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Abstract 

To understand the pressure-adaptation mechanism of deep-sea enzymes, we studied the 

effects of pressure on the enzyme activity and structural stability of dihydrofolate reductase 

(DHFR) of the deep-sea bacterium Moritella profunda (mpDHFR) in comparison with those 

of Escherichia coli (ecDHFR). mpDHFR exhibited optimal enzyme activity at 50 MPa 

whereas ecDHFR was monotonically inactivated by pressure, suggesting inherent 

pressure-adaptation mechanisms in mpDHFR. The secondary structure of apo-mpDHFR 

was stable up to 80 ºC, as revealed by circular dichroism spectra. The free energy changes 

due to pressure and urea unfolding of apo-mpDHFR, determined by fluorescence 

spectroscopy, were smaller than those of ecDHFR, indicating the unstable structure of 

mpDHFR against pressure and urea despite the three-dimensional crystal structures of 

both DHFRs being almost the same. The respective volume changes due to pressure and 

urea unfolding were −45 and −53 ml/mol at 25 ºC for mpDHFR, which were smaller (less 

negative) than the corresponding values of −77 and −85 ml/mol for ecDHFR. These volume 

changes can be ascribed to the difference in internal cavity and surface hydration of each 

DHFR. From these results, we assume that the native structure of mpDHFR is loosely 

packed and highly hydrated compared with that of ecDHFR in solution. 

Key words: cavity, hydration, deep sea, dihydrofolate reductase, molecular adaptation, 

Moritella profunda.  
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1. Introduction 

There are many microorganisms living in extreme environments (high or low 

temperature, high salt concentration, high or low pH, and high hydrostatic pressure), but 

their molecular adaptation mechanisms to such environmental conditions remain unclear. 

Dihydrofolate reductase (DHFR), which catalyzes NADPH-dependent reduction of 

dihydrofolate (DHF) to tetrahydrofolate (THF), is an excellent example for studying the 

molecular adaptation mechanism of microorganisms. Since THF is a precursor of the 

cofactor required for biosynthesis of purine nucleotides and some amino acids, DHFR 

mediates cell housekeeping and therefore might be a key protein for adaptation of 

microorganisms to their environment. In 1998, Dams et al. [1] and Pieper et al. [2] 

determined the crystal structure of DHFR (homo-dimer) from the hyperthermophilic 

bacterium, Thermotoga maritima, and DHFR (monomer) from the Dead Sea halophilic 

arcaeon, Haloferax volcanii, respectively. The backbone structures of these DHFRs are 

almost the same as those of DHFRs from mesophilic bacteria such as Escherichia coli [3, 

4], Lactobacillus casei [3], Bacillus anthracis [5], and Staphylococcus aureus [6]. Recently, 

the crystal structures of DHFR from the deep-sea piezophilic and psychrophilic bacterium, 

Moritella profunda, which was isolated from Atlantic sediments collected off the West 

African coast at a depth of 2,815 m [7], were determined for the apo form and the 

DHFR-NADPH-methotrexate ternary complex [8]. We also determined the crystal structure 
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of the DHFR-NADP+-folate ternary complex of this enzyme (PDB code: 2zza) and found 

that its structure almost overlaps with that of the same complex in E. coli DHFR (Figure 1). 

However, X-ray crystallography alone is not sufficient for elucidating the molecular 

mechanism enabling adaptation of DHFR to the environment, and therefore, solution 

structures, stability, and functions of DHFR from various extreme environments should be 

examined. 

(Figure 1) 

In previous studies [9–11], we compared the structural stability and enzyme function of 

DHFRs from several deep-sea bacteria and ambient atmospheric species. Two deep-sea 

DHFRs from Shewanella violacea strain DSS12 (Ryukyu Trench, depth of 5,110 m [12]) 

and S. benthica strain DB21MT-2 (Mariana Trench, depth of 10,898 m [13]) showed optimal 

enzyme activity at approximately 100 MPa [9, 11], despite having structural stability similar 

to that of DHFRs from ambient atmospheric Shewanella species and obviously lower than 

that of E. coli DHFR [11]. However, DHFRs from other deep-sea bacteria such as 

Photobacterium profundum strain SS9, M. japonica strain DSK1, and S. benthica strain 

DB6705 show pressure-sensitive activity [10, 11]. On the other hand, DHFR from S. 

oneidensis strain MR-1, collected in the Oneida Lake at atmospheric pressure [14], clearly 

shows pressure tolerance in enzyme activity to about 100 MPa [11]. Thus, no definite 

correlation has been observed between the optimal pressure for DHFR enzyme activity and 
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habitat pressure of the parent bacterium. Therefore, further comparative studies on the 

structure, stability, and function of DHFRs from deep-sea and ambient atmospheric bacteria 

is necessary for elucidating the molecular adaptation mechanism of this enzyme to 

high-pressure environments. 

In the present study, we investigated the effects of pressure on the enzyme activity and 

structural stability of DHFR of deep-sea bacterium M. profunda (mpDHFR) living at a depth 

of 2,815 m in comparison with those of E. coli (ecDHFR). High pressure study is a novel 

approach to obtain the volume changes due to unfolding of protein and enzyme kinetics 

[15]. To elucidate the molecular adaptation of mpDHFR to the high-pressure environment, 

volumetric properties of both proteins are discussed with a focus on the internal cavity and 

surface hydration. 

 

2. Materials and Methods 

2.1. Cloning, Overexpression, and Purification of mpDHFR 

Genomic DNA of M. profunda was kindly provided by Dr. Nogi of JAMSTEC. Cloning 

and construction of the overexpression plasmid of mpDHFR were carried out by the same 

methods previously used for DHFR from another deep-sea bacterium, S. violacea [9]. DNA 

sequences of the primers used for PCR amplification are 

5’-AGGAACTTCCGTGATTGTTTCCATGATTGC-3’ (mpDHFR-F) and 
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5’-GAGGATCCCTACTTCACTCGTTCAAGTAAA-3’ (mpDHFR-R). mpDHFR was purified 

according to the same procedures used for other deep-sea DHFRs [10]. Whole-cell lysates 

and purified DHFR proteins (15 μg) were separated on a 15% SDS-PAGE gel. The 

concentration of mpDHFR was determined from absorbance at 280 nm using a molar 

extinction coefficient of 27,600 M–1cm–1, which was estimated from the fluorescence 

intensity of fully unfolded mpDHFR in a 6 M guanidine hydrochloride solution. 

