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Fundamental biquandles of ribbon 2-knots and

ribbon torus-knots with isomorphic fundamental

quandles

Sosuke Ashihara

Abstract

The fundamental quandles and biquandles are invariants of classical
knots and surface knots. It is unknown whether there exist classical or
surface knots which have isomorphic fundamental quandles and distinct
fundamental biquandles. We show that ribbon 2-knots or ribbon torus-
knots with isomorphic fundamental quandles have isomorphic fundamen-
tal biquandles. For this purpose, we give a method for obtaining a presen-
tation of the fundamental biquandle of a ribbon 2-knot/torus-knot from
its fundamental quandle.

1 Introduction

The fundamental quandles and the fundamental biquandles are invariants of
classical knots, virtual knots and surface knots (cf. [2, 4, 5, 6, 10, 11]). For
classical knots, the fundamental quandles can distinguish all knots up to orien-
tations of knots and the ambient space. For surface knots, there exist distinct
surface knots with isomorphic fundamental quandles (cf. [13]). By definition,
the fundamental biquandles dominate the fundamental quandles. The funda-
mental biquandles are stronger than the fundamental quandles for some virtual
knots (cf. [10]). It is unknown whether there exist classical knots or surface
knots whose fundamental quandles are isomorphic but their fundamental bi-
quandles are not. The following is our main theorem.

Theorem 1.1. Two ribbon 2-knots or ribbon torus-knots with isomorphic fun-
damental quandles have isomorphic fundamental biquandles.

Here a ribbon 2-knot (or a ribbon torus-knot, resp.) is a 2-sphere (or a torus,
resp.) embedded in R4 that can be obtained from a trivial 2-link in R4 by
adding 1-handles (cf. [12]).

To prove this theorem, we will associate with each quandle presentation
〈S | R〉q a biquandle presentation, J0(〈S | R〉q) (see Sec. 5).

Theorem 1.2. If two quandle presentations 〈S | R〉q and 〈S′ | R′〉q determine
isomorphic quandles, then the two biquandle presentations J0(〈S | R〉q) and
J0(〈S′ | R′〉q) determine isomorphic biquandles.

1



This theorem enables us to associate with each quandle Q a biquandle J(Q).
To be precise, if Q is a quandle presented by 〈S | R〉q, then we define J(Q) to
be the biquandle presented by J0(〈S | R〉q).

Theorem 1.1 is a direct consequence of the following theorem.

Theorem 1.3. For any ribbon 2-knot or a ribbon torus-knot F , the fundamental
biquandle BQ(F ) is isomorphic to the biquandle J(Q(F )) obtained from the
fundamental quandle Q(F ).

To prove this theorem, we use Satoh’s method for presenting a ribbon 2-
knot/torus-knot by a virtual arc/knot diagram, [12].

This paper is organized as follows. In Sec. 2, we recall definitions of quan-
dles, biquandles and the fundamental biquandle of a surface knot. In Sec. 3, we
explain Satoh’s method for presenting a ribbon 2-knot/torus-knot by a virtual
arc/knot diagram. Sec. 4 deals with presentations of quandles and biquandles.
In Sec. 5, we associate with each quandle presentation a biquandle presenta-
tion. In Sec. 6, we give a method for obtaining a presentation of the fundamen-
tal biquandle of a ribbon 2-knot/torus-knot directly from its virtual arc/knot
presentation (Theorem 6.1) and prove Theorem 1.3.

2 Quandles and biquandles

First we recall the definitions of a quandle and a biquandle.

Definition 2.1. A quandle is a set Q with two binary operations (a, b) 7→ ab

and ab̄ satisfying the following axioms (cf. [5, 6, 11]):

(Q1) For any a ∈ Q, aa = a.

(Q2) For any a, b ∈ Q, abb̄ = ab̄b = a.

(Q3) For any a, b, c ∈ Q, abc = acbc

.

Here we use Fenn and Rourke’s notation, i.e., abc means (ab)c and abc

means
a(bc) (see. [5]). A rack is a set Q with two binary operations (a, b) 7→ ab and ab̄

satisfying (Q2) and (Q3).

Consider a set B with four binary operations (a, b) 7→ ab, ab, a
b̄ and ab̄ sat-

isfying the following:

(B1) For any fixed b ∈ B, the maps a 7→ ab, ab, ab and ab are bijections.

Then four binary operations (a, b) 7→ ab−1
, ab−1 , ab̄−1

and ab̄−1 on B are defined
by the following rules. For every a, b ∈ X, abb−1

= ab−1b = a, abb−1 = ab−1b =
a, ab̄b̄−1

= ab̄−1b̄ = a and ab̄b̄−1 = ab̄−1b̄ = a.

Definition 2.2. A biquandle is a set B with four binary operations (a, b) 7→
ab, ab, a

b̄ and ab̄ satisfying (B1) and the following axioms (see [4, 7, 10]):

(B2) For every a ∈ B, we have aa−1 = aaa−1 and aa−1
= aaa−1 .
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(B3) For every a, b ∈ B, we have a = abba , b = b
aab , a = abba and b = baab .

