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Weighted energy estimates for wave equations in
exterior domains

Mishio Kawashita and Hiroshi Sugimoto

Communicated by Christopher D. Sogge

Abstract. Weighted energy estimates including the Keel, Smith and Sogge estimate is
obtained for solutions of exterior problem of the wave equation in three or higher dimen-
sional Euclidean spaces. For the solutions of the Cauchy problem, which is corresponding
to the free system in scattering theory, the estimates are given by using the ideas introduced
by Morawetz and summarized by Mochizuki for the Dirichlet problem in the outside of
star shaped obstacles. From the estimates for the free system, the corresponding estimates
for exterior domains are given if it is assumed that the local energy decays uniformly with
respect to initial data, which depends on the structures of propagation of singularities.

Keywords. Wave equations, weighted energy estimates, local energy decay, Keel, Smith
and Sogge estimate.
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1 Introduction

Let � � Rn .n � 3/ be an exterior domain of a bounded obstacle O D Rn n�.
Assume that the boundary @� is C1 and compact, and � is connected. Consider
the following mixed problem of the usual wave equation:8̂<̂

:
.@2t �4/u.t; x/ D f .t; x/ in R ��;

Bu.t; x/ D 0 on R � @�;

u.0; x/ D f1.x/; @tu.0; x/ D f2.x/ on �;

(1.1)

where the boundary operator B is given by Bu.t; x/ D u.t; x/ (the Dirichlet
condition) or Bu.t; x/ D @u

@�
.t; x/ D

Pn
jD1 �j .x/

@u
@xj
.t; x/ (the Neumann con-

dition). In the above, �.x/ D t.�1.x/; �2.x/; �3.x// is the unit outer normal vec-
tor of @� at x 2 @� pointing into the outside of �. Since O is compact, we
have O � BR0 for some fixed constant R0 > 0, where BR0 D BR0.0/ and
BR0.a/ D ¹x 2 Rn j jx � aj < R0º.

The first author was partly supported by Grant-in-Aid for Science Research(C)19540183 from JSPS.
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1218 M. Kawashita and H. Sugimoto

The main purpose of this paper is to consider weighted energy estimates of
L2-type for solutions of problem (1.1). In [10], Keel, Smith and Sogge proposed
a new approach to obtain existence theorems of non-linear wave equations. In this
approach, a weighted energy estimate for critical case is essentially used. This es-
timate is called Keel, Smith and Sogge estimate (cf. Proposition 2.1 in Keel, Smith
and Sogge [10], or for selfcontaindness let us refer the estimate of the case l D 1

in Theorem 1.1 or Corollary 2.2). In line with this new idea, various existence
theorems of non-linear wave equations for the Cauchy problems and the Dirich-
let boundary problems are investigated (see e.g. [3, 9, 15, 16] and the references
therein).

In the case of the Dirichlet problem in exterior domains it can be expected
to have existence theorems for solutions of non-linear wave equations for smooth
initial data if the local energy of the solutions of the corresponding linearized wave
equation decays sufficiently fast. These are also investigated by many authors
([9, 15, 16] and the references therein). In these works, one of the key estimates
is weighted energy estimates of L2-type in the space variable for the solution of
linear equation in exterior domains.

In this paper, weighted energy estimates of L2-type including the Keel, Smith
and Sogge estimate in exterior domains in Rn (n � 3) are given if the local en-
ergy of the solutions of the corresponding linear equations decays fast uniformly.
To describe them, let us introduce the function spaces PHm.�/ D ¹v 2 Hm

loc.�/ j

@˛xv 2 L
2.�/ for 1 � j˛j � m; limr!1 r�2

R
r�jxj�2r jv.x/j

2dx D 0º (m D
1; 2; : : :). Concerning the boundary conditions, we put PHm

B
.�/ D ¹v 2 PHm.�/ j

Bv D 0 on @�º for m D 2 or m D 1 and the case of Bv D v on @�, and
PH 1

B
.�/ D PH 1.�/ for the case of the Neumann boundary condition. For initial

data ¹f1; f2º 2 PH 1
B
.�/ � L2.�/ and inhomogeneous data f 2 L1loc.RIL

2.�//,
problem (1.1) has the unique solution u.t; x/ 2 C.RI PH 1.�// with @tu.t; x/ 2
C.RIL2.�//. For any domain D � Rn, we put

e.t; xIu/ D
1

2

®
j@tu.t; x/j

2
C jrxu.t; x/j

2
¯

and E.u;D; t/ D

Z
D

e.t; xIu/dx:

Let us introduce the following uniform decay rate pm;R.t/ of the local energy
of solutions u.t; x/ of (1.1) with zero inhomogeneous data f .t; x/ D 0:

pm;R.t/ D sup

´
E.u;� \ BR; t /C ku.t; �/k

2
L2.�\BR/

krxf1k
2
Hm.�/

C kf2k
2
Hm.�/

ˇ̌̌

0 ¤ f1; f2 2 C
1
0 .� \ BR/ such that u 2 C1.R ��/

µ
;
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Weighted energy estimates for wave equations in exterior domains 1219

where R > 0 is a constant satisfying O � BR, m � 0 is an integer. Note that
p0;R.t/ is the uniform decay rate in the sense of Morawetz [23].

In this paper, from now on, we say that a pair .f1; f2; f / of the data satisfies the
compatibility condition of orderm if and only if the unique solution u of (1.1) with
f1 2 PH

mC1.�/\ PH 1
B
.�/; f2 2 H

m.�/, f 2
Tm�1
jD0 W

jC1;1
loc .RIHm�1�j .�//

belongs to
Tm
jD0 C

j .RI PHmC1�j .�// with @tu 2
Tm
jD0 C

j .RIHm�j .�//.
In the definition of pm;R.t/, we put the compatibility conditions of infinite or-
der for the data .f1; f2; f / (with f D 0). But this is not necessary. We only need
the one of order m.

For solutions u.t; x/ of (1.1), we define the weighted L2-energy Wl.t Iu/ by

Wl.t Iu/ D

Z t

0

Z
�

.1C jxj/�le.s; xIu/dxds

C

Z t

0

Z
�

.1C jxj/�.lC2/ju.s; x/j2dxds:

The purpose of this paper is to give estimates of Wl.t Iu/ for solutions of (1.1) if
local energy decays sufficiently fast. For the uniform decay rate pm;R.t/ of the
local energy, we assume that

(E1) there exists an integer m � 0, a constant QR0 > 0 and a function pm 2
C.Œ0;1// \ L1.Œ0;1// such that

q
p
m;R0C QR0

.t/ � pm.t/ .t � 0/.

To state our main theorem we introduce the following notations:

ql.t/ D

8̂̂̂<̂
ˆ̂:
.1C t /1�l

1 � l
; 0 � l < 1;

log.1C t /; l D 1;

max¹1; .l � 1/�1º; l > 1:

Theorem 1.1. Assume that n � 3 and (E1) is satisfied. Then there exists a constant
C > 0 such that

Wl.t Iu/ � Cql.t/

´
krxf1k

2
Hm.�/ C kf2k

2
Hm.�/ C

�Z t

0

kf .s; �/kL2.�/ds

�2

C Cm

 
m�1X
kD0

1X
jD0

Z t

0

k@jCks f .s; �/kHm�1�k.�/ds

!2µ
.t � 0, l � 0 and .f1; f2; f / satisfies the compatibility condition of order m/;

where Cm is the constant defined by C0 D 0 and Cm D 1 for m � 1.
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1220 M. Kawashita and H. Sugimoto

Note that the case of l D 1 in the estimate in Theorem 1.1 is the Keel, Smith
and Sogge estimate.

Let us mention about the decay rate pm;R.t/ before going to handle our con-
cerned estimates in Theorem 1.1. Many authors investigated the decay ratepm;R.t/
from the point of view in scattering theory. The case ofm D 0 is different from the
other cases. For the Dirichlet problem, Morawetz [22] shows p0;R.t/ D O.t�1/

as t ! 1 if the obstacle O is star shaped. In this line, serial works of Ikehata
makes the argument simpler and remove the restriction that the support of the ini-
tial data is compact (see e.g. Ikehata [6] and the references therein).

Morawetz [23] also gives an interesting result and argument that we can ob-
tain p0;R.t/ D O.e�˛t / for some ˛ > 0 if the space dimension n � 3 is
odd and we a priori know p0;R.t/ ! 0 as t ! 1. In the case of the Neu-
mann boundary condition, this interesting result is also valid. Note that in this
argument, Huygens’ principle is essentially used. Hence the space dimension n
should be odd. For even dimension, it is expected that we can get the estimate
p0;R.t/ D O.t�2.n�1//. For even n � 4, the estimate p0;R.t/ D O.t�2.n�1//

is given in [8], and for even n � 2 the same estimate is obtained by Vodev [30].
In [8], the translation representation of the scattering theory of Lax and Phillips
[11] are essentially used to decompose the waves. This idea is originally intro-
duced by Melrose [12] to show the same estimate for the case of non-trapping
obstacles as is in the next paragraph. Note that in [30], Vodev introduces a new
approach via analyzing “cutoff resolvents”, and also show the following uniform
estimate: E.u;� \ BR; t / D O.t�2n/.