2.2. Purification of ecDHFR 

ecDHFR was purified as described previously [16] and fully dialyzed against 20 mM 

Tris-hydrochloride (pH 8.0) containing 0.1 mM EDTA and 0.1 mM dithiothreitol before use. 

The protein concentration was determined from absorbance at 280 nm using a molar 

extinction coefficient of 31,100 M–1cm–1 [17]. 

2.3. Circular Dichroism Spectrometry 

Far-ultraviolet circular dichroism (CD) spectra of ecDHFR and mpDHFR were measured 

using a J-720W spectropolarimeter (Jasco Inc., Tokyo, Japan). Temperature was 

maintained at 15 ºC using a Peltier-controlled thermobath (PTC-348W, Jasco Inc.). Solvent 

composition was 20 mM Tris-hydrochloride (pH 8.0) containing 0.1 mM EDTA and 0.1 mM 

dithiothreitol. This buffer was used for all experiments except for the activity measurements. 

Protein concentration was 10 μM. 

2.4. Fluorescence Spectrometry 
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Fluorescence spectra of both DHFRs were measured using a FP-750 spectrofluorometer 

(Jasco Inc.) with an excitation wavelength of 290 nm and an emission wavelength of 

300–450 nm. Temperature was maintained at 15 ºC with a circulating thermobath (NESLAB 

RTE-110, Thermo Fischer Scientific, Waltham, MA). The solvent was the same as in the 

CD measurements. Protein concentration was 0.3 and 0.5 μM for ecDHFR and mpDHFR, 

respectively. Spectra intensity was normalized to 1 μM protein. 

2.5. High Pressure Enzyme Assay 

Pressure dependence of the enzyme activity of mpDHFR was measured using a V-560 

spectrophotometer (Jasco Inc.) equipped with a high-pressure spectroscopic cell unit (Syn 

Corporation PCI-400, Kyotanabe, Japan) and a hand pump (Syn Corporation HP-500DG) 

as described previously [18]. Temperature was maintained at 25 ºC with a circulating 

thermobath (NESLAB RTE-5, Thermo Fischer Scientific). The solvent used was 20 mM 

Tris-hydrochloride (pH 7.0) containing 0.1 mM EDTA and 0.1 mM dithiothreitol, 250 μM 

NADPH, and 250 μM DHF. Concentrations of DHF (Sigma-Aldrich, St. Louis, MO) and 

NADPH (Oriental Yeast, Tokyo, Japan) were determined spectrophotometrically using 

molar extinction coefficients of 28,000 M–1cm–1 at 282 nm and 6,200 M–1cm–1 at 339 nm, 

respectively [19]. The enzyme reaction was started by mixing the DHF solution with the 

enzyme solution containing NADPH at final concentrations of 1–2 nM DHFR. The initial 

velocity of the enzyme reaction was calculated from the time course of absorbance at 370 
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nm with a differential molar extinction coefficient at each pressure (e.g., 3,180 and 3,710 

M-1 cm-1 at 0.1 and 250 MPa, respectively) [18]. The initial velocity of double independent 

measurements was averaged for each pressure. The activation free energy (ΔG*) and the 

activation volume (ΔV*) of the enzyme reaction were calculated according to the following 

equation, which is applicable to the saturated substrate concentrations [18]: 

ΔV* = ∂ΔG* / ∂P = ∂(–RT ln kcat) / ∂P = ∂(–RT ln v) / ∂P   (1) 

where R is the gas constant, T is temperature, P is pressure, and v is the initial velocity of 

the enzyme reaction. 

2.6. Thermal Unfolding 

Thermal unfolding of both DHFRs was monitored by CD measurements using a 1-mm 

path length cell. Temperature was increased at a rate of 45 ºC·h−1 using a PTC-348W 

Peltier-controlled heat block (Jasco Inc.) and monitored with a thermistor placed in the 

heating block. Protein concentration and solvent composition were the same as those for 

the CD measurements in Section 2.3. The reversibility of thermal unfolding of both DHFRs 

was examined by measuring enzyme activity at 25 ºC before and after incubation at 65 ºC 

for 10 min. 

2.7. Pressure Unfolding 

Pressure unfolding of both DHFRs was monitored by fluorescence spectra using a 

FP-750 spectrofluorometer (Jasco Inc.) equipped with the same high-pressure system 



 9

used for the activity measurements. Excitation wavelength was 290 nm and emission 

wavelength was 300–450 nm. Temperature was maintained with a circulating thermobath 

(NESLAB RTE-110) and monitored with a sensor inserted directly into the sample solution 

after decompression. Concentration of ecDHFR and mpDHFR was 3 and 5 μM, 

respectively. Protein solutions were equilibrated for 30 min at each pressure before the 

fluorescence spectra were measured. Reversibility of pressure unfolding was confirmed to 

be >95 % from the spectra after decompression. A center of fluorescence spectral mass, 

CSM, was calculated according to the following equation, 

CSM = ∑λi Fi / ∑Fi        (2) 

where λi and Fi are the wavenumber represented in cm1 and fluorescence intensity, 

respectively, at wavelength i [20]. The obtained CSM data were directly fitted to the 

two-state unfolding model, native (N)  unfolded (U), by nonlinear least-squares 

regression analysis as follows: 

yobs = { yN + yU exp(–ΔGu / RT)} / {1 + exp(–ΔGu / RT)}   (3) 

where ΔGu is the change in Gibbs free energy due to unfolding, and yN and yU are the CSM 

values of the native and unfolded forms, respectively. yN and yU at a given pressure were 

estimated by assuming the same linear dependence in the transition region as in the pure 

native (pre-transition region) and unfolded states (post-transition region). The pressure 

dependence of the Gibbs free energy change was calculated as follows: 
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ΔGu = ΔGºP + PΔVP        (4) 

where ΔGºP is the Gibbs free energy change of unfolding at 0 MPa and ΔVP is the partial 

molar volume change due to pressure unfolding. ΔGºP can be regarded as the Gibbs free 

energy change at atmospheric pressure, since the pressure difference of 0.1 MPa is 

negligibly small in this experiment. The pressure at the midpoint of the transition (ΔGu = 0) 

is defined as Pm. 