(B4) For every a, b, c ∈ B, we have abc = acbbc

, cba = cabba
and (ba)c

ab = (bc)acb .

Using eight binary operations on a set, we may restate the definition of a
biquandle as follows.

Definition 2.3. A biquandle is a set B with eight binary operations (a, b) 7→
ab, ab, a

b̄, ab̄, a
b−1

, ab−1 , ab̄−1
and ab̄−1 satisfying (B2), (B3), (B4) and

(B1′) For every a, b ∈ B, abb−1
= ab−1b = a, abb−1 = ab−1b = a, ab̄b̄−1

= ab̄−1b̄ = a
and ab̄b̄−1 = ab̄−1b̄ = a.

The fundamental quandles of classical knots, virtual knots and surface knots
were defined in [5, 6, 11]. The fundamental biquandles were defined in [4, 10]
for classical knots and virtual knots, and in [2] for surface knots.

For the convenience of the reader, we recall the definition of the fundamental
biquandle of a surface knot following [2].

Let F be a surface knot in R4, i.e., an oriented connected closed surface
embedded in R4. Let f : F → R3 be the restriction to F of the projection map
R4 → R3; (x, y, z, t) 7→ (x, y, z). Assume that f is a generic map. Let U− be
an open regular neighborhood of the lower decker curves in F . Then the image
f(F \ U−) in R3 is called a surface knot diagram of F . Refer to [3] for the
definition of decker curves and details. Let U be an open regular neighborhood
of all decker curves in F . Then the image f(F \ U) is a compact and oriented
surface in R3. We call each connected component of this surface a semi-sheet
of the surface knot diagram.

Definition 2.4. Let D be a surface knot diagram. The fundamental biquandle
BQ(D) of D is the biquandle defined by the following presentation.

1. Let a1, . . . , an be the semi-sheets of D. Then the generating set is {a1, . . . , an}.
2. For a double point curve d of D, we associate d with two relations

r1(d) : ak = ai
aj and r2(d) : al = ajai

,

where ai, aj , ak, al are the semi-sheets around d as illustrated in Fig. 1.
Let d1, . . . , dm be the double point curves of D. The set of relations is
{r1(d1), r2(d1), . . . , r1(dm), r2(dm)}.

A presentation of a biquandle will be explained in Sec. 4.
Carrell [2] showed that if two surface knot diagrams D and D′ present the

same surface knot, then the fundamental biquandles BQ(D) and BQ(D′) are
isomorphic. The fundamental biquandle BQ(F ) of a surface knot F is defined
by the fundamental biquandle BQ(D), where D is a surface knot diagram of F .

3



Figure 1: A neighborhood of the double point curve d

ai

aj

ak

al

r1(d) : ak = ai
aj , r2(d) : al = ajai

.

3 Virtual arc/knot presentation of a ribbon 2-knot/torus-knot

Let D be a virtual arc diagram or a virtual knot diagram. (It is an oriented
arc or circle generically immersed in R2 such that each double point is given
information of a type of positive, negative or virtual illustrated in Fig. 2 (cf.
[9, 12]).)

Figure 2: Positive, negative and virtual crossings.

Let tube(D) denote a surface knot diagram in R3 associated with D in the
sense of Satoh [12]: It is obtained from D by placing a thin tube wherever we see
an edge in the diagram D such that (1) at a classical crossing, the undergoing
path of D corresponds to the tube which goes through the other tube, (2) at a
virtual crossing, the tubes pass over/under each other, and (3) at an endpoint,
we cap the tube. We orient the surface so that the normal vector in surface
knot diagram points outward. See Fig. 3. Let Tube(D) denote a surface knot
presented by the diagram tube(D). Note that Tube(D) is a ribbon 2-sphere if
D is a virtual arc diagram or a ribbon torus-knot if D is a virtual knot diagram.

An arc of a virtual arc/knot diagram proceeds from one classical undercross-
ing or endpoint to another classical undercrossing or endpoint.

Definition 3.1. Let D be a virtual arc/knot diagram. The fundamental quandle
Q(D) of D is the quandle defined by the following presentation.

1. Let a1, . . . , an be the arcs of D. Then the generating set is {a1, . . . , an}.
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Figure 3: Correspondence at crossings and endpoints.

2. For a classical crossing c of D, we associate c with a quandle relation

r(c) : ak = ai
aj ,

where ai, aj and ak are the arcs adjacent to c as illustrated in Fig. 4.
Let c1, . . . , cm be the classical crossings of D. The set of relations is
{r(c1), r(c2), . . . , r(cm)}.

Figure 4: A neighborhood of the classical crossing c

ai aj

ak

r(c) : ak = ai
aj .

A presentation of a quandle will be explained in Sec. 4.

Theorem 3.2 (Satoh [12]). For any ribbon 2-knot/torus-knot F , there exists a
virtual arc/knot diagram D such that F is ambient isotopic to Tube(D). More-
over, Q(F ) ∼= Q(D).

