クラウンエーテルの金属イオン包接錯体の 極低温気相分光

-イオン選択性の分子論的理解をめざして-

(広大院理,ローザンヌ連邦工科大) ○井口佳哉,江幡孝之,T.R.Rizzo

cf. Inokuchi et al., J. Am. Chem. Soc. 2011, 133, 12256.

Outline

• Introduction

– What are crown ethers? Why in the gas phase?

- Experimental and computational
 - Tandem mass spectrometer with a cold 22-pole ion trap
 - UV and IR spectroscopy
 - Quantum chemical calculations
- Complex structure and its relation with ion selectivity $- M^{+}$ •(Crown Ether)₁ (M = Li, Na, K, Rb, and Cs)

What Are Crown Ethers?

イオンを選択的にトラップする

Ion Selectivity

ΔH for Complex Formation

K+に特異性は見られない

選択性の起源は?構造にあるのか? 包接錯体の構造を決める必要がある

Pedersen's Study –UV spectra–

DB18C6 with alkali metal ions

Figure 13. Effects of salts on ultraviolet spectrum.

C. J. Pedersen, J. Am. Chem. Soc., 1967, 89, 7017.

溶液の吸収スペクトルから構造の情報を引き出すのは難しい

Crystal Structure

(Cambridge Structural Database)

結晶中では、カウンターアニオンも金属カチオンに配位している

気相で構造を決定する必要がある

This Study

- DB18C6, B18C6, B15C5 M⁺ = Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺
 - 1:1 complexes

- UV and IR spectroscopy in a cold, 22-pole ion trap DFT, TD-DFT
- コンフォマーの数,構造の決定 金属イオン選択性との関係

Experimental

nanoelectrospray DB18C6, B18C6, B15C5 LiCl, NaCl, KCl, RbCl, CsCl in Methanol 20–200 µM

UV spectroscopy
IR-UV spectroscopy
UV power 1–1.5 mJ/pulse
IR power 4–5 mJ/pulse

Svendsen, Lorenz, Boyarkin, and Rizzo, *Rev. Sci. Instrum.*, **2010**, *81*, 073107.

UV Spectra of K*•DB18C6

 \cap

冷却することによりシャープな振電構造が出現している

UV Spectra of M⁺•DB18C6

 $M^{+\bullet}DB18C6$

シャープな振電バンドが多数観測されている

Exciton Splitting

 $M^{+\bullet}DB18C6$

K⁺~Cs⁺でExciton Splittingが明瞭に観測された

UV Spectra of M⁺•DB18C6

 $M^+ \bullet DB18C6$

 $Li^+\sim K^+$ でUVスペクトルが大きく変化する → 構造が大きく異なる $K^+\sim Cs^+$ はUVスペクトルが似ている → 類似の構造をもつ

IR Spectra of M⁺•DB18C6

IRスペクトルにより異性体の数を決定できる K+~Cs+はIRスペクトルが似ている → 類似の構造をもつ

The Number of Conformers

M +	M+•DB18C6
Li+	2
Na ⁺	2
K+	1
Rb+	1
Cs+	1
(monomer)	2

 $M^+ \bullet DB18C6$

IR-UVスペクトル エネルギー 電子スペクトル計算

に基づいて構造を同定

Structure of M⁺•DB18C6 (M = Li, Na)

M05-2X/6-31+G(d) with Stuttgart RLC ECP A scaling factor of 0.8340 is used.

Structure of M⁺•DB18C6 (M = K, Rb, Cs)

Structure of M⁺•DB18C6 (M = K, Rb, Cs)

cf. Li⁺ (0.90 Å), Na⁺ (1.16 Å)

UV Spectra of M⁺•B18C6

DB18C6と同様に コンフォマー数とその構造 を決定

UV Spectra of M⁺•B15C5

The Number of Conformers

M +	M+•B15C5	M+•B18C6	M+•DB18C6
Li+	2	2	2
Na ⁺	1	3	2
K+	3	2	1
Rb ⁺	3	1	1
Cs ⁺	3	1	1
(monomer)	3 ^a	4 ^b	2 ^b

^aZwier and co-workers, *J. Phys. Chem. A*, **2009**, *113*, 8055. ^bEbata and co-workers, *Sensors*, **2010**, *10*, 3519.

DB18C6

エーテル環が小さくても 必ずしもコンフォマー数は減少しない ベンゼンがエーテル環の自由度を下げ コンフォマー数を減少させる

Structure of 1:1 Complexes

エーテル環とイオンのサイズが適合 開いたエーテル環にきれいに収まっている

これらの組み合わせに特異性があるか?

Calculated Binding Energy

いずれも単調に減少 特異性はみられない

Structural Parameters

Rは単調に増加 エーテル環のサイズ、ベンゼン環の数に依存しない

Rのばらつきが小さい M+はすべてのO原子に均等に結合している

Structural Parameters

Structural Parameters

包接錯体の構造から 溶液中の選択性について 何か言えるか?

■18C6, B18C6, DB18C6 K+に対して明確な特異性

■15C5,B15C5 特異性あまり明瞭ではない

Izatt et al., Chem. Rev., 1985, 85, 271.

小さいイオンは エーテル環に3次元的に取り囲まれ 溶媒との相互作用が小さくなる

ΔH , ΔS , and ΔG for DB18C6

M05-2X/6-31+G*。*n* = ∞の計算は分極連続体モデル(PCM)による。

ΔG for B18C6 and B15C5

■15C5, B15C5 特異性あまり明瞭ではない K+~Cs+のKが比較的大きい

	M+•B15C5	M+•B18C6	M+•DB18C6
Li ⁺	2	2	2
Na ⁺	1	3	2
K ⁺	3	2	1
Rb ⁺	3	1	1
Cs+	3	1	1
(monomer)	3 ^a	4 ^b	2 ^b

大きいイオン B15C5のコンフォメーション数が多い エントロピー的に有利

 $K \nearrow$

Summary

■イオン選択性は<mark>包接錯体の溶媒和の大きさ</mark>によりコントロール エーテル環とイオンのサイズ適合に<u>のみ</u>由来するのではない

■小さいイオン
クラウンエーテルに3次元的に取り囲まれる
イオンと溶媒との相互作用が小さい
→ 溶液中でのIΔGIが小さくなる

■大きいイオン 包接錯体のIΔGIがもともと小さい

■今後の展開 温度可変の実験 溶媒和した包接錯体 溶液中での構造決定

cf. Inokuchi et al., J. Am. Chem. Soc. 2011, 133, 12256.