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Abstract

We discuss a phase field method for shape optimization in the context of

electromagnetic wave propagation. The proposed method has the same func-

tional capabilities as the level set method for shape optimization. The first

advantage of the method is the simplicity of computation, since extra op-

erations such as re-initialization of functions are not required. The second

is compatibility with the topology optimization method due to the similar

domain representation and the sensitivity analysis. Structural shapes are

represented by the phase field function defined in the design domain, and

this function is optimized by solving a time-dependent reaction diffusion

equation. The artificial double-well potential function used in the equation

is derived from sensitivity analysis. We study four types of 2D or 2.5D

(axisymmetric) optimization problems. Two are the classical problems of

photonic crystal design based on the Bloch theory and photonic crystal wave

guide design, and two are the recent topics of designing dielectric left-handed
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metamaterials and dielectric ring resonators.

Keywords: Phase field, Shape optimization, Electromagnetic system,

Sensitivity analysis, Topology optimization, Level set

1. Introduction

Geometrical optimization has been studied to solve the problem of what

shape is optimal in various problems. Recent development of optimization

enables us to optimize geometry drastically, including topology. In recent

studies, these methods have been used not only to optimize the existing

structure but also generate a new shape having a specified function. These

uses of optimization have contributed to the development of pure and applied

physics (e.g. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]). The contribution of geometrical

optimization seems to be strongest for electromagnetic wave propagation,

since research on finding geometry having new electromagnetic characteristics

is active, as reviewed in [11].

Topology optimization is the most popular geometrical optimization method

[12, 13, 14]. The basic idea is replacing the shape optimization problem by

a two-phase material distribution problem consisting of an original material

and an ersatz material mimicking voids. With this formulation this method

can generate holes for the target domain. However, since the original problem

is ill-posed, homogenization is applied and the original problem is represented

as a composite material optimization problem, namely, an optimization prob-

lem of a volume fraction of these materials. This representation raises the

further problem of how to obtain clear shapes from the optimal density dis-

tribution [13, 14].
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Recently, the level set method for geometrical optimization [15, 16, 17, 18]

has been proposed to avoid the drawbacks described above. In this method,

the target configuration is represented as a zero contour of the level set

function, and the front moves along its normal direction according to the

Hamilton-Jacobi equation. The moving direction of the front is decided by

using shape sensitivity, which is used in classical shape optimization [19, 20]

as the velocity field for the Hamilton-Jacobi equation. Level set methods al-

low topological changes (limited to eliminating holes), significantly improving

structural performance. Moreover, this method is free from re-meshing, since

the level set function is defined in an Eulerian coordinate system. The level

set method was originally proposed by Osher and Sethian [21, 22, 23] as a

numerical method for tracking free boundaries according to the mean cur-

vature motion, and the mathematical background was subsequently clarified

by several researchers [24, 25, 26]. The level set method has been applied to

many optimization problems (e.g. [27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37]),

including electromagnetic wave propagation.

As with the level set method, the phase field method is capable of han-

dling the motion caused by domain states such as temperature and the mo-

tion caused by the domain shape, such as the mean curvature motion, and so

can also be applied to geometrical optimization. The phase field method was

developed as a way to represent the surface dynamics of phase transition phe-

nomena such as solid-liquid transitions. Research on such physical modeling

can be traced back to Cahn and Hilliard [38] and Allen and Cahn [39]. The

mathematical fundamentals for these physical models were constructed by

several researchers [40, 41, 42]. In the early stage of this research, contribu-
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tions to computing actual phase transition phenomena were made by [43, 44].

Outlines of the above history and methodologies can be found in several com-

prehensive reviews [45, 46, 47]. Bourdin and Chambolle [48] were the first

to propose applying the phase field method to structural optimization, when

it had initially been used to implement perimeter constraints [49, 50]. Af-

ter that, several useful structural optimization methods were developed that

incorporate the phase field method (e.g. [51, 52, 53, 54]).

Another shape optimization technique has been proposed using the phase

field method for simulation with a moving boundary [55, 56]. (Hereafter,

when “phase field method” is used in the sense of shape optimization, it

mentions this methodology.) This method has the almost same function as

in the level set method, meaning it is a shape optimization based on a moving

boundary accepting the topology change. This method has two advantages.

The first is that it does not need to re-initialize the function as needs to be

done in the conventional level-set method. The second is that it is very com-

patible with topology optimization. The domain in the phase field method is

represented by a density function, the same as in the topology optimization.

The front motion is decided by the sensitivity with respect to the variable

defined on the domain and not the boundary. Thus, despite the fact that

the phase field method is basically a shape optimization method different

from topology optimization, the sensitivity analysis framework developed by

topology optimization can be applied to the phase field method. A disad-

vantage of the method is the thickness of the front domain corresponding to

the actual boundary of the object. It must have a thickness including sev-

eral grids to represent smooth motion of the boundary. This is not a serious
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problem in a 2D problem but cannot be overlooked in 3D problems.

Since above methods were mainly developed through linear elastic static

and dynamic problems, another physical problem should be solved to confirm

the utility of the methods. We choose electromagnetic wave propagation

as the second target physical problem. First, the 2D method is a useful

way to analyze a polarized in-plane wave device, especially in the field of

photonics. Thus, the drawback of the phase field method with respect to

3D analysis is not serious. Second, optimization of the electromagnetic wave

device is mainly done by topology optimization as mentioned at the start of

the introduction. The phase field method can easily follow this analysis due

to its compatibility with topology optimization. Moreover, few studies have

been reported on using the phase field method to solve the electromagnetic

problem.

In this research, we study the phase field method for shape optimization

of electromagnetic wave propagation. First, we review the phase field method

for shape optimization proposed in [55]. The structural shape is represented

by the phase field function defined in the design domain containing the opti-

mal configuration. The numerical computation is performed over the whole

domain as the distribution optimization problem of two phase materials, as

in conventional topology optimization. We optimize the phase field function

by using a time-dependent reaction diffusion equation called the Allen-Cahn

equation. An artificial double-well potential used in the equation is derived

from sensitivity analysis to move the front in the direction decreasing the ob-

jective function. Then Maxwell’s equations are used as the state equations.

We explain the four types of 2D or 2.5D (axisymmetric) optimization prob-
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lems in this paper. Two are classical topics, photonic crystal design based

on the Bloch theory and photonic crystal wave guide design, and two are re-

cent topics, design of dielectric left-handed metamaterials and dielectric ring

resonators. We perform sensitivity analysis for each problem to construct

the optimization procedure. The numerical results are finally shown for each

problem to show the validity of the proposed method.

2. Phase field method for shape optimization

2.1. Phase field method

We define a phase field function ϕ(x) over an entire analysis domain to

represent the phase of the local points therein, as shown in Fig.1. From a

physical point of view, the phase field function provides the average phase of

the local points. Consider a closed system composed of two phases, one of

which corresponds to the value α of the phase field function while the other

corresponds to the value β (α < β). We represent the boundary of each

phase as a smooth function that interpolates the different values ϕ, which we

term the “diffuse interface”. The Van der Waals free energy of the system is

given by

F (ϕ) =

∫
Ω

(
ε2

2
|∇ϕ|2 + P (ϕ)

)
dx, (1)

where ε > 0 is a coefficient determining the effect of each term. The first term

represents the interaction energy term of the field in mean field theory, and

the second term represents a double well potential with the value P ′(α) =

P ′(β) = 0. The double well potential indicates that there are lower free

energy values with minima corresponding to each phase.
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Figure 1: Examples of the phase field function. (a) A 2D domain represented by the phase

field function. (b) A 1D illustration of the phase field function.