In the case ofm D 0, decay estimates of p0;R.t/ are closely connected with the
non-trapping property of singularities of the solutions of problem (1.1). If we have
a trapping ray of geometrical optics, we have no decay property of p0;R.t/. This
is shown in Ralston [26]. On the other hand, as is in Vainberg [29], Morawetz,
Ralston and Strauss [24], Melrose [12] and Ralston [27], if all singularities near
the obstacle escape far away within fixed finite time, we have the estimates of
p0;R.t/ stated above. Melrose and Sjöstrand [13, 14] show that all singularities
propagate along the generalized broken rays introduced in [13, 14]. Thus Mel-
rose and Sjöstrand reduced analytical conditions about non-trapping obstacles to
geometrical conditions.

On the other hand, in the case of m > 0, Walker [31] shows that pm;R.t/! 0

as t ! 1 if m > 0. Hence the problem is how fast it decays. About this, let us
introduce the work of Ikawa [4, 5] for the case of the Dirichlet boundary condition.
In [4], Ikawa shows that form � 5, pm;R.t/ D O.e�˛t / with some fixed constant
˛ > 0 if n D 3 and O consists of two strictly convex bodies. Further in Ikawa [5],
the case that n D 3 and O consists of finitely many convex bodies is considered.
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Weighted energy estimates for wave equations in exterior domains 1221

If the convex hull of each two bodies does not intersect with the other bodies and
some additional condition holds, then Ikawa [5] obtains pm;R.t/ D O.e�˛t / for
m � 2. Note that if all these bodies are balls and they separate each other well, the
additional condition is satisfied.

Even for the transmisson problem, Cardoso, Popov and Vodev [2] give the same
estimate as that of the non-trapping case stated above if the phase speed of the
inside medium is greater than that of the outside one. Hence, if this is the case,
thanks to the work of Cardoso, Popov and Vodev [2], we can obtain the same result
as Theorem 1.1 by the similar argument in Section 5. On the contrary, in the case
that the phase speed of the inside medium is less than that of the outside one, Popov
and Vodev [25] show the existence of the sequence of the resonances approaching
to the real axis. Thus we cannot expect to have such decay estimates, nor have
any polynomial bound for pm;R.t/. Finally, let us mention an interesting result of
Burq [1] that for every obstacle, the upper bound pm;R.t/ D O..log.1 C t /�m/
is given. Even in the cases of no polynomial bound for pm;R.t/, the method of
Burq [1] gives the above logarithmic bound. Unfortunately, this bound seems to
be too weak to obtain the weighted energy estimates in Theorem 1.1.

In Sections 2 and 3, we consider the weighted energy estimates for the solutions
of the case of the Cauchy problem or that of the Dirichlet boundary condition in
the exterior of star shaped obstacles O. These are considered as free systems in
scattering theory. In Section 2, we state the estimates for free space case. In our
approach, as is in Theorem 1.1, we need to see how the coefficients of the estimates
depend on l (l ¤ 1) explicitly. Using this information we show the estimate for
l D 1, that is the Keel, Smith and Sogge estimate. This argument is given in
Section 2.

For the Keel, Smith and Sogge estimate, in the whole Euclidean space Rn,
Hidano and Yokoyama [3] give precise arguments and investigations about the
estimate itself and the scaling invariant version of the estimate. For star shaped
obstacles, the estimate is also obtained in Metcalfe and Sogge [16] by using the
argument of Morawetz [22] for estimating decay of the local energy. Thus some
parts of these cases have already been shown. Still in Section 3, we give a proof
of these estimates since we can see how the argument developed by Morawetz and
Mochizuki explains well why the estimates hold. As another reason, to obtain The-
orem 1.1, we need to have L2-type estimates in time integral for inhomogeneous
data f .t; x/ in (1.1) (cf. Theorem 4.1). For the purpose, we use the argument of
Morawetz and Mochizuki mentioned above.

In the context of scattering theory, Mochizuki develops the idea of Morawetz
[22] to show various energy decay estimates (cf. Mochizuki [18, 19] and Mochi-
zuki and Nakazawa [20, 21]). These correspond to the case of l > 1 in the estimate
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1222 M. Kawashita and H. Sugimoto

of Theorem 1.1 for star shaped obstacles. In the case of the Cauchy problem, as
is in Mochizuki [17], the estimates for l > 1 correspond to the smooth operator
estimate introduced by Kato [7]. Thus the estimates for l > 1 are implicitly
well known in scattering theory. We can also show the estimate for l D 1 if
we choose the multiplier in [19] and [20] in a proper way. But we do not use
this approach since for the Cauchy problem, it seems to be difficult to perform
integration by parts to obtain necessary identities. To obtain the estimates for the
Cauchy problems (cf. Section 3.1), we use rather simple multiplier with parameters
studied in Sugimoto [28]. One of the advantages of our choice of the multipliers
is to see why the case l D 1 is critical explicitly.

The estimates given in Theorem 1.1 are ofL1-type in time variable t . To handle
the perturbed system, we have to control L2-type integrals in time variable. This
means that for the solutions of the free systems, we need to have L2-type esti-
mates in time variable. In Section 4, these estimates are given (cf. Theorem 4.1).
In these estimates, since we take L2-type integrals in time, we have to put some
weight to the space variables. Hence the arguments to obtaining these estimates
are more complicated than those in Section 3 since we need the weights for the
space variables x. Last in Section 5, using the estimates for free systems, we show
Theorem 1.1. As we can see in the proof, these estimates for perturbed systems
can be obtained if we have the estimates for free systems and the uniform decay
estimates about local energy for perturbed systems.

2 Weighted energy estimates for free systems

Let us consider the case of the Dirichlet boundary condition or the Cauchy problem
(i.e. the non-obstacle case). In these cases, the Morawetz identity is used to obtain
weighted energy estimates. As is in Morawetz [22], we consider the following
problem: 8̂<̂

:
.@2t �4/u.t; x/ D f .t; x/ in R ��;

u.t; x/ D 0 on R � @�;

u.0; x/ D f1.x/; @tu.0; x/ D f2.x/ on �:

(2.1)

Here we assume that the obstacle O D Rn n � satisfies one of the following
conditions:

(H) the obstacle O is star shaped with respect to a point x0 2 O

or

(C) the obstacle O is empty.
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Weighted energy estimates for wave equations in exterior domains 1223

Note that condition (C) means the case of the Cauchy problem for the whole Eu-
clidean space Rn.

We shall state weighted energy estimates separately as considering cases of the
weights though they can be given simultaneously as is in Theorem 1.1.

Theorem 2.1. Assume that n � 3 and the obstacle O satisfies (H) or (C). Then
there exists a constant C > 0 such that for any l � 0, l ¤ 1,Z t

0

Z
�

.1C jxj/�le.s; xIu/dxds C

Z t

0

Z
�

.1C jxj/�.lC2/ju.s; x/j2dxds

� Cql.t/

²
E.u;�; 0/C

�Z t

0

kf .s; �/kL2.�/ds

�2³
:

From Theorem 2.1, we have the weighted energy estimate with the weight
.1C jxj/�1, that is the Keel, Smith and Sogge estimate.

Corollary 2.2. Assume that n � 3 and the obstacle O satisfies (H) or (C). Then
there exists a constant C > 0 such that for any t � 0Z t

0

Z
�

.1C jxj/�1e.s; xIu/dxds C

Z t

0

Z
�

.1C jxj/�3ju.s; x/j2dxds

� C log.1C t /
²
E.u;�; 0/C

�Z t

0

kf .s; �/kL2.�/ds

�2³
:

The proof of Theorem 2.1 is given in the following section. In the rest of this
section, using Theorems 2.1, we show Corollary 2.2.

Proof of Corollary 2.2. It suffices to show the estimate in the case of t � e2 � 1.
For fixed t � e2�1, choose l as l D 1� .log.1C t //�1. Since t � e2�1 we have
1=2 < l < 1 and .1C t /1�l D e. Hence from the fact .1C jxj/�1 � .1C jxj/�l ,
Theorem 2.1 implies thatZ t

0

Z
�

.1C jxj/�1e.s; xIu/dxds � C log.1C t /I.t/; (2.2)

where

I.t/ D

²
E.u;�; 0/C

�Z t

0

kf .s; �/kL2.�/ds

�2³
: (2.3)

Since it follows that .1C jxj/�.lC2/ � .1C jxj/�3 .0 � l < 1; x 2 Rn/, from
Theorem 2.1, the argument for (2.2) impliesZ t

0

Z
�

.1C jxj/�3ju.s; x/j2dxds � C log.1C t /I.t/:

This completes the proof of Corollary 2.2.

AUTHOR’S COPY | AUTORENEXEMPLAR 

AUTHOR’S COPY | AUTORENEXEMPLAR 



1224 M. Kawashita and H. Sugimoto

3 Weighted energy estimates from the Morawetz identity

In this section, we give a proof of Theorem 2.1. If condition (H) holds, by transla-
tion, we can assume that x0 in condition (H) is just the origin, i.e.

