loading. However, most of these methods assume that the system is 
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balanced as in [49]-[52]. In reference [53], the authors have proposed a QB method that is 

applicable to unbalanced distribution systems. However, this method cannot be employed 

for computing voltage angles, and the treatment of the mutual coupling between the three 

phases is not presented. These methods cannot accurately deal with multiphase DSs. Such 

active DSs are characterized by integrated 3-wire MV and 4-wire LV lines that are 

interfaced by MV-LV distribution transformers. For the 4-wire LV sections, the neutral 

wire and grounding impedances must be taken into consideration to represent the neutral 

current due to voltage unbalance[29], [54]. 

 Based on the above review, although considerable research has been performed to 

develop various QB formulations, these methods cannot effectively represent multiphase 

distribution systems. The key feature of the QB methods is that their QB power flow model 

is based active and reactive power representation of the load, where the ZIP load model is 

employed. Except for constant power (CP) loads, the active and reactive powers of loads 

are greatly affected by voltage variation, according to the ZIP model. Therefore, this load 

representation will degrade the convergence rate of the iterative power flow process when 

dealing with other load types, such as constant impedance (CI) and constant current (CC) 

loads. As illustrated in [53], the iterative power flow process requires much more iterations 

for CI loading than those for CP loading. Table 2.2 compares between the existing QB and 

the recommended QB approach. The existing QB formulation involves CP representation 

for all load types, while the recommended QB formulation suggests various models for 

each load types. Consequently, the load representation in the recommended formulation 

will solve the problem of voltage dependency and hence improve convergence rate. 

However, this recommendation needs a new formulation for such model and this 

formulation will be presented in the next chapter. 
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Table 2.1 

Comparison of the power flow methods 

 

Algorithms  CP Loading  CC Loading  CI Loading 

CS 
Good Good Good 

PS 

QB The best Slow Very Slow 

 
 

 

Table 2.2 

Summary of Different Algorithms  

 

Load 

Types 

Existing  

QB 

Recommended 

 QB 

CP 

VjVi Ij

Sj 

VjVi Ij

Sj 

CC 

VjVi Ij

Ij 

CI 

VjVi Ij

Zj 
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2.6 Summary 

 This chapter focused on providing some facts about the main features of 

distribution systems. These special features affect harmfully the computational process in 

distribution systems. Therefore, many algorithms are created to solve the ill conditioned 

power flow in such systems. A literature review on these methods has been performed and 

important conclusions have been listed. It is demonstrated that the performance of the BFS 

are supervisors to other methods for solving large scale multi-phase distribution systems. 

The QB FBS method has a good convergence for CP loading. However, as a result of 

voltage dependency in the case of CI and CC loading, the QB BFS method has 

convergence problem in such loading conditions. A review about the variant of BFS has 

also been given. For the power flow purpose, an improved QB power flow method will be 

presented in the next chapter (i.e., Chapter 3) based on the recommended treatment of the 

load recommended in this chapter. 
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Chapter 3: An Improved QB Power Flow Method for 

Distribution Systems 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 3.1 Introduction  

 This chapter presents an efficient power flow method for analyzing active 

distribution systems (DSs). The proposed method suggests efficient quadratic-based 

models for various components of DSs. The power flow problem is formulated and solved 

by a backward/forward sweep (BFS) algorithm. Different distributed generation (DG) 

technologies, including photovoltaic (PV) and wind generators, are efficiently modeled and 

integrated to the power flow process. The proposed method is tested and validated on 

medium voltage (MV), low voltage (LV), and integrated MV-LV distribution test systems. 

Comparisons are made between the proposed BFS method and other commonly used BFS 

methods. The effectiveness of the proposed method is confirmed through comprehensive 

analyses of the IEEE distribution test systems. 
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3.2 Existing QB Formulation 

 In this section, the solution process of the BFS power flow methods is discussed. 

Figure 3.1 shows an example of a balanced two-bus distribution system. The power flow 

equation that relates the receiving bus variables to the sending bus variables is expressed as 

follows 

0j i j ijV V I Z                  (3.1) 

The loads can be modelled as constant power (CP), constant current (CC), and 

constant impedance (CI) [62]. For such system, the solution process of BFS is started with 

calculating the load current (Ij), and then updating the voltage using (3.1). This sequential 

procedure is repeated until the convergence is reached. Even for the simple two bus 

system, an iterative solution process is required, depending on the load level and the 

impedance of the line (i.e., the third term in (3.1)).  

Regarding the QB power flow methods, they employ a direct formula to calculate the 

sending bus voltage as follows 

 j i ij ij j jV f V ,R ,X ,P ,Q                         (3.2) 

in which 

   0 0

k k

j j j j j jP P V , Q Q V                (3.3) 

where k is equal to 0, 1, and 2 for CP, CC, and CI load types. A Direct power flow solution 

can be provided for CP loading where voltage dependency in (3.3) is not exist (i.e., k=0). 

On contrast, an iterative process is required in other loading types; as the voltage 

dependency is appear. The CI loading is considered the worst case in terms of convergence 

rate where the voltage dependency is the highest (i.e, k=2). So, the active and reactive 

power representation of the load, represented by (3.3), will greatly affect the robustness of 

the iterative process of the power flow computation for some load types. 
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VjVi Ij

Sj

Rij+jXij

 
Figure 3.1 Distribution line model. 

 

3.3 Proposed QB Formulation 

In this section, a QB power flow model for distribution system branches is presented. 

For the system branch from bus i to bus j, the sending bus i variables are Vi
Re and Vi

Im, 

which stand for the real and imaginary parts of the voltage, respectively. The receiving bus 

variables include Sj, Vj
Re and Vj

Im, which refer to, respectively, the incoming power, the real 

and imaginary parts of the voltage at the ending bus j. The power flow equation that relates 

the receiving bus variables to the sending bus variables is expressed by (3.1). By 

decomposing it into real and imaginary parts, the following two equations are satisfied 

  0Re Re
j i j ijV V I Z                    (3.4)

  0Im Im
j i j ijV V I Z                    (3.5) 

The loads at each bus can be treated as CP, CC, and CI representation. Based on the 

load type at bus j, the load current (Ij) is expressed according to the second row of Table 

3.1.  

By solving the quadratic equation resulting from (3.4) and (3.5), a set of equations 

can be written in a general form as follows 

Re Re
j ij ij i
Im Im

ij ijj i

V A B V
C DV V

    
     
         

                                                                       (3.6) 

The ABCD parameters for each load type are formulated in Table 3.1. Equation (3.6) 

shows that a direct power flow solution is possible in a particular loading condition for the 

corresponding branch. In contract, by employing (3.1), an iterative process is required to 

solve such power flow problem. For a multi-phase line, without considering mutual 

coupling, its QB line model can be expressed by 
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aRe aRej i
Im Imaj i

ijb bRe Re
bj i

ijIm Im
j ic

cc ij ReRe
ij
ImIm

ij

V V
V VABCD
V V

ABCD
V V

ABCD
VV
VV

                                                                                  

                        (3.7) 

Equation (3.7) can be rewritten, in condensed form, as 

abc abcRe Re
abcj i

ijIm Im
j i

   
      

     

V V
ABCD

V V
              (3.8) 

 

Table 3.1 Parameters of the proposed QB model for different load types 

 CP Load CI Load CC Load 

jI  
j j jS P jQ    

2 *

j j ,rated jZ V S  *
j ,rated j j ,ratedI S V  

 
*

j j jI S / V   j j jI V / Z   j j ,rated j jI I V V  

ijA
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2
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2

j ij
i

j ij

ij
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V

Q X

B

 
  

   



 

 

   
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j ij j ij
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R R X X

  

  

 

 
2 2

2

Re Im
j j ,rated ij j ,rated ij

Re Im
j j ,rated ij j ,rated ij j ,rated ij j

V I R I X

V I R I X I Z / V

 

  

 

ijB

 2
j ij j ij

i

P X Q R

V

     
2 2

j ij j ij

j ij j ij

R X X R

R R X X



  

 
 

2 2
2

Im Re
j ,rated ij j ,rated ij

Re Im
j j ,rated ij j ,rated ij j ,rated ij j

I R I X

V I R I X I Z / V



  

 
ijC

 
ijB  ijB  ijB  

ijD

 
ijA  ijA  ijA  

 

 

3.4 QB Models of distribution system Components  

Based on the proposed QB model, generic models of various system components are 

established. In general, the distribution system components are unbalanced; hence, 

unsymmetrical mutual coupling exists among the three phases. Therefore, modelling of 

such components requires special formulations. In this section, efficient models for the 
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three phase-coupled components are established. QB models are derived by fully utilizing 

uncoupled three phase characteristics without approximations. 

3.4.1 Modelling of Three-phase Lines 
The distribution lines are modelled with a 3×3 impedance matrix for multi-grounded 

systems [62], as shown in Figure3.2.a). The following basic equation represents the 

relationship between bus voltages and branch currents 

Re Re

Im Im

Re Re

Im Im

ReRe

ImIm

a a aa ab
j i ij ij ij ij ij

j ij ij ij iji
b b

j i

j i

cc
ij

ij

V V R X R X R
V X R X RV

V V
V V

VV
VV

                                   
                        
                     

Re

Im

Re

Im

a
ac

j
ij

jij ij

ba bb bc
jij ij ij ij ij ij

ij ij ij ij ij ij j

ca cb cc
ij ij ij ij ij ij

ij ij ij ij ij ij

IX
IX R

IR X R X R X
X R X R X R I

R X R X R X
X R X R X R

             
 

         
       
         

 
        

      
       

Re

Im

0
b

c

j

j

I

I

 
 
 
 
 
  
 
 
 
  
  
    

           (3.9) 

For the phase k 
Re Re ReRe

Im Im Im Im
0 , ( , , )

k k kk kk
j j ij mutualij iji

ij ijj i j ij mutual

V I VR XV
k a b c

X RV V I V




        
            

              

            (3.10) 

in which        
Re Re

Im Im
( , , )

k mkm
ij mutual jij ij

m a b c ij ijij mutual jm k

V IR X
X RV I






     
     
       

                                                     (3.11) 

where ∆Vij−mutual
 k  represents the voltage drop at each phase k caused by the mutual coupling 

between the distribution lines. This voltage drop can be modelled as voltage sources in 

system phases, as shown in Figure 3.2.b). It is clear from the figure that a dummy bus can 

be created between buses i and j, and the following equation is satisfied 

Re ReRe

Im Im Im

k kk
j dummy ij mutuali

j dummy i ij mutual

V VV
V V V

 

 

    
     

        

                                                        (3.12) 

For the line section between the dummy bus and bus j, the following equation holds.        

