
広島大学学術情報リポジトリ
Hiroshima University Institutional Repository

Title
A novel vanadium transporter of the Nramp family expressed
at the vacuole of vanadium-accumulating cells of the
ascidian Ascidia sydneiensis samea

Auther(s)
Ueki, Tatsuya; Furuno, Nobuaki; Michibata, Hitoshi

Citation
Biochimica et Biophysica Acta (BBA) - General Subjects ,
1810 (4) : 457 - 464

Issue Date
2011-04

DOI
10.1016/j.bbagen.2010.12.006

Self DOI

URL
http://ir.lib.hiroshima-u.ac.jp/00039961

Right
Copyright (c) 2011 Elsevier B.V. All rights reserved.This
manuscript version is made available under the CC-BY-NC-
ND 4.0 license http://creativecommons.org/licenses/by-nc-
nd/4.0/

Relation

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hiroshima University Institutional Repository

https://core.ac.uk/display/222956468?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.bbagen.2010.12.006
http://ir.lib.hiroshima-u.ac.jp/00039961


 
1 

A novel vanadium transporter of the Nramp family expressed at the 
vacuole of vanadium-accumulating cells of the ascidian Ascidia 
sydneiensis samea 
 
Tatsuya Ueki a, *, Nobuaki Furuno b, and Hitoshi Michibata a 

 
a Molecular Physiology Laboratory, Department of Biological Science, Graduate School of Science, 

Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan. 
b Division of Differentiation Mechanism, Institute for Amphibian Biology2, Department of Biological 

Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 

739-8526, Japan. 

 

Running title: A Novel Vanadium Transporter 

 

* Correspondence author: Tel.&Fax.: +81-82-424-7438; E-mail address: ueki@hiroshima-u.ac.jp (T. 

Ueki) 
 



 
2 

ABSTRACT 
 
Background: Vanadium is an essential transition metal in biological systems. Several key proteins 

related to vanadium accumulation and its physiological function have been isolated, but no vanadium 

ion transporter has yet been identified.  

Methods: We identified and cloned a member of the Nramp/DCT family of membrane metal transporters 

(AsNramp) from the ascidian Ascidia sydneiensis samea, which can accumulate extremely high levels of 

vanadium in the vacuoles of a type of blood cell called signet ring cells (also called vanadocytes). We 

performed immunological and biochemical experiments to examine its expression and transport 

function. 

Results: Western blotting analysis showed that AsNramp was localized at the vacuolar membrane of 

vanadocytes. Using the Xenopus oocyte expression system, we showed that AsNramp transported VO2+ 

into the oocyte as pH-dependent manner above pH 6, while no significant activity was observed below 

pH 6. Kinetic parameters (Km and Vmax) of AsNramp-mediated VO2+ transport at pH 8.5 were 90 nM and 

9.1 pmol/oocyte/h, respectively. A rat homolog, DCT1, did not transport VO2+ under the same conditions. 

Excess Fe2+, Cu2+, Mn2+ or Zn2+ inhibited the transport of VO2+.  

Conclusions: AsNramp was revealed to be a novel VO2+/H+ antiporter, and we propose that AsNramp 

mediates vanadium accumulation coupled with the electrochemical gradient generated by vacuolar 

H+-ATPase in vanadocytes. 

General Significance: This is the first report of identification and functional analysis on a membrane 

transporter for vanadium ions. 
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1. Introduction 

 

     Some ascidians, known as tunicates or sea squirts, belonging to the suborder Phlebobranchia 

(Chordata, Urochordata, Ascidiacea), accumulate extremely high levels of vanadium in vanadocytes, 

one of their approximately ten types of blood cell [1-4]. The vanadium concentration in vanadocytes can 

reach 350 mM [5, 6], corresponding to 107 times the level in seawater (35 nM). This is thought to be the 

highest rate of accumulation of a metal in any living organism.  

     In the sea water, vanadium is dissolved in the +5 oxidation state (HVO4
3– or H2VO4

2–; VV). During 

the accumulation process, VV is reduced to the +3 oxidation state (V3+; VIII) via the +4 oxidation state 

(VO2+; VIV) [7]. NADPH is a strong candidate to participate in the reduction of VV to VIV, as the 

enzymes involved in the pentose phosphate pathway are expressed exclusively in the cytoplasm of 

vanadocytes [8-11], and detailed in vitro studies have suggested that this reaction occurs with the 

assistance of several chelating substances [12, 13]. Vanabins, which are named as vanadium-binding 

proteins, isolated from the cytoplasm of vanadocytes as well as blood plasma are capable of binding as 

many as ca. 10–20 VIV ions per molecule of protein, and are thought to play an important role in 

VV-reduction, VIV-transport, and VIV-storage processes in the cytoplasm of vanadocytes [14-19].  