�.x/ � x � 0 .x 2 @�/: (3.1)

3.1 The Morawetz identity and basic estimates

We begin with stating the Morawetz identity.

Proposition 3.1. For any v 2 H 2
loc.R � �/ and a scalar valued function F 2

C 2.Rn n ¹0º/, we have the following identity:

Re
h
F
�
x � rxv C

n � 1

2
v
�
.@2t �4/v

i
D @t .X.t; xI v//C div.Y.t; xI v//CZ.t; xI v/

C

�
2�1div.F x/ �

n � 1

2
F
��
j@tvj

2
� jrxvj

2
�
C F jrxvj

2

C ReŒ.rxF � rxv/x � rxv�;

(3.2)

where

X.t; xI v/ D Re
h
F.x/@tv.t; x/

�
x � rxv.t; x/C

n � 1

2
v.t; x/

�i
;

Y.t; xI v/ D 2�1
�
jrxvj

2
� j@tvj

2
�
Fx

� Re
h
F.x � rxv/rxv C

n � 1

2
F vrxv �

n � 1

4
jvj2rxF

i
;

Z.t; xI v/ D �
n � 1

4
.4F /.x/jv.t; x/j2:

In (3.2), the case that F D 1 is the original Morawetz identity given in [22]
to show the decay estimate E.u;�\BR; t / D O.t�1/. This argument is sum-
marized by Mochizuki (cf. Mochizuki [19], Mochizuki and Nakazawa [21], and
the references therein). In these works, basically the multiplier F is chosen as
F.x/ D jxj�1�.jxj/ with an appropriate function � satisfying �.0/ > 0.

As is in [19] for example, this choice of the multiplier makes the identity simple,
however, it seems to be difficult to handle the case of the Cauchy problem. Hence
in what follows, for 0 < ı � 1, 0 < ˇ and 0 � l we choose F in (3.2) as
F.x/ D .ı C jxj2ˇ /�l=2.

Lemma 3.2. For F.x/ D .ı C jxj2ˇ /�l=2 (0 < ı � 1, 0 < ˇ, 0 � l), we have

(1) 2�1div.F x/ � n�1
2
F D � lˇ

2
F.x/.ı C jxj2ˇ /�1jxj2ˇ C 1

2
F.x/,
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Weighted energy estimates for wave equations in exterior domains 1225

(2) .rxF � rxv/x � rxv D �lˇF.x/.ı C jxj2ˇ /�1jxj2ˇ
ˇ̌
jxj�1x � rxv

ˇ̌2,

(3) 4F.x/ D �lˇF.x/.ı C jxj2ˇ /�1jxj2.ˇ�1/
®
n � lˇ � 2 C ıˇ.l C 2/.ı C

jxj2ˇ /�1
¯
:

Proof. Since @xjF.x/ D �lˇxjF.x/.ıCjxj
2ˇ /�1jxj2.ˇ�1/ we have div.F x/ D

x � rxF C nF D �lˇF.x/.ıCjxj
2ˇ /�1jxj2ˇ C nF . This implies (1). Statement

(2) is obvious.
We show (3). From the form of @xjF.x/, it follows that

jxj2F�1rxF D �lˇ.ı C jxj
2ˇ /�1jxj2ˇx; (3.3)

which implies4F D jxj�2F div
�
� lˇ.ıC jxj2ˇ /�1jxj2ˇx

�
� 2jxj�2x � rxF C

F�1.rxF /
2. Note that from (3.3) it follows that F�1.rxF /2 D .lˇ/2F.ı C

jxj2ˇ /�2jxj2ˇ jxj2.ˇ�1/ and jxj�2x �rxF D �lˇF.ıCjxj2ˇ /�1jxj2.ˇ�1/. Com-
bining them with the equality

div
�
�lˇ.ıjxj2ˇ /�1jxj2ˇx

�
D �lˇjxj2.ı C jxj2ˇ /�1jxj2.ˇ�1/

®
nC 2ıˇ.ı C jxj2ˇ /�1

¯
;

we obtain (3) of Lemma 3.2. This completes the proof of Lemma 3.2.

From (3.2) and Lemma 3.2, it follows that

Re
h
F
�
x � rxv C

n � 1

2
v
�
.@2t �4/v

i
D @tX.t; xI v/C divY CZ.t; xI v/

C F.x/
�
1 � lˇ C ılˇ.ı C jxj2ˇ /�1

�
e.t; xI v/

C lˇF.x/.ı C jxj2ˇ /�1jxj2ˇ
®
jrxvj

2
�
ˇ̌
jxj�1x � rxv

ˇ̌2¯
:

(3.4)

We have the following basic estimate from identity (3.4):

Proposition 3.3. Assume that n � 3. For star shaped obstacles with respect to
the origin, every solution u 2 C 0.RI PH 1.�//, @tu 2 C 0.RIL2.�// of equation
(2.1) satisfies the following estimate:Z t

0

Z
�

F.x/
�
1� lˇC ılˇ.ıCjxj2ˇ /�1

�
e.s; xIu/dxdsC

Z t

0

Z
�

Z.s; xIu/dxds

� Il;ˇ .t Iu; ı/ �

Z
�

X.t; xIu/dx C

Z
�

X.0; xIu/dx

for any t � 0, 1 � ı > 0, ˇ > 0 and l � 0,
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1226 M. Kawashita and H. Sugimoto

where F.x/ D .ı C jxj2ˇ /�l=2 and

Kl;ˇ .t Iu; ı/ D

Z t

0

Z
�

F.x/
�
1 � lˇ C ılˇ.ı C jxj2ˇ /�1

�
e.s; xIu/dxds; (3.5)

Il;ˇ .t Iu; ı/ D Re
Z t

0

Z
�

F.x/
�
x � rxu.s; x/C

n � 1

2
u.s; x/

�
f .s; x/dxds:

If u 2 C 0.RI PH 1.Rn//, @tu 2 C 1.RIL2.Rn// is a solution of the Cauchy prob-
lem of the wave equation in the whole space Rn, we also have the estimate given
by replacing � with the whole space Rn in the above estimate.

Proof. First we consider the case of the Dirichlet problem. Putting v D u in (3.4),
and integrating (3.4) over Œ0; t � ��, we obtain

Il;ˇ .t Iu; ı/ D

Z
�

X.t; xIu/dx �

Z
�

X.0; xIu/dx C

Z t

0

Z
�

divYdxds

C

Z t

0

Z
�

Z.s; xIu/dxds CKl;ˇ .t Iu; ı/

C lˇ

Z t

0

Z
�

�
F.x/.ı C jxj2ˇ /�1jxj2ˇ

� ¹jrxuj
2
�
ˇ̌
jxj�1x � rxu

ˇ̌2
º

�
dxds:

In the case of the Dirichlet condition, it follows that rxu.t; x/ D �.x/@�u.t; x/

on R� @�. Hence as is in Morawetz [22], integrating by parts and using (3.1) we
have Z t

0

Z
�

divYdxds D
Z t

0

Z
@�

�.x/ � YdSxds

D �
1

2

Z t

0

Z
@�

F� � xj@�uj
2dSxds

� 0:

From this estimate and the fact that jrxvj2 �
ˇ̌
jxj�1x � rxv

ˇ̌2
� 0, we obtain

Proposition 3.3 in the case of the Dirichlet condition.
Next consider the case of the Cauchy problem. LetB".0/ D ¹x 2 Rn j jxj < "º.

If this is the case, replacing � with Rn n B".0/, we follow the same argument
as in the case of the Dirichlet condition, and take the limit " ! 0. When we
take the limit, every term not containing derivatives of F converges to the inte-
gral over Œ0; t � � Rn. Thus it suffices to show the following limits for the terms
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Weighted energy estimates for wave equations in exterior domains 1227

containing derivatives of F :Z t

0

Z
RnnB".0/

divYdxds D �
Z t

0

Z
@B".0/

x

jxj
� YdSxds ! 0 ."! 0/; (3.6)Z t

0

Z
RnnB".0/

Z.s; xI v/dxds !

Z t

0

Z
Rn
Z.s; xI v/dxds ."! 0/: (3.7)

We give a proof of (3.6). From the definition of Y and the estimate of the
derivatives of F , it is enough to showZ t

0

Z
@B".0/

jrxF jju.s; x/j
2dSxds

� C

Z t

0

Z
@B".0/

jxj2ˇ�1ju.s; x/j2dSxds

� C"2ˇ�1
Z t

0

Z
@B".0/

ju.s; x/j2dSxds ! 0 ."! 0/:

(3.8)

To show (3.8), we use the fact that f1 2 H 1
loc.R

n/ for any f1 2 PH 1.Rn/ and
Hardy’s inequalityZ

Q�

jxj�2jf1.x/j
2dx � C

Z
Q�

jrxf1.x/j
2dx; (3.9)

where Q� D � or Q� D Rn. Note that (3.9) holds only in the case that n � 3. For
f1 2 PH

1.Rn/, the trace theorem implies that f1 2 L2.@B".0//, and there exists a
C > 0 such that for any " > 0Z

@B".0/

jf1.x/j
2dSx D "

n�1

Z
@B1.0/

jf1."!/j
2dS!