Re Re Re

Im Im Im
0

k k kkk
j j dummy jij ij

ij ijj j dummy j

V V IR X
X RV V I





      
        
           

                                                                        (3.13) 

 The resulting decoupled line segment, from the dummy bus to bus j, which is 

represented by (3.6), can be expressed by the proposed QB model as follows 
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 

k kRe Re
kj j dummy

ijIm Im
j j dummy

V V
ABCD , k a,b,c

V V




   
      

      

                                                                              (3.14) 

 In the same manner in (3.8), by substituting (3.12) in (3.14), the complete QB 

model for the three-phase line is expressed by 

abc abcRe Re Re
abcj i ij mutual

ijIm Im Im
j i ij mutual





   
      

      

V V ΔV
ABCD

V V ΔV
                                                                                           (3.15)  

 Regarding the shunt capacitances of the distribution lines and capacitors banks, 

they are considered as a CI loads and integrated to the power flow process.  

 

 
                               a) Coupled Model                                                                               b) Decoupled Model 

 
Figure 3.2 Model of distribution lines. 

 
 

3.4.2 Modelling of Transformers 
Transformers are used in distribution systems for interfacing between MV and LV 

distribution lines, where D-GY transformers are normally employed. Another usage is to 

interface different DG types to distribution systems. It is demonstrated that the power flow 

models of distribution transformers have many challenges [48]. A distribution transformer 

can be represented by three decoupled sequence networks, as shown in Table 3.2. The 

sequence voltages at the primary side of the transformer can be computed from the phase 

voltages as follows 
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                 (3.16) 

where 0,1, and 2 refer to zero, positive, and negative sequence component of the 

transformer. Vp and Vs are the voltages of the primary and secondary sides of the 

transformer, respectively. Expressing (3.16) in condensed form 
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p p
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                                                                                                       (3.17)  

Since the sequence networks are completely decoupled, a QB model for sequence 

equivalent circuits of the transformer can be expressed by 
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in which 
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where T represents the phase shifts in the positive and negative equivalent circuits and 

expressed in (3.18) to incorporate the phase shifts in the transformer model. Rewriting 

(3.18) in condensed form 
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Similar to (3.17), the phase voltages at the secondary side of the transformer can be 

computed from the sequence voltages by 
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If (3.17) and (3.19) are substituted in (3.20), 
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where 

     
1

ps


   Y W ABCD W  

Regarding to the shunt elements in the zero sequence circuit, they are represented by their 

current injection equivalents in phase domain. The phase shifts and parameters of the zero 

sequence circuit for different transformer connections are given in Table 3.3.  

 

Table 3.2 Generalized transformer models 
 

 
Positive Sequence  Negative Sequence Zero Sequence 

 

1
PV 1

sV

1
sI1

PSZ

 

2
PV 2

sV

2
sI2

PSZ

 

0
PV 0

sV

0
sI0

PSZ

0
PZ 0

SZ
 

 
 

 
 

Table 3.3 Parameters of different transformer connections 
 

 

Transformer 
Connections 

Transformer Parameters 
1T 

2T 
0
psZ

 
0
pZ 0

sZ 
GY-GY 1.0 1.0 tZ ∞ ∞ 
GY-D 1∠ 30 1∠ -30 ∞ tZ ∞ 
D-GY 1∠ -30 1∠ 30 ∞ ∞ tZ 
D-Y 1∠ -30 1∠ 30 ∞ ∞ ∞  
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3.4.3 Modelling of DGs 
Generally, DG units can be treated as PQ or PV buses, based on their type and size. 

References [39] and [60][62] have presented comprehensive models of different DG types. 

These models can be integrated to the proposed QB power flow model. Here, the 

methodology of developing their QB model is generally illustrated. A typical DG unit 

often consist of two major parts:  1) a DG technology (e.g. gas turbine, wind turbine, 

photovoltaic arrays, etc.) and 2) an interfaced device (e.g. synchronous generator, 

induction generator, power conditioning unit (PCU), etc.). Sequence models for induction 

synchronous and generators are illustrated in [39], [60]. In the same manner with the 

transformer, the QB models for these generators can be constructed in sequence domain, 

where the equivalent circuits are decoupled. It is important to notice that the calculated DG 

power injections (PDGi
abc ,QDGi

abc ) must be updated for each power flow iteration until the 

convergence is reached. For the photovoltaic systems, the power injections can be 

calculated with considering the environmental conditions and the controller scheme of 

PCU. 

 

3.4.3.1 Wind Generators 
 The wind generators consist of three components: wind turbines, induction 

generators (IG), and interface transformers to DSs. To model IGs that are connected to 

unbalanced systems with transformers, sequence equivalent circuits are usually employed, 

as given in Figure 3. The positive and negative equivalent circuits are completely 

decoupled. The terminal voltages at the terminal of the IG unit are specified, whereas the 

terminal currents are to be computed, thereby calculating the equivalent power injection at 

the point of common connection (PCC). The modeling procedures of IG are based on the 

available data about the machine as follows: 

1) Specified Slip IG Model: this IG model is considered a linear model which can be 

solved directly using the equivalent circuits of the sequence components. With 

specifying the IG slip, the terminal current injections are given by 

      
m
pm m m

p eq t s M rm
eq

V
I , Z Z Z Z || Z

Z
                                    (3.22) 
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2) Specified Mechanical Power IG Model: In this case, the IG model is nonlinear. 

Therefore, an iterative process is required to calculate the equivalent current 

injections. The mechanical power (PM) of the IG has a specified value, and the 

machine slip is unknown. The relationship between the shaft power and PM can be 

expressed as follows 

           
 2

2

1

1
3 0

m
m
r r Mm

m

slip
I R P

slip



                          (3.23) 

To solve the IG model, an iterative solution process is developed as follows: 

Step 1: Set an initial value for the machine slip. 

Step 2: Calculate rotor currents for the two sequence circuits. 

Step 3: Update the slip by solving the following quadratic equation, which is driven 

from (3.23): 

    
2 2 2 2 2 21 1 1 1 1 1 13 3 9 3 2 6 0r r M r r M rI I P slip I I P slip I                (3.24) 

Step 4: Continue if the calculated slip is converged to a specified tolerance, 

otherwise go to step 2.  

 Step 5: Calculate the current injections at machine terminals using (3.24). 
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(a) Schematic diagram of the wind system 
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(b) Sequence components model of the wind system 

Figure 3.3 The schematic diagram and the model of the wind unit. 

 

 

 It is worth noting that the generated power injections from the IG, in phase 

coordinates, are needed in the power flow iterative process. This can be computed by 

converting the calculated injected currents form the sequence domain to the phase domain. 

Consequently, the terminal power injections can be calculated. 

 

3.4.3.2 PV Modeling 
 PV units are normally composed of two parts: PV arrays and a power conditioning 

unit (PCU). The main aim of this section is to develop a component model for the grid 

connected PV units which can be integrated with an unbalanced power flow solver as 

follows: 

1) PV Array Model: the PV arrays convert the sunlight power to DC power under given 

environmental conditions. The DC power, Punit
DC  , can be calculated as follows: 

Punit
 DC=Narray Parray             (3.25) 

                Parray=Ncell Pcell        (3.26) 

where Ncell is the total number of the PV cells connected in series and parallel 

connections in the PV array, and Narray is the total number of arrays in the PV unit. 

Here, the maximum power point (MPP) of the PV unit at specific temperature and 

irradiation values is obtained by using an iterative process [34]. 

2) PCU Model: the PCU converts Punit
 DC to a specific AC power injection, Punit

AC  . Based 

on its efficiency (𝜇𝑃𝐶𝑈), the Punit
AC   value is calculated under given environmental 

conditions and the PV power factor (PF) as follows: 



Chapter (3)                                   An Improved QB Power Flow Method for Distribution Systems 

                                                               
  

 

32 

 Punit
 AC=μPCU Punit

 DC               (3.27) 

 Qunit
 AC= sin(cos-1(PFunit))  Punit

 AC                                                    (3.28)                           

 

3.5 Solution Process of QB 

The solution process of the proposed power flow method is exemplified in Figure 

3.4, where a 10-bus test system is used. The data structure algorithm in [44] is used here to 

arrange system data. Similar to BFS methods, the solution process of the proposed method 

involves three main steps: step1) calculate current injections, step2) backward sweep and 

step3) forward sweep. The first step involves calculating the current injections at all nodes. 

The main target of the second step is to calculate the power flow passing through the series 

elements, and bus voltages are updated using step 3. The QB models are employed in step 

3 for all series components. These steps are repeated sequentially until precise absolute 

power mismatches are satisfied. The flow chart of the power flow solution process is 

described in Figure 3.5.  

 

 

V0

Layer 1

Layer 2

Layer 3

V4 V2

V5

V8

V6
V7

V1

V9

V3

Slack node

C) Step 3

V0

S4 S2

S5 S8 S6S7

S1

S9

S3

Slack node

A) Step 1

V0

S4 S2

S5
S8

S6
S7

S1

S9

S3

Slack node

B) Step 2

 
Figure 3.4 Steps of the proposed method. 
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Update power injections with DGs 

Perform Forward sweep as 
illustrated in Fig. 3.4. c) Step 3

If 
ΔPabc<ε & ΔQabc<ε

?

End

Input system data and perform data 
structure

Calculate equivalent power injection at 
each bus due to Loads, Capacitors and 

Line Capacitances

If DG exist?

Calculate IG slip by solving 
(3.24) 

IG Model?

Calculate sequence current 
injection of IG using (3.22)

Calculate Phases power 
injection of IG

Calculate DC power of PV 
arrays using(3.25) &(3.26)

Calculate AC power of PV 
arrays using (3.27)&(3.28)

IG

PV

No

No

M2

M1

Yes

Perform backward sweep as 
illustrated in Fig. 3.4. b) Step 2

DG Solver

PVs Solver

IG Solver

Compute power mismatches 
for system nodes

M1: Specified slip IG model 
M2: Specified PM IG model 

 

 

Figure 3.5 Flow chart of the proposed method. 
 
 
 

3.6 Results and discussions 

Several test systems were used to test the proposed method. Comprehensive 

comparisons were made among two existing methods, reported in [39] and [48], which 

represent the current-summation and the power-summation BFS methods, respectively. For 

convenience, these methods are labelled M1 and M2 in the figures, respectively. Regarding 
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the proposed QBBFS method, it is labelled QB. The methods are implemented in C++ and 

tested on a PC, with Intel Core i5 at 2.67 GHz and 4.00-GB RAM. Many tests were 

performed on different test systems to show the effectiveness of the proposed method as 

follows. 

 

 

3.6.1 Validation and Performance Test 

The methods were tested on many distribution systems with different sizes and 

configurations as follows: 

 Balanced distribution systems: 33-bus and 69-bus systems [31], [32]. 

 Unbalanced distribution systems: 10-bus and 25-bus systems [55]. 

 Modified IEEE 123-bus distribution system: In this test [63], the regulators are 

ignored, and all loads are considered as CP loads. 