Next, we consider the time-dependent evolution equation of the phase

field function ϕ. The change of the phase field function with respect to time

is assumed to be linearly dependent upon the direction in which the free

energy function is minimized:

∂ϕ

∂t
= −K(ϕ)

δF (ϕ)

δϕ
, (2)

where K(ϕ) is a variation rate function. Substituting Eq.(1) into Eq.(2), we

obtain
∂ϕ

∂t
= K(ϕ)

(
ε2∇2ϕ− P ′(ϕ)

)
. (3)

Eq.(3) is known as the Allen-Cahn equation [39]. According to this equation,

the front moves in its normal direction at a speed determined by the difference

between each minimum of the double well potential P (ϕ) and the curvature

of the diffuse interface as follows [57, 58, 59]:

v = s +
1

t
H + O

(
1

t2

)
, t >> 1, (4)

7



where s is the speed due to the difference between each minimum of the dou-

ble well potential P (ϕ), and H is the mean curvature of the diffuse interface.

If the potential has equal minima, the motion is only governed by the mean

curvature.

2.2. Domain representation of the target domain in the phase field method

for shape optimization

We use a general shape optimization problem to explain the phase field

method. Let Ω be the domain that varies during the optimization process,

with the state of the domain Ω represented by some partial differential equa-

tions. The boundary ∂Ω of Ω is divided into two boundaries, a boundary

∂ΩD with Dirichlet boundary conditions and a boundary ∂ΩN with Neumann

boundary conditions. The state variable u is calculated based on the state

equations that have these boundary conditions. We introduce the extended

design domain D that contains Ω. Here, a set of admissible shapes in D can

be represented as

Uad = {Ω ⊂ D | Ω ∈ Rd}. (5)

Thus, the shape optimization problem for Ω is defined as

minimize
Ω∈Uad

J(Ω), (6)

where J(Ω) is a functional with respect to state variable u whose value

depends on the shape of Ω.

We represent the shapes of optimized domains using a phase field function

as shown in Fig.2. The phase field function ϕ(x)(0 ≤ ϕ ≤ 1) is defined in the

domain D. We consider a setting where the domain Ω1 (x ∈ D | ϕ(x) = 1)

corresponds to the optimized shape Ω and the domain Ω0 (x ∈ D | ϕ(x) =

8



0) corresponds to D \ Ω. However, this setting is insufficient because a

diffuse interface region exists when the phase field method is used. Let ξ

represent the diffuse interface region. The domain representation of D is

then formulated as

ϕ = 1 ⇐⇒ x ∈ Ω1,

0 < ϕ < 1 ⇐⇒ x ∈ ξ,

ϕ = 0 ⇐⇒ x ∈ Ω0,

(7)

where

(Ω1 ∪ ξ) ⊃ Ω and (Ω0 ∪ ξ) ⊃ D \ Ω. (8)

That is, the original domain Ω is represented as a subset of the union of

Ω1 and ξ. In the above setting, the position of the boundary ∂Ω is unclear

except that it lies in ξ. However, as explained in Section 2, the diffuse

interface region becomes very thin when ε is very small, in which case ξ can

be regarded as approximately representing ∂Ω. We can easily pick out a clear

shape in a plot by choosing an arbitrary contour value such as ϕ = 0.5 in the

diffuse interface.

To achieve optimization of Ω in the phase field method, we consider the

distribution of a physical property of the target domain as the design variable

and clip the shape of the domain from the physical property distribution. Let

us consider a domain with a phase field function ϕ defined over it, and the

state u is dominated by a PDE having a term with coefficient A(ϕ) that is

a function of ϕ. The three states Ω1, Ω0 and ξ are considered in this domain

according to Eq.(7). Ω1 is filled with a material whose physical property

is A, and Ω0 is assumed to be filled with a material having a very small

one that mimics a void to avoid singularities in the calculation. In addition,
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the material in the diffuse interface ξ has a virtual physical property using

an interpolation function E(ϕ) defined in the range Emin ≤ E(ϕ) ≤ Emax.

Accordingly, we represent the distribution of the physical property E∗ of the

entire domain as

E∗(ϕ) =


Emax, if x ∈ Ω1.

E(ϕ) (Emin < E(ϕ) < Emax), if x ∈ ξ.

Emin, if x ∈ Ω0.

(9)

Ω

D
\D Ω

∂Ω

(a) An original domain

ξ(0<φ <1 )

Ω1(φ =  1 )

D Ω0 (φ =  0)

(b) The domain represented

by the phase field function

Figure 2: The domain representation by the phase field function

2.3. Evolution of the phase field function

The phase field function evolves with a virtual time t in the interval t1 ≤

t ≤ t2, corresponding to a descent step of the function in the optimization

problem. The evolution equation is formulated as
∂ϕ

∂t
= κ∇2ϕ− P ′(ϕ), (t1 ≤ t ≤ t2),

∂ϕ

∂n
= 0 on ∂D,

(10)
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where κ = ε2 is a positive coefficient of the diffusion term and P (ϕ) is a dou-

ble well potential. As explained in Section 2, when the phase field function

follows Eq.(10), the diffuse interface moves in a normal direction with the

velocity determined by the difference between the minima of the double well

potential. The double well potential P (ϕ) is determined by sensitivity anal-

ysis to achieve motion in a direction that reduces the value of the objective

function. The conditions that the double well potential P (ϕ) must satisfy

are as follows:

P (0) = 0, P (1) = aJ ′ (ϕt1) , P ′(0) = P ′(1) = 0 (a > 0), (11)

where J ′(ϕ) is the sensitivity of the objective function with respect to ϕ,

ϕt1 is the value of ϕ at time t1 and a is its positive coefficient. A sketch

of the double well potential is shown in Fig.3. Since the function evolves

in the direction of the smaller minimum of the double well potential, the

objective function can be minimized in the same way as for conventional

steepest-descent methods.

Moreover, since the sensitivity distribution depends on the interpolation

function E(ϕ) in Eq.(9), the boundary motion of the proposed methodol-

ogy depends on the interpolation function the same way as with topology

optimization.
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Note that some methods have been proposed that apply the perimeter

minimization of the phase field method to perimeter control of topology op-

timization methods [48, 51]. We remark that the primary difference between

these methods and the proposed methodology is in their origin and func-

tions. Since the aforementioned methods came from topology optimization,

which updates the density function based on sensitivity analysis, nucleation

of holes in the target structure is possible. Conversely, the proposed method-

ology aims for the same outcome using the level set method for shape opti-

mization, whose roots are in classical shape optimization based on boundary

variation. Thus, there are no hole nucleation mechanisms in our method.

Because of this characteristic, the proposed methodology has an initial de-

pendency unlike the topology optimization.

3. Phase field method for dielectric domain optimization in elec-

tromagnetic wave propagation

3.1. Domain representation

In the phase field method, the shape of the dielectric domain is repre-

sented as the distribution of the phase field function. The optimization is
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performed by representing the physical property as a function of the phase

field function ϕ. The relative permittivity over the design domain ϵ is ex-

pressed as the function of the phase field function ϕ, (0 ≤ ϕ ≤ 1) using the

permittivity of the original dielectric material ϵ1 and that of air ϵ0 according

to Eq.(9). The optimal shape of the dielectric domain can then be specified

as a distribution in ϕ. Both ϵ0 and ϵ1 are assumed to be isotropic. The

interpolation function used in the phase field interface is decided according

to the target problem.