� C"n�1
Z
B1.0/

®
"2j.rxf1/."x/j

2
C jf1."x/j

2
¯
dx:

Changing the variables in the above estimate, we haveZ
@B".0/

jf1.x/j
2dSx � C"

�1

Z
B".0/

®
"2j.rxf1/.x/j

2
C jf1.x/j

2
¯
dx: (3.10)

From Hardy’s inequality (3.9), it follows thatZ
B".0/

jf1.x/j
2dx � C"2

Z
B".0/

jxj�2jf1.x/j
2dx � C"2

Z
Rn
jrxf1.x/j

2dx:
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1228 M. Kawashita and H. Sugimoto

Combining the above estimate, (3.10) and noting that rxu 2 C 0.RIL2.R2// we
obtain (3.8) in the following way:

"2ˇ�1
Z t

0

Z
@B".0/

ju.s; x/j2dSxds

� C"2ˇ
Z t

0

Z
Rn
jrxu.s; x/j

2dxds ! 0 ."! 0/:

Hence we have proved (3.6).
For (3.7), from the definition of Z and the estimate of the derivatives of F , it

suffices to show thatZ t

0

Z
B".0/

jxj2ˇ�2ju.t; x/j2dxds ! 0 ."! 0/:

This limit can be obtained by the same argument as in the proof of (3.8). Hence
we have (3.7). Thus in the case of the Cauchy problem, we have shown Proposi-
tion 3.3.

We need estimates of the weight F.x/ D .ı C jxj2ˇ /�l=2 used in Proposi-
tion 3.3.

Lemma 3.4. For any 1 � ı > 0, ˇ > 0 and l � 0, we have the following estimate:

.ı C jxj2ˇ /�l=2 � Cl;ˇ .ı/.ı C jxj/
�lˇ ;

where Cl;ˇ .ı/ D min¹1; .1C ı/
l
2
.2ˇ�1/; ı

l
2
.2ˇ�1/

º.

Proof. We put '.r/ D .ı C r/lˇ .ı C r2ˇ /�l=2 .r � 0/. Since

'0.r/ D lˇ.ı C r/lˇ�1.ı C r2ˇ /�l=2�1ı
®
1 � r2ˇ�1

¯
;

for 0 < ˇ < 1=2, it follows that

'.r/ � '.1/ D .1C ı/lˇ .1C ı/�l=2 D .1C ı/
l
2
.2ˇ�1/:

For ˇ D 1=2, we have '.r/ D 1 .r � 0/. For ˇ > 1=2, noting that

'.r/ D
.ı C r/lˇ

.ı C r2ˇ /l=2
D

.r�1ı C 1/lˇ

.r�2ˇ ı C 1/l=2
! 1 .r !1/

and '.0/ D ılˇ ı�l=2 D ı
l
2
.2ˇ�1/, we have proved Lemma 3.4.
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Weighted energy estimates for wave equations in exterior domains 1229

We introduce the following notations:

K
.1/

l;ˇ
.t Iu; ı/ D

Z t

0

Z
�

.ı C jxj/�lˇe.s; xIu/dxds;

K
.2/

l;ˇ
.t Iu; ı/ D

Z t

0

Z
�

.ı C jxj/�.lC2/ˇe.s; xIu/dxds; (3.11)

Z
.1/

l;ˇ
.t Iu; ı/ D

Z t

0

Z
�

.ı C jxj/�.lC2/ˇ jxj2.ˇ�1/ju.s; x/j2dxds; (3.12)

Z
.2/

l;ˇ
.t Iu; ı/ D

Z t

0

Z
�

.ı C jxj/�.lC4/ˇ jxj2.ˇ�1/ju.s; x/j2dxds: (3.13)

From (3.5) and Lemma 3.4, it follows that for any t � 0, l; ˇ > 0 and 0 < ı � 1

Kl;ˇ .t Iu; ı/ � Cl;ˇ .ı/.1 � lˇ/K
.1/

l;ˇ
.t Iu; ı/C ClC2;ˇ .ı/ılˇK

.2/

l;ˇ
.t Iu; ı/:

In the estimate of Proposition 3.3, the weighted L2-norms of u.t; x/ are con-
tained in the term consisting of the integral of Z. To pick up these terms defined
by (3.12) and (3.13), we essentially need n � 3.

Lemma 3.5. Assume that n � 3. There exists a constant C > 0 such that for any
1 � ı > 0, ˇ > 0 and l > 0 with lˇ � 1Z t

0

Z
�

Z.s; xIu/dxds �
.n � 1/lˇ

4

°
ClC2;ˇ .ı/.1 � lˇ/Z

.1/

l;ˇ
.t Iu; ı/

C ıClC4;ˇ .ı/ˇ.l C 2/Z
.2/

l;ˇ
.t Iu; ı/

±
:

From this estimate, we also haveZ t

0

Z
�

Z.s; xIu/dxds � 0:

Proof. Since n � 3, we have n� lˇ � 2 � 1� lˇ � 0. Hence by the definition of
Z.t; xIu/ and (3) of Lemma 3.2, we have

Z.t; xIu/ �
.n � 1/lˇ

4

°
.1 � lˇ/F.x/.ı C jxj2ˇ /�1jxj2.ˇ�1/ju.t; x/j2

C ıˇ.l C 2/F.x/.ı C jxj2ˇ /�2jxj2.ˇ�1/ju.t; x/j2
±
:
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1230 M. Kawashita and H. Sugimoto

From Lemma 3.4, it follows that

Z.t; xIu/ �
.n � 1/lˇ

4

²
min

°
1; .1C ı/

lC2
2
.2ˇ�1/; ı

lC2
2
.2ˇ�1/

±
� .1 � lˇ/

jxj2.ˇ�1/ju.t; x/j2

.1C jxj/.lC2/ˇ

Cmin
°
1; .1C ı/

lC4
2
.2ˇ�1/; ı

lC4
2
.2ˇ�1/

±
� ıˇ.l C 2/

jxj2.ˇ�1/ju.t; x/j2

.1C jxj/.lC4/ˇ

³
:

Integrating the above inequality over Œ0; t � ��, we obtain Lemma 3.5.

Summing up the above arguments, we obtain the following proposition:

Proposition 3.6. Assume that n � 3. For star shaped obstacles with respect to
the origin, every solution u 2 C 0.RI PH 1.�//, @tu 2 C 0.RIL2.�// of equation
(2.1) satisfies the following estimate:

.1 � lˇ/

²
Cl;ˇ .ı/K

.1/

l;ˇ
.t Iu; ı/C

n � 1

4
lˇClC2;ˇ .ı/Z

.1/

l;ˇ
.t Iu; ı/

³
C ılˇ

²
ClC2;ˇ .ı/K

.2/

l;ˇ
.t Iu; ı/C

n � 1

4
.l C 2/ˇClC4;ˇ .ı/Z

.2/

l;ˇ
.t Iu; ı/

³
� Il;ˇ .t Iu; ı/ �

Z
�

X.t; xIu/dx C

Z
�

X.0; xIu/dx

for any t � 0, 1 � ı > 0, ˇ > 0 and l � 0 with lˇ � 1.

If u 2 C 0.RI PH 1.Rn//, @tu 2 C 1.RIL2.Rn// is a solution of the Cauchy prob-
lem of the wave equation in the whole space Rn, we also have the estimate given
by replacing � with the whole space Rn in the above estimate.

3.2 Proof of Theorem 2.1

We choose a cutoff function  2 C10 .R
n/ with  .x/ D 1 (for jxj � 1),

 .x/ D 0 (for jxj � 2), and put  R.x/ D  .R�1x/. We consider the solutions
u
.1/
R .t; x/ and u.2/R .t; x/ of the following equations respectively:8̂<̂
:
.@2t �4/u

.1/
R .t; x/ D  R.x/f .t; x/ in R ��;

u
.1/
R .t; x/ D 0 on R � @�;

u
.1/
R .0; x/ D  R.x/f1.x/; @tu

.1/
R .0; x/ D  R.x/f2.x/ on �

(3.14)
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Weighted energy estimates for wave equations in exterior domains 1231

and 8̂̂̂̂
<̂
ˆ̂̂:
.@2t �4/u

.2/
R .t; x/ D .1 �  R.x//f .t; x/ in R ��;

u
.2/
R .t; x/ D 0 on R � @�;

u
.2/
R .0; x/ D .1 �  R.x//f1.x/ on �;

@tu
.2/
R .0; x/ D .1 �  R.x//f2.x/ on �:

(3.15)

Note that from the property of the finite propagation speed, we have

suppu.1/R .t; �/ � ¹x 2 Rn j jxj � 2RC tº; (3.16)

suppu.2/R .t; �/ � ¹x 2 Rn j R � t � jxjº (3.17)

since supp R � ¹x 2 Rn j jxj � 2Rº and supp.1 �  R/ � ¹x 2 Rn j R � jxjº.
We also note that there exists a constant C > 0 such that

E.u
.j /
R ; �; 0/ � CE.u;�; 0/ .R � 0; j D 1; 2/: (3.18)

To show this, we use the fact that R � jxj � 2R if rx .R�1x/ ¤ 0. From this,
we have

E.u
.j /
R ; �; 0/ � 2E.u;�; 0/C 4 sup

x2Rn
jrx .x/j

2

Z
�

jxj�2jf1.x/j
2dx:

This estimate and Hardy’s inequality (3.9) imply (3.18).
First we give estimates of u.1/R .t; x/. For this, we use Proposition 3.6. We begin

with considering the term of X.t; xIu.1/R /.