2.8. Urea Unfolding at Atmospheric Pressure 

Equilibrium unfolding of both DHFRs induced by urea (ultra pure product, MP 

Biomedicals, Solon, OH) was monitored at 25 ºC by the molar ellipticity at 222 nm, [θ]222, 

and the fluorescence spectra as described previously [16, 11]. Protein concentration was 

about 20 and 1 μM for CD and fluorescence measurements, respectively. All samples were 

fully equilibrated for 24 h at each denaturant concentration before measurement of CD and 

fluorescence. The observed [θ]222 and CSM values (41 points) were fitted directly to the 

two-state unfolding model (equation 3) to calculate the Gibbs free energy change due to 

urea unfolding, ΔGu. Urea concentration dependence of ΔGu was calculated as follows [21]: 

ΔGu = ΔGºU – m [urea]       (5) 

where ΔGºU is the Gibbs free energy change due to unfolding in the absence of denaturant, 

and the slope, m, is the parameter reflecting the cooperativity of the transitions. The urea 

concentration at the midpoint of the transition is defined as Cm. 
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2.9. Pressure Dependence of Urea Unfolding 

Pressure dependence of urea unfolding was monitored by fluorescence spectra of 

DHFR solutions under various urea concentrations and pressures as described above. The 

concentration of ecDHFR and mpDHFR was 3 and 5 μM, respectively. Protein solutions 

were equilibrated for 24 h at each urea concentration and for 10 min at 0.1, 50, 100, 150, 

200, and 250 MPa before fluorescence measurement. CSM values calculated from the 

spectra were plotted against urea concentration at each pressure and fitted to equations 3 

and 5. The obtained ΔGºU values were plotted against pressure, P, to calculate the volume 

change due to urea unfolding, ΔVU, as follows: 

ΔGºU = ΔGºUP + PΔVU       (6) 

where ΔGºUP is the Gibbs free energy change due to unfolding in the absence of urea at 0 

MPa (substantially at atmospheric pressure). 

 

3. Results 

3.1. Structure of mpDHFR 

The purified mpDHFR protein showed a single band on SDS-PAGE gel (Figure 2). Mass 

spectroscopic and crystallographic data indicated that this protein had no additional 

residues in the N-terminal region unlike other deep-sea DHFRs previously reported [10, 11], 

enabling us to directly compare this protein with ecDHFR. 
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(Figure 2) 

Recently, we determined the crystal structure of the mpDHFR-NADP+-folate ternary 

complex (PDB code: 2zza) and found that the backbone structure of mpDHFR almost 

overlaps with that of ecDHFR in the same ternary complex (Figure 1). The solution 

structure of both DHFRs was compared using far-ultraviolet CD spectra in the presence 

and absence of NADPH or DHF at 15 ºC and pH 8.0 (Figure 3A). The CD spectrum of 

apo-mpDHFR showed a similar peak intensity to that of ecDHFR but clearly blue-shifted to 

207 nm with a shoulder around 215 nm. The different CD spectra do not necessarily mean 

a difference in the secondary structures of both DHFRs but would be ascribed to breaking 

the Trp47–Trp74 exciton coupling in ecDHFR [22], because the two tryptophan residues 

are substituted by phenylalanine and valine in mpDHFR, and the CD spectrum of ecDHFR 

was significantly affected by substitution of tryptophan residues [23]. Single amino acid 

substitutions at other residues could also affect the CD spectrum of DHFR without 

perturbation of the secondary structure [16, 24, 25]. On the other hand, Evans et al. 

reported that the CD spectrum of apo-mpDHFR has two small peaks, one positive and one 

negative, of almost the same intensity (around 290 and 270 nm, respectively) [26], but we 

could not observe such peaks (Figure S1). The reported peaks may be due to a cofactor 

remaining in the sample solution because the peak intensities are too large for the CD 

signals from aromatic side chains, and the CD spectrum of NADP+ had similar peaks 
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around the corresponding wavelengths (Figure S1). In the present study, the CD spectrum 

of mpDHFR was compared in the presence and absence of NADPH or DHF as shown in 

Figure 3A. Evidently, the CD spectrum of mpDHFR red-shifted to 211 and 212 nm in the 

presence of NADPH and DHF, respectively, and the shoulder disappeared without affecting 

peak intensity. These results suggest that the structure of mpDHFR is slightly modified by 

binding of ligands in solution. 

(Figure 3) 

The tertiary conformation of both DHFRs was further confirmed by fluorescence spectra 

at 15 ºC and pH 8.0 (Figure 3B). mpDHFR showed a smaller peak intensity than ecDHFR 

as expected from the smaller number of Trp residues in mpDHFR (three) than that in 

ecDHFR (five). The peak wavelengths for mpDHFR and ecDHFR at 0.1 MPa were 343 and 

345 nm, respectively, which were shorter than the wavelength of buried Trp residues (~335 

nm). This result suggests that the Trp residues of both proteins are partially hydrated at 0.1 

MPa, with Trp residues of mpDHFR being in slightly more hydrophobic environments than 

those of ecDHFR. From the CD and fluorescence spectra, we have detected no notable 

differences in the secondary and tertiary structures between mpDHFR and ecDHFR in 

solution. 