3.2. Equations of state

The 3D vector Helmholtz equations are the equations of state representing

resonance-mode wave propagation within the dielectric domain with relative

permittivity ϵ and the same permeability as that of open space. Assuming

a time harmonic solution with angular frequency ω, we write the Helmholtz

equation for the electric field E derived from Maxwell’s equation as

∇× (∇×E) + ϵ
ω2

c2
E = 0, (12)

where c is the speed of light. Conversely, the Helmholtz equation for the

magnetic field H is written as

∇×
(

1

ϵ
∇×H

)
+

ω2

c2
H = 0. (13)

H and E can be calculated from the following Maxwell-Ampère equation

without the current density term:

∇×H = ϵ
∂E

∂t
. (14)

The following boundary conditions are introduced for the domain gov-

erned by the above equations depending on the target problem. We show
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only the formulations with respect to the electric field are shown here. By

replacing E by H , we can applied them to the magnetic field.

Floquet periodic boundary condition:

E = Esrce
−jk·rper on Γpe, (15)

First-order absorbing boundary condition:

n× (∇×E) + ikn× (n×E) = 0 on Γab, (16)

First-order absorbing boundary with incident wave:

n× (∇×E) + ikn× (n×E) = −2ikn× (n×Einc) , (17)

Perfect electric (magnetic) wall: E × n = 0 on Γpw. (18)

where Esrc is the electric field vector on the source boundary in the periodic

boundary condition, k is the wave number vector with respect to the coordi-

nate system, rper is a vector perpendicular to the periodic boundaries with a

magnitude equal to the distance between them, n is the unit vector normal

to the boundary, k is the wave number in free-space and Einc is the incident

electric field vector.

3.3. Optimization problems

We now apply the optimization method to designing photonic crystal

unit cells, photonic crystal wave guides, dielectric left-handed metamaterials

(LHMs) and dielectric ring resonators.

3.3.1. Design of photonic crystal

Our first case study is designing the unit cell of a 2D photonic crystal [60],

which is the classical problem in designing dielectric devices for electromag-

netic wave propagation first discussed in [61]. In this problem, we consider
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periodic structures that extend along the z direction as shown in Fig.4. The

shape of a unit cell on the xy plane is designed to prevent light propagation

from all directions in a certain frequency range. We limit the target wave to

a transverse-magnetic (TM) wave with an electric field only in the z direction

and a magnetic field only in the xy plane (E = [0, 0, Ez]
T , H = [Hx, Hy, 0]T ).

We assume that the square unit cell has the mirror symmetrical shape on

the horizontal center line, vertical center line and diagonal center line. Due

to the symmetry, the wave vectors k are considered on only the irreducible

Brillouin zone [60] shown in Fig.4. The design domain is also set to this zone.

That is, the distribution of the dielectric material is optimized there, and the

resulting shape is repeated in other areas of the unit cell.

z y

x

Χ

Μ

Γ y

x

Periodic dielectric material

Design target

Figure 4: An outline of a 2D photonic crystal composed of dielectric columns homogeneous

along the z direction and its unit cell. The triangle in the unit cell represents the Brillouin

zone.

The photonic band gap is calculated as the gap between the upper and

the lower eigenfrequencies of the target order in every possible k in the irre-
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ducible Brillouin zone. The calculation is performed by solving the Helmholtz

equation in Eq.(12) only for Ez as the eigenvalue problem under the Floquet

periodic boundary condition in Eq.(15) on 2D domain. We evaluate the per-

formance of the photonic crystal using the absolute difference between the

two dimensionless frequencies formulated as (ωtarget+1 − ωtarget) d/2πc [1, 4],

where ωtarget and ωtarget+1 represent the lower and upper angular eigenfre-

quencies of the optimized gap and d is the length of the unit cell. (On the

other hand, the band gap is evaluated as a relative value by dividing the gap

by the sum of the maximum value of the lower frequency and the minimum

value of the upper frequency in [5]).) Thus, we define the objective function

for photonic crystal design as maximizing the gap between the eigenvalues

Λ = ω2. The optimization is formulated as the following unconstrained prob-

lem:

minimize J1(ϕ) = −[min{Λtarget+1(ϕ,k)} − max{Λtarget(ϕ,k)}]. (19)

This objective function contains the effects minimizing the maximum value

of the target order eigenvalue and maximizing the minimum value of the tar-

get+1 order eigenvalue independently of the existence of the gap. Thus, if

there is no gap in the target structure, the optimization decreases the “band

crossing” represented as a positive objective function. After the objective

function becomes zero, which means the band crossing is zero, the objec-

tive function becomes negative and the band is generated. Note that the

described objective function works for cases where the upper band lies above

the lower band for all k-values, that is, where the target and target+1 order

eigenvalues can be distinguished. If not, numerical techniques are required

to specify these eigenvalues.
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3.3.2. Design of photonic crystal wave guide

Second, we study design optimization of the photonic crystal wave guide.

The design domain is set to the corner of the L-shaped photonic crystal

wave guide as shown in Fig.5. This problem was also studied in the early

stage of electromagnetic wave propagation optimization [2]. In this problem,

we optimize the distribution of the dielectric material for the target wave,

which is limited to a TM wave as in the first example. The calculation

is performed by solving the Helmholtz equation in Eq.(12) only for Ez as a

frequency response problem for the input wave in a 2D domain. For designing

photonic crystal wave guides, we use the integrated time-averaged Poynting

vector in the specified domain for the objective function. By summing the

Poynting vector corresponding to several frequencies in the optimization, the

optimization problem is formulated as the unconstrained problem

minimize J2(ϕ) =
i∑
m

Ĵ2i(ϕ)

=
i∑
m

∫
D

C1(x)Re(Ei × H̄i)dx,

. (20)

where m represents the number of frequencies considered in the optimization,

Ei and Hi are the electric and magnetic fields corresponding to the i-th input

frequencies, C1(x) is a coefficient function denoting the location of the target

domain and the component of the Poynting vector, Re(·) and Im(·) represent

respectively the real and imaginary parts of the variable and the bar expresses

the conjugate.
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Figure 5: An outline of a 2D photonic crystal waveguide composed of dielectric columns

homogeneous along the z direction.

3.3.3. Design of dielectric left-handed metamaterials

As a case study dealing with a recent topic in optimizing electromagnetic

wave propagation, we consider the design of a dielectric 2D LHM with neg-

ative permeability studied in [62]. Dielectric LHMs have an advantage over

conventional ones using metallic split-ring resonators or thin wires in terms

of avoiding metallic loss and wider effective frequency regions. The LH be-

havior can be observed in periodic dielectric media as shown in Fig.4. A Mie

resonance mode occurring at a certain frequency provides the LH character-

istic for periodic media (e.g. [63, 64, 65]). In this problem, the wave is a

transverse-electric (TE) wave with a magnetic field only in the z direction

and electric field only in the xy plane (E = [Ez, Ey, 0]T , H = [0, 0, Hz]
T ).

We analyze the device with the unit cell model considering periodicity. The
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Helmholtz equation for the magnetic field H simplified to a TE wave is

solved on the domain as a frequency response problem for a wave incident

from the left. The right side is considered as an output side. We set a first-

order absorbing boundary condition to both the input and output sides. A

perfect electric wall is set to the upper and the lower sides to represent the

periodicity. To evaluate the performance of the LHM, we use the following

effective permeability [66] formulated by the S-parameters:

µeff = neffZeff, (21)

where

neff =
1

kd
cos−1

{
1

S21

(1 − S11
2 + S21

2)

}
, (22)

Zeff =

√
(1 + S11)2 − S21

2

(1 − S11)2 − S21
2 , (23)

and k is the wave number, d is the length of a unit cell, neff is the effec-

tive refractive index and Zeff is the effective impedance. S11 and S21 are

S-parameters formulated as

S11 =

∫
Γin

(E −Einc
1 ) ·Einc

1 ds∫
Γin

|Einc
1 |2ds

, (24)

S21 =

∫
Γout

E ·Esc
2 ds∫

Γout
|Esc

2 |2ds
, (25)

where Γin and Γout are the input and output boundaries of the wave corre-

sponding to ports 1 and 2 respectively, and Einc
1 and Esc

2 are incident and

scattering electric fields on the input and output boundaries respectively.