Lemma 3.7. There exists a constant C > 0 such that for any ˇ � 0 and l � 0

with lˇ � 1ˇ̌̌̌Z
�

X.t; xIu
.1/
R /dx

ˇ̌̌̌
� C.2RC t /1�lˇI.t/ .t � 0;R > 0/;

where I.t/ is introduced in (2.3).

Proof. Since for 1 � ı > 0, ˇ, l � 0, it follows that jxjF.x/ D jxj.ı C
jxj2ˇ /�l=2 � jxj.jxj2ˇ /�l=2 D jxj1�lˇ ; we have

jX.t; xIu
.1/
R /j � jxjF.x/j@tu

.1/
R .t; x/j

�
jrxu

.1/
R .t; x/j C

n � 1

2
jxj�1ju

.1/
R .t; x/j

�
� jxj1�lˇ j@tu

.1/
R .t; x/j

�
jrxu

.1/
R .t; x/j C

n � 1

2
jxj�1ju

.1/
R .t; x/j

�
:

(3.19)
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1232 M. Kawashita and H. Sugimoto

Hence noting (3.16), (3.9) and lˇ � 1, we obtainˇ̌̌̌Z
�

X.t; xIu
.1/
R /dx

ˇ̌̌̌
� C.2RC t /1�lˇE.u

.1/
R ; �; t/: (3.20)

Since the usual energy estimate implies

E.u
.1/
R ; t; �/ � E.u

.1/
R ; �; 0/C C

�Z t

0

kf .s; �/kL2.�/ds

�2
.t � 0;R � 0/;

(3.21)

combining (3.21), (3.20) with (3.18), we obtain Lemma 3.7.

For the term Il;ˇ .t Iu
.1/
R ; ı/, using the argument for (3.19), we have

Il;ˇ .t Iu
.1/
R ; ı/ �

Z t

0

Z
�

jxj1�lˇ j R.x/f .s; x/j
�
jrxu

.1/
R .s; x/j

C
n � 1

2
jxj�1ju

.1/
R .s; x/j

�
dxds

� .2RC t /1�lˇ
Z t

0

Z
�

jf .s; x/j
�
jrxu

.1/
R .s; x/j

C
n � 1

2
jxj�1ju

.1/
R .s; x/j

�
dxds:

Hence Hardy’s inequality and (3.21) yield

Il;ˇ .t Iu
.1/
R ; ı/ � C.2RC t /1�lˇ

²
E.u;�; 0/C

�Z t

0

kf .s; �/kL2.�/ds

�2³
:

(3.22)

From Lemma 3.7, (3.22) and Proposition 3.6, there exists a constant C > 0 such
that

.1 � lˇ/
°
Cl;ˇ .ı/K

.1/

l;ˇ
.t Iu

.1/
R ; ı/C lˇClC2;ˇ .ı/Z

.1/

l;ˇ
.t Iu

.1/
R ; ı/

±
C ılˇ

°
ClC2;ˇ .ı/K

.2/

l;ˇ
.t Iu

.1/
R ; ı/Cˇ.l C 2/ClC4;ˇ .ı/Z

.2/

l;ˇ
.t Iu

.1/
R ; ı/

±
� C.2RC t /1�lˇI.t/

(3.23)

for any t; R � 0, 1 � ı > 0, ˇ � 0 and l � 0 with lˇ � 1.
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For u.2/R .t; x/ we have the following estimate:

Proposition 3.8. There exists a constant C > 0 such that

Z t

0

Z
�

e.s; xIu
.2/
R /

.ı C jxj/˛
dxds C ˛

Z t

0

Z
�

jxj2.ˇ�1/ju
.2/
R .s; x/j2

.ı C jxj/˛C2ˇ
dxds

� Ct.R � t /�˛I.t/ .0 � ˛; ˇ; 0 < ı � 1; 0 � t � R/:

Proof. For t with 0 � t � R, from (3.17), u.2/.t; x/ D 0 for jxj � R � t . Since
.ı C jxj/�˛ � .R � t /�˛ (0 � ˛, jxj � R � t ) we haveZ t

0

Z
�

.ı C jxj/�˛e.s; xIu
.2/
R /dxds

D

Z t

0

Z
�nBR�t .0/

.ı C jxj/�˛e.s; xIu
.2/
R /dxds

� .R � t /�˛
Z t

0

E.u
.2/
R ; �; s/ds:

(3.24)

From (3.21) and (3.18), it follows that

E.u
.2/
R ; �; s/ � E.u

.2/
R ; �; 0/C

�Z s

0

k.1 �  R.�//f .s; �/kL2.�/ds

�2
� CI.s/ .0 � s � t /;

which yields

Z t

0

Z
�

e.s; xIu
.2/
R /

.ı C jxj/˛
dxds � C.R � t /�˛

Z t

0

E.s; u
.2/
R ; �/ds

� Ct.R � t /�˛I.t/:

(3.25)

Since we also have .ı C jxj/�.˛C2ˇ/jxj2ˇ � .ı C jxj/�˛ � .R � t /�˛ .˛ � 0/
for jxj � R� t , noting Hardy’s inequality (3.9) and using the argument for (3.25),
we obtainZ t

0

Z
�

.ı C jxj/�.˛C2ˇ/jxj2.ˇ�1/ju
.2/
R .s; x/j2dxds �

Ct

.R � t /˛
I.t/: (3.26)

From (3.25) and (3.26), we have Proposition 3.8.
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1234 M. Kawashita and H. Sugimoto

Now we show Theorem 2.1. Noting Cl;ˇ .ı/ � 1 (l; ˇ � 0), from (3.23) and
Proposition 3.8, we have

.1 � lˇ/
°
Cl;ˇ .ı/K

.1/

l;ˇ
.t Iu; ı/C lˇClC2;ˇ .ı/Z

.1/

l;ˇ
.t Iu; ı/

±
C ılˇ

°
ClC2;ˇ .ı/K

.2/

l;ˇ
.t Iu; ı/C ˇ.l C 2/ClC4;ˇ .ı/Z

.2/

l;ˇ
.t Iu; ı/

±
� CI.t/

®
.2RC t /1�lˇ C t .R � t /�lˇ

¯
.0 � ˇ; l; 0 < ı � 1; lˇ � 1; 0 � t � R/:

In the above estimate, we choose R by R D 2t C 1. Since it follows that .2R C
t /1�lˇ C t .R � t /�lˇ D .2C 5t/1�lˇ C t .1C t /�lˇ � 6.1C t /1�lˇ , we have

.1 � lˇ/
°
Cl;ˇ .ı/K

.1/

l;ˇ
.t Iu; ı/C lˇClC2;ˇ .ı/Z

.1/

l;ˇ
.t Iu; ı/

±
C ılˇ

°
ClC2;ˇ .ı/K

.2/

l;ˇ
.t Iu; ı/C ˇ.l C 2/ClC4;ˇ .ı/Z

.2/

l;ˇ
.t Iu; ı/

±
� CI.t/.1C t /1�lˇ .0 � ˇ; l; 0 < ı � 1; lˇ � 1; 0 � t /:

(3.27)

We choose an arbitrary 1 < l0 � 2. For this l0, let ˇ D .l0 � 1/=2 .� 1=2/,
l D ˇ�1 and ı D ˇ in (3.27). In this case, noting Cl 0;ˇ .ˇ/ D .1 C ˇ/l

0.ˇ�1=2/

.l 0 > 0/, jxj2.ˇ�1/.ˇ C jxj/�.1C4ˇ/ � .1C jxj/�.3C2ˇ/ D .1C jxj/�.l0C2/ and

.1C jxj/�.1C2ˇ/ � .ˇ C jxj/�.1C2ˇ/, we haveZ t

0

Z
�

e.s; xIu/

.1C jxj/l0
dxds C

Z t

0

Z
�

ju.s; x/j2

.1C jxj/l0C2
dxds �

C

ˇ
.1C ˇ/

1
2ˇ
.1�2ˇ/I.t/:

Note that the constant C > 0 in the above estimate is independent of ˇ with
0 < ˇ � 1=2. Since .1C ˇ/

1
2
. 1
ˇ
�2/
D .1C ˇ/�1¹.1C ˇ/

1
ˇ º

1
2 ! e

1
2 .ˇ ! 0/, it

follows that sup0<ˇ�1=2.1C ˇ/
1
2
. 1
ˇ
�2/ <1. Hence we haveZ t

0

Z
�

e.s; xIu/

.1C jxj/l0
dxds C

Z t

0

Z
�

ju.s; x/j2

.1C jxj/l0C2
dxds

�
C

l0 � 1
I.t/ .1 < l0 � 2/:

(3.28)

For l0 � 2, noting .1Cjxj/�l0 � .1Cjxj/�2 and using (3.28), we have a constant
C > 0 such thatZ t