4 Presentations of a quandle and a biquandle

Let S be a set, and let S = {x̄ | x ∈ S} be the set of symbols x̄ for x ∈ S.
Here we assume S ∩ S = ∅. By a word in S, we mean a (possibly empty) finite
sequence x1x2 · · ·xn (xi ∈ S ∪ S, n ∈ N ∪ {0}). We denote the empty word
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by 1. Then the set, W (S), of words in S is a monoid whose product is the
word concatenation with identity element 1. The free group, FG(S), on S is
the quotient of W (S) by the relation on W (S) generated by uxx̄v ∼ ux̄xv ∼ uv
(u, v ∈ W (S), x ∈ S).

The free rack FR(S) on S is a rack with underlying set S × FG(S) and
with operations (a,w)(b,u) = (a,wūbu) and (a,w)(b,u) = (a,wūb̄u). We write
the element (a,w) ∈ FR(S) as aw, so FR(S) = {aw | a ∈ S, w ∈ FG(S)}. Then
(aw)(b

u) = awūbu and (aw)(bu) = awūb̄u. Let ∼q be the equivalence relation
on FR(S) generated by the relation aw ∼ aaw(a ∈ S,w ∈ FG(S)). The free
quandle FQ(S) on S is the quotient FQ(S) = FR(S)/ ∼q with the quandle
operations induced from the operations of FR(S) (cf. [5, 8]).

Let S∞ denote the set of all expressions obtained from S by using eight
binary symbols (a, b) 7→ ab, ab, a

b̄, ab̄, a
b−1

, ab−1 , ab̄−1
and ab̄−1 : S∞ is defined

to be the union
⋃∞

i=0 Si, where {Si}∞i=0 is the sequence of sets of expressions
defined inductively as follows.

• S0 := S.

• Si+1 := Si ∪ {ab, ab, a
b̄, ab̄, a

b−1
, ab−1 , ab̄−1

, ab̄−1 | a, b ∈ Si}.

Eight binary operations (a, b) 7→ ab, ab, a
b̄, ab̄, a

b−1
, ab−1 , ab̄−1

and ab̄−1 on S∞
are naturally defined. Let ∼ be the equivalence relation on S∞ generated by
the identities in (B1′), (B2), (B3) and (B4). The free biquandle FBQ(S) on S
is S∞/ ∼ with binary operations induced from those of S∞. (Refer to [1] for
free algebras.) For w ∈ S∞, the element of FBQ(S) represented by w is simply
written as w.

A biquandle presentation is a pair of a set S and a subset R of FBQ(S) ×
FBQ(S), denoted by 〈S | R〉bq. It determines a biquandle that is the quotient
of the free biquandle FBQ(S) by the congruence relation generated by R (cf.
[5, 8]). Elements (x, y) of R ⊂ FBQ(S)×FBQ(S) are called biquandle relations
and usually denoted by x = y or (x = y) ∈ R, etc.

A quandle presentation 〈S | R〉q is similarly defined by using the free quandle
FQ(S) (see. [5, 8]).

5 The biquandle presentation associated with a quandle presenta-
tion

In this section, we associate with each quandle presentation 〈S | R〉q a biquandle
presentation J0(〈S | R〉q).

Define a map φ0 : S×W (S) → FBQ(S) by the following inductive rule with
respect to the length of the word in W (S).

• φ0(a, 1) = a, (a ∈ S and 1 ∈ W (S)).

• φ0(a,wb) = (φ0(a,w)
b
−1)b and φ0(a,wb̄) = (φ0(a,w)b−1

)b, (a ∈ S, w ∈
W (S) and b ∈ S).
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Proposition 5.1. The map φ0 : S ×W (S) → FBQ(S) induces a well-defined
map φ : FQ(S) → FBQ(S).

Proof. First we show that the map φ0 : S ×W (S) → FBQ(S) factors through
S×FG(S), i.e., we show that φ0(a, ubb̄v) = φ0(a, uv) and φ0(a, ub̄bv) = φ0(a, uv)
for a, b ∈ S and u, v ∈ W (S). Let l(v) denote the length of v, and we use in-
duction on the length l(v).

When l(v) = 0, we have

φ0(a, ubb̄) = ((φ0(a, u)
b
−1)bb−1

)b

= φ0(a, u)

and

φ0(a, ub̄b) = ((φ0(a, u)b−1
)
b b
−1)b

= φ0(a, u)

for a, b ∈ S and u ∈ W (S).
Our inductive assumption is: Assume when l(v) = n, the identities φ0(a, ubb̄v) =

φ0(a, uv) and φ0(a, ub̄bv) = φ0(a, uv) hold. Then, for a, b, c ∈ S and u, v ∈ W (S)
with l(v) = n, we have

φ0(a, ubb̄vc) = (φ0(a, ubb̄v)c−1)c

= (φ0(a, uv)c−1)c

= φ0(a, uvc),

φ0(a, ubb̄vc̄) = (φ0(a, ubb̄v)c−1
)c

= (φ0(a, uv)c−1
)c

= φ0(a, uvc̄),

φ0(a, ub̄bvc) = (φ0(a, ub̄bv)c−1)c

= (φ0(a, uv)c−1)c

= φ0(a, uvc)

and

φ0(a, ub̄bvc̄) = (φ0(a, ub̄bv)c−1
)c

= (φ0(a, uv)c−1
)c

= φ0(a, uvc̄).