A strong agreement is noticed in power flow results obtained by the three methods 

for both balanced and unbalanced distribution systems. The accuracy of the methods is also 

validated with employing OpenDSS software [64]. For instance, Table 3.4 compares the 

voltage magnitudes of the unbalanced 10-bus system for different methods, whereas the 

power flow results are almost identical. The matching in voltage angles are also observed 

for the test systems.  

It is demonstrated that power flow methods often provide poor performances under 

critical conditions, such as heavy loading conditions and high R/X ratios. Therefore, the 

performances of the power flow methods are examined under the following ill conditions: 
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Table 3.4 Voltage magnitudes for 10-bus system 
 

Bus Phase OpenDSS QB M1 M2 

1 A 1.00000 1.00000 1.00000 1.00000 

 B 1.00000 1.00000 1.00000 1.00000 

 C 1.00000 1.00000 1.00000 1.00000 

2 A 0.95564 0.95564 0.95564 0.95564 

 B 0.99303 0.99303 0.99303 0.99303 

 C 0.98639 0.98638 0.98638 0.98638 

3 A 0.94459 0.94458 0.94458 0.94458 

 B 0.99296 0.99295 0.99295 0.99295 

4 A 0.93060 0.93059 0.93059 0.93059 

 B 0.99166 0.99165 0.99165 0.99165 

 C 0.97845 0.97844 0.97844 0.97844 

5 B 0.99063 0.99063 0.99063 0.99063 

 C 0.98424 0.98423 0.98423 0.98423 

6 A 0.91901 0.91901 0.91901 0.91901 

7 A 0.92359 0.92359 0.92359 0.92359 

 C 0.97487 0.97486 0.97486 0.97486 

8 A 0.92269 0.92268 0.92269 0.92268 

 B 0.98996 0.98995 0.98995 0.98995 

9 C 0.96712 0.96710 0.96710 0.96710 

10 B 0.98155 0.98154 0.98154 0.98154 

 

 

A)  Different Load Levels: Concerning the effects of different load levels on the power 

flow process, Table 3.5 compares the number of iteration for the three methods under 

different load factors (LFs), and the corresponding execution times are compared in Figure 

3.6. As seen in the table and the figure, the proposed method is fastest at all load levels. As 

the load level increases, the number of iterations and the execution time also increase, but 

the proposed method seems to be less sensitive to the load level than M1 and M2. The 

main reason for this improvement is that the proposed power flow method utilized efficient 
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QB models. These models affected in a positive manner on the convergence rate of the 

proposed method.  

B) High R/X Ratios: Table 3.6 and Figure 3.7 compare the performance of the methods 

under different R/X ratios. It is interesting to note that, with increasing the R/X ratios, M1 

and M2 exhibit poor convergences. On contrast, the proposed method is less sensitive to 

increasing R/X ratios. 

To sum up this subsection, the proposed method has better convergence characteristics 

when compared with M1 and M2 at different load levels and R/X ratios. The proposed 

method shows robust performances, especially in the case of ill conditions (i.e, high LFs 

and R/X ratios). 

 

 

Table 3.5 Number of iterations with different LF values 
 

LF 
33-Bus  69-Bus  10-Bus  25-Bus  123-Bus 

QB M2 M1  QB M2 M1  QB M2 M1  QB M2 M1  QB M2 M1 

1.0 3 4 5  4 5 6  3 4 5  3 4 5  5 5 6 

1.6 4 5 7  5 6 8  4 5 7  4 4 6  5 6 8 

2.2 5 7 9  6 8 11  4 6 9  4 5 7  6 7 11 

2.8 7 9 14  9 12 18  6 8 13  5 6 9  9 14 23 

 
 
 

Table 3.6 Number of iterations with different R/X values 

 

R/X 
33-Bus  69-Bus  10-Bus  25-Bus  123-Bus 

QB M2 M2  QB M2 M1  QB M2 M1  QB M2 M1  QB M2 M1 

2.0 4 5 7  5 6 9  3 4 6  3 4 6  5 5 7 

2.6 5 6 9  6 8 12  4 5 7  4 5 6  5 5 7 

3.2 6 8 11  9 12 17  4 5 7  4 5 7  5 6 8 

3.8 8 11 16  - - -  4 6 9  4 5 8  5 6 9 
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Figure 3.6 Execution time with different LF values. 

 

 

Figure 3.7 Execution time with different R/X values. 

 

 

3.6.2 Analysis of a MV/LV System 
The IEEE 4-bus DS is studied as an example of a MV/LV system. The connection of the 

step down interfaced transformer is D/GY, as shown in Figure 3.8. The rated line voltages 

at the MV and the LV line segments are 12.47 kV and 4.16 KV, respectively. The solution 
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of this system by using the proposed method is compared with the four-wire solution [54] 

and the classical three-phase solution under the following conditions: 

1) Different Grounding Resistances: the grounding resistances at the LV side (bus 4) 

are changed from zero to 0.3 ohm, and the corresponding neutral current calculated 

by the methods is shown in Figure 3.9 (a).  

2) Different DG Sizes: Figure 3.9 (b) compares the neutral current for different DG 

sizes at bus 4 (phase A). 

 It is obvious that the proposed method can provide accurate solutions at different 

conditions when comparing with the exact solution of the four-wire solution. In contrast, 

the classical three-phase power flow fails to describe the accurate behavior of the system 

under these conditions. 

 

 

Figure 3.8 The IEEE 4-bus DS. 

 

 

 
(a) Results for different grounding resistances 
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(b) Results for different DG sizes 

 

Figure 3.9 Neutral current entering bus 4. 

 

3.6.3 Impact of Load Models 
In this subsection, the performance of the proposed method is examined on the 

modified 123-bus system, where all loads are assumed to be CI, and the LF is set to 280%. 

To prove the efficiency of the proposed method, its convergence characteristics is 

compared with the existing QB model in the literature (i.e, M3) [53]. In M3, a ZIP load 

model is employed, and a QB model for the distribution lines is utilized. For both cases, 

the power flow results are accurate, but the convergence speed is different. The 

convergence characteristics for the methods are presented by comparing the absolute 

power mismatch against the number of power flow iterations are shown in Figure 3.10. It 

can be observed that proposed method is converged much faster than M3 for CI loading. 

For instance, to converged to the pre-set mismatch, M3 needs 22 iterations, while only 8 

iterations is required by QB. The slower convergence of M3 is caused by strong variation 

of the load powers with the calculated voltage at each iteration [53]. This variation is 

appeared as a result of utilizing a single QB line model for different load types. Unlike M3, 

the proposed method utilized different QB line models for different load types, as 

illustrated in table 3.1. Regarding to M1 and M2, they show relatively intermediate 

convergence performance, and they need 11, 12 iterations, respectively.  
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 Figure 3.10 Convergence characteristics of 123-bus system with CI loading. 

 

 

 

 Figure 3.11 Comparison of the methods with increasing PV penetration.  
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3.6.4 Impact of DG Units 
The modified IEEE 123-bus test system is used to test out the performances of the 

methods with DG penetration. In this distribution system, three PV units (the Kyocera 

KC200GT solar array [56]) are assumed to be connected to 63, 50, and 107 buses.  It is 

worth to note that increasing the penetration of single-phase PV units will increase system 

unbalance, thereby worsening the iterative process of the power flow computation. Figure 

3.11 compares the number of power flow iterations for M1, M3, and QB with increasing 

PV penetration. As expected, all methods show good performances in the case of low PV 

penetration, and the iteration numbers increase with rising PV penetration.  As the number 

of PV penetration is increased, QB has robust performance compared with M1 and M2. 

Therefore, the proposed method can be very helpful for analysing active systems that 

involve excessive DG penetration. 

 

3.7 Summary 

The paper has proposed an efficient BFS power flow method for analyzing active DSs. 

The proposed method has been compared with two commonly used BFS methods using 

several balanced and unbalanced DSs. The results have shown that: 

 The proposed method provides accurate solutions when compared with 

the exact solutions. 

 A fast solution is provided by the proposed method that utilizes efficient 

quadratic models of various DS components. 

 The convergence characteristics of the proposed method are better than 

those of the existing methods during the critical conditions, such as 

heavy loading conditions and high R/X ratios. 

Furthermore, the proposed method can efficiently solve the power flow problem of MV, 

LV, and integrated MV/LV DSs. Comprehensive analyses of the impacts of DG units on 

the IEEE 123-bus DS have also been performed. The proposed method is a helpful tool to 

study the steady state condition of active DSs. 
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Chapter 4: DIRECT ASSESSMENT AND ANALYSIS OF DG 

IMPACTS 

 

 

 

 

 

 

 

 

 

4.1 Introduction 

 
 As presented in the previous Chapter (i.e., Chapter 3), an improved BFS power 

flow method are proposed form analysing balanced/unbalanced distribution systems. In 

this chapter, this improved power flow method will be employed for assess the DG impacts 

on distribution systems in terms of loss reduction, voltage profile, and voltage unbalance. 

Furthermore, a new fast index for estimating the amount of loss reduction after adding 

multiple DG technologies is presented. The proposed loss reduction formulation and the 

methodology of study the effects of DG impacts are deeply investigated using different 

systems. The presented formulations will be very helpful for solving the optimization 

problem of DG allocation in the next chapters. 
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4.2 General Formulation of Loss Reduction with DG 

In this section, we propose direct formulae for expressing the amount of real power 

loss (RPL) and RPL reduction (RPLR) with multiple DG units in a distribution system. 

4.2.1 RPL Formula 
For a distribution system with N branches, a basic RPL formula can be expressed as 

follows: 

 2 2

1
Loss

N

j j j
j

P A P Q


                 (4.1) 

where 

     

 

       j Subscript standing for the receiving side bus on each 
branch; 

     jV  Voltage magnitude of bus j; 

     jjj Zjxr   Branch impedance; 

    jjj SjQP   Incoming complex power to bus j. 
 

An advantage of (4.1) is that the exact RPL can be computed directly from the 

corresponding branch resistances without using the nodal admittance or impedance 

matrices. 

 

4.2.2 RPL Formula with a Single DG 

The RPL formula is reformulated here as a function of the DG injected power. The 

total RPL of the six-bus distribution test system shown in Figure 4.1.a) can be computed 

directly using (4.1). However, the total RPL will be greatly changed when a DG unit is 

installed. As the load powers are constant, all additional generated power afforded by DG 

installation must flow to the reference bus. For instance, when a DG unit is installed at bus 

 
2
j

j
j V

r
A 
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3 as in Figure 4.1.b), its generated power will flow through branch 3 and branch 1 to the 

reference bus. Let the list of branches that the DG generated power passes through be 

denoted by BDG. Then, a formula to estimate RPL with the DG can be written as follows: 

     ,

2 22 2
Loss DGi

j BDG j BDG
j j j j j DGi j DGiP A P Q A P P Q Q

 

 
      

             (4.2) 

By installing DG, only branches in the BDG list, corresponding to the second term 

of (4.2), will be affected. This restriction implies that the initial power flow, the base 

loading, is constant in (4.2); therefore, the losses are efficiently estimated from the 

additional flow by the DG unit. The validity of this formulation is verified and discussed in 

the results section. 