3.2. Pressure Effect on Enzyme Activity 

To characterize the enzymatic function of deep-sea DHFRs, the pressure dependence 
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of enzyme activity of mpDHFR was examined at 25 ºC and pH 7.0. As shown in Figure 4A, 

the enzyme activity of mpDHFR increased to 120% at 50 MPa as pressure increased and 

decreased rapidly to 45% with further increasing pressure to 250 MPa, which is a similar 

response to the results of Hay et al. [8]. On the other hand, the enzyme activity of ecDHFR 

monotonically decreased as the pressure increased to 250 MPa [10, 18]. Therefore, 

mpDHFR seemed to exhibit a pressure-adaptation mechanism. 

The apparent activation free energy of the enzyme reaction was calculated by equation 

1 and plotted against pressure in Figure 4B, from which activation volume, ΔV*, was 

obtained as listed in Table 1. The ΔV* values of mpDHFR were –8.6 and 8.6 ml/mol below 

and above 50 MPa, respectively. These values were comparable to those of deep-sea 

DHFRs from S. violacea (–8.6 and 5.6 ml/mol) and S. benthica strain DB21MT-2 (–3.5 and 

6.5 ml/mol), suggesting a similar pressure-adaptation mechanism of these piezophilic 

DHFRs at relatively low pressure [11]. 

(Figure 4) (Table 1) 

3.4. Thermal Unfolding 

The thermal stability of ecDHFR and mpDHFR without ligands was evaluated from the 

temperature dependence of far-ultraviolet CD spectra at pH 8.0 and atmospheric pressure. 

As shown in Figure 5A, while the molar ellipticity of ecDHFR around 220 nm increased with 

increasing temperature, that of mpDHFR decreased (became more negative) (Figure 5B). 
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The [θ]222 values of ecDHFR and mpDHFR were plotted against temperature (Figure 5B, 

inset). Evidently, mpDHFR showed abnormal behavior whereby the secondary structure 

increased with increasing temperature, although ecDHFR followed a three-state unfolding 

model as reported previously [27]. On the other hand, Evans et al. reported that molar 

ellipticity at 222 nm conversely increases (becomes less negative) with temperature due to 

thermal unfolding at 30–40 ºC [26]. A possible explanation for this discrepancy is that the 

temperature dependence of the molar ellipticity might be caused by not disruption of the 

secondary structure, but dissociation of the coexisting cofactor as mentioned in Section 3.1 

and shown in Figure S1. This is supported by the fact that the CD spectrum of mpDHFR at 

65 ºC in the report of Evans et al. shows a clear positive peak around 195 nm where the 

random coil structure should have a large negative peak [28], reflecting the considerable 

amount of remaining secondary structures, and that enzyme activity significantly decreases 

after heating at 65 ºC for 10 min (data not shown), as reported by Xu et al. [29].  

This abnormal thermal transition of mpDHFR cannot be explicitly explained at present. 

Aggregation of protein would generally reduce the CD intensity due to the decrease in 

concentration of soluble protein overall the wavelength region observed, but there appears 

an isoellipticity point around 210 nm in CD spectra of mpDHFR as well as ecDHFR (Fig. 5). 

This result suggests that some conformation change or association of mpDHFR occurs at 

high temperature because the small soluble aggregates or oligomers such as protofibrils 
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are known to increase CD intensity [30, 31]. Similar temperature dependence of CD 

spectra was observed for other deep-sea DHFRs from S. violacea and P. profundum (data 

not shown), hence this abnormal temperature dependence of CD may be a common 

character of deep-sea DHFRs. However, this abnormal thermal stability is not the result of 

adaptation to low deep-sea temperature (1–4 ºC), because the optimal growth temperature 

of M. profunda is 2 ºC [7]. Therefore, psychrophilic bacteria would not necessarily contain 

only psychrophilic proteins on the analogy of our finding that enzymes of piezophilic 

bacteria are not necessarily piezophilic [10, 11]. 

(Figure 5)  

3.5. Pressure Unfolding 

The pressure unfolding of ecDHFR and mpDHFR without ligands was examined by 

fluorescence spectra at pH 8.0 and various temperatures (Figure 6). The CSM value of 

ecDHFR showed a clear transition in the pressure region from 200 to 400 MPa, shifting 

slightly to the higher pressure as the temperature decreased (Figure 6A). On the other 

hand, the CSM value of mpDHFR decreased rapidly with increasing pressure below 200 

MPa (Figure 6B), and the transition shifted to lower pressure with an increased 

cooperativity as temperature decreased. These results clearly indicate that mpDHFR is less 

stable against pressure than ecDHFR despite mpDHFR being obtained from a deep-sea 

bacterium. 
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The CSM values were fitted to equations 3 and 4 to calculate thermodynamic 

parameters. There was a good linear correlation between the calculated ΔGu values and 

pressure as shown in the inset of Figure 7, enabling us to determine the Gibbs free energy 

change due to unfolding at 0.1 MPa (ΔGºP), the volume change of pressure unfolding (ΔVP), 

and the midpoint pressure of the transition (Pm). As listed in Table 2, the ΔGºP values of 

mpDHFR (2.9–3.3 kJ/mol) were far smaller than those of ecDHFR (16.5–21.5 kJ/mol), 

indicating the lower structural stability of mpDHFR. The obtained ΔVP values of mpDHFR, 

−(40–50) ml/mol, were less negative than those of ecDHFR, − (64–79) ml/mol, suggesting 

a smaller conformational change of mpDHFR. The temperature dependence of ΔGºP and 

ΔVP values is opposite for ecDHFR and mpDHFR in the temperature range examined, 

although the Pm values were not dependent on the temperature within experimental error, 

suggesting different maximal-stability temperatures of both DHFRs. These ΔGºP values are 

smaller than those for the mpDHFR-folate complex (15.8 ± 4.1 kJ/mol), which was 

estimated at 15 ºC by high-pressure NMR experiments [32], whilst the ΔVP values are 

comparable with those for this complex (−66 ± 19 ml/mol). These results suggest that folate 

binding significantly enhances the stability of mpDHFR whereas it has no substantial 

influence on the volume change, probably due to the small partial molar volume of folate 

compared with that of the protein. 