0

Z
�

e.s; xIu/

.1C jxj/l0
dxdsC

Z t

0

Z
�

ju.s; x/j2

.1C jxj/l0C2
dxds � CI.t/ .l0 � 2/:

(3.29)
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Weighted energy estimates for wave equations in exterior domains 1235

If 0 � l0 < 1, we use (3.27) as ˇ > 0, l D l0=ˇ > 0 and ı D min¹1; ˇº.
In this case, since Cl;ˇ .ı/ � 1=2 for ˇ � 1=2, Cl;ˇ .ı/ � ¹.1C ˇ/�1=ˇ ºl0=2 for
0 < ˇ � 1=2, we have a constant C > 0 such that Cl;ˇ .ı/ � C for any 0 < ˇ

and 0 � l0 < 1 with l D l0=ˇ. Thus, there exists a constant C > 0 such that for
any ˇ > 0Z t

0

Z
�

e.s; xIu/

.1C jxj/l0
dxds C l0

Z t

0

Z
�

jxj2.ˇ�1/ju.s; x/j2

.1C jxj/l0C2ˇ
dxds

�
C.1C t /1�l0

1 � l0
I.t/:

(3.30)

From (3.29), (3.28) and the case of ˇ D 1 in (3.30), to finish the proof of Theo-
rem 2.1, it suffices to show that there exist constants 0 < ˛0 < 1 and C > 0 such
that Z t

0

Z
�

jxj2.ˇ�1/ju.s; x/j2

.1C jxj/l0C2ˇ
dxds �

C.1C t /1�l0

1 � l0
I.t/ (3.31)

for t � 0, 0 � l0 � ˛0, 0 < ˇ. Note that Hardy’s inequality (3.9) yieldsZ t

0

Z
�

jxj�2ju.s; x/j2

.1C jxj/l0
dxds

� C

Z t

0

Z
�

ˇ̌
rx

�
.1C jxj/�l0=2u.s; x/

�ˇ̌2
dxds

� C

²Z t

0

Z
�

e.s; xIu/

.1C jxj/l0
dxds

C

Z t

0

Z
�

ˇ̌
rx

�
.1C jxj/�l0=2

�ˇ̌2
ju.s; x/j2dxds

³
:

This estimate, (3.30) and the estimate jxj2ˇ .1 C jxj/�2ˇ � 1 imply (3.31) since
we haveˇ̌
rx

�
.1C jxj/�l0=2

�ˇ̌2
�

ˇ̌̌̌
�.l0=2/.1C jxj/

�l0=2�1
x

jxj

ˇ̌̌̌2
�
l20
4

jxj�2

.1C jxj/l0
:

Thus we have Theorem 2.1.

4 L2-type estimates for inhomogeneous data

The estimates given in Theorem 2.1 and Corollary 2.2 are estimates of L1-type in
t for the inhomogeneous data f .t; x/. For removing assumption (H) (or (C)) intro-
duced in Section 2, we need estimates of L2-type in t for the inhomogeneous data
f .t; x/. In this section, we prepare these estimates to obtain the main theorem.
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1236 M. Kawashita and H. Sugimoto

Theorem 4.1. Assume that n � 3 and the obstacle O satisfies (H) or (C). Then
there exists a constant C > 0 such that for any l � 0 and t � 0Z t

0

Z
�

.1C jxj/�le.s; xIu/dxds

C

Z t

0

Z
�

.1C jxj/�.lC2ˇ/jxj2.ˇ�1/ju.s; x/j2dxds

� Cql.t/

²
E.u;�; 0/C

Z t

0

Z
�

.1C jxj/2jf .s; x/j2dxds

³
:

Thus we can also obtain L2-type estimates in t . Instead of that, however, we
need a weight in x.

In the rest of this section, we show Theorem 4.1. Note that the case l D 1 is
given by the argument in the proof of Corollary 2.2. Hence we show the case that
l � 0, l ¤ 1.

We begin with showing the following estimate:

Lemma 4.2. ForF1.x/D .1Cjxj2ˇ1/�l1=2 with ˇ1; l1 � 0 and v 2 C.RI PH 1.�//,
we haveZ t

0

Z
�

F1.x/
ˇ̌̌ x
jxj
� rxv.s; x/C

n � 1

2jxj
v.s; x/

ˇ̌̌2
dxds

�

Z t

0

Z
�

F1.x/jrxv.s; x/j
2dxds

C
.n � 1/l1ˇ1

2

Z t

0

Z
�

F1.x/.1C jxj
2ˇ1/�1jxj2.ˇ1�1/jv.s; x/j2dxds:

Proof. We follow the argument given on page 472 of Morawetz, Ralston and
Strauss [24]. Calculating the term

2F1.x/Re
�
jxj�2.x � rxv/.s; x/v.s; x/

�
D F1.x/jxj

�2x � rx
�
jv.s; x/j2

�
D div

�
jv.s; x/j2F1.x/jxj

�2x
�
� jv.s; x/j2div

�
F1.x/jxj

�2x
�

D div
�
jv.s; x/j2F1.x/jxj

�2x
�

C F1.x/jxj
�2
�
l1ˇ1.1C jxj

2ˇ1/�1jxj2ˇ1 � .n � 2/
�
jv.s; x/j2;
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we obtain

F1.x/
ˇ̌̌ x
jxj
� rxv.s; x/C

n � 1

2jxj
v.s; x/

ˇ̌̌2
D F1.x/

ˇ̌̌̌
x

jxj
� rxv.s; x/

ˇ̌̌̌2
C
n � 1

2

²
div
�
jv.s; x/j2F1.x/jxj

�2x
�

C jv.s; x/j2F.x/jxj�2
®
l1ˇ1.1C jxj

2ˇ1/�1jxj2ˇ1 � .n � 2/
¯

C
n � 1

2
jv.s; x/j2F1.x/jxj

�2

³
:

Since .n � 1/=2 � .n � 2/ D �.n � 3/=2 � 0 for n � 3, it follows that

F1.x/

ˇ̌̌̌
x

jxj
� rxv.s; x/C

n � 1

2jxj
v.s; x/

ˇ̌̌̌2
� F1.x/

ˇ̌
rxv.s; x/

ˇ̌2
C
n � 1

2
div
�
jv.s; x/j2F1.x/jxj

�2x
�

C
n � 1

2
jv.s; x/j2F1.x/l1ˇ1.1C jxj

2ˇ1/�1jxj2.ˇ1�1/

.l1; ˇ1 � 0; n � 3/:

(4.1)

Now we consider the case of star shaped obstacles. If this is the case, from (3.1)
we have Z t

0

Z
�

div
�
jv.s; x/j2F1.x/jxj

�2x
�
dxds

D

Z t

0

Z
@�

jv.s; x/j2F1.x/
�.x/ � x

jxj2
dSxds � 0:

(4.2)

Hence we obtain the estimate in Lemma 4.2 by integrating (4.1) over Œ0; t � ��.
In the case of the Cauchy problem, it suffices to show inequality (4.2) in the

case that � D Rn. Choose ' 2 C 1.Œ0;1// satisfying '.s/ D 0 for 0 � s � 1,
'.s/ D 1 for s � 2 and '0.s/ � 0 (0 � s). For any " > 0, integration by parts
impliesZ t

0

Z
Rn
'."�1jxj/div

�
jv.s; x/j2F1.x/jxj

�2x
�
dxds

D �

Z t

0

Z
Rn
"�1jxj'0."�1jxj/jv.s; x/j2F1.x/jxj

�2dxds � 0 ." > 0/:
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1238 M. Kawashita and H. Sugimoto

From Hardy’s inequality (3.9), the integrated function div
�
ju.s; x/j2F1.x/jxj

�2x
�

is integrable in Œ0; t ��Rn. Thus, taking the limit as "! 0, we have estimate (4.2).
This completes the proof of Lemma 4.2.

As is in the proof of Theorem 2.1, using the solutions u.1/R .t; x/ and u.2/R .t; x/ of
(3.14) and (3.15) we decompose the solution u.t; x/ of (2.1) by u D u

.1/
R C u

.2/
R .

Since we have Theorem 2.1, we can assume that the initial data f1 and f2 in
(1.1) vanish.