     The content of the vanadocyte vacuole is maintained at an extremely low pH reaching 1.9, and the 

concentration of vanadium is correlated with that of protons [5]. As vacuolar-type H+-ATPase 

(V-ATPase) is localized on the vacuolar membrane of vanadocytes and V-ATPase maintains low pH in 

the vacuole of vanadocytes [20-22], we hypothesized that a proton gradient generated by V-ATPase 

provides the energy to transport vanadium across the vacuolar membrane. To assess this hypothesis, we 

first cloned a cDNA encoding a member of the Nramp (natural resistance-associated macrophage 

protein)/DCT1 family from vanadocytes of Ascidia sydneiensis samea because the Nramp/DCT1 family 

is known to transport a broad range of divalent cations (Fe2+, Cu2+, Zn2+, Mn2+, Cd2+, Co2+, Ni2+, and 

Pb2+) across the membrane using a proton gradient as the motive force [23, 24]. We showed that the 

product of this gene, AsNramp, is localized on the vacuolar membrane and can operate as an antiporter 

of VIV and H+. 
 
2. Materials and methods 
 
2.1.Animals 

 

     Adults of the ascidian A. sydneiensis samea were collected at Yamada Bay, Iwate, Japan. Blood 
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was extracted and diluted with Ca2+, Mg2+-free artificial sea water (460 mM NaCl, 9 mM KCl, 32 mM 

Na2SO4, 6 mM NaHCO3, 5 mM HEPES, and 5 mM EDTA, pH 7.0). Blood cells were collected by 

centrifugation at 300 × g for 10 min at 4°C. Giant cells were removed by sucrose density gradient 

centrifugation, as this type of cell contains highly acidic materials that adversely affect protein and RNA 

extraction. 

 

2.2. Molecular Cloning of the AsNramp Gene 

 

     We designed four degenerate primers from the conserved regions of known Nramp/DCT1 family 

metal transporter genes, DCT1AS1f: 5'-TTY WSN YTN MGN AAR YTN TGG GC-3', DCT1AS2f: 

5'-TTY ACN GGN CCN GGN TTY YTN ATG-3', DCT1AS3r: 5'-GTD ATN ARN ACN CCN CCC 

CA-3', and DCT1AS4r: 5'-TGN CCN GCR TAN GTN CCN GTC AT-3'. RNAs were extracted from A. 

sydneiensis samea blood cells and cDNAs were synthesized from total RNA as previously [20]. The 

first-round PCR reaction was set up as follows: cDNAs corresponding to 150 ng of total RNAs, 200 

pmol of each of the primers DCT1AS1f and DCT1AS4r, each dNTP at 0.2 mM, 1× reaction buffer, and 

2.5 units of Taq DNA polymerase (TaKaRa, Inc.). The reaction volume was 50 µl After denaturation at 

94°C for 2 min; 30 cycles of PCR were performed (94°C for 60 s, 45°C for 60 s, and 72°C for 120 s) 

followed by a final extension at 72°C for 6 min. After the reaction, 1-µl aliquots of the first-round 

reaction mixture were taken as the template for the second-round reaction. The second-round reaction 

was performed using the same amounts of primers DCT1AS2f and DCT1AS3r as in the first reaction, 

and PCR cycles were the same as those in the first round. The PCR products were separated by agarose 

gel electrophoresis. The band of the expected size (~350 bp) was excised and cloned into the pBluescript 

vector and its nucleotide sequence was determined by the dideoxy method using an ALFexpress DNA 

sequencer and Thermo Sequenase kit (GE healthcare). A cDNA library of A. sydneiensis samea blood 

cells [9] was screened with the cDNA fragment. Positive phages were rescreened until they were cloned. 

The cDNAs were excised in vivo, subcloned into pBluescript, and sequenced. Representative cDNA 

clone #1171 was used for further analysis. Amino acid sequences were compared by the 

neighbor-joining method [25] using ClustalW [26]. 