The objective function is formulated to make the real or imaginary part of
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the effective permeability by minimizing each as follows:

minimize J3(ϕ) = Re(µeff) or Im(µeff). (26)

3.3.4. Design of dielectric ring resonator

The above three design problems are performed in a 2D domain. As a

2.5D (axisymmetric) design problem, we perform the cross-sectional design

of dielectric ring resonators in a cylindrical coordinate system studied in [67].

The optical modes, set up in these devices by emissions from input light, form

circular continuous closed beams governed by internal reflections along the

boundary of the resonator as shown in Fig.6(a). The mode shape with the

circular electric field distribution is called a whispering-gallery (WG) mode.

This type of resonator has potential applications to low-threshold micro-

cavity lasers and light-matter systems for quantum networking [68, 69, 70].

Optical resonators exploiting WG modes have attained high performance

levels such as high quality factor (Q factor), which measures the inverse

of the energy decay rate, and low mode volume, which signifies the spatial

confinement of the light [69].
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Figure 6: (a) An outline of a dielectric ring resonator. (b) The analysis and design domain

in cylindrical coordinates.

In this problem, TM waves are considered as emissions. We use cylin-

drical coordinates to model a WG ring resonator centered on the origin in

free space as illustrated in Fig.6(b). The coordinate system consists of the

axial, azimuthal, and radial coordinates. We treat the vertical cross-sectional

device shape in the z-r plane as the design target and obtain the final axisym-

metric form by generating the solid of revolution. The Helmholtz equation

for the magnetic field H is solved as an eigenvalue problem in the cylindrical

coordinate system. To suppress spurious modes in the analysis, we introduce

a weak penalty term [71] to yield the following modified equation used in

[72]:

∇×
(

1

ϵ
∇×H

)
− p∇ (∇ ·H) +

ω2

c2
H = 0, (27)

where p is a coefficient. The first term describes perfect magnetic conduction
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and the latter term first-order absorption on the boundary. The state vari-

able is the set comprising the time-dependent radial, azimuthal, and axial

components of the magnetic field vector H(r, t). We factorize the azimuthal

dependence from the variable to obtain

H(r) = eiMϕ[Hr(r, z), iHϕ(r, z), Hz(r, z)]T , (28)

where M is the azimuthal mode order.

The performance criteria in designing a WG ring resonator are the Q

factor and mode volume. In calculating the Q factor, we consider only the

radiation loss, for which Qrad is calculated as follows [69, 73]:

Qrad =
Re(f)

2Im(f)
. (29)

In the analysis for the domain surrounded by the perfect matched layer

(PML) domain, the real part of the frequency represents the total energy

of the domain, whereas the imaginary part represents the rate of energy

absorption by the PML domain, i.e. the radiation loss (Chapter 5 in [74]).

In addition, the mode volume is formulated as [69, 73]

Vmode =

∫
D
ϵ|E|2dx

max(ϵ|E|2)
. (30)

During optimization, we target the following three tasks:

1. Maximizing the Q factor associated with emissions as expressed by

Eq.(29).

2. Minimizing the mode volume as expressed by Eq.(30).

3. Specifying the emission wavelength λ = c/Re(f).
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We first fulfill task 3 by introducing the corresponding equality constraint.

Assuming normalized eigenmodes H (
∫
D
|H|2dx = 1) in the eigenfrequency

analysis, the total electric energy over the analysis domain equals the square

of the angular eigenfrequency (
∫
D
ϵ|E|2dx = Re(ω)2) [75, 76]. That is, by

pre-specifying the emission wavelength and azimuthal mode order, both nu-

merators in the expressions for the Q-factor and mode volume are constant

during optimization. Thus, the objective functions for Task 1, JQ, and Task

2, JV , and the equality constraint h for Task 3 are formulated as

minimize
ϕ

JQ(ϕ) = Im(f), (31)

or

minimize
ϕ

JV (ϕ) = −max(ϵ|E|2), (32)

subject to

h(ϕ) = λ− λ0 = 0, (33)

with λ0 denoting the specified wavelength.

3.4. Sensitivity analysis

The gap of the double well potential P (ϕ) is set based on sensitivity

analysis of the objective function with respect to ϕ, which is the function

defined on D. Here, we show only the results of the sensitivity analysis and

explain the detailed derivation in the appendix. The sensitivity of the i-th

eigenvalue Λi used in the objective function in Eq.(19) is given by

Λ′
i(ϕ) = −ϵ′(ϕ)

Λi

c2
Ei ·Ei, (34)
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where Ei is the i-th eigenvector. As explained in the appendix, the sensitivity

of the eigenvalue can be calculated without adjoint variables.

Note that, when the eigenvalue is repeated, it is not differentiable in

the normal sense. In this case, only directional derivatives can be obtained

[77, 78].

The sensitivity of the Poynting vector in the specified domain in Eq.(20)

is calculated as

Ĵ2
′
(ϕ) = −ϵ′(ϕ)

ω2

c2
E · p, (35)

where p is the adjoint variable calculated from the following adjoint equa-

tions:∫
D

C1 ·
1

2
Re

{
v ×

(
− 1

jωµ
∇×E

)
+ E ×

(
− 1

jωµ
∇× v

)}
dx

+

∫
D

(∇× v) · (∇× p) dx−
∫
D

ϵ(ϕ)
ω2

c2
v · pdx−

∫
Γ

n · {v × (∇× p)} ds = 0

,

(36)

n×∇× p + ikn× n× p = 0 on Γab and Γinc. (37)

The sensitivity of the S-parameters used in calculating the effective per-

meability in Eq.(21) is calculated with

S ′
11(ϕ) = − 1∫

Γin
|Einc

1 |2ds
(∇×H) ·

(
ϵ′(ϕ)

ϵ2
∇×H

)
, (38)

S ′
12(ϕ) = − (∇× p) ·

(
ϵ′(ϕ)

ϵ2
∇×H

)
, (39)
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where p is the adjoint variable calculated from the adjoint equations

1∫
Γout

|Esc
2 |2ds

∫
Γout

v ·Esc
2 ds

+

∫
D

(∇× v) · (∇× p) dx−
∫
D

ϵ(ϕ)
ω2

c2
v · pdx−

∫
Γ

n · {v × (∇× p)} ds = 0,

,

(40)

n×∇× p + ikn× n× p = 0 on Γin and Γout, (41)(
− 1

jωµ
∇× p

)
× n = 0 on Γpw. (42)

In the case of the ring resonator design problem, the sensitivity of the

eigenfrequency is required in Eq.(31), which is calculated from the sensitivity

of the i-th eigenvalue Λi given by

Λ′
i(ϕ) = − (∇×Hi) ·

(
ϵ′(ϕ)

ϵ2
∇×Hi

)
. (43)

The maximum local energy density used in the objective function in

Eq.(32) is calculated by using a function C2(x) having the value 1 at the

maximum energy point and the value 0 at other points:

∂ max(ϵ|E|2)
∂ϕ

=
∂C2(x)ϵ|Ei|2

∂ϕ

=
∂C2(x)µ|Hi|2

∂ϕ
.

. (44)

Thus, its sensitivity is obtained as

∂ max (ϵ|Ei|2)
∂ϕ

= −
∫
D

(∇× p) ·
(
ϵ′(ϕ)

ϵ2
∇×Hi

)
, (45)
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where p is the adjoint variable calculated from the following adjoint equations∫
D

C2(x)v · pdx−
∫
D

(∇× v) ·
(

1

ϵ
∇× p

)
dx

−
∫
D

Λi

c2
v · pdx−

∫
D

p(∇ · p)(∇ · v)dx−
∫
Γ

n · {v × (∇× p)} ds = 0

,

(46)

n×∇× p + ikn× n× p = 0 on Γab. (47)

4. Numerical implementation

4.1. Algorithm

Based on the above formulation, the optimization algorithm is constructed

as follows.