Figure 4.1 Single line diagram of the six-bus test system. 

 

Figure 4.2 Classification of steady state models of different DG technologies. 
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4.2.3 Generalized RPL Formula with Multiple DG 
 For handling multiple DG allocation, let the list of nodes that are connected to DG 

units be denoted by NDG. A general RPL formula can be written as follows: 

   








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
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BDGj

DGLoss

DGiijj
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jjjj

QSQ

PSP

AQPAP
2

2

22
,

                  (4.3) 

where S represents a binary matrix (NDG × BDG) whose elements are defined as follows:  

1
0

DGi
ij

if S passes throughbranch j
S

otherwise


 


                                                      (4.4) 

 Matrix S is employed here to define the list of branches that each DG generated 

power passes through. By using the proposed mathematical formulations, we can directly 

evaluate the losses after installing DG. 

4.2.4 Proposed RPLR Formula 
The basic formulation of RPLR can be expressed as follows: 

,Loss Loss DGDGRPLR P P                                                        (4.5) 

Substituting (1) and (3) into (5) leads to the following: 
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PSPPS
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2

2

                                     (4.6) 

 Equation (4.6) is useful for computing the total RPLR by the DG by evaluating 

only the branch losses in the BDG list. There is no need to calculate total power loss before 

and after installing DG to evaluate the benefits in terms of loss reduction. Substituting the 

DG power factor (PFDGi) into the RPLR formula yields the following: 
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where 

DGiDGiDGi PQR                                               (4.7.a) 

    2

21

DGi

DGi
DGi PF

PFR 
                                          (4.7.b) 

 

4.3 Generalized Models for Different DG Types 

 Different DG technologies can generally be classified into three main types based 

on their active and reactive power generation characteristics, as illustrated in Figure 2. The 

figure describes the possible energy sources and conversion devices for each DG type. 

Combining different energy sources with different energy converters represents special DG 

generation characteristics for each configuration. The bounds of the decision variables, the 

active and reactive DG powers, are specified for each DG type. For DG type 1, if (QDGi
Spec) 

is equal to zero, its power factor is unity. DG type 2 represents those that can support 

reactive powers. The power factor of DG type 3 may not be specified. By these constraints, 

optimal values of decision variables will be determined. Note that the DG power factor will 

also be determined in the optimization problem. For a specific DG unit type, if its optimal 

active and reactive generated powers are defined, the interfaced device and the DG 

technology structure can be optimally selected and designed [29], [30]. 

4.4 Proposed Scheme 
Figure 4.3 shows the solution process of the proposed methodology for analyzing 

distribution systems and assess the impact of different DG technologies. 
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Figure 4.3 Flow chart of the proposed scheme. 

 
 

4.5 Results 

 Two distribution systems are used for the analysis in this chapter, namely 33-bus 

system [31] and 123-bus [63] distribution systems. The 33-bus distribution system are used 

for validation of the proposed RPLR formulation for estimating the losses with DG 

integration, while the 123-bus systems are employed for simulating unbalanced systems 

and investigating their impacts. 
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4.5.1 Validation of RPLR Formula 
 The 33-bus distribution system (see system details in the appendix) is used as a test 

system for this analysis. Figure 4.4 shows the power losses, estimated RPLR and exact 

RPLR values at the individual possible DG locations, where a single DG installation is 

assumed in the 33-bus test system. To clarify the figure, the results are plotted by re-

arranging the exact RPLR values in ascending order (from lowest to highest). We see that 

the estimated RPLR and the exact RPLR have their maximum values at the same DG 

location (Bus 6), which is the optimal bus where the calculated losses are the lowest. Thus, 

the optimal DG location can be obtained by the estimated RPLR without calculating exact 

RPLR.  

 Figure 4.5 illustrates the results for the cases of installing two and three DG units in 

the 33-bus test system. The results confirm the validity of the EA method even when 

allocating multiple DG units. 

 

 

 
 

Figure 4.4 The calculated optimal DG size at all possible DG locations, the corresponding 

exact loss and the estimated RPLR for the 33-bus system. 
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a) Two DG allocation 

 

 
b) Three DG allocation 

 
 

Figure 4.5 The calculated optimal DG sizes at all possible DG location combinations, the 

corresponding exact loss and the estimated RPLR for the 33-bus system. 

 

4.5.2 Analysis of a Distribution system with DG 
 The proposed power flow method is applied on the IEEE 123-bus DS, Figure 4.6, 

with DG (PV and IG units). This test system is a multi-phase DS that consists of a main 

three-phase feeder, two-phase laterals, and single-phase laterals. The PV units (the 

0

2

4

6

8

10

0

50

100

150

200

1 22 43 64 85 10
6

12
7

14
8

16
9

19
0

21
1

23
2

25
3

27
4

29
5

31
6

33
7

35
8

37
9

40
0

42
1

44
2

46
3

48
4

D
G

 S
iz

e 
(M

W
) 

Po
w

er
 L

os
ss

es
 (k

W
) 

Possible DG Location Combinations (NC) 

First DG size
Second DG size
Exact Power Loss  with DGs
Estimated RPLR with DGs

0

2

4

6

8

0

50

100

150

200

1
20

0
39

9
59

8
79

7
99

6
11

95
13

94
15

93
17

92
19

91
21

90
23

89
25

88
27

87
29

86
31

85
33

84
35

83
37

82
39

81
41

80
43

79
45

78
47

77

D
G

 S
iz

es
 (M

W
) 

Po
w

er
 lo

ss
es

 (k
W

) 

Possible DG Location Combinations (NC) 

First DG size Second DG size

Third DG size Estimated RPLR with DGs

Exact Loss  with DGs Exact RPLR with DG



Chapter (4)                                DIRECT ASSESSMENT AND ANALYSIS OF DG IMPACTS 

                                                                
  

 

51 

Kyocera KC200GT solar array) are assumed to be connected to all single-phase nodes, and 

two IG units are connected to buses 67 and 105. Regarding to the IG units, they consist of 

150 HP induction machines interfaced to the DS using Delta-Delta transformers.  

 As a validation test for the IG model, Figure 4.7 shows the calculated IG slips at 

each iteration of the power flow process when they are worked with a specific PM mode. 

The slip values are finally converged to final values at iteration 6, as shown in the figure. 

 It is demonstrated that several operational problems in DSs occur normally at peak 

generation of DG [29], [34]. Therefore, the focus of this study is to clarify the impact of 

DG units on the DS during the peak generation point. In the following paragraphs, the 

effect of increasing PV penetration on the DSs is addressed. The penetration level of the 

PV units is changed by increasing the number of arrays of the PV units. Based on the 

assumed scenarios, the following aspects are investigated:  
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Figure 4.6 The 123-bus IEEE DS (without regulators). 
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Figure 4.7 The calculated values of the slip for the IG units at each power flow iteration. 

 

1) Generated Powers and System Losses: Figure 4.8 shows the impact of PV penetration 

levels on the sharing of the generated power among the distribution station, the wind 

units, and the PV units. It is clear that, by increasing the share of the PV generated 

power, the generated power from the substation is decreased. The wind power 

generation is almost constant. Regarding to the total active power loss, as the number 

of PV arrays are increased, the losses are reduced to a minimum value (21.5 kW) and 

increased again after exceeding a specific PV penetration level (298 arrays). 

2) Voltage Profile: the common problem with increasing PV penetration is voltage rise, 

as shown in Figure 4.9, where the maximum voltage at each phase is given. Voltage 

rise may be harmful for many sensitive domestic/commercial loads that are normally 

widespread in active DSs.  

3) Voltage Unbalance (VU): VU is the ratio of the negative sequence voltage divided to 

the positive sequence voltage at a specific bus. Here, as an indicator for voltage 

unbalance, the maximum VU for the DS buses with different penetration levels of the 

PV units is shown in Figure 4.10. It is clear that the voltage unbalance decreases until 

the number of PV arrays equals to 203 and then returns to increase again. Therefore, 

the optimal number of PV arrays to improve the voltage unbalance is 203. 

  

-0.0082

-0.0081

-0.008

-0.0079

-0.0078

-0.0077

-0.0076

-0.0075

-0.0074

1 2 3 4 5 6

G
en

er
at

or
 S

lip
 

Power Flow Iteration 

Induction generator at bus 67
Induction generator at bus 105



Chapter (4)                                DIRECT ASSESSMENT AND ANALYSIS OF DG IMPACTS 

                                                                
  

 

53 

 The results show that increasing DG penetration will greatly improve electric 

energy systems performance in terms of loss reduction, voltage profile, and voltage 

unbalance until a specific optimal penetration level. It is also obvious that the proposed 

power flow method is considered a useful tool for accurately analyzing and examining the 

active DSs. 

 

 

 
 
Figure 4.8.  The effect of PV penetration on the generated power and losses. 
 
 
 

 
 
Figure 4.9  The effect of increasing of PV penetration on the maximum phase voltages.  
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Figure 4.10 The effect of PV penetration on VU. 

 
 

4.6 Summary 

 

 This chapter has presented comprehensive analysis of distribution systems where 

the impact of different DG types is investigated. Firstly, the benefits of introducing fast 

index, RPLR, for estimating the losses with DG technologies are outlined, where the 33-

bus distribution system are employed. With employing the proposed RPLR formulation, 

the impact of DG units can be tested, with low computational burden. Secondly, the 

unbalanced IEEE 123-bus radial test system is analyzed with different DG integration 

cases. The work presented I this chapter will be helpful for developing efficient methods 

for DG allocation, as shown in the nest chapters. 
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Chapter 5: Efficient DG Allocation Methods for Power Loss 

Minimization 

 
 
 
 
 
 
 
 
 
 
 
 
 
5.1 Introduction  

 In this chapter, an efficient analytical method is proposed for optimally allocating 

DG units in electrical distribution systems to minimize power losses. The proposed 

analytical method can be employed for obtaining the optimal combination of different DG 

types in a distribution system for loss minimization. The validity of the proposed method is 

demonstrated using two test systems with different configurations by comparing with exact 

optimal solution obtained from exhaustive OPF algorithm. The calculated results and the 

comprehensive comparisons with existing methods prove the supervisory of the proposed 

method in terms of accuracy and calculation speed. The proposed loss minimization 

method can be a useful tool for a general DG allocation problem since it provides effective 

and fast loss evaluation taking into account other benefits. 