(Figure 6) (Table 2) 
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3.6. Urea Unfolding under High Pressures 

Before the high pressure study, urea unfolding of mpDHFR and ecDHFR without ligands 

was examined with CD and fluorescence spectra at 25 ºC and pH 8.0 at atmospheric 

pressure. As shown in Figure 7, the [θ]222 and CSM values showed the transitions at the 

lower urea concentration for mpDHFR than for ecDHFR, indicating the less stable structure 

of mpDHFR. The [θ]222 and CSM values were thoroughly fitted to the transition curves 

calculated with equations 3 and 5, confirming that urea unfolding of both DHFRs follows a 

two-state unfolding model. The calculated Gibbs free energy change due to unfolding in the 

absence of urea (ΔGºU), cooperativity of the transition (m), and the midpoint urea 

concentration of the transition (Cm) are listed in Table 3. These values obtained by CD are 

in agreement with those obtained by fluorescence within experimental error, demonstrating 

that the fluorescence method is applicable for examining the pressure effect on urea 

unfolding. The ΔGºU value for mpDHFR, 7.6 ± 0.8 kJ/mol, is smaller than the previously 

reported value, 13.4 kJ/mol, which was measured under different conditions (15 ºC and pH 

7.0 in a phosphate buffer) [30], but close to that (7.9–8.7 kJ/mol) for other three deep-sea 

DHFRs from Shewanella species at 15 ºC in the same buffer [11]. However, these ΔGºU 

values are significantly smaller than those for ecDHFR, 22.5 ± 2.3 kJ/mol, suggesting that 

deep-sea DHFRs are commonly unstable compared with ecDHFR. Furthermore, the small 

m value for mpDHFR indicates that the unfolding transition of this protein is less 
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cooperative than ecDHFR. 

(Figure 7) (Table 3) 

To estimate the volume change due to urea unfolding, we examined the urea 

concentration dependence of the CSM values of both DHFRs under various pressures at 

25 ºC and pH 8.0. As shown in Figure 8, the transition curves of both DHFRs shifted to the 

lower urea concentration with increasing pressure, indicating the significant destabilization 

of the structures by pressure. The thermodynamic parameters, ΔGºU, m, and Cm, were 

calculated by fitting the CSM values to equations 3 and 5 at various pressures except for 

200 and 250 MPa for mpDHFR. The CSM values for the native state of mpDHFR at 100 

and 150 MPa were assumed to be identical to those calculated for the pressure-induced 

unfolding. The ΔGºU and Cm values (Table 3) decreased with increasing pressure, that is, 

high pressure destabilized the structure of both DHFRs, which is consistent with the results 

of the pressure-unfolding experiments (Figure 6 and Table 2). The m value decreased with 

increasing pressure, indicating the diminished cooperativity of the transition under high 

pressure. From the slopes of the ΔGºU–P plots (Equation 6; Figure 8B, inset), the volume 

change due to urea unfolding, ΔVU, was estimated to be −85 ± 7 ml/mol and −53 ± 7 ml/mol 

for ecDHFR and mpDHFR, respectively. This result suggests that the urea-induced 

conformational change is smaller for mpDHFR than for ecDHFR, which is consistent with 

the results from pressure unfolding (ΔVP). These ΔVU values are slightly larger (more 
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negative) than the ΔVP values of the corresponding DHFR obtained for the pressure 

unfolding (Table 2). This is reasonable because in general, proteins are more extensively 

unfolded by urea than by pressure, but the small difference between ΔVU and ΔVP suggests 

that the pressure-unfolded state of both DHFRs is close to the urea-unfolded one.  

(Figure 8) 

 

4. Discussion 

The enzymatic function and structural stability of mpDHFR are significantly different 

from those of ecDHFR, although the crystal and solution structures of both DHFR are 

almost the same. The enzyme activity of mpDHFR is higher under moderately high 

pressure relative to atmospheric pressure, although the activity of ecDHFR monotonically 

decreases with pressure. The thermal stability of mpDHFR is higher than that of ecDHFR in 

the secondary structure, but Gibbs free energy (ΔGºP and ΔGºU) and volume changes (ΔVP 

and ΔVU) due to pressure and urea unfolding of mpDHFR are smaller than those of 

ecDHFR. Elucidation of these findings will give new insight into the molecular adaptation 

mechanisms of proteins to the high-pressure conditions of the deep sea and other extreme 

environments. 

4.1. Effect of Pressure on Function of mpDHFR 

As shown in Figure 4A, pressure dependence of the enzyme activity of mpDHFR is 
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biphasic: the change in sign of ΔV* above and below 50 MPa suggests shifts in the 

rate-limiting step of the enzyme reaction. This behavior was also observed for other 

deep-sea DHFRs of S. violacea and S. benthica strain DB21MT-2 [9–11]. However, the 

pressure dependence of the enzyme activity of deep-sea DHFRs is not simple and 

depends on the parent bacteria and amino acid sequences. Three deep-sea DHFRs from S. 

banthica strain DB6705, P. profundum, and M. japonica showed monotonic decrease of 

enzyme activity by pressure, and another deep-sea DHFR from M. yayanosii showed 

almost constant activity up to 75 MPa [10, 11]. Such pressure tolerance was also observed 

for DHFR from S. oneidensis, which live under ambient atmospheric pressure [11]. Further, 

Dreyfus et al. reported that the pressure dependence of enzyme activity of mammalian 

mitochondrial ATPase is biphasic [33]. Therefore, the biphasic pressure dependence of the 

activity of mpDHFR might not necessarily result from its adaptation to the high-pressure 

environment, but rather incidentally from the different amino acid sequences. In general, an 

enzyme reaction includes many pressure-dependent processes with different activation 

volumes, leading to characteristic pressure dependence of or optimal pressure for enzyme 

activity. The enzyme kinetics of ecDHFR consists of at least five elementary processes; two 

binding steps of cofactor (NADPH) and substrate (DHF), hydride transfer step, and two 

releasing steps of products (NADP+ and THF). It is probable that the enzyme kinetics of 

mpDHFR as well as those of other deep-sea DHFRs follow those of ecDHFR, judging from 