 

2.3. Construction of Plasmids and In Vitro Synthesis of mRNAs for AsNramp and Rat DCT1 

 

     The coding region of AsNramp and rat DCT1 were amplified by Easy-A High-Fidelity PCR 
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cloning enzyme using specific primer sets with artificial restriction sites as follows: AsNramp-pHA-F1, 

5'-AGA TCT GGA ACC ATG TCC TCT AAA G-3' and AsNramp-pHA-R1, 5'-GGA TCC TTC GTT 

AAT ACA TTC ATT TTC-3' for AsNramp (this study), and rDCT1-pHA-F1, 5'-AGA TCT ACC ATG 

GTG TTG GAT CCT GAA G-3' and rDCT1-pHA-R1, 5'-CTC GAG CCT TAG TAT TGC CAC CGC 

TG-3' for rat DCT1 (based on GenBank AF008439). The amplified fragments were digested with BglII 

and XhoI and ligated into the corresponding site of the pT7G HA C expression vector [27]. The 

nucleotide sequence was confirmed by the DNA Sequencing Service at the Natural Science Center for 

Basic Research and Development, Hiroshima University. The resulting plasmids (pT7G-AsSUL1-HA 

and pT7G-DCT1-HA, 10 µg each) were linearized with NotI. After incubation with 100 µg/ml 

Proteinase K, 0.5% SDS, and 5 mM EDTA at 56°C for 30 min, proteins were removed successively with 

Tris-saturated phenol and phenol–chloroform. Plasmid DNA was precipitated with ethanol and dissolved 

in 10 µl of TE buffer. Synthesis of mRNA was performed using a mMESSAGE mMACHINE kit 

(Ambion Life Technologies). The DNA template (1.0 µg) was mixed with ribonucleotide mixture, 

transcription buffer, and enzyme mix in a total volume of 20 ml. The mixture was incubated at 37°C for 

3 h. Synthesized mRNAs were extracted with Tris-saturated phenol, phenol–chloroform, and chloroform 

successively, precipitated with ethanol, and dissolved in 13 µl of RNase-free water (~1 µg/ml). The 

actual concentration of mRNA was determined by spectrophotometry. 

 

2.4. Metal solution and reducing agents 

 

     Vanadyl sulfate (VOSO4, 99.5%,  Wako Pure Chemical Industries) was dissolved at 10 mM in 

ultrapure water just before use. Iron chloride (FeCl2), copper chloride, manganese chloride, zinc chloride 

and nickel chloride were also purchased from Wako, and were dissolved at 100 mM in ultrapure water. 

 

2.5. Transport Assay for AsSUL1 and Rat DCT1 in Xenopus Oocytes 

 

     Ovaries were excised from Xenopus laevis females and treated with collagenase as described 

previously [28]. Oocytes at stage V or VI were collected in MBS buffer (8.8 mM NaCl, 1 mM KCl, 2.4 

mM NaHCO3, 10 mM HEPES, 0.82 mM MgSO4·7H2O, 0.33 mM Ca(NO3)2·4H2O, 0.41 mM 

CaCl·2H2O), and synthetic mRNA was injected into each oocyte using a NANOJECT instrument 

(Drummond Scientific Co.). Oocytes were incubated at 18°C in MBS buffer supplemented with 

penicillin (10 U/ml) and streptomycin (10 µg/ml).  
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     Uptake experiments were performed 4 days after injection of synthetic mRNAs. Uptake solution 

contained 100 mM NaCl or choline-Cl, 10 mM HEPES, 2 mM MES, 2 mM KCl, 1 mM CaCl2, and 1 

mM MgCl2, and the pH was adjusted by adding MES to pH 4.5 or 5.5 or Tris to pH 6.5, 7.5 and 8.5. 

Oocytes were settled at 20°C in fresh MBS buffer for at least 30 min before uptake experiments. They 

were then incubated in uptake solution containing appropriate concentrations of VOSO4. In inhibition 

experiments, 50 molar excess of appropriate divalent cations were added together. When using iron 

chloride (FeCl2), ascorbic acid was used at 4 molar excess to maintain reduced state of FeII. After 

incubation for appropriate times at 20°C, oocytes were washed five times with ice-cold uptake buffer 

without adding vanadium, and oocytes were put in separate tubes and homogenized in 1 N HNO3. Total 

concentration of vanadium was determined by atomic absorption spectroscopy (AAS; Spectra AA-220Z; 

Varian Inc.). 

 

2.6. Western blotting 

 

     Western blotting was performed to examine the expression of injected mRNAs in Xenopus 

oocytes and the subcellular localization of AsNramp in blood cells. 

     Oocytes were frozen in liquid nitrogen and homogenized in EB plus buffer (80 mM 

β-glycophosphate, 15 mM MgCl2, 20 mM EGTA, pH 7.5) with protease inhibitors (2 mM PMSF, 0.1 

mM Pepstatin A, 30 µg/ml Leupeptin). The supernatant was obtained by centrifugation at 15,000 rpm 

for 10 min at 4°C and used for SDS-PAGE and Western blotting. Anti-HA antibody (HA124; Nacalai 

Tesque, Inc.) was used at 1:10,000 dilution to detect AsNramp protein. HRP-conjugated anti-mouse IgG 

antibodies (PI-2000; Vector, Inc.) were used and the signals were detected with Chemi-Lumi-One 

reagents (Nacalai Tesque, Inc.). 