Chapter (5)                                                      Efficient DG Allocation Methods for Power Loss Minimization 

                                                               
  

 

57 

5.2 DG Allocation Problem 
 Recently, many countries have followed a strategy to increase the integration rate 

of renewable energy resources in distribution systems. These distributed generation (DG) 

units contribute in an efficient way to tackle the environmental pollution problems caused 

by conventional power stations [1]. In addition, they can improve the reliability and the 

efficiency of not only the distribution systems, but also the entire power system.  

 Typically, the most notable types of the renewable DG technologies are solar 

power, photovoltaic systems, wind power, and small hydro stations. These resources have 

normally small capacities, and they are located close to critical loads and load centers. 

Consequently, the characteristics of distribution systems are greatly affected by installing 

the DG units. An appropriate combination between these different resources can positively 

maximize their benefits to the grid. On the other hand, improper DG allocation may lead to 

many technical problems to distribution systems, such as voltage rise, reverse power flow, 

increase system losses. 

 Many research studies have been directed to develop efficient techniques for 

allocating DG units in distribution systems. The DG allocation problem aims to determine 

the optimal DG locations and sizes to be installed in distribution systems with considering 

system constraints. The allocation methods of DG can be classified based on their 

objective function. The objective function could be, but not limited, to: 1) active power 

loss minimization ; 2) energy power loss minimization; 3) voltage profile improvement; or 

4) cost minimization. The common feature between most of these methods is the 

assumption of allocating only a single DG type; therefore, they do not deal with the DG 

allocation problem for different DG types. A comprehensive review about various methods 

for solving the DG allocation problem is given in [10]. 

 

5.3 Proposed EA Method 

 The main idea of the EA method is based on employing the proposed RPLR 

formula as an indicator for the amount of loss reduction as a result of installing the DG 

units. The details of the EA method are listed as follows:   
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Figure 5.1 Characteristic of the RPLR with varying DG generated power. 

 

5.3.1 Optimal DG Sizing 
 The first step to solve the problem of DG allocation is by introducing an efficient 

way to calculate the optimal DG size at a given bus i in a distribution system. Figure 5.1 

shows the influence of changing both the active and reactive DG generated power on the 

RPLRDGi value. The main goal of the optimization problem is to calculate the optimal DG 

size (PDGi 
 opt , QDGi

 opt ) to maximize the value of RPLRDGi, i.e., minimize system losses. The 

methodology for calculating optimal DG sizes mainly depends on the DG power factor 
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1) DG with Specified Power Factors: The specified generation values of DG type 1 
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 Spec) and DG type 2 (PDGi

 Spec) are treated as negative loads. Therefore, the power factors 
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 It is notable that Aj is assumed to be constant. At the maximum value of the RPLR, 

the first derivative is equal to zero.  

0





opt
DGiDGi PPDGm

DGs

P
RPLR                    (5.2) 

Then, the equation to find the optimal size can be obtained as follows: 

   1
j BDG i NDG j BDG

opt
mj j ij DGm DGi mj j j DGm jDGiS A S P R R S A P R Q

  

                  (5.3) 

  The above equation is available for each DG at a typical bus m, so that the set of 

equations can be organized in matrix notation as follows:  





























































 

DGDGDGDGDG

DG

DG

DG
NNNNN

N

N

opt
NDG

opt
DG
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Y

Y
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XXX

XXX
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P

P

P












2

1
1

,1,1,

,22,21,2

,12,11,1

2

1

 (5.4) 

 where  

               




BDGj
DGnDGmmjjnjmn RRSASX 1,                 (5.4.a)      

        




BDGj
jDGmjjmjm QRPASY                          (5.4.b) 

opt
DGiDGi

opt
DGi PRQ                  (5.5) 

 The final equations (5.4) and (5.5) can be employed to calculate the optimal DG 

sizes. These equations can be applied to all three DG types with specified power factors. 

Note that the equations are very simple, facilitating the calculation of the optimal DG sizes 

for the specified locations.  

2) DG with Unspecified Power Factors: For installing DG technologies of type 3 that 

are capable of supplying both active and reactive power, their power factors may be 

viewed as decision variables to be calculated. Therefore, a special treatment is required for 

this DG type to obtain accurate results for calculating the optimal DG power factor. The 

main idea of this algorithm is to utilize the condition to maximize RPLR. An example of an 
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RPLR surface as a function of PDGi and QDGi is given in Figure 5.1. At the maximum point 

of this surface, the following equation must be satisfied: 

opt opt
DGi DGiDGi DGi

opt opt
DGi DGiDGi DGi

DG DG
P P P P

DGm DGmQ Q Q Q

RPLR RPLR
P Q 

 

 


 
            (5.6) 

Solving (5.6) for the DG reactive powers gives: 


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

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



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
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1

 
(5.7) 

where    

                




BDGj
mjjnjmn SASU ,                                                                                             (5.7.a) 

          jj
BDGj

jmjm QPASW  


                                                                                     (5.7.b) 
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Figure 5.2 Flowchart depicting the optimal DG sizing algorithm. 
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 Equations (5.4) and (5.7) are solved in a sequential manner to obtain the optimal 

DG power factors. The solution process will be repeated until convergence is obtained. The 

DG power factor mismatch is used as convergence criteria. The proposed DG sizing 

algorithm is illustrated in Figure 5.2. 

 

5.3.2 Optimal DG Sizing in Meshed Distribution Systems 
 The mathematical formulation of the proposed method has been developed based 

on the radial structure of distribution systems. Therefore, a special treatment for meshed 

distribution systems is explained in this section. Figure 5.3 a) shows an example of a 

weakly meshed distribution system where the optimal DG size at bus 3 (SDG3) must be 

calculated. Based on basic loop analysis techniques, it is clear from the figure that there are 

two possible paths for transmitting the DG generated power from bus 3 to the reference 

bus. Figure 5.3 b) shows the equivalent radial structure of the original meshed system 

where a new dummy bus is added and the DG is split into two equivalent DG units so that 

the following holds: 

2
3

1
33 DGDGDG SSS                                                                                                     (5.8) 

 By employing (5.4)–(5.7), the optimal size of the two equivalent DG units 

(SDG3 
 1 , SDG3

 2  ) can be calculated, and hence the optimal DG size at bus 3 can be computed 

using (5.8). Therefore, the proposed formulation is applicable to the resulting radial 

system, which is exactly equivalent to the original meshed system. 
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Figure 5.3 A simple distribution system with one loop. 

 

5.3.3 Estimated RPLR with DG 
 To evaluate the positive impact of installing DG units on loss reduction, an 

estimated RPLR value (RPLR DG
  Est) is employed. By substituting the optimal DG sizes 

calculated with (5.4)–(5.7) and the specified DG generated powers into (4.6), and by using 

the power flow results of the base case, we obtain an estimated value for the RPLR by the 

following formula 

 opt
DGi

opt
DGiDG

Est
DG QPRPLRRPLR ,                                              (5.9) 
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5.3.4 Solution Process 

 Note that, when allocating NDG DG units in a distribution system with NB buses that 

are eligible for DG allocation, the number of different possible combinations, NC, of DG 

locations is calculated by 

 
!

! !
B

C
DG B DG

NN
N N N


 

            (5.10) 

 Here, the main goal is to define the best combination of the DG sites in terms of 

loss reduction. The steps are as follows: 

1) Read Data: Read the distribution system data, the required number of DG units to be 

installed and their types. 

2) Data Structure: Build the distribution system data structure and the S matrix. 

3) Power Flow: Perform the power flow computation for the base case loading (without 

DG). 

4) Optimal DG Sizing: Calculate the optimal DG sizes for all the combinations of sites 

using the proposed sizing algorithm shown in Figure 5.2. 

5) Optimal DG Siting: Calculate the estimated RPLR values for all the combinations 

using (5.9). Then, find the optimal combination of DG locations for which the estimated 

RPLR is the largest. 

6) Print Results: Print the optimal DG locations and sizes as well as the RPLR value, etc. 

It should be noted that the power flow is carried out only once to obtain the base case 

loading so that a direct optimal solution of the DG allocation problem can be efficiently 

solved. The complete computational procedure of the proposed EA method is shown in 

Figure 5.4. 
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Figure 5.4 Solution process of the proposed EA method. 
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Figure 5.5 Solution processes of the proposed methods. 

 

 
5.4 Proposed EA-OPF Method 
 The EA-OPF method is based on the combination of the EA method and an OPF to 

solve the DG allocation problem. Firstly, optimal DG locations are obtained using the EA 
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method. Secondly, the optimal DG sizes for the defined locations are computed by the 

OPF. The OPF algorithm takes into account the distribution system constraint conditions, 

including voltage limits, the DG penetration limit, maximum line flows, and DG size 

limits. The DG penetration is defined as the ratio of the total size of DG units to the total 

load. This combined method needs only one power flow solution for DG sizing and one 

OPF solution for DG sizing. The OPF is formulated as follows: 

Minimize:  PLoss,DG (x,u )                                  (5.11) 

Subject To           H(x,u) = 0                       (5.11.a) 

                                G(x,u) ≤ 0                 (5.11.b)    

where x represents a vector that includes node voltages and u is a vector that contains 

active and reactive DG generated powers. H and G are, respectively, the equality 

constraints representing the complex power-balance equation at each bus and the inequality 

constraints. Figure 5.5 shows the complete computational procedure of the proposed EA 

and EA-OPF methods. 

 
 

5.5 Case Studies 
 The proposed methods for DG allocation have been implemented in C++. Intensive 

tests have been carried out on a 3.0 GHz PC with 4096 MB of RAM. The 33-bus and 69-

bus distribution test systems are used to test the proposed methods. The detailed data of the 

systems appear in [31] and [32]. The first 33-bus system is a radial system with a total real 

power loss of 0.211 MW. The second 69-bus system is a widely used distribution system in 

the literature, and its total real power loss is 0.225 MW. For the two systems, bus 1 

represents the main substation. The maximum DG penetration limit of 100% is set for both 

systems. 

5.5.1 DG Type 1 
 The proposed EA method is applied first to install DG Type 1, where the DG 

reactive powers 𝑄𝐷𝐺𝑖
𝑠𝑝𝑒𝑐 are assumed to be zero and thus the power factors are unity. To 

evaluate the computational performance of the proposed methods, comprehensive 

comparisons have been performed. For this purpose, the methods in [26]-[28], and [25] are 

labeled as Method 1, Method 2, and Method 3, respectively. The solutions obtained by 
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those methods have been compared with the exact solution obtained by the exhaustive OPF 

algorithm. The algorithm involves running OPF for all possible DG site combinations, 

which required excessive calculation efforts. 

 Table 5.1 compares the results of the various methods for the two test systems for 

the allocation of a single DG unit, two DG units and three DG units. The comparison is 

carried out with respect to the DG locations, DG sizes, and RPL. 