Lemma 4.3. We have the following estimate:

Il;ˇ .t Iu
.1/
R ; ı/ � .2RC t /1�lˇ

p
L.t/

�
®
K
.2/

2;2�1
.t Iu

.1/
R ; 1/C .n � 1/Z

.2/

2;2�1
.t Iu

.1/
R ; 1/

¯1=2
.t � 0;R > 0; ˇ; l � 0; lˇ � 1; 1 � ı > 0/;

where L.t/ is defined by

L.t/ D

Z t

0

Z
�

.1C jxj/2jf .s; x/j2dxds:

Proof. Since jxjF.x/ D jxj.ı C jxj2ˇ /�1 � jxj.jxj2ˇ /�l=2 D jxj1�lˇ , for any
1 � ı > 0, ˇ > 0 and l > 0 with lˇ � 1, (3.16) and Schwarz’s inequality imply

Il;ˇ .t Iu
.1/
R ; ı/ �

Z t

0

Z
�

�
.1C jxj/�1

ˇ̌̌̌
x

jxj
� rxu

.1/
R .s; x/C

n � 1

2jxj
u
.1/
R .s; x/

ˇ̌̌̌
� jxjF.x/.1C jxj/j Rf .s; x/j

�
dxds

� .2RC t /1�lˇ
p
L.t/

²Z t

0

Z
�

�
.1C jxj/�2

ˇ̌̌̌
x

jxj
� rxu

.1/
R .s; x/

C
n � 1

2jxj
u
.1/
R .s; x/

ˇ̌̌̌2�
dxds

³1=2
:

We choose ˇ1 D 1=2, l1 D 4 and v D u.1/R in Lemma 4.2. In this case, we have
F1.x/ D .1 C jxj/�2 and F1.x/.1 C jxj2ˇ1/�1jxj2.ˇ1�1/ D .1 C jxj/�3jxj�1.
Hence Lemma 4.2 implies thatZ t

0

Z
�

.1C jxj/�2
ˇ̌̌̌
x

jxj
� rxu.s; x/C

n � 1

2jxj
u.s; x/

ˇ̌̌̌2
dxds

�

Z t

0

Z
�

e.s; x; u/

.1C jxj/2
dxds C .n � 1/

Z t

0

Z
�

jxj�1ju.s; x/j2

.1C jxj/3
dxds:
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From (3.11) and (3.13), we have

K
.2/

2;2�1
.t Iu; 1/ D

Z t

0

Z
�

e.s; x; u/

.1C jxj/2
dxds;

Z
.2/

2;2�1
.t Iu; 1/ D

Z t

0

Z
�

jxj�1ju.s; x/j2

.1C jxj/3
dxds;

(4.3)

which completes the proof of Lemma 4.3.

The argument for (3.20) and the usual energy identity for solution of (3.14)
implyˇ̌̌̌Z
�

X.t; xIu
.1/
R /dx

ˇ̌̌̌
� C.2RC t /1�lˇ

Z t

0

Z
�

j@tu
.1/
R .s; x/jj R.x/f .s; x/jdxds:

From the above estimate and (4.3), it follows thatˇ̌̌̌Z
�

X.t; xIu
.1/
R /dx

ˇ̌̌̌
� C.2RC t /1�lˇ

p
L.t/

°
K
.2/

2;2�1
.t Iu

.1/
R ; 1/

±1=2
.t � 0;R > 0; ˇ; l � 0; lˇ � 1; 1 � ı > 0/:

(4.4)

Now we choose ˇ D 1=2, l D 2 and ı D 1 in the estimate in Proposition 3.6.
Then noting Cl 0;ˇ .1/ D 1 .l 0 > 0/, Lemma 4.3 and (4.4), we have

K
.2/

2;2�1
.t Iu

.1/
R ; 1/CZ

.2/

2;2�1
.t Iu

.1/
R ; 1/

� C
p
L.t/

°
K
.2/

2;2�1
.t Iu

.1/
R ; 1/CZ

.2/

2;2�1
.t Iu

.1/
R ; 1/

±1=2
;

which yields

K
.2/

2;2�1
.t Iu

.1/
R ; 1/CZ

.2/

2;2�1
.t Iu

.1/
R ; 1/ � CL.t/ .t � 0/:

Combining the above estimate, Lemma 4.3, (4.4) with Proposition 3.6, we have
the following estimate for u.1/R .t; x/:

Proposition 4.4. Assume that n � 3 and the obstacle O satisfies (H) or (C). Then
there exists a constant C > 0 such that for any ˇ; l � 0 with lˇ � 1, 1 � ı > 0,
R > 0 and t � 0

.1 � lˇ/
°
Cl;ˇ .ı/K

.1/

l;ˇ
.t Iu

.1/
R ; ı/C lˇClC2;ˇ .ı/Z

.1/

l;ˇ
.t Iu

.1/
R ; ı/

±
C ılˇ

°
ClC2;ˇ .ı/K

.2/

l;ˇ
.t Iu

.1/
R ; ı/C .l C 2/ˇClC4;ˇ .ı/Z

.2/

l;ˇ
.t Iu

.1/
R ; ı/

±
� C.2RC t /1�lˇL.t/:
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1240 M. Kawashita and H. Sugimoto

Next we give an estimate of u.2/R .t; x/. Noting (3.21) with E.u;�; 0/ D 0 and
f .t; x/! .1 �  R.x//f .t; x/ and using Schwarz’s inequality, we have

E.u
.2/
R ; �; s/ � s

Z t

0

k.1 �  R.�//f .�; �/k
2
L2.�/

d� .0 � s � t /:

This estimate and (3.24) yieldZ t

0

Z
�

e.s; xIu
.2/
R /

.ı C jxj/˛
dxds �

Ct2

.R � t /˛

Z t

0

k.1 �  R.�//f .�; �/k
2
L2.�/

d�

.0 � t � R; 0 � ˛; 0 < ı � 1/:

Using the fact that R � jxj if .1 �  R.x// ¤ 0, we have

k.1 �  R.�//f .�; �/k
2
L2.�/

� R�2
Z
�

jxj2jf .�; x/j2dx:

From these estimates, there exists a constant C > 0 such thatZ t

0

Z
�

e.s; xIu
.2/
R /

.ı C jxj/˛
dxds �

Ct2

.R � t /˛R2
L.t/ .0 � t � R; 0 � ˛; 0 < ı � 1/:

(4.5)

Note that we also haveZ t

0

Z
�

jxj2.ˇ�1/ju
.2/
R .s; x/j2

.ı C jxj/˛C2ˇ
dxds �

Ct2

.R � t /˛R2
L.t/

.0 � t � R; 0 � ˛; ˇ; 0 < ı � 1/

(4.6)

by the argument for (4.5) since the estimate .ıCjxj/�.˛C2ˇ/jxj2ˇ � .ıCjxj/�˛ �
.R � t /�˛ .˛ � 0/ for jxj � R � t and Hardy’s inequality (3.9) implyZ t

0

Z
�

jxj2.ˇ�1/ju
.2/
R .s; x/j2

.1C jxj/˛C2ˇ
dxds �

C

.1CR � t /˛

Z t

0

E.u
.2/
R ; �; s/ds:

Now we show Theorem 4.1. As is in Section 3, noting Cl;ˇ .ı/ � 1 (ˇ; l � 0)
and choosing R D 2t C 1 in Proposition 4.4, (4.5) and (4.6), we obtain

.1 � lˇ/
°
Cl;ˇ .ı/K

.1/

l;ˇ
.t Iu; ı/C lˇClC2;ˇ .ı/Z

.1/

l;ˇ
.t Iu; ı/

±
C ılˇ

°
ClC2;ˇ .ı/K

.2/

l;ˇ
.t Iu; ı/C .l C 2/ˇClC4;ˇ .ı/Z

.2/

l;ˇ
.t Iu; ı/

±
� C.1C t /1�lˇL.t/ .t � 0; 1 � ı > 0; l; ˇ � 0/:

(4.7)

Hence noting that Theorem 2.1 is shown by using (3.27), from (4.7), we can obtain
the estimates in Theorem 4.1 for l ¤ 1. This completes the proof of Theorem 4.1.
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5 Proof of Theorem 1.1

In this section, for convenience we express the solutions of problem (1.1) in the
energy space H . For initial data ¹f1; f2º in problem (1.1), we set Ef D t.f1; f2/.
The energy space H is defined by the completion of the set ¹ Ef 2 C10 .�/ j

Bf1 D 0 on @�º by the norm

k Ef k2H D
1

2

Z
�

®
jrxf1.x/j

2
C jf2.x/j

2
¯
dx:

In the case that n � 3,H is given byH D PH 1
B
.�/�L2.�/. For initial data Ef D

t.f1; f2/ 2 H D PH
1
B
.�/�L2.�/ and inhomogeneous data f .t; x/ D 0, problem

(1.1) has the unique solution u 2 C.RI PH 1.�// with @tu.t; x/ 2 C.RIL2.�//.
For this solution u.t; x/, we define U.t/ by U.t/ Ef D t .u.t; �/; @tu.t; �//. The en-
ergy conservation law implies that ¹U.t/ºt2R is a one parameter family of unitary
operators on H . The generator L of ¹U.t/ºt2R is given by L Ef D t .f2;4f1/ for
Ef 2 D.L/ D PH 2

B
.�/ �H 1.�/.