This completes the inductive step. Hence we see that φ0 induces a well-defined
map from S × FG(S) to FBQ(S).
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Next we show that φ0(a, a) = φ0(a, 1) for a ∈ S. By the second identity
of (B3), we see that x = x

xx−1xx−1x
for any x ∈ FBQ(S). Thus we have

x = xxx−1x, and hence xx−1 = xxx−1 . Then we have

φ0(a, a) = (aa−1)a

= (aaa−1 )a

= aa−1a (by the second identity of (B2))
= a

= φ0(a, 1).

This implies that φ0(a, aw) = φ0(a,w) for a ∈ S and w ∈ FG(S). Since
the equivalence relation ∼q is generated by aaw ∼ aw, we see that the map
φ : FQ(S) → FBQ(S) is well-defined.

For a set R of quandle relations, let Φ(R) denote the set of biquandle relations
{φ(aw) = φ(bz) | (aw = bz) ∈ R}. For a quandle presentation 〈S | R〉q, we define
J0(〈S | R〉q) to be the biquandle presentation 〈S | Φ(R)〉bq.

Lemma 5.2. Let B be a biquandle. Define two binary operations ∗ and ∗ by

a ∗ b := (a
b
−1)b, a ∗ b := (ab−1

)b

for a, b ∈ B. Then B with the operations ∗ and ∗ is a quandle.

In the above lemma, the symbols a ∗ b and a ∗ b denote quandle operations.

Proof. By the second identity of (B3), we see that a = a
aa−1aa−1a

for any a ∈ B.
Thus we have a = aaa−1a, and hence aa−1 = aaa−1 . Then we have

a ∗ a = (aa−1)a

= (aaa−1 )a

= aa−1a (by the second identity of (B2))
= a.

Thus ∗ satisfies (Q1).
Next we show that ∗ and ∗ satisfy (Q2). By the definition of ∗ and ∗ , we

have (a∗b)∗b = ((a
b
−1)bb−1

)b = a and (a∗b)∗b = ((ab−1
)
b
−1

b
)b = a for a, b ∈ B.

Finally we show that ∗ satisfies (Q3). From the second identity of (B3), we
have b = b

ab−1ab−1b
for a, b ∈ B. Thus we have b = bab−1a, and hence

bab−1 = ba−1 . (1)

We have

ac−1b−1
= ac−1b−1cbbc(bc)−1(cb)

−1

= ac−1b−1bc(bc)−1(cb)
−1

(by the first identity of (B4))

= a(bc)−1(cb)
−1
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for a, b, c ∈ B. Thus we have

ac−1b−1
= a(bc)−1(cb)

−1
. (2)

We have

(bc)a−1 = (bc)a(bc)−1 (by the identity (1))
= (bc)

a(bc)−1(cb)−1cb

= (bc)
ac−1b−1cb

(by the identity (2))

= (bac−1b−1 )c
ac−1b−1b (by the third identity of (B4))

= (bac−1b−1 )c
ac−1

= (b
ac−1−1)ca−1 (by the identity (1))

for a, b, c ∈ B. Thus we have

(bc)a−1 = (b
ac−1−1)ca−1 . (3)

From the third identity of (B3), we have a = aba−1ba−1a for a, b ∈ B. Thus we
have a = aba−1b, and hence

ab−1
= aba−1 . (4)

It is known that
xba = x

ab ba

(5)

holds for a, b, x ∈ B. This identity corresponds to Reidemeister move of type
III with all negative crossings and is obtained from the axioms of a biquandle
(see [2]). Put x = c

a−1b
−1 in the identity (5), and we see that

c
a−1b

−1
ab ba

= c. (6)

Thus we have

c
a−1b

−1 = c
a−1b

−1
ab ba ba

−1
ab
−1

= c
ba
−1

ab
−1 (by the identity (6))

for a, b, c ∈ B. Thus we have

c
a−1b

−1 = c
ba
−1

ab
−1 . (7)

Then we have

c
a−1ba−1

−1 = c
ba−1a

−1
a

b
a−1

−1 (by the identity (7))

= c
b
−1

a
b
a−1

−1

= c
b
−1

ab−1−1 (by the identity (4))

9



for a, b, c ∈ B. Thus we have

c
a−1ba−1

−1 = c
b
−1

ab−1−1 . (8)

From the second identity of (B3), we have b = b
a

b−1 (a
b−1 )b , for a, b ∈ B. Thus

we have
ba

b−1 = b
(a

b−1 )b
−1 . (9)

We have

(bc)
(ac−1 )c−1 = (b

(ac−1 )cc−1−1)
c
(a

c−1 )c−1
(by the identity (3))

= (bac−1
−1)

c
(a

c−1 )c−1

= (bac−1
−1)ca

c−1 (by the identity (9))

for a, b, c ∈ B. Thus we have

(bc)
(ac−1 )c−1 = (bac−1

−1)ca
c−1 . (10)

Thus we have

(a ∗ b) ∗ c = (((a
b
−1)b)c−1)c (by the definition of ∗)

= (a
b
−1

cb−1−1)bc−1c (by the identity (3))

= (a
c−1bc−1

−1)bc−1c (by the identity (8))

= (a
c−1bc−1

−1)cb
c−1 (bc−1 )c

(by the first identity of (B4))

= (((ac−1)c)
(bc−1 )c−1)(bc−1 )c

(by the identity (10))

= (a ∗ c) ∗ (b ∗ c), (by the definition of ∗)

for a, b, c ∈ B. Hence ∗ satisfies (Q3).