 As seen from the table, the EA method can provide proper DG locations and 

accurate DG sizes compared with the exact solutions for the two test systems. More 

accurate solutions are obtained by the EA-OPF method, which are identical to the exact 

exhaustive OPF solutions. This is due to the effective combination of EA and OPF. From 

the results, it is also observed that Method 1 and Method 2 can lead to an acceptable 

optimal solution for allocating a single DG. However, in the cases where multiple DG units 

are allocated, Method 2 cannot provide the optimal DG locations and sizes. In the same 

manner, Methods 3 fails to provide the optimal solution for most cases. 

 The computational time required for each method is also given in Table 5.1. As 

expected, the EA method is the fastest for all cases. The main reason is that this method 

requires running the power flow only once for any number of DG units to be installed. 

Second, there is no need to construct special matrices, such as the node admittance matrix. 

Third, the method requires only the power flow through branches in the BDG list for 

optimal DG sizing. The EA-OPF method is slightly slower than the EA method as it 

requires one additional OPF. Method 2 consumes much more computational time to run 

the multiple power flows until reaching the optimal point. Method 1 is slower than the 

proposed EA and EA-OPF methods because it requires the impedance matrix. Finally, we 

observe that Method 3 is the slowest method, as it requires a number of power flow 

solutions. 
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TABLE 5.1 COMPARISON OF DIFFERENT ALGORITHMS FOR THE 33-BUS AND 69-BUS 

SYSTEMS WITH DG TYPE 1 

 

Time 
 (S)

Method 1 Bus 6 2490 111.24 0.09 Bus 61 1810 83.4 0.54
Method 2 Bus 6 2600 111.02 0.46 Bus 61 1900 83.25 1.27
Method 3 Bus 30 1500 125.21 0.97 Bus 61 1900 83.25 6.09

Exhaustive OPF Bus 6 2590 111.02 1.30 Bus 61 1870 83.23 3.01
Bus 6 720 Bus 61 1700

Bus 14 1800 Bus 17 510
Bus 30 1500 Bus 61 1900
Bus 25 1000 Bus 64 20
Bus 13 844 Bus 61 1795
Bus 30 1149 Bus 17 534
Bus 13 852 Bus 61 1781
Bus 30 1158 Bus 17 531
Bus 13 852 Bus 61 1781
Bus 30 1158 Bus 17 531
Bus 6 900 Bus 61 1700

Bus 14 900 Bus 17 510
Bus 31 720 Bus 11 340
Bus 30 1500 Bus 61 1900
Bus 25 1000 Bus 64 20
Bus 24 220 Bus 21 470
Bus 13 798 Bus 61 1795
Bus 24 1099 Bus 18 380
Bus 30 1050 Bus 11 467
Bus 13 802 Bus 61 1719
Bus 24 1091 Bus 18 380
Bus 30 1054 Bus 11 527
Bus 13 802 Bus 61 1719
Bus 24 1091 Bus 18 380
Bus 30 1054 Bus 11 527

2.97

12.3

1.62

1.66

6655

0.45

0.50

101

5.61

17.3

DG 
No.

1 EA Bus 6 2530 111.07 Bus 61 1878
EA-OPF Bus 6 2590 111.02

0.05
0.09

      Applied       
Method

Exhaustive OPF 87.17 71.68

0.15

20.2

2

Method 2 91.63 71.95

Method 3 107.95 83.23

EA 87.172 71.68

EA-OPF 87.17 71.68

2.23

1.08

0.11

3

Method 2 81.05 69.97

Method 3 107.35 72.65

EA 72.787 69.62

EA-OPF 72.79 69.43

Exhaustive OPF 72.79 69.43

2.04

3.26

0.37

0.41

202

69-bus Test System33-bus Test System

RPL 
(kW) 

Optimal 
 Bus 

DG size 
(kW) 

RPL 
(kW) 

Optimal 
 Bus 

DG size 
(kW) 

Bus 61 1870 83.23
83.23

Time 
 (S)

0.16
0.20

 

 

5.5.2 DG Type 3 with Specified Power Factors 
 Examinations are performed to validate the proposed sizing methodology for 

allocating DG technologies of type 3. The results of installing three DG units with 0.82 

lagging power factors in the 33-bus system are shown in Figure 5.6. The figure compares 

the estimated RPLR, the exact RPLR and the exact losses for each possible DG 

combination. As illustrated, the use of the estimated RPLR is an efficient way to select the 

proper locations of DG units of type 3. 
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Figure 5.6 The calculated estimated RPLR, exact RPLR, and exact losses when allocating 

three DG units of type 3 in the 33-bus system. 

 

 

TABLE 5.2 POWER LOSS ATTAINED BY EACH METHOD WITH DIFFERENT DG POWER 

FACTORS FOR THE 33-BUS SYSTEM 

 

DG    
PF 

(lagging) 

DG 
No.  

Method 2 Method 3 EA Method EA-OPF Method 
RPL 

(KW)  
RPLR 
(%) 

RPL 
(kW)  

RPLR 
(%) 

RPL 
(kW)  

RPLR 
(%) 

RPL 
(KW)  

RPLR   
(%) 

0.82 

1 67.90 67.8 72.10 65.8 67.87 67.8 67.86 67.8 

2 44.39 79.0 52.58 75.1 30.41 85.6 30.40 85.6 

3 22.29 89.4 51.87 75.4 15.14 92.8 14.04 93.4 

0.85 

1 68.20 67.7 73.57 65.1 68.17 67.7 68.16 67.7 

2 44.84 78.8 54.70 74.1 31.19 85.2 31.18 85.2 

3 23.05 89.1 53.72 74.5 15.52 92.6 14.58 93.1 

 

  

 To compare the amounts of loss reduction attained by methods with different DG 

power factors, we provide Table 5.2, which compares the RPL by different methods for the 

33-bus system. The results show that the lowest RPL values are obtained with the proposed 
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methods compared with Method 2 and Method 3. For instance, for the case of installing 

three DG units with 0.82 lagging power factors, the RPL values are reduced to 15.52 kW 

and 14.58 kW when using the proposed EA and EA-OPF methods, respectively. In 

contrast, Methods 2 and 3 provide losses of 23.05 kW and 53.72 kW, respectively. This is 

because Methods 2 and 3 often fail to determine optimal locations, especially for multiple 

DG installations. 

5.5.3 DG Type 3 with Unspecified Power Factors 

 This section addresses the results of installing DG technologies with unspecified 

power factors. Table 5.3 summarizes the results in terms of optimal DG locations, DG 

sizes, DG power factors and RPL with DG. The results show that the RPL is reduced to the 

lowest value by the proposed methods. This is reasonable since, unlike the existing 

methods, the proposed methods compute the optimal power factors to minimize RPL. 

 Figure 5.7 shows the convergence characteristics of the EA method in the 33-bus 

system for installing three DG units of type 3 at buses 13, 24 and 30. The DG power 

factors and the corresponding RPL computed in each iteration are illustrated in the figure. 

At the initial point, iteration 0, the DG power factors are set to 0.82 lagging, which are 

improved by using (5.4) and (5.7) in the following iterations to provide the optimal values. 

Thus, the RPL minimization is effectively obtained. 

 

TABLE 5.3 RESULTS OF INSTALLING DG TECHNOLOGIES OF TYPE 3 IN THE TEST SYSTEMS 
 

Test  
Sys. 

DG 
No. 

EA Method EA-OPF Method 

Bus Size 
(kW) 

PF 
(lagging) 

RPL 
(kW) 

Size 
(kW) 

PF 
(lagging) 

RPL 
(kW) 

33- 
bus 

1 6 2528 0.82 67.87 2558 0.82 67.86 

2 13 844 0.90 28.52 846 0.90 28.50 30 1149 0.73 1138 0.73 

3 
13 798 0.90 

11.80 
794 0.90 

11.74 24 1099 0.90 1070 0.90 
30 1050 0.71 1030 0.71 

69- 
bus 

1 61 1878 0.82 23.26 1828 0.82 23.17 

2 61 1795 0.82 7.35 1735 0.81 7.20 17 534 0.83 522 0.83 

3 
11 548 0.82 

4.48 
495 0.81 

4.27 18 380 0.83 379 0.83 
61 1733 0.82 1674 0.81 
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 Figure 5.8 illustrates the effects of increasing the number of DG units on their total 

size and the amount of resulting loss reduction. For the two systems, the RPLR value and 

the corresponding total DG size increase dramatically when increasing the DG number 

from one to four units. However, the figures rise only slightly for five and six DG 

installations. This implies that the proposed method is also useful for determining the 

optimal number of DG units to be installed to obtain a desired loss reduction and maximize 

DG penetration. 

 To demonstrate the real contribution of calculating the optimal DG power factors 

for loss reduction, the following two cases are studied. The first case (case 1) is allocating 

DG with specified power factors (equal to the total load power factor), while the second 

case (case 2) involves implementing the proposed EA method to calculate the optimal DG 

power factors. It is interesting to note that the relative loss reduction between the two 

cases, calculated by (RPLcase1–RPLcase2)/(RPLcase1), increases with respect to the number of 

DG units, as shown in Figure 5.9. This indicates that calculating the optimal DG power 

factors can play a vital role in reducing losses, especially in allocating multiple DG units. 

 

 

 

 
 
 
Figure 5.7 Convergence characteristics of the proposed EA method with installation of 

three DG of Type 3. 
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Figure 5.8 Effect of number of DG units on RPLR and their total size. 
 
 

 

 
 
 
        Figure 5.9 Relative loss reduction between the two cases for the test systems. 
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5.6 Summary 

This thesis has proposed Efficient Analytical (EA) and hybrid EA-OPF methods for 

allocating different DG types in distribution systems in order to minimize the system 

losses. The effectiveness of the proposed methods has been demonstrated using two 

distribution systems to determine the optimal DGs sizes and locations. The superiority of 

the proposed methods in accuracy and computation speed has been confirmed by 

comparing with existing methods including exact exhaustive OPF solution and traditional 

analytical method.  
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Chapter 6: Optimal Mix Of Multi-Type DG Units 

 
 
 
 
 
 
 
 
 
 
 
 

6.1 Introduction 

 This chapter proposes an efficient method for allocating multiple distributed 

generation (DG) technologies in distribution systems. The optimal DG sizes, DG locations, 

and the best combination between different DG technologies are determined. The objective 

function is to minimize losses in distribution systems. The proposed method is generic 

since it can solve the optimization problem with different combinations of DG 

technologies. A direct and fast solution of the DG allocation problem can be obtained using 

the proposed method without requiring iterative processes. The IEEE 33-bus and 69-bus 

distribution systems are employed to test the proposed method. Different combinations of 

DG units are studied and optimally allocated. The results show that the proposed method 

can handle the optimal solution accurately. It is also demonstrated that determining the 

optimal combination of different DG technologies can contribute positively on loss 

minimization in distribution systems.  
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6.2 Problem Formulation 

 DG technologies can be classified based on their output characteristics to three 

types as illustrated in Table 6.1. The models of the three DG types are generic, as they 

have the capability of producing both active and reactive powers. For each DG type, the 

active and reactive powers have different conditions. For instance, the reactive power for 

DG Type A is supposed to be specified, while the active power is a state variable which 

requires to be computed. Photovoltaic systems are an example of DG Type A, whereas DG 

Type B and DG Type C can be synchronous compensators and synchronous machines, 

respectively. It is worth to note that DG types A and B can be employed to model many 

DG technologies, according to the values of their specified active and reactive power, 

respectively. For a DG allocation problem, once the state variables for the DG technologies 

are optimally computed, the design parameters of these technologies can be computed.  