1. Set the initial value of the phase field function ϕ expressing the initial

shape of domain Ω.

2. Iterate the following procedure until convergence.

(a) Calculate the state variable u and adjoint state p with respect

to ϕn at the n-th iteration by solving the state equation and the

adjoint equation using the finite element method.

(b) Calculate the objective function and constraints.

(c) Calculate the sensitivity of the objective function and prepare the

evolution equation for ϕ.

(d) Calculate the updated value of ϕ by solving the evolution equation.

3. Obtain the optimal shape of Ω expressed as the optimal distribution of

ϕ.

26



4.2. Setting the evolution equation

We set the double well potential satisfying Eq.(11). We set it to be

P (ϕ) = W (x)w(ϕ) + G(x)g(ϕ), (48)

where

w(ϕ) = ϕ2(1 − ϕ2), g(ϕ) = ϕ3(6ϕ2 − 15ϕ + 10), (49)

which are the same as those used in [79]. w(ϕ) is a function satisfying w(0) =

w(1) = w′(0) = w′(1) = 0, and g(ϕ) is one with g(0) = 0, g(1) = 1 and

g′(0) = g′(1) = 0. Sketches of these functions are shown in Fig.7. W (x)

and G(x) are coefficients of these functions. W (x) determines the height

of the wall of the double well potential, which affects the thickness of the

diffuse interface. W (x) is set to be 1
4

here. The value of G(x) is chosen to be

G(x) = aJ ′ (ϕt1) as explained section 2.3. To avoid complicated parameter

settings due to the order difference of J ′(ϕ) depending on the optimization

problem, we first normalize the sensitivity by dividing by its L2-norm, and

the new coefficient η is set as

G(x) = η
J ′(ϕt1)

||J ′(ϕt1)||
. (50)

Substituting Eqs.(48)-(50) into Eq.(10), we obtain

∂ϕ

∂t
= κ∇2ϕ− ∂

∂ϕ
(W (x)w(ϕ) + G(x)g(ϕ))

= κ∇2ϕ−
(

1

4
w′(ϕ) + η

J ′(ϕt1)

||J ′(ϕt1)||
g′(ϕ)

)
= κ∇2ϕ + ϕ(1 − ϕ)

{
ϕ− 1

2
− 30η

J ′(ϕt1)

||J ′(ϕt1)||
(1 − ϕ)ϕ

}
,

(t1 ≤ t ≤ t2).

(51)
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Figure 7: Sketches of functions (a) w and (b) g.

4.3. Numerical method for the evolution equation

The finite difference method is used to solve Eq.(51) numerically. We

discretize the time derivative term using the forward Euler scheme and solve

the equation with the explicit scheme. The time step ∆t is restricted by the

following Courant-Friedrichs-Lewy (CFL) condition for stable convergence in

the 2D case:

κ

(
∆t

(∆x)2
+

∆t

(∆y)2

)
≤ 1

2
, (52)

where ∆t > 0 is the time step and ∆x and ∆y are space steps in the x and

y directions respectively.

Aside from the above CFL condition, we must consider the convergence

of the reaction term. Here, the reaction term is discretized by a so-called

semi-implicit scheme [79], in which forward time terms are partly included.

In the 2D case, let ϕn
i,j be the value of ϕ at the n-th iteration at the point

xi,j. The scheme then leads to the following discretization:
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ϕn+1
i,j − ϕn

i,j

∆t
= κ

(
ϕn
i−1,j − 2ϕn

i,j + ϕn
i+1,j

(∆x)2
+

ϕn
i,j−1 − 2ϕn

i,j + ϕn
i,j+1

(∆y)2

)

+

ϕn+1
i,j (1 − ϕn

i,j)r(ϕn
i,j) for r(ϕn

i,j) ≤ 0

ϕn
i,j(1 − ϕn+1

i,j )r(ϕn
i,j) for r(ϕn

i,j) > 0,

(53)

where

r(ϕn
i,j) = ϕn

i,j −
1

2
− 30η

J ′(ϕt1)

||J ′(ϕt1)||
ϕn
i,j(1 − ϕn

i,j). (54)

This discretization guarantees that ϕ remains in the interval 0 ≤ ϕ ≤ 1 even

when the time step is large. Although the forward time term ϕn+1 is included

in the right side of the above equation, ϕn+1 can obviously be calculated easily

without solving a linear system, and the computational cost is almost equal

to that for the ordinary explicit scheme.

4.4. Handling of equality constraint

Normally, we use the sensitivity in Eq.(50) to choose the double well po-

tential gap that decides the moving direction of the phase field interface.

This way, the constraint is embedded in the objective function using the La-

grange multiplier method [18]. However, when handling equality constraints

like Eq.(33), the solution of Eq.(51) oscillates around the limit of the equality

constraint and does not converge easily to the optimal solution. Here, as a

special numerical technique for handling the equality constraint, we decide

the potential gap based on sequential linear programing (SLP). SLP is one of

the simplest methods that can handle the equality constraint problem direc-

tory. Let us consider the minimization of the objective function J(X) with
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an equality constraint h(X) = 0 with respect to a design variable vector

X = [X1, X2, ..., Xn]. In SLP, the increment ∆X of the design variable X

is obtained as the solution of the following linear programming problem:

minimize J(X) + ∇J(X)T∆X, (55)

subject to

h(X) + ∇h(X)T∆X = 0, (56)

∆Xlow ≤ ∆Xi ≤ ∆Xup for i = 1, ..., n, (57)

where ∆Xlow and ∆Xup are the lower and upper bounds of ∆Xi and the

upper suffix T denotes the transpose.

It is only in designing dielectric ring resonators that the above linear

programming problem is solved in each optimization iteration using the dis-

cretized phase field function as the design variable, and the obtained incre-

ment is used to form the double well potential gap. Note that in this method

the obtained increment of the phase field function works only on the phase

field interface. Thus, unlike the ordinary SLP method, the equality con-

straint might not always be satisfied, although this method worked well in

the numerical example of this study.

5. Numerical examples

To confirm the validity of the proposed method, we study the four numer-

ical examples described in Section 3. In all examples, we regard a material

representing a void as air with relative permittivity ϵ0 = 1. We ignore the

frequency dependence of the relative permittivity of the dielectric material.
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The relative permeabilities of the both air and the dielectric material are set

to 1. The coefficient of normalized sensitivity η in Eq.(50) is set to 20. At

each iteration, we perform a finite element analysis of the state equation and

one update of the evolution equation for the phase field function by solving

the finite difference equation of the semi-implicit scheme. The time step ∆t

is set to be 0.9 times the limit of the Courant number. All optimal con-

figurations are plotted as the distribution of the phase field function of the

optimal results. All finite element analyses are performed with a commercial

software, COMSOL Multiphysics, using the second-order Lagrange element.

The design domain is discretized by the square element that is used for both

finite element and finite difference analyses. We set the evaluation point of

the phase field function on the center of the square element. Let the grid in-

terval of the finite difference mesh be l. The diffusion coefficient κ in Eq.(51)

is based on the value 0.1 × l2.

5.1. Design of photonic crystal

We perform the first optimization for designing the unit cell of a photonic

crystal. One unit cell is modeled with the finite element method. The length

d of the unit cell is set to 1 as a dimensionless parameter. Since we assume

mirror symmetries in the unit cell, we only regard the area shown in Fig.8 as

the design domain, and resulting configurations are copied to other areas on

the unit cell. In the design domain, the relative permittivity is formulated

as a function of the phase field:

ϵ(ϕ) =

{
1

ϵ0
+ ϕ

(
1

ϵ1
− 1

ϵ0

)}−1

. (58)
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The relative permittivity ϵ1 of the dielectric material is set to 8.9 (alumina).