Then we have the following Corollary.

Corollary 5.3. Let B be a biquandle. Then the following identities hold for
any elements a, b, c ∈ B.

(a
(bc−1 )c−1)(bc−1 )c

= ((((ac−1
)
cb
−1)b)c−1)c,

(a
(bc−1 )c

−1)(b
c−1

)c = ((((ac−1)c)
b
−1)bc−1

)c,

(a((bc−1 )c)−1
)
(bc−1 )c = ((((ac−1

)c)b−1
)bc−1)c,

(a((bc−1
)c)

−1
)
(bc−1 )c

= ((((ac−1)cb−1
)b)

c−1
)c.
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Proof. Since the binary operations ∗ and ∗ on B defined in Lemma 5.2 satisfy
(Q2) and (Q3), the following identities hold (cf. [5]).

a ∗ (b ∗ c) = ((a ∗ c) ∗ b) ∗ c,

a ∗ (b ∗ c) = ((a ∗ c) ∗ b) ∗ c,

a ∗ (b ∗ c) = ((a ∗ c) ∗ b) ∗ c,

a ∗ (b ∗ c) = ((a ∗ c) ∗ b) ∗ c.

The desired identities follow from these identities.

Lemma 5.4. For a set S and FG(S), the following identities hold for a, b ∈ S
and u,w ∈ FG(S).

(φ(au)
φ(bw)

−1)φ(bw) = φ(auw̄bw),

(φ(au)φ(bw)−1
)
φ(bw)

= φ(auw̄b̄w).

Proof. First, we show the first identity by induction on l(w) on the length of w
as an element of W (S).

When l(w) = 0, we have (φ(au)
φ(b1)

−1)φ(b1) = (φ(au)
b
−1)b = φ(aub) for

a, b ∈ S, u ∈ FG(S).
Our inductive assumption is: (φ(au)

φ(bw)
−1)φ(bw) = φ(auw̄bw) for any w ∈

FG(S) with l(w) = n. We show that (φ(au)
φ(bw)

−1)φ(bw) = φ(auw̄bw) for any

w ∈ FG(S) with l(w) = n+1. Put w = vd or vd̄ where v ∈ W (S) with l(v) = n
and d ∈ S.

When w = vd, we have

(φ(au)
φ(bw)

−1)φ(bw) = (φ(au)
φ(bvd)

−1)φ(bvd) (11)

= (φ(au)
(φ(bv)

d−1 )d
−1)(φ(bv)

d−1 )d

(12)

= ((((φ(au)d−1
)
d φ(bv)

−1)φ(bv))
d
−1)d (13)

= (((φ(aud̄)
φ(bv)

−1)φ(bv))
d
−1)d (14)

= (φ(aud̄v̄bv)
d
−1)d (15)

= φ(auvdbvd) (16)

= φ(auw̄bw) (17)

for a, b, d ∈ S, u ∈ FG(S). Here (11) is a replacement of w by vd, (12) follows
from the definition of φ, (13) follows from the first identity of Corollary 5.3, (14)
follows from the definition of φ, (15) is the inductive assumption, (16) follows
from the definition of φ, and (17) is a replacement of vd by w.
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When w = vd̄, we have

(φ(au)
φ(bw)

−1)φ(bw) = (φ(au)
φ(bvd̄)

−1)φ(bvd̄) (18)

= (φ(au)
(φ(bv)d−1 )d

−1)(φ(bv)d−1
)d (19)

= ((((φ(au)
d
−1)d)

φ(bv)
−1)φ(bv)d−1

)d (20)

= ((φ(aud)
φ(bv)

−1)φ(bv)d−1
)d (21)

= (φ(audv̄bv)d−1
)d (22)

= φ(auvd̄bvd̄) (23)

= φ(auw̄bw) (24)

for a, b, d ∈ S, u ∈ FG(S). Here (18) is a replacement of w by vd̄, (19) follows
from the definition of φ, (20) follows from the second identity of Corollary 5.3,
(21) follows from the definition of φ, (22) is the inductive assumption, (23)
follows from the definition of φ, and (24) is a replacement of vd̄ by w. This
completes the proof of the first identity.

Next, we show the second identity by induction on l(w) on the length of w
as an element of W (S).

When l(w) = 0, we have (φ(au)φ(b1)−1
)φ(b1)

= (φ(au)b−1
)b = φ(aub̄) for

a, b ∈ S, u ∈ FG(S).
Our inductive assumption is: (φ(au)φ(bw)−1

)φ(bw)
= φ(auw̄b̄w) for any w ∈

FG(S) with l(w) = n. We show that (φ(au)φ(bw)−1
)φ(bw)

= φ(auw̄b̄w) for any
w ∈ FG(S) with l(w) = n+1. Put w = vd or vd̄ where v ∈ W (S) with l(v) = n
and d ∈ S.