 22

the conserved amino acid residues in the active site. In such processes, the release of 

product (THF) is the rate-limiting step for ecDHFR at atmospheric pressure [17]. We found 

that the hydride transfer of ecDHFR is not the rate-limiting process under high pressure and 

predicted three candidates for the rate-limiting process: two are the releasing processes of 

THF and NADP+, and one is the conformational change of the enzyme [18]. The hydride 

transfer is also known not to be the rate-limiting process for mpDHFR under high pressure 

[8]. Considering the comparable ΔV* values and the pressure-tolerant behavior of enzyme 

activity, any of the three candidates could be the rate-limiting process for mpDHFR as well 

as other deep-sea DHFRs [10, 11]. Understanding the pressure-tolerant function of 

deep-sea DHFRs must be preceded by detailed stopped-flow analysis of enzyme kinetics 

under high pressure and high pressure NMR analysis of enzyme structure. 

4.2. Effect of Pressure on Stability of mpDHFR  

The free energy and volume changes due to unfolding are important measures of the 

stability and structure of a protein, although they are only the difference between the 

corresponding partial quantities in the native and unfolded states. The smaller ΔGºP and 

ΔGºU values of mpDHFR (Tables 2 and 3) clearly indicate that the structural stability of 

mpDHFR against pressure and urea is lower than that of ecDHFR, although the 

three-dimensional backbone structure of both DHFRs is almost the same (Figure 1). The 

smaller ΔVP and ΔVU values of mpDHFR also suggest that its pressure- and urea-induced 
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conformational changes are not very large compared with ecDHFR. The relationship of 

ΔGºP < ΔGºU to ΔVP < ΔVU for both DHFRs is consistent with the general idea that urea and 

guanidine hydrochloride are strong denaturants for inducing large conformational changes 

in protein compared with pressure and thermal unfolding. However, the values of ΔGºP and 

ΔVP are about 90% the ΔGºU and ΔVU values of ecDHFR, suggesting that the 

pressure-unfolded structure might be close to the urea-unfolded one. Such a large 

conformational change by pressure is also expected for mpDHFR since the ΔVP value is 

about 80% of ΔVU. Although this is not clearly recognized at the free energy level, the 

comparable difference between ΔGºP and ΔGºU for mpDHFR and ecDHFR suggests a 

similarity in the pressure- and urea-unfolded structures of mpDHFR. In general, the 

unfolded state is an ensemble of various structures of protein, and even the native state 

includes the unfolded structures although their populations are very small. Judging from the 

ΔGºP (2.9–3.3 kJ/mol) and ΔGºU (7.6–7.9 kJ/mol) values for mpDHFR, about 23 % of the 

pressure-unfolded structure and 4% of the urea-unfolded structure may coexist in the 

native state of this protein at 25 ºC and atmospheric pressure. However, this result does not 

necessarily contradict a two-state unfolding model, since the model is based on two states 

and does not assume two structures. 

The volume changes due to unfolding are directly related to the pressure effects on the 

structure of deep-sea proteins. It is noteworthy that the difference between ΔVP and ΔVU 
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(ΔVU – ΔVP) is about −8 ml/mol for both mpDHFR and ecDHFR since ΔVP is estimated to 

be −45 and −77 ml/mol at 25 ºC for mpDHFR and ecDHFR, respectively, by interpolating 

the temperature dependence of ΔVP (Table 2). Although these estimates involves the large 

experimental errors, this difference suggests that the transition from pressure-unfolded to 

urea-unfolded states is similar for both DHFRs and hence the difference in ΔVU can be 

ascribed mainly to the volume change from the native to the pressure-unfolded state of 

each DHFR. If this is the case, the smaller volume change of mpDHFR would be due 

mainly to its small partial molar volume in the native state compared with that of ecDHFR, 

since the unfolded states due to urea and pressure would not be largely different between 

the DHFRs.  

The partial molar volume (Vº) of a protein in water is determined by the following three 

factors: constitutive atomic volume (Vc), cavity resulting from imperfect atomic packing 

(Vcav), and volume change due to hydration (Vsol) [15, 34, 35]: 

Vº = Vc + Vcav + Vsol       (7) 

Since the constitutive atomic volume is unchangeable before and after unfolding, the 

volume change due to unfolding (ΔVP or ΔVU) results from the modified internal cavity and 

surface hydration as follows: 

ΔVP or ΔVU = Vº (unfolded) – Vº (native) = Vcav + Vsol   (8) 

Cavities contribute positively, and hydration contributes negatively to Vº, and hence the 
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experimentally observed negative values of ΔVP and ΔVU can be ascribed to the decrease 

in cavity and/or the increase in hydration due to unfolding. 

Although it is difficult to distinguish the contributions of cavity and surface hydration, the 

Vcav of a native protein can be estimated from its X-ray structure by rolling a probe sphere 

around an internal atomic surface using the program MOLMOL 

(http://www.mol.biol.ethz.ch/wuthrich/software/molmol). In the present study, the Vcav 

values of mp DHFR (PDB ID: 2zza) and ecDHFR (PDB ID: 1rx2) without ligands were 

estimated at 340 and 270 Å3, respectively, with a probe size of 1.0 Å giving the maximum 

value of the cavities. On the other hand, the accessible surface areas of mpDHFR without 

ligands calculated by the GetArea server (http://curie.utmb.edu/getarea.html) [36] were 

estimated to be 8633 Å2 with a probe size of 1.4 Å, which is slightly larger than that (8542 

Å2) of ecDHFR. These results suggest that the smaller Vº of mpDHFR than that of ecDHFR 

could result from the enhanced surface hydration being dominant over the cavity effect in 

the native structure. Thus, mpDHFR is expected to take on a loosely packed and highly 

hydrated structure in solution, compared with ecDHFR. There is some indirect evidence for 

this hypothesis. Significant pressure and urea-concentration dependences of the 

fluorescence spectra of mpDHFR in the native state (Figures 6 and 7) suggest easy 

accession of solvent molecules to the tryptophan side chains located on the inside of the 

protein molecule. Abnormal thermal stability of mpDHFR (Figure 5) also supports the 
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enhanced hydration in the native structure, which reduces the heat capacity change due to 

thermal unfolding. Since both the cavity and surface hydration are sensitive to amino acid 

side chains, mpDHFR is able to adapt to the high-pressure environment of the deep sea 

without major changes to its backbone structure. 