The unit cell domain is meshed with 100 × 100 square elements. The diffu-

sion coefficient κ is set to 0.5 × l2. We calculate the wave vector k of the

Floquet periodic boundary condition in Eq.(15) in the triangular irreducible

Brillouin zone, with a step size of 0.05. We maximize the band gap above

the first-, second- and third-order eigenfrequencies. The initial shape and

the corresponding dispersion diagram are shown in Fig.8. The initial shape

does not have any band gaps in the depicted frequency range.
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Figure 8: (a) Initial shape for the photonic crystal design problem. The inset triangle

shows the irreducible Brillouin zone and the design domain. (b) The dispersion diagram

of the initial shape.

Because the first and second eigenvalues and the first, second and third

eigenvalues are repeated at points X and M respectively in the initial shape,

we calculated all possible directional derivatives and accepted the best one

for updating the density function at the first iteration to identify target eigen-
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values. Figure 9 shows the convergence histories of the objective functions

until convergence with 50 iterations. The variation of the objective func-

tion from negative to positive indicates generation of the band gap through

the first few optimization iterations. Figure 10(a), (c) and (e) shows the

3 × 3 array of the optimal configuration of the unit cell of the last iteration

for the three cases. Figure 10(b), (d) and (f) shows the calculated dispersion

diagram for the shape. Each dispersion diagram shows the dimensionless fre-

quency ωd/2πc. The band gaps were certainly obtained above the specified

eigenfrequency, although the optimization started with no band gap shape.

The optimal configuration for the first band gap is nearly 0.2 circle radius,

which is the reference shape in [60]. The optimal configurations of the second

and third band gaps were also similar to the one proposed by [4], although

the size of each part is different because of the difference in permittivity of

the dielectric material. These comparisons also confirm the validity of the

proposed method. The increases in the objective function after extracting

black and white shapes are 0.84%, 0.60% and 1.83%. These values show the

modeling error caused by the shape representation of the field function.

Fortunately, our optimization did not encounter any eigenvalue crossing

problem [80] around the target band gap order in any examples studied.

However, it could occur depending on the initial shape. One way to overcome

this is introducing a so-called mode tracking technique (e.g. [80]).
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Figure 9: Convergence history of the objective function of the photonic crystal optimiza-

tion.
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Figure 10: Optimal configurations and dispersion diagrams. (a) and (b) First band. (c)

and (d) Second band. (e) and (f) Third band.

35



5.2. Design of photonic crystal wave guide

For the second optimization we design the shape of the corner part of

a photonic crystal wave guide. The analysis domain is shown in Fig.11.

The dielectric material is located periodically over the domain, and the wave

guide is constructed by removing it according to the intended wave path.

The length d of the unit cell is 0.57µm. The incident wave enters from the

port on the left bottom side, and the output port is set on the upper right

side. The design domain is set on the corner of the wave guide. We use the

upper right part of the domain as the reference domain for evaluating the

Poynting vector. In the design domain, we formulate the relative permittivity

the same way as in the previous example using Eq.(58). We set the relative

permittivity ϵ1 of the dielectric material to 11.4 (GaAs). The design domain

is meshed with 200 × 200 square elements. Other domains are meshed with

triangular elements. The diffusion coefficient κ is set to 0.2 × l2.

Since the preferred range of the dimensionless frequencies ωd/2πc is from

0.35 to 0.42 for this wave guide [60], those of the incident waves are set to

0.38, 0.39 and 0.40 as a middle range. We set the electric field of the incident

wave to the constant value 1 on the boundary. The initial shapes are set

to two types as shown in Fig.12 considering the initial dependency of the

proposed method. The first is a periodic dielectric material, which does not

propagate the wave. The second is the reference shape reported in [60], which

directs wave propagation in the specified range.
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Figure 11: Analysis domain for designing the photonic crystal wave guide including the

design domain.
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(a) (b)

Figure 12: Two initial shapes for designing the photonic crystal wave guide. (a) Periodic

dielectric materials. (b) Reference shape.

Figure 13 shows convergence histories of objective functions until 50 iter-

ations. Figure 14 shows optimal configurations after 41 iterations from the

initial shape shown in Fig.12(a) and 44 iterations from the initial shape shown

in Fig.12(b). The objective functions calculated from Fig.14 (a) and (b) are

−3.35× 10−16W and −3.36× 10−16W (2.8% improvement from the reference

shape), which are similar results. Although the optimization started from

the shape that does not direct wave propagation, the optimal shapes that

propagate the wave with the specified frequency were obtained in Fig.14 (a).

Figure 15 shows the electric field distribution for the incident wave with the

dimensionless frequency 0.39 in both optimal configurations. We observed

a smooth bending of the electric field in both cases. Figure 16 shows the

integrated Poynting vector in the reference domain when the dimensionless

frequency of the incident wave is from 0.35 to 0.42. Both shapes achieve

slightly higher values than the reference shape in the middle frequency range
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from 0.38 to 0.40. The changes in the objective function after extracting

black and white shapes are 0.30% and 0.60%.

-4x10-16

-3x10-16

-2x10-16

-1x10-16

0

1x10-16

0 10 20 30 40 50

From Fig.12 (a)
From Fig.12 (b)

Iteration

O
bj

ec
tiv

e 
fu

nc
tio

n

Figure 13: Convergence history of the objective function of the photonic crystal wave

guide optimization.

(a) (b)

Figure 14: Optimal configurations for the photonic crystal wave guide. (a) From initial

shapes shown in Fig.12 (a). (b) From initial shapes shown in Fig.12 (b).

39



(a) (b)

Figure 15: Electric field distribution with the incident wave with dimensionless frequency

0.39. (a) Optimal configuration shown in Fig.14 (a). (b) Optimal configuration shown in

Fig.14 (b).
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Figure 16: Integrated Poynting vectors in the reference domain of the optimal and reference

configurations

5.3. Design of dielectric left-handed metamaterial

For the third optimization we design a dielectric LHM. The design target

is assumed to be a periodic arrangement of dielectric poles as in the first
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example. The analysis domain is set as a square unit cell including the

inner square design domain shown in Fig.17. The length d of the unit cell is

120µm. Assuming mirror symmetry along the x and y axes, the optimization

is performed on the upper right side of the design domain. We set the length

of the design domain to 80µm. To represent the periodicity along the y

direction, we set a perfect electric wall at the top and bottom sides of the

domain. Both sides are given a first-order absorbing boundary with a wave

incident on the left side and scattered to the right side along the x direction.

We formulate the relative permittivity in the design domain as

ϵ(ϕ) = ϵ0 + ϕ (ϵ1 − ϵ0) . (59)

The relative permittivity ϵ1 of the dielectric material is set to 100 − i as

a virtual material including a little loss for the numerical stability as done

in [62]. The analysis domain is meshed with 120 × 120 square elements.

The electric field of the incident wave is set to the constant value 1 on the

boundary. We set the target frequency, which we use as the frequency of the

incident wave, to 0.3 THz. The initial shape is set to a 60µm diameter circle.

The diffusion coefficient κ is set to 0.1× l2. We first minimize the imaginary

part of the effective permeability. Then, we optimize the real part.
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Figure 17: Analysis model for designing the dielectric LHM including the design domain.