When w = vd, we have

(φ(au)φ(bw)−1
)φ(bw)

= (φ(au)φ(bvd)−1
)
φ(bvd)

(25)

= (φ(au)((φ(bv)
d−1 )d)−1

)
(φ(bv)

d−1 )d (26)

= ((((φ(au)d−1
)d)

φ(bv)−1
)
φ(bv) d

−1)d (27)

= ((φ(aud̄)φ(bv)−1
)
φ(bv) d

−1)d (28)

= (φ(aud̄v̄b̄v)
d
−1)d (29)

= φ(auvd b̄vd) (30)

= φ(auw̄b̄w) (31)

for a, b, d ∈ S, u ∈ FG(S). Here (25) is a replacement of w by vd, (26) follows
from the definition of φ, (27) follows from the third identity of Corollary 5.3,
(28) follows from the definition of φ, (29) is the inductive assumption, (30)
follows from the definition of φ, and (31) is a replacement of vd by w.

12



When w = vd̄, we have

(φ(au)φ(bw)−1
)
φ(bw)

= (φ(au)φ(bvd̄)−1
)
φ(bvd̄)

(32)

= (φ(au)((φ(bv)d−1
)d)−1

)
(φ(bv)d−1 )d

(33)

= ((((φ(au)
d
−1)dφ(bv)−1

)
φ(bv)

)d−1
)d (34)

= (((φ(aud)φ(bv)−1
)
φ(bv)

)d−1
)d (35)

= (φ(audv̄b̄v)d−1
)d (36)

= φ(auvd̄ b̄vd̄) (37)

= φ(auw̄b̄w) (38)

for a, b, d ∈ S, u ∈ FG(S). Here (32) is a replacement of w by vd̄, (33) follows
from the definition of φ, (34) follows from the fourth identity of Corollary 5.3,
(35) follows from the definition of φ, (36) is the inductive assumption, (37)
follows from the definition of φ, and (38) is a replacement of vd̄ by w. This
completes the proof of the second identity.

For a set R of biquandle relations, let 〈〈R〉〉bq denote the set of biquandle
consequences of R.

Lemma 5.5. If (φ(au) = φ(bv)) ∈ R for some a, b ∈ S and u, v ∈ FG(S),
then (φ(auw) = φ(bvw)) ∈ 〈〈R〉〉bq for any w ∈ FG(S). Hence, Φ(auw = bvw) ∈
〈〈Φ(au = bv)〉〉bq.

Proof. Assuming φ(au) = φ(bv), we prove that φ(auw) = φ(bvw) for any w ∈
FG(S) by induction on the length l(w) of w as an element of W (S).

The case of l(w) = 0 is obvious.
Our inductive assumption is: φ(auw) = φ(bvw) for any w ∈ FG(S) with

l(w) = n. We show that φ(auw) = φ(bvw) for any w ∈ FG(S) with l(w) = n+1.
Put w = zd or zd where z ∈ W (S) with l(z) = n and d ∈ S.

When w = zd, φ(auw) = φ(auzd) = (φ(auz)
d
−1)d = (φ(bvz)

d
−1)d = φ(bvzd) =

φ(bvw).
When w = zd, φ(auw) = φ(auzd) = (φ(auz)d−1

)d = (φ(bvz)d−1
)d = φ(bvzd) =

φ(bvw).
This completes the proof.

Lemma 5.6 (Fenn and Rourke [5]). Two presentations of isomorphic quandles
are related by a finite sequence of the following transformations and their inverse
transformations, so-called Tietze moves:

T1 Repeat a relation.

T2 Conjugate a relation, i.e. replace at = bw by atz = bwz.

T3 If (a = bw) ∈ R, then we can replace cz = at by cz = bwt or az = ct by
bwz = ct.
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T4 If (a = bw) ∈ R, then we can replace ctaq = dz by ctw̄bwq = dz, ctāq = dz

by ctw̄b̄wq = dz, cz = dtaq by cz = dtw̄bwq or cz = dtāq by cz = dtw̄b̄wq.

T5 Introduce a new generator x and a new relation x = aw (where x does not
occur in w).

In what follows, for quandle/biquandle presentations P and P ′, P ∼= P ′

means that the quandles/biquandles presented by P and P ′are isomorphic.

Proof of Theorem 1.2. It is sufficient to show that if a quandle presentation
〈S′ | R′〉q is obtained from a quandle presentation 〈S | R〉q by one of the moves
T1, T2, . . . , T5, then J0(〈S | R〉q) ∼= J0(〈S′ | R′〉q).
Case 1. T1-move.

In this case S′ = S, and it is clear that Φ(R) equals Φ(R′) setwise. Thus we
have 〈S | Φ(R)〉bq

∼= 〈S′ | Φ(R′)〉bq, and hence J0(〈S | R〉q) ∼= J0(〈S′ | R′〉q).
Case 2. T2-move.