Investigation of mpDHFR revealed the characteristic effect of pressure on stability and 

enzyme activity, which was different from that of ecDHFR. The proposed hypothesis for the 

adaptation of mpDHFR to pressure should be confirmed by further detailed structural and 

functional analyses. Direct measurements of partial specific volume and compressibility of 

deep-sea DHFRs (currently in progress) will provide the key for solving the molecular 

adaptation mechanisms of deep-sea protein.  
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Figure Legends 

Figure 1: Superimposed drawing of the crystal structure of mpDHFR (black) and 

ecDHFR (gray) in the ternary complex with NADP+ and folate. PDB IDs for mpDHFR 

and ecDHFR are 2zza and 1rx2, respectively [4]. The figure was drawn using PyMol 

[http://www.pymol.org/].  

 

Figure 2: SDS-PAGE of ecDHFR and mpDHFR. Lane 1: molecular weight markers; lanes 

2 and 3: whole protein extracts from E. coli transformants overexpressing ecDHFR and 

mpDHFR, respectively; lanes 4 and 5: purified ecDHFR and mpDHFR, respectively; Acryl 

amide concentration of the gel was 15%. 

 

Figure 3: Far-ultraviolet CD (A) and fluorescence (B) spectra of ecDHFR and mpDHFR 

at pH 8.0 and 15 ºC. The solvent used was 20 mM Tris-hydrochloride containing 0.1 mM 

EDTA and 0.1 mM dithiothreitol. Thin solid line: ecDHFR without ligands; thick solid line: 

mpDHFR without ligands; thick dashed line: mpDHFR with NADPH; and thick dash-dot line: 

mpDHFR with dihydrofolate. 

 

Figure 4: Pressure dependence of relative enzyme activity (A) and activation free 

energy (B) of ecDHFR and mpDHFR at 25 ºC and pH 7.0. The solvent used was 20 mM 
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Tris-hydrochloride containing 0.1 mM EDTA, 0.1 mM dithiothreitol, 250 μM NADPH, and 

250 μM dihydrofolate. Filled circle: ecDHFR (data from Murakami et al. [10]); open circle: 

mpDHFR. Solid lines in panel B were drawn by least-squares linear regression. Error bars 

represent the mean error of duplicate measurements.  

 

Figure 5: Temperature dependence of the far-ultraviolet CD spectra of ecDHFR (A) 

and mpDHFR (B) at pH 8.0. The protein concentrations were 10 μM. Inset of panel B 

shows temperature dependence of the molar ellipticity at 222 nm for ecDHFR and 

mpDHFR. 

 

Figure 6: Pressure dependence of the center of fluorescence spectral mass (CSM) of 

ecDHFR (A) and mpDHFR (B) at pH 8.0 and various temperatures. The proteins were 

equilibrated for 30 min (10 min for mpDHFR at 28.8 ºC only) at each pressure before the 

fluorescence spectra were measured. Panel A: Filled circle, 15.2 ºC; open circle, 20.4 ºC; 

and filled triangle, 27.0 ºC. Panel B: Filled circle, 15.7 ºC; open circle, 20.4 ºC; and filled 

triangle, 28.8 ºC. Solid lines represent the theoretical fit to a two-state unfolding model with 

the parameter values shown in Table 2. The insets show the pressure dependence of the 

apparent Gibbs free energy change due to unfolding (ΔGu). 
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Figure 7: Urea concentration dependence of the molar ellipticity at 222 nm (A) and the 

center of fluorescence spectral mass (CSM) (B) at 25 ºC and pH 8.0. Filled and open 

circles indicate ecDHFR. Filled and open triangles indicate mpDHFR. Solid lines represent 

the theoretical fit to a two-state unfolding model with the parameter values shown in Table 3. 

Inset of panel B shows the urea concentration dependence of the apparent Gibbs free 

energy change due to unfolding (ΔGu).  

 

Figure 8: Urea concentration dependence of the center of fluorescence spectral mass 

(CSM) of ecDHFR (A) and mpDHFR (B) at 25 ºC and pH 8.0 under various pressures. 

The proteins were equilibrated for 24 h at each denaturant concentration for 10 min at each 

pressure before the spectra were measured. Filled circle: 0.1 MPa; open circle: 50 MPa; 

filled triangle: 100 MPa; open triangle: 150 MPa; filled square: 200 MPa; and open square: 

250 MPa. Solid lines represent the theoretical fit to a two-state unfolding model with the 

parameter values shown in Table 3. Inset of panel B shows the pressure dependence of the 

Gibbs free energy change due to unfolding in the absence of urea (ΔGºU). Solid and open 

circles represent ecDHFR and mpDHFR, respectively. Solid lines were drawn by 

least-squares linear regression. 
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Table 1: Activation volumes for enzyme function of ecDHFR and mpDHFR at 25 °C 
and pH 7.0 a 