 

TABLE 6.1  CLASSIFICATIONS OF DG MODELS  

DG Model Type DG Active Power DG Reactive Power 

DG Type A State Variable Specified 

DG Type B Specified State Variable 

DG Type C State Variable State Variable 

 
 

 Few methods, recently, have been proposed to solve such allocation problem for 

determining the optimal combination between different DG technologies. In [9], a 

probabilistic based method has been presented to find the optimal DG mix to minimize the 

energy losses, where the DG units are assumed to inject only active powers. A mix integer 

method has been employed in [65] to solve the allocation problem with different DG 

technologies. In [66], the DG units have been allocated with introducing a new 

probabilistic index. A genetic algorithm has been employed in [67] to find the optimal 

sizes and locations of different DG types. 

 In this paper, an effective method for determining the optimal DG combination in a 

distribution system to minimizes the real power losses. The method is based on a 
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generalized analytical method for DG allocation presented in Chapter 5. The proposed 

method is capable of accurately computing the best combination between different DG 

technologies and determining their corresponding optimal locations and sizes. Another 

effective advantage of the proposed method is its high computational speed, as there is no 

need to perform iterative processes for determining the optimal DG combination. Only 

power flow results for the base case are required to solve the allocation problem of 

different DG technologies. Therefore, a direct solution for the optimization problem is 

applicable. 

 

6.3 Number of Combinations 

 The optimal allocation of DG units in distribution systems is a complex 

optimization problem due to system nonlinearity and the huge number of alternative 

solutions. When allocating (NDG) DG units of the same technology in a distribution system 

with (NB) possible locations, the number of possible combinations of DG locations (NC) is 

computed by 

 
!

! !
B

C
DG B DG

NN
N N N


 

              (6.1) 

 In the case of allocating different DG technologies, the number of possible 

combinations (ND) can be calculated as follows: 

 
!

!
B

D
B DG

NN
N N




               (6.2) 

 It is clear that the number of possible combinations is much higher when allocating 

different DG types compared with allocating only one DG type. For instance, in the case of 

installing 5 DG units, the number of combinations computed by (6.2) is 120 times greater 

than that by (6.1). This rise in the number of combinations will not only increase the 

complexity of the DG allocation problem but also degrade the computational performance 

(i.e., increase the required CPU time). For instance, Figure 6.1 compares NC values with 

employing (6.1) and (6.2) for a distribution system (NB=33) for different numbers of DG 

to be installed. For instance, in the case of installing 5 DG units, the number of 

combinations computed by (6.2) is 120 times greater than that by (6.1). Therefore, 
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determining the optimal combination of different DG technologies is a challenge task and 

needs to be accurately treated. It is required to accurately assign the best solution form the 

alternative solutions with fast computational speed. 

 

 

Figure 6.1 Number of possible combinations of DG locations. 

 

6.4 Formulation of Optimal DG Mix Problem   

 The main objective of DG allocation problem is to determine the optimal DG 

combination so as to minimize the real power losses. For each possible combination of DG 

sites, the optimal DG sizes can be computed by (6.3) and (6.4) as follows: 

       
1

11
P X Y

DGDG DGDG

opt
DG NN NN





  
 

                (6.3) 

       
1
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P U W

DGDG DG DG DG
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DG DG NN N N N

Q 

  

    
   

             (6.4) 

where X, Y, U, and W matrices can be calculated using distribution system parameters 

(Chapter 5) and load flow results at the base case (i.e., without DG integration). Equations 

(6.3) and (6.4) are driven based on generalized formulations for estimating the real power 

losses with DG units in a distribution system. Therefore, only the power flow results of 

base case (without DG) and the calculated DG sizes are required to assess all possible DG 

combinations in terms of loss reduction. 
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6.5 Solution Process 

The proposed method is composed of four steps as follows. 

1) Data preparation: this step starts with reading system data (loads, line parameters, 

etc.) and DG data (DG number, types, buses that are eligible for installing DG). 

Then, the power flow solution is computed, where QB method in Chapter 3 is 

employed. Also, the number of possible DG combinations of sites is computed by 

(6.1) or (6.2).  

2) Assessing of combinations: For each possible combination of DG locations, the 

corresponding optimal DG sizes are computed using (6.3) and (6.4), thereby the loss 

reduction is estimated. Once the losses are estimated for all possible combinations, 

the optimal combination can be determined.  

3) Optimal DG Allocation: this step involves installing DG technologies with their 

calculated optimal sizes in their proper locations, computed in step 2. A power flow 

calculation is required to calculate the steady state conditions with including the DG 

units. If there are constraints for the distribution systems, such as voltage level, 

maximum DG sizes, DG penetration level, and maximum line flows, an optimal 

power flow (OPF) algorithm is performed in this step.  

4) Print Results: The results are finally displayed, including DG benefits (i.e., loss 

reduction, voltage improvement, etc.) and the calculated optimal DG combination 

data (DG technologies with their corresponding sizes and locations). 

 Note that the proposed method can handle the optimal solution for any number of 

DG technologies to be installed. It is only required the result from the base case for 

defining the optimal solution, including the optimal combination between available DG 

technologies. The flow chart that describes the complete solution process is given in Figure 

6.2. It is clear that all possible combinations of DG locations are studied to find the optimal 

combination. This search approach will effectively provide the optimal solution, which is 

the most important issue in DG allocation problems compared with CPU time. 
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6.6 Case Studies  

6.6.1 Assumptions 

 One DG unit is allocated at each bus in the distribution system; 

 The maximum DG number to be installed is three units; 

 The specified values of DG types A and B, according to Table 6.1, are assumed 

to be zero. Therefore, their power factors are unity and zero, respectively. The 

power factor for DG Type C is 0.82 lagging. 

 

Start

Run Power flow without DG

Generate the number of 
possible DG site combinations

Solve the set of linear 
equations (6.3,6.4) for the 

combination ith

Estimate the losses for the 
combination ith

i = ND

i=
i+

1

Assign the optimal 
Combination

2) Assessing of Combinations

1) Data Preparation

End

Loss Reduction, Voltage Profile, 
Optimal DG Combination, Locations, 

and Sizes

3) Optimal DG Allocation

4) Print Results

Read system and DG Data 

Allocate DG technologies to 
their optimal locations

Run Power flow with DG

 

Figure 6.2 Flow chart of the proposed method. 
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6.6.2 Optimal Mix of different DG Types 
 This section involves a solution methodology of the optimal mix of different DG 

types to minimize RPL. Four scenarios are studied as follows: 

Scenario 1) DG type 1 and DG type 2. 

Scenario 2) DG type 2 and DG type 3. 

Scenario 3) DG type 1 and DG type 3. 

Scenario 4) Mix of DG type 1, DG type 2 and DG type 3. 

 Here, the main target is to select the optimal scenario among them. The optimal DG 

mix is computed by comparing the amount of RPLR for each scenario. The results are 

illustrated in Tables 6.2 and 6.3 for the two test systems. It is interesting to note that, for all 

four DG combinations, the RPL is significantly reduced when compared with the base 

case. The main observations about the differences among the scenarios are summarized as 

follows: 

 The maximum RPLR occurs in scenario 4. Therefore, scenario 4, which 

involves a mix of the three DG types, is the optimal scenario and highly 

recommended for attaining effective loss reduction. 

 Scenario 1 is not recommended, as the RPLR is the lowest among the 

scenarios. In addition, the total DG size is the largest, implying that the 

installation cost is the highest. 

 The scenarios that include DG type 3 tend to provide an effective RPLR. 

Therefore, DG type 3 is superior to the other two DG types in terms of loss 

reduction.  

  

 Because the proposed methods are based on generalized mathematical models, the 

study can be extended to any DG combination case.  
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TABLE 6.2  COMPARISON OF THE SCENARIOS FOR THE 33-BUS SYSTEM 
 

Scenario No. Scenario 1 Scenario 2 Scenario 3 Scenario 4 

DG Types Type1 Type2 Type2 Type3 Type1 Type3 Type1 Type2 Type3 

DG Locations 6 30 30 6 13 30 29 30 13 

DG Sizes (kVA) 2528 1245 669 2724 824 1696 1258 1031 806 

Total DG Size (kVA) 3773 3392 2521 3095 

RPL (kW) 58.45 55.74 36.36 29.63 

RPLR (%) 72 74 83 86 

 
 
 

TABLE 6.3  COMPARISON OF THE SCENARIOS FOR THE 69-BUS SYSTEM 
 

Scenario No. Scenario 1 Scenario 2 Scenario 3 Scenario 4 

DG Types Type1 Type2 Type2 Type3 Type1 Type3 Type1 Type2 Type3 

DG Locations 61 62 17 61 17 61 17 18 61 

DG Sizes (kVA) 1878 1294 350 2260 531 2225 534 358 2196 

Total DG Size (kVA) 3172 2611 2756 3088 

RPL (kW) 23.91 18.27 12.35 7.37 

RPLR (%) 89 92 95 97 

 
 

6.6.3 Optimal Mix with different DG zones 
 The proposed method is tested using the 33-bus distribution system [31], as shown 

in Figure 6.3. In this paper, to simulate the allocation problem practically, it is assumed 

that there is a recommended area for each DG type. For this purpose, the test system is 

divided, as illustrated in the figure, into four zones as follows. 

 Zone A: this area is eligible for installing DG type A. 

 Zone B: this area is eligible for installing DG type B. 

 Zone C: this area is eligible for installing DG type C. 

 Zone D: this area is not eligible for installing DG. 
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Figure 6.3 The 33-bus distribution system. 

 

 

TABLE 6.4  DG NUMBERS FOR DIFFERENT CASES 

DG Type C0 C1 C2 C3 C4 C5 C6 C7 

DG Type A - 2 2 1 - - 1 1 

DG Type B - 1 - 2 2 1 - 1 

DG Type C - - 1 - 1 2 2 1 

 

 

 Eight different cases (from C0 to C7) are studied, as illustrated in Table 6.4. The 

first case (C0) is the base case (without DG). The other cases (from C1 to C7) involves 

installing thee DG units of various types. For each case, the DG units are installed based on 

their recommended zone. 