In this case S′ = S and R′ = (R \ {aw = bt}) ∪ {awz = btz} where a, b ∈ S
and t, w, z ∈ FG(S). By Lemma 5.5, 〈〈Φ(aw = bt)〉〉bq = 〈〈Φ(awz = btz)〉〉bq.
Thus, 〈〈Φ(R)〉〉bq = 〈〈Φ(R′)〉〉bq, and we have 〈S | Φ(R)〉bq

∼= 〈S′ | Φ(R′)〉bq.
Hence we have J0(〈S | R〉q) ∼= J0(〈S′ | R′〉q).
Case 3. T3-move.

First, we show that if (a = bw) ∈ R, then we can replace cz = at by cz = bwt.
In this case S′ = S and R′ = (R \ {cz = at}) ∪ {cz = bwt} where a, b, c ∈ S and
t, w, z ∈ FG(S). By Lemma 5.5, Φ(at = bwt) ∈ 〈〈Φ(a = bw)〉〉bq ⊂ 〈〈Φ(R)〉〉bq ∩
〈〈Φ(R′)〉〉bq. Since Φ(at = bwt) and Φ(cz = at) belong to 〈〈Φ(R)〉〉bq, we see
that Φ(cz = bwt) ∈ 〈〈Φ(R)〉〉bq. On the other hand, since Φ(at = bwt) and
Φ(cz = bwt) belong to 〈〈Φ(R′)〉〉bq, we see that Φ(cz = at) ∈ 〈〈Φ(R′)〉〉bq. Thus,
〈〈Φ(R)〉〉bq = 〈〈Φ(R′)〉〉bq, and we have that J0(〈S | R〉q) ∼= J0(〈S′ | R′〉q).

The latter assertion is proved similarly.

Case 4. T4-move.

First, we show that if (a = bw) ∈ R, then we can replace ctaq = dz by
ctw̄bwq = dz. In this case S′ = S, and it suffices to show that 〈〈Φ(a =
bw),Φ(ctaq = dz)〉〉bq = 〈〈Φ(a = bw), Φ(ctw̄bwq = dz)〉〉bq, equivalently to show
the following assertion by Lemma 5.5.

Assertion 1. Φ(cta = ctw̄bw) ∈ 〈〈Φ(a = bw)〉〉bq, i.e., φ(cta) = φ(ctw̄bw) mod
〈〈Φ(a = bw)〉〉bq.

Proof of Assertion 1. For a, b, c ∈ S and t, w ∈ FG(S),

φ(cta) = (φ(ct)a−1)a (39)

= (φ(ct)
φ(bw)

−1)φ(bw) (40)

= φ(ctw̄bw). (41)
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Here (39) follows from the definition of φ, (40) is a congruence mod 〈〈Φ(a =
bw)〉〉bq, and (41) follows from the first identity of Lemma 5.4. This completes
the proof of the assertion.

Next, we show that if (a = bw) ∈ R, then we can replace ctāq = dz by
ctw̄b̄wq = dz. In this case S′ = S, and it suffices to show that 〈〈Φ(a =
bw),Φ(ctāq = dz)〉〉bq = 〈〈Φ(a = bw), Φ(ctw̄b̄wq = dz)〉〉bq, equivalently to show
the following assertion by Lemma 5.5.

Assertion 2. Φ(ctā = ctw̄b̄w) ∈ 〈〈Φ(a = bw)〉〉bq, i.e., φ(ctā) = φ(ctw̄b̄w) mod
〈〈Φ(a = bw)〉〉bq.

Proof of Assertion 2. For a, b, c ∈ S and t, w ∈ FG(S),

φ(cta) = (φ(ct)a−1
)a (42)

= (φ(ct)φ(bw)−1
)
φ(bw)

(43)

= φ(ctw̄b̄w). (44)

Here (42) follows from the definition of φ, (43) is a congruence mod 〈〈Φ(a =
bw)〉〉bq, and (44) follows from the second identity of Lemma 5.4. This completes
the proof of the assertion.

The other two cases of T4 are proved similarly.

Case 5. T5-move.

Put S′ = S ∪ {x} and R′ = R ∪ {x = aw} (a ∈ S and w ∈ FG(S)),
where x does not occur in w or in R. (We regard FQ(S) ⊂ FQ(S′) and
FBQ(S) ⊂ FBQ(S′).) Then we have Φ(R′) = Φ(R) ∪ {x = φ(aw)}, and the
letter x does not occur in φ(aw) or in Φ(R). Thus we have 〈S | Φ(R)〉bq

∼=
〈S ∪ {x} | Φ(R) ∪ {x = φ(aw)}〉bq (cf. [1]).

By Theorem 1.2, we associate with each quandle Q a biquandle J(Q).

6 The fundamental biquandle of a ribbon 2-knot/torus-knot

In this section, we give a method for obtaining a presentation of the fundamen-
tal biquandle of a ribbon 2-knot/torus-knot directly from its virtual arc/knot
presentation.

Let F be a ribbon 2-knot/torus-knot and D a virtual arc/knot diagram
which presents F , and let S be the set of arcs of D and R the set of quandle
relations associated with the classical crossings of D. (When the arcs adjacent to
a classical crossing are a, b, c as in the left of Fig. 5, then its associated quandle
relation is c = ab.) Then 〈S | R〉q is a presentation of Q(D).