 ΔV* / ml mol-1 b 
ecDHFR c 7.5±0.2 (0.1–225 MPa) 
mpDHFR −8.6±2.5 (0.1–50 MPa) 8.6±0.9 (50–200 MPa) 

a Solvent used was 20 mM Tris-hydrochloride containing 0.1 mM EDTA, 0.1 mM 
dithiothreitol, 250 μM NADPH, and.250 μM DHF.  
b Values in parentheses indicate the pressure range used for calculation.  
c Murakami et al. [10]. 
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Table 2: Thermodynamic parameters for pressure unfolding of ecDHFR and mpDHFR 
at various temperatures a 

 Temperature / °C ΔG°P / kJ mol-1 ΔVP / ml mol-1 Pm / MPa 

ecDHFR 
15.2 16.5 ± 1.4 −64 ± 6 258 ± 33 
20.4 20.0 ± 2.6 −74 ± 11 270 ± 53 
27.0 21.5 ± 1.5 −79 ± 6 272 ± 30 

mpDHFR 
15.7 3.3 ± 0.4 −50 ± 3 66 ± 9 
20.4 3.3 ± 0.3 −49 ± 3 67 ± 7 
28.8 2.9 ± 0.2 −40 ± 2 73 ± 6 

a Solvent used was 20 mM Tris-hydrochloride (pH 8.0) containing 0.1 mM EDTA and 0.1 
mM dithiothreitol. 
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Table 3: Thermodynamic parameters for urea unfolding of ecDHFR and mpDHFR at 
25 °C under various pressures a 

 Method 
Pressure / 

MPa 
ΔG°U / 

kJ mol-1 
m / 

kJ mol-1 M-1 
Cm / 
M 

ΔVU / 
ml mol-1 

ecDHFR 

CD 0.1 22.5 ± 2.3 9.0 ± 0.9 2.5 ± 0.4  

Fluorescence 

0.1 21.8 ± 1.8 8.2 ± 0.7 2.7 ± 0.3 

−85 ± 7 

50 19.4 ± 1.5 9.3 ± 0.7 2.1 ± 0.2 
100 12.6 ± 0.4 8.0 ± 0.2 1.6 ± 0.1 
150 7.8 ± 0.3 7.0 ± 0.3 1.1 ± 0.1 
200 4.2 ± 0.3 5.7 ± 0.2 0.7 ± 0.1 
250 2.0 ± 0.0 4.8 ± 0.1 0.4 ± 0.0 

mpDHFR 

CD 0.1 7.6 ± 0.8 4.8 ± 0.5 1.6 ± 0.2  

Fluorescence 

0.1 7.9 ± 0.6 4.3 ± 0.2 1.8 ± 0.2 

−53 ± 7 
50 4.2 ± 0.1 4.3 ± 0.1 1.0 ± 0.0 
100 1.4 ± 0.1 3.5 ± 0.1 0.4 ± 0.0 
150 0.0 ± 0.1 2.9 ± 0.1 0.0 ± 0.0 
200 ND b ND ND  
250 ND ND ND  

a Solvent used was 20 mM Tris-hydrochloride (pH 8.0) containing 0.1 mM EDTA and 0.1 
mM dithiothreitol.  
b Not determined. 
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Figure 1: E. Ohmae et al. 
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Figure 3: E. Ohmae et al. 
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Figure 7: E. Ohmae et al. 
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Figure 8: E. Ohmae et al. 
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Figure S1: Temperature dependence of the CD spectrum of NADP+ at pH 8.0. Arrows indicate the 

direction of the spectral change with increasing temperature from 10 to 80 ºC. The solvent used was 

20 mM Tris-hydrochloride containing 0.1 mM EDTA and 0.1 mM dithiothreitol. The concentration of 

NADP+ was 0.5 mM using a 1-mm path length cell. Inset shows far- and near-ultraviolet CD spectrum 

of mpDHFR without ligands at 25 ºC and pH 8.0. 
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Figure S2: Pressure dependence of the fluorescence spectra of ecDHFR and mpDHFR at pH 
8.0. (A) ecDHFR at 15.2 ºC, (B) ecDHFR at 20. 4 ºC, (C) ecDHFR at 27.0 ºC, (D) mpDHFR at 15.7 ºC, 

(E) mpDHFR at 20.4 ºC, and (F) mpDHFR at 28.8 ºC. Arrows indicate the direction of the spectral 

change from 0.1 to 400 MPa. The solvent used was 20 mM Tris-hydrochloride containing 0.1 mM 

EDTA and 0.1 mM dithiothreitol.  
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Figure S3: Urea concentration dependence of the fluorescence spectra of ecDHFR at 25 ºC and 
pH 8.0. (A) 0.1 MPa, (B) 50 MPa, (C) 100 MPa, (D) 150 MPa, (E) 200 MPa, and (F) 250 MPa. Arrows 

indicate the direction of spectral change with increasing urea concentration from 0 to 6 M. The solvent 

used was 20 mM Tris-hydrochloride containing 0.1 mM EDTA and 0.1 mM dithiothreitol. Note that the 

center of fluorescence spectral mass is independent of the protein concentration. 



 4

 

 

300 350 400 450
0

100

200

300

400

500

600

700

300 350 400 450
0

100

200

300

400

500

600

300 350 400 450
0

100

200

300

400

500

600

300 350 400 450
0

100

200

300

400

500

600

300 350 400 450
0

100

200

300

400

500

600

300 350 400 450
0

100

200

300

400

500

600

 

 

A

 

 

Fl
uo

re
sc

en
ce

 In
te

ns
ity

 / 
A

rb
itr

ar
y 

U
ni

t

B

 

 

Wavelength / nm

C

 

 

D

 

 

E

 

 

F

 
Figure S4: Urea concentration dependence of the fluorescence spectra of mpDHFR at 25 ºC and 
pH 8.0. (A) 0.1 MPa, (B) 50 MPa, (C) 100 MPa, (D) 150 MPa, (E) 200 MPa, and (F) 250 MPa. Arrows 

indicate the direction of spectral change with increasing urea concentration from 0 to 6 M. The solvent 

used was 20 mM Tris-hydrochloride containing 0.1 mM EDTA and 0.1 mM dithiothreitol. 