     A synthetic polypeptide (CLSRLKSSFSRLNE) corresponding to the C-terminal hydrophilic 

domain of AsNramp was prepared and conjugated with keyhole limpet hemocyanin. Aliquots of 15 µg 

of the peptide were injected intraperitoneally into 8-week-old female BALB/c mice. The injection was 

repeated five times at 2-week intervals. Three days after the last injection, blood was collected, allowed 

to stand at 37°C for 1 h, and incubated at 4°C for 12 h. The serum was removed from the clot, and any 

remaining insoluble material was removed by centrifugation at 10,000 × g for 10 min at 4°C. The 

supernatant thus obtained was stored at –20°C and used as the anti-AsNramp antiserum. Fractionation of 

blood cell components and Western blotting were performed according to our previous report [29]. The 

antiserum was used for immunoblotting analysis and immunocytochemistry at 1:4000 and 1:1000 
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dilutions, respectively. The signals were detected as described for the anti-HA antibody.  
 
3. Results 
 
3.1. Cloning of an Ascidian Nramp Gene 

 

     We first amplified cDNA fragments related to an Nramp gene from the A. sydneiensis samea 

blood cell cDNA pool by nested PCR using two pairs of degenerate primers corresponding to conserved 

amino acid sequences of known Nramp family proteins. Using the PCR fragment as a probe, we then 

isolated a cDNA clone encoding a protein closely related to Nramp family proteins from the cDNA 

library of A. sydneiensis samea blood cells. This cDNA contained a single, long open reading frame of 

1761 nucleotides, including the stop codon, which encoded a protein of 586 amino acids. The amino 

acid sequence deduced from the cDNA clone showed striking similarities to Nramp proteins from 

various organisms. The alignment of amino acid sequences predicted by cDNA cloning and human 

Nramp1 and Nramp2, and rat DCT1 proteins are shown in Fig. 1. The amino acid sequence showed 

58.2%, 61.1% and 61.3% identity to human Nramp1 and Nramp2, and rat DCT1 sequences, respectively. 

The predicted amino acid sequence contained 12 putative transmembrane domains (TM1 – TM12) and a 

consensus transport motif (CTM), which exists in all Nramp family proteins. Therefore, we concluded 

that the cDNA clone corresponded to an Nramp homolog in A. sydneiensis samea, which we named 

AsNramp. Molecular phylogenetic analysis by the neighbor-joining method [25] did not significantly 

cluster this AsNramp homolog to either Nramp1 or Nramp2 group (Fig. 2). Another ascidian species 

Ciona intestinalis possess one ortholog of Nramp (CiCLSTR12032), which is clustered with AsNramp. 

No IRE-like sequence was found in its 3'-noncoding region. 

     Several amino acid residues had been revealed to be functionally important. For example, 

mutations in the first external loop (G119, D124, Q126 in rat DCT1) and E154 in TM3have been shown 

to affect uptake activity and specificity [30, 31]. Mutation in G216 in rat DCT1 (TM4) resulted in loss of 

iron uptake and caused anemia [32]. D117 (TM1), D223 (TM4) and E330 (TM7) in rat DCT1 have been 

revealed to be essential in yeast complementation assay. H267 and H272 (TM6) in rat DCT1 was 

identified to be important in pH regulation [33]. All of these essential residues were conserved in 

AsNramp (Fig. 1). Two potential N-glycosilation sites were also conserved, and it suggested that 

membrane topology is also conserved with other Nramps. 

 

3.2. Subcellular Localization of AsNramp 
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     In order to examine the sub-cellular localization of AsNramp within blood cells, we raised a 

polyclonal antibody against the C-terminal polypeptide of AsNramp. We performed Western blot 

analysis on blood cell homogenates fractionated by a stepwise centrifugal fractionation. The apparent 

molecular size of AsNramp was ca. 160 kDa (Fig. 3), which is higher than the calculated molecular 

weight (65.2 kDa). This could be due to glycosilation, as shown in oocyte experiments. V2C12 antibody 

[18] was used as a control for vacuolar localization. It detected a vacuolar membrane protein of ca. 130 

kDa (Fig. 3), which was segregated in the same fraction as AsNramp. These results suggested that 

AsNramp was localized on the vacuolar membrane of the blood cells. Since the pH of the vacuole is 

extremely low in vanadium-rich ascidians, we expected that AsNramp could act as proton-dependent 

vanadium transporter. 