Theorem 6.1. In the above situation, the biquandle presentation J0(〈S | R〉q)
is a presentation of the fundamental biquandle BQ(F ) of F .
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Proof of Theorem 6.1. Let S′ be the set of semi-sheets of tube(D) and R′ the
set of biquandle relations associated with the double point curves of tube(D).
Then 〈S′ | R′〉bq is a presentation of BQ(tube(D)). At a classical crossing of
D illustrated in the left of Fig. 5, the quandle relation is c = ab. On the other
hand, for the corresponding part of tube(D) illustrated in the right of Fig. 5,
there are two double point curves and their associated biquandle relations are

b = da, e = ad, c = eb and f = be. (45)

a c

b

a

b

c

d

e

f

Figure 5:

From b = da, we have d = ba−1
. Thus, e = ad becomes e = aba−1 . By

the second identity of (B3), we see a = axxa for any x. Put x = ba−1
and we

have a = aba−1b. Thus, aba−1 = a
b
−1 . Therefore, we have e = a

b
−1 , and hence

f = bab̄−1 . Now we see that the relations in (45) can be replaced by

d = ba−1
, e = ab̄−1 , c = (ab̄−1)b and f = bab̄−1 .

Since none of other relations of R′ contains d, e and f , we can delete gener-
ators d, e and f from S′ and relations d = ba−1

, e = ab̄−1 and f = bab̄−1 from R′.
The remaining relation is c = (ab̄−1)b, whose right hand side is φ(ab). Apply-
ing this procedure to all classical crossings of D, we can transform 〈S′ | R′〉bq

into J0(〈S | R〉q). Since BQ(F ) is defined by BQ(tube(D)), J0(〈S | R〉q) is a
presentation of BQ(F ).

Proof of Theorem 1.3. Let D be a virtual arc/knot diagram presenting F , i.e.,
Tube(D) is ambient isotopic to F . Then Q(D) ∼= Q(F ) by Theorem 3.2. Let
〈S | R〉q be a presentation of Q(D) as in Theorem 6.1. Then J0(〈S | R〉q) is a
presentation of BQ(Tube(D)). Thus J(Q(F )) ∼= J(Q(D)) ∼= BQ(Tube(D)) ∼=
BQ(F ).

S. Kamada, S. Satoh and K. Tanaka suggested that the author should gen-
eralize the argument in this paper to ribbon surface knots of higher genera. We
hope to discuss this problem elsewhere.

16



Acknowledgements

The author is deeply grateful to Professor Seiichi Kamada, Professor Makoto
Sakuma and Professor Shin Satoh for helpful suggestions and support. This
research was supported by Grant-in-Aid for JSPS Fellows 25·1512.

References

[1] S. Burris and H.P. Sankappanavar, A course in universal algebra, Grad.
Texts in Math., vol. 78, Springer-Verlag, New York, 1981.

[2] T. Carrell, The surface biquandle, Senior Thesis, Pomona College, 2009.

[3] J. S. Carter and M. Saito, Knotted surfaces and their diagrams, Math.
Surveys Monogr., vol. 55, Amer. Math. Soc., Providence, RI, 1998.

[4] R. Fenn, M. Jordan-Santana and L. H. Kauffman, Biquandles and virtual
links, Topology Appl. 145 (2004), 157–175.

[5] R. Fenn and C. Rourke, Racks and links in codimension two, J. Knot The-
ory Ramifications 1 (1992), 343–406.

[6] D. Joyce, A classifying invariant of knots, the knot quandle, J. Pure Appl.
Algebra 23 (1982), 37–65.

[7] N. Kamada and S. Kamada, Biquandles with structures related to virtual
links and twisted links, J. Knot Theory Ramifications 21 (2012), 1240006
(14 pages).

[8] S. Kamada, Kyokumen musubime riron [Surface knot theory], (in
Japanese), Maruzen Publishing Co. Ltd., Tokyo, 2012.

[9] L. H. Kaufman, Virtual knot theory, Europ. J. Combin. 20 (1999), 663–691.

[10] L. H. Kauffman and D. E. Radford, Bi-oriented quantum algebras, and
generalized Alexander polynomial for virtual links, Contemp. Math. 318
(2003), 113–140.

[11] S. Matveev, Distributive groupoids in knot theory, Mat. Sb. (N.S.) 119
(1982), 78–88 (in Russian); Math. USSR-Sb. 47 (1984), 73–83 (in English).

[12] S. Satoh, Virtual knot presentation of ribbon torus-knots, J. Knot Theory
Ramifications 9 (2000), 531–542.

[13] K. Tanaka, Inequivalent surface-knots with the same knot quandle, Topol-
ogy Appl. 154 (2007), 2757–2763.

17



参考論文

(1) Calculating the fundamental biquandles of surface links from their ch-diagrams,

Sosuke Ashihara,

Journal of Knot Theory and its Ramifications, 21 (2012), no. 10, 1250102, 23

pp.