 Table 6.5 shows the calculated DG sizes and their corresponding locations with 

employing the proposed method. It is clear that, although the DG number is three units of 

all cases, the calculated DG locations, sizes are almost different for each case. Therefore, 

the type of the DG units has a great impact on the allocation problem. The differences 

between the cases can be summarized as follows: 

1) Losses: Figure 6.4 compares the losses for each case after installing the DG units to 

the 33-bus distribution system. It is worth mentioning that all cases contribute in a 
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positive way in reducing the losses when compared with base case (C0).  However, 

the amount of loss reduction for each case is different. We noticed that cases that 

include DG type C; their corresponding losses are relatively small. To demonstrate 

this notice, the worst case in terms of loss reduction is C3, where the DG type C is 

not allowed to be installed. Also, the best case is C6, where two DG units of type C 

are installed. On the other hand, DG type B is not recommended for reducing the 

real losses, as its contribution in reducing the losses is the lowest compare with DG 

types A and C. 

2) Total DG size: the total size of the DG units is an important factor in the allocation 

problem since it can give an image about the cost of installation. With increasing 

the DG size, it is expected that the installation cost is increased, as the number of 

DG is the same for each case. The total DG size for each case is given in Figure 

6.5. It is obvious from the figure that C1 and C3, which are not included DG type 

C, have the highest capacity (i.e, the highest installation cost).  

3) Voltage Profile: Figure 6.6 shows the voltage profile for different cases. It is clear 

that the voltage profile is improved for all cases of DG installation compared with 

the base case. 

 To sum up, the optimal DG allocation problem is solved, and the losses are reduced 

for all cases. However, it is demonstrated here that the DG type C can contribute in the best 

way in reducing the losses. Another benefit, the total DG size tends to be smaller, and the 

voltage profile is better, compared to those of DG types A and B.  

TABLE 6.5  RESULTS FOR THE 33-BUS SYSTEM 

 
              *DG size (MVA) @ DG bus 

 

DG Type C1 C2 C3 C4 C5 C6 C7 

DG Type A 
1.88@6 0.57@8 

2.53@6 - - 0.62@14 0.77@14 
0.65@14 0.51@15 

DG Type B 2.23@23 - 
1.15@23 0.27@24 

0.47@24 - 0.68@24 
0.30@25 0.20@25 

DG Type C - 1.58@30 - 2.85@26 
1.72@26 1.33@26 

1.64@30 
1.13@30 1.13@30 
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Figure 6.4 The losses after instaling the DG units for each case. 

 

 

 

 

Figure 6.5 The calculated total DG size for each case. 
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Figure 6.6 Voltage profile for different cases. 

 

 

6.7 Summary 

 This chapter has proposed an efficient method for allocating multiple DG 

technologies in the distribution systems to minimize the losses. Different DG types are 

considered and the optimal combination between them is accurately obtained. The 

distribution system constraints are fully considered with employing OPF. The 33-bus and 

69-bus distribution systems are used to test out the proposed method. Different case studies 

are simulated, and the DG units of different technologies are allocated. It has been 

established from the results that the proposed method can effectively allocate multiple 

different DG technologies. The results show that the losses can be effectively reduced 

when optimally allocate different DG types in distribution systems.                                                
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Chapter 7: Conclusion and Future Research 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7.1 Conclusion 
 

 The paper has presented two methods, EA and EA-OPF, for determining the 

optimal DG locations and sizes in distribution systems to minimize system losses. Two test 

systems have been used to validate the proposed methods, and a detailed comparison has 

been conducted with alternative methods in the literature. The proposed methods have been 

applied to the optimal DG mix problem to allocate different types of DG units in 

distribution systems. Furthermore, the proposed methods have been applied to determine 

the optimal number of DG units to minimize the losses. The characteristics of the proposed 

methods can be summarized as follows:  
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 The proposed EA and EA-OPF methods can provide a fast and accurate 

solution compared to existing methods. 

 In terms of accuracy, both of the methods can find proper DG locations, 

but EA-OPF can provide more accurate DG sizes compared to EA. 

 In terms of computational speed, the EA method is faster than the EA-

OPF method. 

 EA-OPF is preferable for highly constrained DG allocation problems.  

 Finally, the proposed methods are based on generic mathematical models. 

Therefore, they can be easily extended in several directions, such as for the minimization 

of reactive power losses. Furthermore, the methods can be applied to more general cases, 

such as multi-load level and probabilistic load models. Further work will be dedicated to 

take into consideration the intermittent nature of the renewable energy resources in the 

optimization problem. 

 The thesis has also proposed an efficient QBBFS power flow method for analysing 

distribution systems. QB models of different distribution system components have been 

introduced. The proposed method is applicable to effectively solve the power flow problem 

for multi-phase active distribution systems. The OpenDSS software has been employed for 

validating the proposed formulation. Also, the proposed method has been compared with 

commonly used BFS methods using several balanced and unbalanced distribution systems. 

Based on the results, the characteristics of the proposed method can be summarized as 

follows: 

 The proposed method provides accurate power flow solution. 

 The proposed method showed robust convergence characteristics, 

especially at heavy loading and high R/X ratios.   

 In the case of high DG penetration, the proposed method showed also 

robust convergence characteristics.  

 As a result of the robustness of the proposed method, the computational 

burden of the power flow iterative process is significantly reduced. 

 The proposed method is a helpful tool to study the steady state condition of active 

distribution systems and assess DG impacts. The future work will be directed to extending 
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for time-series analysis and voltage regulation in the presence of different DG 

technologies. 

 

7.2 Future Work 

There is further research left for future investigations. Emerging research problems 

that come from this research include the following:  

- Treat the intermit nature of the renewable energy resources in the allocation 

process. 

- Modeling of three-phase center tab transformer in the radial power flow 

program. 

- Modeling and study different types of the DERs such as micro turbine, fuel cell 

and solar generations system. In addition, including the doubly-fed induction 

and synchronous machine as a type of WTGSs. 

- Extend the work for allocating and sizing of multiple DG for the distribution 

system. 

- Studying the method of reconfiguration of the distribution system to improve 

system efficiency. 

- Extension of the radial power flow for solving meshed distribution systems.  

- Studying smart distribution systems and micro-grid systems. 
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Appendix A: Test Systems Description 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A.1 Description of the unbalanced distribution systems 

 Four different unbalanced distribution systems are employed for evaluating and 

testing the proposed methods, namely, 4-bus, 10-bus, 25-bus, and 123-bus distribution 

systems [55], [63]. These systems have different configurations and structures, and the 

number of different components for each distribution system is given in Table A.1. Figures 

A.1, A.2, A.3, and A.4 show system diagrams for the three systems. 
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Table A.1 Descriptions of test systems 

Test 

System 
Line Switch 

Spot 

Load 

Distribution 

Load 
Capacitor Transformer Regulator 

4-Bus 2 0 1 0 0 1 0 

10-Bus 9 0 9 0 0 0 0 

25-bus 24 0 24 0 0 0 0 

123-Bus 117 11 85 0 4 2 4 

 

 

 

 

Figure A.1 IEEE 123-busTest Feeder [63]. 
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Figure A.2 The 25-busTest Feeder [55]. 
 
 
 
 
 

 

 

Figure A.3 The 10-busTest Feeder [55]. 
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Figure A.4 The IEEE 4-bus Test Feeder [63]. 
 

 

A.2 MV Distribution Systems 

Two MV distribution systems are employed for testing the proposed power method 

and the proposed DG allocation methods. These systems are the 33-bus, 69-bus systems 

[31], [32]. They are widely used for testing the validity of the allocation methods for DG 

and capacitors. The total losses of the two test systems are normal loading are 111 kW and 

225 kW, respectively. The single line diagrams of the two systems are given in Figures 

A.5 and A.6. 
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Figure A.5 The 33-bus radial test feeder [31]. 
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Figure A.6 The 69-bus radial test feeder [32]. 
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Appendix B: QB Formulation  

 

 

 

 

 

 

 

B.1 Proof of the QB formulation 

A simple complex power injection equation at bus j (Figure 3.1) can be written as follows: 

, ,j j injected j lateralsS S S                           (B.1) 

where the superscript Sj,laterals refers to the power flow through sub laterals after bus j, and 

Sj,injected  refers to power injections form the load, the DG unit, and line capacitances at bus 

j. The power flow equation that relates the receiving bus variables to the sending bus 

variables is expressed by 

  0
*

j i j j ijV V S V Z                                                (B.2) 

where Zij =Rij +j Xij is the line impedance between buses i and j. Then, transforming (B.2) 

to its counterparts in rectangular coordinates yields: 

      0j jRe Im Re Im
j j i i ij ijRe Im

j j

P jQ
V jV V jV R jX

V jV


     


            (B.3)

 By rearranging (B.3), the real and imaginary parts of this equation can be written as 

follows: 
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2 2

0Re Im Re Re Im Im
j j i j i j j ij j ijV V V V V V P R Q X                                                                             (B.4) 

0Im Re Im Re
j i i j j ij j ijV V V V P X Q R                                                                                             (B.5) 

 Substituting Vj
Im from (B.5) in (B.4) and solving the quadratic equation for Vj

Re:    

Re Re Im
j ij i ij iV A V B V                                                                                                                (B.6) 

where: 

    
2 2 21 1 4 4 2Re Im

ij j ij j ij i i ijA P R Q X V V B / 
     

  
  

       
2 2Re Im

ij j ij j ij i iB P X Q R V V                              

      Similarly, substituting Vj
Im from (B.5) in (B.4) and solving the quadratic equation 

for Vj
Im: 

Im Im Re
j ij i ij iV A V B V                                                            (B.7) 

  Equations (B.6) and (B.7) show that there are two possible power flow solutions 

under a particular loading condition. The maximum real root of the equations, which can 

be obtained with considering the positive sign in Aij, is the steady state solution of the 

receiving end voltage. 
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Appendix C: Loads and Generations Curves 

 
 
 
 
 
 
 
 
 
 
C.2 Wind Turbine Data 

 

Table C.1 

 Power and power coefficient of a 330 kW turbine [43] 

V (m/s) P (kW) Cp 
5 13.89 0.25 
6 35.12 0.36 
7 62.75 0.41 
8 96.75 0.42 
9 136.15 0.42 
10 180.35 0.4 
11 227.33 0.38 
12 271.61 0.35 
13 308.27 0.31 
14 335.39 0.27 
15 350.86 0.23 
16 352.98 0.19 
17 342.41 0.15 
18 324.20 0.12 
19 307.76 0.10 
20 295.85 0.08 
21 288 0.07 
22 282.03 0.05 
23 277.2 0.05 
24 272.81 0.04 
25 271.06 0.03 
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C.3 PV Module “KC200GT” parameters 

 

Table C.2 

Parameters of the KC200GT PV Array [56] 

Imp 7.61 A I0,n 825.10e-8 A 
Vmp 26.3 Ipv 8.214 A 
Pmax 200.143 W a 1.3 
Isc 8.21 A Rp 415.405Ω 
Voc 32.9 V Rs 0.221 Ω 
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