 

3.3. Transport of VO2+ by AsNramp and Rat DCT1  

 

     No reports exist regarding the transport of vanadium by the Nramp/DCT1 family of metal 

transporters. We prepared Xenopus oocytes injected with AsNramp and rat DCT1 (rDCT1) for 

comparison. Non-injected eggs were used as controls. Expression of AsNramp and DCT1 was confirmed 

using anti-HA antibody (Fig. 4). The apparent sizes of AsNramp and rDCT1 ranged from 45 kDa to 

more than 100 kDa, while the predicted sizes were 65.2 and 61.3 kDa, respectively. Since treatment by 

trifluoromethanesulfonic acid (TFMS) decreased the extra bands (data not shown), this may have been 

due to glycosylation. 

     We first used an uptake buffer containing NaCl (100 mM NaCl, 10 mM HEPES, 2 mM MES, 2 

mM KCl, 1 mM CaCl2, and 1 mM MgCl2), and found that control oocytes showed uptake activity for 

VO2+, and the activity was higher at pH 5.5 than at pH 7.5 (Fig. 5A). Expression of AsNramp or rDCT1 

had no significant effect on this basal activity under these conditions. This result suggested that 

AsNramp and rDCT1 could not transport VO2+ in the presence of sodium ions. Therefore, we used 

choline-Cl in place of NaCl, since choline can be used to maintain the osmolarity of the uptake buffer 

but do not compete with metal ions. As a result, AsNramp caused significant uptake activity in a buffer 

containing choline-Cl at pH 7.5. In contrast, transport activity in AsNramp-injected at pH 5.5 was 

slightly higher than control oocytes but the difference was not significant. rDCT1 injection did not cause 

any significant change in VO2+ uptake activity under any conditions. Thus, AsNramp could act as a VO2+ 

transporter at pH 7.5 in the absence of NaCl. In contrast, rDCT1 could not transport VO2+ under any of 
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the conditions examined. 

     As the Nramp/DCT family of proteins are known to be pH-dependent divalent cation  

transporters, the pH dependency of VO2+ transport by AsNramp was examined in detail (Fig. 5B). 

Uptake activity of control oocytes was higher at low pH. At pH 4.5 and 5.5, no significant uptake by 

AsNramp was observed. At pH 6.5–8.5, AsNramp transported VO2+ into oocytes significantly. A 

protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) was used to confirm the 

relationship between VO2+-transport and pH gradient across the oocyte membrane. As shown in Fig. 5C, 

addition of FCCP at 2.5 µM in the uptake buffer at pH8.5 neutralized the AsNramp-mediated transport 

of VO2+. This experiment confirmed that VO2+-transport by AsNramp was coupled with H+.  

     The metal selectivity of AsNramp was assessed by adding excess concentration of metal ions in 

the transport assay (Fig. 6). In the presence of 50 molar excess of Cu2+, Mn2+ and Zn2+, VO2+-transport 

by AsNramp was significantly suppressed (p<0.01), and the effect of Mn2+ was most significant. For 

experiments using 50 molar excess of Fe2+, Ascorbic acid was used at 4 molar excess to maintain 

reduced state of Fe2+. In control experiment with ascorbic acid but without Fe2+, the uptake of VO2+ was 

reduced to about a half of control without ascorbic acid. The reason is unclear. When 50 molar excess of 

Fe2+ was added with ascorbic acid, the uptake of VO2+ was almost completely suppressed as compared 

to the control experiments with ascorbic acid but without Fe2+ (p<0.05). These results suggested that 

these divalent cations competed with VO2+. 

     Kinetic assay for VO2+ transport by AsNramp was performed by changing the concentration of 

vanadium in the medium. At lower concentrations (up to 10 µM), the uptake rate appeared as 

Michaelis–Menten kinetics, but the uptake rate decreased in the range higher than 10 µM VO2+ (Fig. 7). 

The kinetic parameters (Km and Vmax) of AsNramp-mediated VO2+ transport at pH 8.5 were calculated to 

be 90 nM and 9.1 pmol/oocyte/h, respectively, at concentrations of VO2+ up to 10 µM. 
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4. Discussion 
 
     In this study, we first isolated a homolog of the Nramp/DCT1 divalent cation transporter family 

from the blood cells of the vanadium-rich ascidian A. sydneiensis samea. As the Nramp/DCT family 

consists of structurally and functionally well conserved proteins found in bacteria, fungi, animals, and 

plants, we hypothesized that an Nramp/DCT1 homolog exists in ascidians and acts as a divalent cation 

transporter. The present study indicated that AsNramp is localized in the vacuolar membrane of 

vanadocytes and acts as a VO2+/H+ antiporter to accumulate vanadium in the vacuole using 

electrophysiological gradient of protons, which are accumulated by vacuolar-type H+-ATPases 

(V-ATPases). 