Figure 18 shows convergence histories of the real and imaginary part of

the effective permeability. We performed 94 and 16 iterations for the imag-

inary and real part optimizations respectively. Figure 19 shows the optimal

configurations for the imaginary and real parts of the effective permeabil-

ity. These results are similar to those obtained in [62]. Figure 20 shows

the magnetic field distributions and electric field directions in these optimal

configurations. Figure 21 shows the effective permeability for both configu-

rations obtained by varying the frequency of the input wave from 0.2 THz

to 0.5 THz. The imaginary and real parts of the effective permeability take

the negative peaks at the specified frequency. So-called Mie resonance modes

are observed in Fig.20 (c) and (d), which has a localized distribution of the

magnetic field on the center of the dielectric material. This is the main mode

for the dielectric LHM. We see in Fig.20 (a) and (b) that although the hot

spot of the magnetic field is slightly off the center of the dielectric material

after we optimize the imaginary part, the hot spot is exactly in the center

after we optimize the real part. The change in the objective function after
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extracting black and white shapes is 1.85%.
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Figure 18: Convergence history of the effective permeability of the dielectric metamaterial

optimization.

(a) (b)

Figure 19: Optimal configurations obtained after optimizing (a) the imaginary part and

(b) the real part of the effective permittivity.
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(a) (b)

(c) (d)

Figure 20: Distribution of magnetic field and arrows indicating the direction of the electric

field for the 0.3-THz incident wave. (a) and (c) are results from the optimal configuration

shown in Fig.19 (a). (b) and (d) are results from the optimal configuration shown in

Fig.19.
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5.4. Design of dielectric ring resonator

As our final numerical example, we optimize a dielectric ring resonator.

To perform iterating numerical optimization based on the finite element

method, we need the target WG eigenmode to be automatically selected

from the numerous resulting eigenmodes. We introduce the two-step anal-

ysis proposed in [72] to specify the target mode during the iteration using

the analysis domains shown in Fig.22. First, we solve the small closed finite-

element model composed of a device surrounded by a perfect magnetic wall,

as drawn in Fig.22(a), to obtain the eigenfrequency of the target WG mode.

The first eigenmode of the model corresponds to the target WG mode. Sec-

ond, we solve for the original model surrounded by PML domains, as drawn in

Fig.22(b), specifying the target eigenfrequency obtained by the closed model.

In the design domain, the relative permittivity is formulated the same

way as in the third example using Eq.(59). Optimizations are performed

with specified TM modes (p = 1, M = 11). The design domain is meshed
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with 75 × 100 square elements. The other domains are meshed with tri-

angular elements. The diffusion coefficient κ is set to 0.1 × l2. Assuming

horizontal mirror symmetry of the optimal shapes, we only optimize the up-

per half of the design domain. Thus, the 3750 design variables are updated

during optimization. The medium constituting the resonator is assumed to

be GaAlAs with ϵ1 = 11.28. We maximize the Q factor and minimize the

mode volume V using Eqs.(31) and (32), respectively. The phase field func-

tion is updated by using the SLP based method of Eqs.(55)-(57) to handle

the equality constraint directory. The initial shape for both optimizations

is shown in Fig.23. We chose it for the ease of mode volume optimization

since its initial dependency is stronger than that of the Q factor optimization

because Eq.(32) handles the local maximum energy.
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Figure 22: Analysis domain for designing the dielectric ring resonator including the design

domain. (a) Closed model only used for finding the frequency corresponding to the target

WG mode. (b) Open model used for the optimization.
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Figure 23: Initial shapes for designing the dielectric ring resonator.

Figures 25 and 26 show the optimal configuration, the distribution of

the electric energy density ϵ|E|2 and the electric field intensity |E|2 for each

optimization. These figures are shown in the design domain, which is a 1.5

µm × 2 µm box whose left side corresponds to the center axis. The procedure

needed 100 and 30 iterations until convergence. The resulting Q factor, mode

volume and wavelength are Qrad = 6.000 × 107, Vmode = 1.760 × 10−19, λ =

1207nm and Qrad = 3.943 × 104, Vmode = 4.767 × 10−20, λ = 1200nm in

Figs.25 and 26 respectively. These results are similar to those obtained in

[67], although the two-step optimization composed of topology optimization

and phase field in [67] differs from the proposed framework. In figure 25, the

optimal shape has a large smooth convex form covering the electric-field hot

spot to reduce radiation losses. In contrast to high-Q-factor shape, the low-

mode-volume optimal shape shown in Fig.26 has a small concave form near

the center to enhance the maximum electric energy. The variations of the

Q factor and constraint after extracting black and white shapes are 4.49%

and 0.00%, respectively, in Fig.25. The variation of the mode volume and
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constraint after extracting black and white shapes are 12.15% and 1.67%,

respectively, in Fig.26. Since the center of the optimal configuration is very

thin, the density of one element has a large effect on the performance of the

shape with optimal mode volume.
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Figure 24: Convergence history of (a) Q factor and (b) mode volume of the dielectric ring

resonator optimization.
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(a) (b) (c)

Figure 25: Optimal shapes obtained by maximizing Qrad. (a) Optimal shape. (b) Electric

field intensity |E|2 distribution. (c) Electric energy density ϵ|E|2 distribution.

(a) (b) (c)

Figure 26: Optimal shapes obtained by maximizing Vmode. (a) Optimal shape. (b) Electric

field intensity |E|2 distribution. (c) Electric energy density ϵ|E|2 distribution.
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6. Conclusion

We have developed the phase field method for shape optimization in the

context of designing dielectric devices for electromagnetic wave propagation.

The proposed method achieves shape optimization using an implicit domain

representation function that accepts the topology change as in the level set

method. Comparing with the level set method, our method has an advantage

in terms of simplicity, since it does not require extra re-initializing operations

of the domain-representing function. We performed four successful optimiza-

tions using this method.

The most important advantage of the proposed method is its compati-

bility with the topology optimization. The domain representation and sen-

sitivity analysis are identical to those of topology optimization in their for-

mulation. Thus, the numerous electromagnetic wave propagation problems

studied through topology optimization can be solved with the phase field

method. Since the proposed methodology has initial dependency, the op-

timization can be more effective by generating initial shapes with topology

optimization as performed in [67].

The drawback of the phase field method is the thickness of the front

domain corresponding to the actual boundary of the object. Thus, errors in

shapes and performances are inevitable in the actual and numerical models.

We studied the error in each optimization by depicting black and white shapes

in the optimal configuration. The error is under about 5% when one element

is small enough. However, when it is not, the error becomes large as in the

last example. In this case, a finer mesh or adaptive mesh method should be

used. However, since the proposed method can generate an optimal shape
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from a very different one, we can say it has enough performance as the

optimization methodology.
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Appendix A. Sensitivity analysis

We derive the objective functions with respect to the phase field function

based on [81]. We use coefficients A and B to represent the Helmholtz

equations in general form with respect to the electric field E and the magnetic

field H :

∇× (A∇× u) + B
ω2

c2
u = 0. (A.1)

where u = E, A = 1 and B = ϵ for the electric field representation and

u = H , A = 1
ϵ

and B = 1 for the magnetic field representation. The weak

form of this equation on the domain D and its boundary Γ are represented

as

a(u,v) − ω2b(u,v) − c(u,v) = 0, (A.2)
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where

a(u,v) =

∫
D

(∇× v) · (A∇× u) dx, (A.3)

b(u,v) =

∫
D

B
1

c2
v · udx, (A.4)

c(u,v) =

∫
Γ

n · {v × (∇× u)} ds, (A.5)

and v is the test function. When the wave excitation with frequency ω exists,

the state equation is solved deterministically with respect to the variable

u. However, when the eigenfrequency ω is calculated without any wave

excitation, the above equation is solved as an eigenvalue problem. In that

case, ω2 and u represent the eigenvalue and the eigenmode respectively.