     The genomes of vertebrates possess two orthologs of the Nramp/DCT1 protein family in their 

genome. From two ascidians, A. sydneiensis samea and Ciona intestinalis, we identified only one 

ortholog in each species. Molecular phylogenetic analysis did not significantly cluster the AsNramp to 

either Nramp1 or Nramp2, while AsNramp and its homolog in C. intestinalis were clearly clustered (Fig. 

2). This suggested that gene duplication occurred in the ancestor of vertebrates. 

     Western blotting analysis using antiserum against AsNramp indicated that AsNramp is localized 

on the vacuolar membrane of blood cells in A. sydneiensis samea (Fig. 3). This is reminiscent of 

Nramp1 in humans and rodents. In mammals, Nramp1 is expressed predominantly in macrophages and 

monocytes, and regulates intracellular pathogen proliferation and inflammatory responses [34]. Tissue 

localization study indicated that Nramp1 is present in lysosomes/late endosomes in macrophages [35]. In 

contrast, Nramp2 is expressed in most tissues and acts as an iron uptake transporter operating at the 

endosome membrane with the transferrin system [36]. In addition to such ubiquitous expression and 

function, the expression of Nramp2 is highest at the brush border membrane of the intestine and acts as a 

transferrin-independent iron uptake transporter [37, 38]. It is necessary to examine in future study 

whether AsNramp also functions in the intestine or other tissues. 

     The direction of transport and metal selectivity is well studied for mammalian Nramps. Nramp2 is 

reported to be a symporter for proton/divalent cations that uses a proton electrochemical gradient as an 

energy source. Transport study using Xenopus oocytes or mammalian cell lines indicated that Nramp2 

transports a broad range of divalent cations, such as Fe2+, Zn2+, Cd2+, Mn2+, Cu2+, and Co2+, but not Ca2+ 

or Mg2+, in a pH-dependent manner [38]. In contrast, the direction of proton/metal transport by Nramp1 

is controversial. One study used Xenopus oocytes to examine the metal transport by Nramp1 and 

revealed that Nramp1 acts as an antiporter for proton and divalent cations Fe2+, Zn2+, and Mn2+ [39]. The 
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present study indicated that AsNramp acts as a proton/VO2+ antiporter (Fig. 5). We examined the effect 

of excess divalent ions on the transport of VO2+ and found that Fe2+, Cu2+, Mn2+ and Zn2+ inhibited at 

certain degrees (Fig. 6). This result suggested that AsNramp can also transport several divalent cations as 

the same manner. It is desirable to compare the structure of metal binding site(s), the site(s) to specify 

metal selectivity and proton coupling in AsNramp and other Nramps, but three dimensional structure of 

any Nramp proteins have not been determined yet. So far, spontaneous and artificial mutant studies in 

mammals and yeast suggested several amino acid residues that are important for metal transport and 

proton coupling, and at least the amino acid residues that are known to be important in mammals and 

yeast were conserved in AsNramp (Fig. 1). Further functional analysis should be performed to identify 

amino acid residues that are unique to AsNramp and responsible for VO2+ transport, or those common to 

human Nramp1 and AsNramp that could be responsible for antiport of protons and divalent cations. 

     Kinetic analysis of AsNramp indicated that the uptake rate appeared to fit Michaelis-Menten 

kinetics at low concentrations up to 10 µM VO2+ (Fig. 7). If we compare the Km value with those for 

other metals, the apparent Km for VO2+ obtained by AsNramp transport assay (90 nM) was one or several 

orders smaller than those obtained for Fe2+ (2.2 µM) [38, 40], Cd2+ (1.0 µM) [41], and Zn2+ (562 nM) 

[39]. This result suggested that AsNramp could act as a high-affinity VO2+ transporter. 

     Vanadium transport by Nramp has not been reported in any other organism. Since we found that 

rat DCT1 cannot transport VO2+ under the present assay conditions, the vanadium transport could be a 

unique feature of Nramp in vanadium-rich ascidians. It is necessary to examine other Nramp/DCT 

homologs from additional organisms including other vanadium-rich ascidians to examine whether they 

can transport vanadium or not. In addition, we found that Xenopus oocytes can accumulate VO2+ at low 

pH (Fig. 5A), which indicated that a proton/VO2+ symporter is expressed in the oocytes, although its 

identity is not clear. 

     When we consider the accumulation process, VV is a major chemical species in the external 

environment and probably in coelomic fluid, transported into the cytoplasm, and reduced to VIII via VIV 

[7]. A question remains regarding the identity of the transporter for VV. Phosphate transporter is a 

candidate transporter for VV (HVO4
3– or H2VO4

2–), the chemical features of which resemble those of 

phosphate anions (HPO4
3– or H2PO4

2–), and we are currently attempting to identify homologs of NaPi- or 

PiT-type phosphate transporters expressed in vanadocytes. Such anion transporters may also act in the 

first step of vanadium uptake in the branchial sac or the intestine. 

     In our model, VV is readily reduced to VIV and VIV is stabilized by Vanabins, which act as 

vanadium reductase and vanadium chaperone, in the cytoplasm (Fig. 8) [19, 42]. Then, VIV (VO2+) is 
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transported into the vacuole by a cation transporter, AsNramp, as suggested in the present study. The 

results of the present study indicated that AsNramp is a VO2+/H+ antiporter expressed on the vacuolar 

membrane of vanadocytes. These findings supported the proposed model that proton electrochemical 

gradient generated by V-ATPase is the driving force for VO2+ transport from the cytoplasm into the 

vacuole (Fig. 8). We reported previously that the vacuole of vanadocytes contains high concentrations of 

protons and sulfate ions [5, 43, 44]. V-ATPase is expressed on the vacuolar membrane of the 

vanadocytes [22] and a functional sulfate transporter AsSUL1 was isolated from vanadocytes [44]. Most 

of the vanadium ions that accumulate in the vanadocytes are in the +3 oxidation state (V3+; VIII) and are 

stably stored in the acidic vacuole, where sulfate ions act as counterions. 

     Several other pathways may exist that act together (Fig. 8). Another possible mechanism for VIV 

transport into the vacuole is driven by P1B-type ATPase, AsHMA1, which we have already cloned from 

blood cells of A. sydneiensis samea and examined its metal selectivity and transport activity (Ueki et al., 

unpublished data). In addition, some portion of vanadium is circulated as VIV in coelomic fluid and 

transported by a cation transporter on the plasma membrane of vanadocytes, as we have previously 

identified a vanadium-binding protein VanabinP that can bind and stabilize VIV in the coelomic fluid,  

     The accumulation, reduction, and transport of vanadium ions should be tightly linked. The 

analysis of vanadium transporters should provide more detailed information regarding the vanadium 

transport pathway that underlies the extraordinarily high level of vanadium accumulation in ascidians. 

The physiological function of accumulated vanadium ions in reduced forms, VIV or VIII, must be exerted 

through redox-coupled reactions. The study of vanadium assimilation in ascidians should also provide 

fundamental insight into the physiological roles of vanadium not only in ascidians but also in mammals, 

in which vanadium is an essential element. 
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Figure legends 
 

 

Fig. 1. Amino acid sequence alignment of an Nramp homolog of Ascidia sydneiensis samea (AsNramp), 

human Nramp1 (hNramp1), Nramp2 (hNramp2) and rat DCT1 (rDCT1). Identical amino acid residues 

are boxed. Twelve putative transmembrane domains are shaded (TM1 to TM12). Numbers indicate 

amino acid residues for each sequence. Open circles over each amino acid residue indicate identical ones 

that have been reported to be functionally essential or important. Asterisks indicate the position of 

possible N-glycosilation sites. Conserved transport motif is indicated by a double-headed arrow (CTM). 
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Fig. 2. Phylogenetic tree using the neighbor-joining method based on amino acid sequences of Nramp 

family proteins. Two ascidian species (AsNramp and CiCLSTR12032, from Ascidia sydneiensis samea 

and Ciona intestinalis, respectively) were compared with homologs from representative organisms 

Labels are taken from SwissProt database IDs (ECOLI, Escherichia coli; YEAST, Saccharomyces 

cerevisiae; ARATH, Arabidopsis thaliana; DROME, Drosphila melanogaster; CAEEL, Caenorhabditis 

elegans; HUMAN, Homo sapiens; RAT, Rattus norvegicus; MOUSE, Mus musculus). The scale bar 

indicates 0.1 amino acid substitutions per site. Numbers at each branch indicate the percentage of times 

that a node was supported in 1000 bootstrap pseudoreplicates. Note that two ascidian species were 

clearly clustered, but they were not significantly clustered to either Nramp1 or Nramp2. 
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Fig. 3. Expression of AsNramp protein identified by anti-AsNramp antiserum on a Western blot after 

fractionation. Samples were separated by 8% SDS-PAGE. After electrophoresis, the gels were 

transferred onto nitrocellulose membranes and reacted with 1:4000 dilution of anti-AsNramp antiserum. 