First, we consider the deterministic problems with wave excitation. The

general objective function is defined as the functional on the domain D:

J(ϕ) =

∫
D

j (u) dx. (A.6)

The derivative of this function in the direction θ is then

⟨J ′(ϕ), θ⟩ =

∫
D

j′ (u) ⟨u′(ϕ), θ⟩ dx

=

∫
D

j′ (u)vdx

. (A.7)

where v = ⟨u′(ϕ), θ⟩. Using the state equation and the objective function,

and considering the test function of the state equation as the adjoint variable

p, the Lagrangian is

L(ϕ,u,p) =

∫
j(u)dx + a(u,p) − ω2b(u,p) + c(u,p). (A.8)
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Using this, the derivative of the objective function can be expressed as

⟨J ′(ϕ), θ⟩ = ⟨L′(ϕ), θ⟩

=

⟨
∂L

∂ϕ
(ϕ,u,p), θ

⟩
+

⟨
∂L

∂u
(ϕ,u,p), ⟨u′(ϕ), θ⟩

⟩
=

⟨
∂L

∂ϕ
(ϕ,u,p), θ

⟩
+

⟨
∂L

∂u
(ϕ,u,p),v

⟩
.

(A.9)

Consider the case where the second term is zero. The second term is⟨
∂L

∂u
,v

⟩
=

∫
j′(u)vdx + a(v,p) − ω2b(v,p) − c(v,p) = 0. (A.10)

The second term of Eq.(A.9) can be ignored when the adjoint state p satisfies

the above adjoint equation. On the other hand, replacing the test function

v by the adjoint variable p, the derivative of Eq.(A.2) with respect to ϕ in

the θ direction is

a(v,p)−ω2b(v,p)−c(v,p)+

∫
D

(∇× p)·(A′(ϕ)∇× u) θdx−
∫
D

B′(ϕ)
ω2

c2
p·uθdx = 0.

(A.11)

Substituting Eq.(A.11) into Eq.(A.10), we obtain∫
j′(u)vdx =

∫
D

(∇× p) · (A′(ϕ)∇× u) θdx−
∫
D

B′(ϕ)
ω2

c2
p ·uθdx. (A.12)

Substituting Eq.(A.12) into Eq.(A.7), the derivative of the objective function

is

J ′(ϕ) = (∇× p) · (A′(ϕ)∇× u) −B′(ϕ)
ω2

c2
p · u. (A.13)

Substituting the objective function in Eq.(20), u = E, A = 1 and B = ϵ into

Eqs.(A.13) and (A.10), we obtain Eqs.(35) and (36). When we use the sensi-

tivity of the S-parameter to the magnetic field H in the objective function in

Eq.(26), we use A = 1
ϵ

and B = 1. When the objective function is S12, we di-

rectly obtain Eqs.(39) and (40) by using Eq.(A.13) and substituting Eq.(25)
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into Eq.(A.10). On the other hand, when the objective function is S11, we

obtain an equation similar to the state equation (13) with the boundary con-

dition in Eqs.(16)-(18) obtained by substituting Eq.(24) into Eq.(A.10). This

equation represents the response for the incident wave Einc/
∫
Γin

|Einc
1 |2ds on

the boundary Γin. The result is calculated by multiplying 1/
∫
Γin

|Einc
1 |2ds

by the state variable. Thus, the sensitivity in Eq.(38) is obtained without

calculating the adjoint variable.

Next, we consider the eigenvalue problem without any wave excitation.

When the state equation (A.2) is solved to obtain the i-th-order eigenvalue

Λi = ω2
i and eigenmode ui, and the objective function is Λi, we define the

Lagrangian considering the test function of the state equation as the adjoint

variable p:

L(ϕ,ui,p) = Λi + a(ui,p) − Λib(ui,p) − c(ui,p). (A.14)

The derivative of L is obtained the same way as with Eq.(A.9). Here, the

second term that should become zero is⟨
∂L

∂ui

,v

⟩
= ⟨Λ′

i(ui),v⟩ (1 − b(ui,p)) + a(v,p) − Λib(v,p) − c(v,p) = 0,

(A.15)

where v = ⟨u′
i(ϕ), θ⟩. Here, when v = p = ui, the right side of the above

equation becomes zero. Thus, the optimization of the eigenvalue is self-

adjoint. However, the derivative of the eigenvalue in Eq.(A.2) is

a(v,p) − Λib(v,p) − c(v,p) − ⟨Λ′
i(ϕ), θ⟩ b(ui, p)

+

∫
D

(∇× p) · (A′(ϕ)∇× ui) θdx−
∫
D

B′(ϕ)
Λi

c2
p · uiθdx = 0.

(A.16)

Substituting p = ui into the above equation, the sensitivity of the eigenvalue
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is obtained as

Λ′
i(ϕ) = (∇× ui) · (A′(ϕ)∇× ui) −B′(ϕ)

Λi

c2
ui · ui. (A.17)

Substituting ui = Ei, A = 1, and B = ϵ and ui = Hi, A = 1
ϵ

and B = 1 into

Eq.(A.17), the sensitivities in Eqs.(34) and (43) are obtained respectively.

Note that when designing the dielectric ring resonator, the operator c(u,v)

in Eq.(A.2) is replaced by
∫
D
p(∇ · p)(∇ · v)dx +

∫
Γ
n · {v × (∇× u)} ds in

the derivation. However, the same result is obtained since these terms do

not depend on the phase field function ϕ.

We represent the objective function as an eigenmode as follows:

J(ϕ) =

∫
D

j (ui) dx. (A.18)

The derivative of this function in the θ direction is then

⟨J ′(ϕ), θ⟩ =

∫
D

j′ (ui) ⟨u′
i(ϕ), θ⟩ dx

=

∫
D

j′ (ui)vdx.

(A.19)

The Lagrangian is defined considering the test function of the state equation

as the adjoint variable p as follows:

L(ϕ,ui,p) = J(ϕ) + a(ui,p) − Λib(ui,p) − c(ui,p). (A.20)

The derivative of L is obtained the same way as with Eq.(A.9). Here, the

second term that should become zero is⟨
∂L

∂ui

,v

⟩
=

∫
j′(ui)vdx−⟨Λ′

i(ui),v⟩ b(ui,p)+a(v,p)−Λib(v,p)−c(v,p) = 0.

(A.21)
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The term ⟨Λ′
i(ui),v⟩ becomes zero from the eigenvalue definition. Thus, the

above equation is simplified as follows:∫
j′(ui)vdx + a(v,p) − Λib(v,p) − c(v,p) = 0. (A.22)

When the adjoint state p satisfies the above adjoint equation, the second

term of Eq.(A.9) can be ignored. Substituting Eq.(A.16) into Eq.(A.21), we

obtain the following equation:∫
j′(ui)vdx

−b(ui, p)

{∫
D

(∇× ui) · (A′(ϕ)∇× ui) θdx−
∫
D

B′(ϕ)
Λi

c2
ui · uiθdx

}
+

∫
D

(∇× p) · (A′(ϕ)∇× ui) θdx−
∫
D

B′(ϕ)
Λi

c2
p · uiθdx = 0.

(A.23)

Substituting Eq.(A.23) into Eq.(A.19), the derivative of the objective func-

tion is

J ′(ϕ) = − b(ui,p)

{
(∇× ui) · (A′(ϕ)∇× ui) −B′(ϕ)

Λi

c2
ui · ui

}
+ (∇× ui) · (A′(ϕ)∇× p) −B′(ϕ)

Λi

c2
ui · p

(A.24)

Substituting the objective function in Eq.(32), ui = Hi, A = 1
ϵ

and B = 1

into Eq.(A.24) and Eq.(A.22) and replacing the operator c(u,v) by
∫
D
p(∇ ·

p)(∇ · v)dx +
∫
Γ
n · {v × (∇× u)} ds, we obtain Eqs.(45) and (46).
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