Lane 1, homogenate blood cells without giant cells; lane 2, pellet obtained by centrifugation at 1100 × g; 

lane 3, pellet obtained by centrifugation at 11,000 × g; lane 4, pellet obtained by centrifugation at 

100,000 × g; lane 5, soluble protein. V2C12 recognizes a 130-kDa vacuolar membrane protein. Note 

that an AsNramp signal (~160 kDa) was detected in the vacuolar membrane fraction (lane 4). 
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Fig. 4. Western blotting analysis of Xenopus oocytes injected with AsNramp or rat DCT1 mRNA. After 

SDS-PAGE, the gels were either stained with Coomassie Brilliant Blue (lanes 1–3), or the protein bands 

were transferred onto nitrocellulose membranes and probed with anti-HA antibody (lanes 4–6). Lanes 1 

and 4, extract from control Xenopus oocytes; lanes 2 and 5, extract from oocytes injected with AsNramp 

mRNA; lanes 3 and 6, extract from oocytes injected with rat DCT1 mRNA. Note the broad signal from 

45 kDa to more than 100 kDa detected only in oocytes injected with AsNramp or rat DCT1 mRNA 

(lanes 5 and 6). 
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Fig. 5. Specificity of vanadium uptake by AsNramp and rat DCT1 in Xenopus oocytes. Oocytes were 

injected with 30–36 ng of AsNramp (solid bars) or rat DCT1 (gray bars) mRNA per oocyte and 

incubated for 4 days in MBS buffer before the uptake experiment. Control oocytes (open bars) were 

prepared at the same time and incubated in MBS buffer. A) VO2+ uptake was examined in a basal buffer 
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(10 mM HEPES, 2 mM MES, 2 mM KCl, 1 mM CaCl2, 1 mM MgCl2) supplemented with 100 mM 

sodium chloride (NaCl) or choline chloride (Chol), and at pH 5.5 and 7.5, as indicated, at 20°C. The 

initial VO2+ concentration was 10.5 µM. Bars indicate means ± SD (n = 8). B) VO2+ uptake was 

examined in basal buffer (10 mM HEPES, 2 mM MES, 2 mM KCl, 1 mM CaCl2, 1 mM MgCl2) 

supplemented with 100 mM choline chloride at 20°C. The initial VO2+ concentration was 10.5 µM. Bars 

indicate means ± SD (n = 5). C) The inhibition of VO2+-uptake by protonophore FCCP. VO2+ uptake was 

examined in basal buffer (10 mM HEPES, 2 mM MES, 2 mM KCl, 1 mM CaCl2, 1 mM MgCl2, pH 5.5 

or 8.5) supplemented with 100 mM choline chloride at 20°C. The initial VO2+ concentration was 10.5 

µM. FCCP was added at 2.5 µM where indicated. Bars indicate means ± SE (n = 12). ***, P<0.001. 
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Fig. 6. The inhibition of VO2+-uptake by AsNramp by excess divalent cations. Oocytes were injected 

with 32 ng of AsNramp mRNA per oocyte and incubated for 4 days before the uptake experiment. VO2+ 

uptake was examined in basal buffer (10 mM HEPES, 2 mM MES, 2 mM KCl, 1 mM CaCl2, 1 mM 

MgCl2, pH 8.5) supplemented with 100 mM choline chloride at 20°C. The initial VO2+ concentration 

was 10.5 µM, and the concentration of competitive divalent cations (COMP) were 525 µM (50 molar 

excess). Ascorbic acid (ASC) was added at 2.1 mM (4 molar excess) for control and Fe2+. Bars indicate 

means ± SE (n = 10–12). *, P<0.05; **, P<0.01. 
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Fig. 7. Kinetic properties of vanadium uptake by AsNramp. Vanadium uptake was measured with 

increasing concentrations of VO2+ in uptake buffer (10 mM HEPES, 2 mM MES, 2 mM KCl, 1 mM 

CaCl2, 1 mM MgCl2, pH 8.5) containing 100 mM choline chloride. Each data point represents the mean 

value ± SD (n = 5). Calculated from the data between 0 and 10 µM, the Km and Vmax of AsNramp were 

90 nM and 9.1 pmol/oocyte/h, respectively, under these conditions (dotted lines). 
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Fig. 8. A model for vanadium transport in vanadocytes of the vanadium-rich ascidian Ascidia 

sydneiensis samea. Vanadium ions are transported by an anion transporter (for VV) or cation transporter 

(for VIV) into the cytoplasm of vanadocytes. VV is reduced to VIV through an electron transfer cascade 

from the electron donor, NADPH, via glutathione reductase, glutathione, and Vanabin2 [19]. The 

vacuole content is acidified by V-ATPase, and AsSUL1 accumulates sulfate ions. P1B-type ATPase, 

AsHMA1, and/or a proton/VIV antiporter, AsNramp, transports VIV into the vacuole. VIV is reduced to 

VIII by an as yet unknown reductant and stabilized in acidic solution, in which sulfate ions exist as 

counterions for VIII. Reproduced from [45] with permission from the copyright holders.  

 