Note that for any initial data Ef D t.f1; f2/ 2 H and inhomogeneous data
f 2 L1loc.RIL

2.�//, problem (1.1) has the unique solution u 2 C.RI PH 1.�//

with @tu.t; x/ 2 C.RIL2.�//. For this solution u.t; x/, we set V.t; Ef ; f / D
t.u.t; �/; @tu .t; �//. Then we have

V.t; Ef ; f / D U.t/ Ef C

Z t

0

U.t � s/F.s/ds in H .F.s/ D t.0; f .s; �///: (5.1)

For the Cauchy problem corresponding to (1.1), we introduce the energy
space H0, a one parameter family of unitary operators ¹U0.t/ºt2R and its gen-
erator L0 corresponding to H , ¹U.t/ºt2R and L respectively. Note that in this
case, H0 D PH 1.Rn/ � L2.Rn/ and D.L0/ D PH 2.Rn/ �H 1.Rn/. For the solu-
tion u.t; x/ of the Cauchy problem corresponding to (1.1), we put V0.t; Ef ; f / D
t.u.t; �/; @tu.t; �//. We have

V0.t; Ef ; f / D U0.t/ Ef C

Z t

0

U0.t � s/F.s/ds in H0 .F.s/ D t.0; f .s; �///:

This is the same as in the case of (5.1).
We choose a cutoff function 2 C1.Rn/with .x/ D 0 for jxj �R0C QR0=3,

 .x/ D 1 for jxj � R0 C 2 QR0=3. We put  U.t/ Ef D t. u.t; �/;  @tu.t; �//,
where u.t; x/ is the solution of (1.1) for initial data Ef 2 H and inhomogeneous
data f .t; x/ D 0.

From Hardy’s inequality (3.9), Duhamel’s principle and the fact that  D 0

near @�, we have the following lemma.
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1242 M. Kawashita and H. Sugimoto

Lemma 5.1. We have the following properties:

(1) We have  U.t/ Ef 2 C.RIH0/ for Ef 2 H , and  U.t/ Ef 2 C 1.RIH0/ \
C 0.RID.L0// for Ef 2 D.L/. Further, there holds

 U.t/ Ef D U0.t/. Ef /C

Z t

0

U0.t � s/Q U.s/ Ef ds in H0 . Ef 2 H/;

whereQ 2 B.H;H0/\B.D.L/;D.L0// is defined by satisfying the identity
Q Eg D

t.0;�Œ4;  �g1/.

(2) We have  U0.t/ Ef0 2 C.RIH/ for Ef0 2 H0 and  U0.t/ Ef0 2 C 1.RIH/ \
C 0.RID.L// for Ef0 2 D.L0/. Further, there holds

 U0.t/ Ef0 D U.t/. Ef0/C

Z t

0

U.t � s/Q U0.s/ Ef0ds in H . Ef0 2 H0/;

whereQ 2 B.H0;H/\B.D.L0/;D.L// is defined by satisfying the identity
Q Eg D

t.0;�Œ4;  �g1/.

From now on, for l � 0, Ef D t.f1; f2/, m 2 N [ ¹0º and D � Rn, we define
k Ef kHm;l .D/ .� 0/ and k Ef kHm.D/ by

k Ef k2Hm;l .D/ D
X

1�jCj˛j�mC1

Z
D

j@˛xfjC1.x/j
2

.1C jxj/l
dx

and

k Ef kHm.D/ D k
Ef kHm;0.D/:

Note that for anym 2 N we haveD.Lm/ � Hm.�/ and the graph norm k�kD.Lm/
is estimated as C�1m k Ef kHm.�/ � k Ef kD.Lm/ � Cmk Ef kHm.�/ .m D 0; 1; 2; : : :/.

From the weighted energy estimates obtained in Theorem 2.1 and Corollary 2.2,
we have the following estimates for ¹U0.t/º immediately:

Proposition 5.2. There exists a constant C > 0 such that for t � 0, l � 0 and
Eg 2 H0 the following hold:

(i)
Z t

0

kU0.s/Egk
2
H0;l .Rn/

ds � Cql.t/kEgk
2
H0

,

(ii)
Z t

0

k.1C j � j/�.lC2/ŒU0.s/Eg�1.�/k
2
L2.Rn/ds � Cql.t/kEgk

2
H0

,

where the ql.t/ are introduced in Section 1.
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Weighted energy estimates for wave equations in exterior domains 1243

We put Hm.�/ D . PH 1
B
.�/\ PHmC1.�// �Hm.�/ .m D 0; 1; 2; : : :/. Using

Proposition 5.2, we have the following estimates of higher order derivatives of the
solutions:

Proposition 5.3. For any integer m � 0, there exists a constant C.m/ > 0 such
thatZ t

0

kU0.s/Egk
2
Hm;l .Rn/

ds � C.m/ql.t/kEgk
2
Hm.Rn/

.t � 0; l � 0; Eg 2Hm.R
n//:

Indeed, noting
Tm
jD0D.L

j
0/D

PHmC1.Rn/�Hm.Rn/, the property @˛xU0.t/D
U0.t/@

˛
x for the free system and the fact that

P
j˛j�m k@

˛
x Egk

2
H0
� CmkEgk

2
Hm.Rn/

,
we conclude Proposition 5.3 from Proposition 5.2.

Now we show Theorem 1.1. We begin with estimating the time integral of local
energy norms.

Proposition 5.4. Assume that n � 3 and (E1) is satisfied. Then there exists a
constant C > 0 such that for t � 0 and Ef 2 D.Lm// the following hold:

(i)
Z t

0

kU.s/ Ef k2H.�\B
R0C

QR0
.0//ds � Ck

Ef k2Hm.�/,

(ii)
Z t

0

kŒU.s/ Ef �1k
2
L2.�\B

R0C
QR0
.0//
ds � Ck Ef k2Hm.�/.

Proof. We choose an arbitrary Eg 2 Hm.Rn/. From (2) of Lemma 5.1, it follows
thatZ t

0

kU.s/. Eg/k2H.�\B
R0C

QR0
.0//ds

� 2

Z t

0

k U0.s/Egk
2
H.�\B

R0C
QR0
.0//ds

C 2

Z t

0

�Z s

0

kU.s � �/Q U0.�/EgkH.�\B
R0C

QR0
.0//d�

�2
ds:

(5.2)

Note that for the first term on the right-hand side of (5.2), there exists a constant
C > 0 such that

k U0.s/EgkH.�\B
R0C

QR0
.0//

� C
°
kU0.s/EgkH0;2.Rn/ C kŒU0.s/Eg�1kL2.�\.BR0C QR0 .0/nBR0 .0///

±
� C

°
kU0.s/EgkH0;2.Rn/ C k.1C j � j/

�4ŒU0.s/Eg�1.�/kL2.�/

±
:
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1244 M. Kawashita and H. Sugimoto

Hence the case of l D 2 in Proposition 5.2 impliesZ t

0

k U0.s/Egk
2
H.�\B

R0C
QR0
.0//ds � CkEgk

2
H0

.t � 0; Eg 2 H0/: (5.3)

For the second term of the right-hand side in (5.2), we need assumption (E1) for
the decay rate of the local energy. Note that for any Eh 2 H0 we haveQ Eh.x/ D 0
for jxj � R0, and for any Eg 2 Hm.Rn/, it follows that Q Eg 2 D.Lm/ and
suppQ Eg � B

R0C QR0
. Since Ef 2 D.Lm/ if and only if Ef D t .f1; f2/ 2

Hm.�/ and the pair .f1; f2; 0/ satisfies the compatibility condition of order m,
from assumption (E1), there exists a function p 2 C.Œ0;1// \ L1.Œ0;1// such
that

kU.t/Q EhkH.�\B
R0C

QR0
.0// C kŒU.t/Q Eh�1kL2.�\B

R0C
QR0
.0//

� p.t/kQ EhkHm.�/ .t � 0; Eh 2 Hm.R
n//:

(5.4)

Putting Eh D U0.�/Eg in (5.4), and noting thatU0.�/Eg 2 Hm.Rn/ for Eg 2 Hm.Rn/,
we have

kU.t/Q U0.�/EgkH.�\B
R0C

QR0
.0// C kŒU.t/Q U0.�/Eg�1kL2.�\B

R0C
QR0
.0//

� p.t/kQ U0.�/EgkHm.�/ .t � 0; � 2 R; Eg 2 Hm.R
n//:

(5.5)

From (5.5), Schwarz’s inequality implies thatZ t

0

�Z s

0

kU.s � �/Q U0.�/EgkH.�\B
R0C

QR0
.0//d�

�2
ds

�

Z t

0

Z s

0

p.s � �/d�

Z s

0

p.s � �/kQ U0.�/Egk
2
Hm.Rn/

d�ds

� kpkL1.Œ0;1//

Z t

0

Z t

�

p.s � �/kQ U0.�/Egk
2
Hm.Rn/

dsd�

� kpk2
L1.Œ0;1//

Z t

0

kQ U0.�/Egk
2
Hm.Rn/

d�:

(5.6)

Noting that

kQ U0.�/Egk
2
Hm.�/

� C
°
kU0.�/Egk

2
Hm;2.Rn/

C k.1C j � j/�4jŒU0.�/Eg�1.�/jk
2
L2.Rn/

±
;
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Weighted energy estimates for wave equations in exterior domains 1245

from the case l D 2 in Propositions 5.2 and 5.3, we haveZ t

0

kQ U0.�/Egk
2
Hm.�/

d� � CkEgk2Hm.Rn/ .t � 0; Eg 2 Hm.R
n//: (5.7)

The estimates (5.7) and (5.6) implyZ t

0

�Z s

0

kU.s � �/Q U0.�/EgkH.�\B
R0C

QR0
.0//d�

�2
ds � CkEgk2Hm.Rn/

.t � 0; Eg 2 Hm.R
n//:

(5.8)

Combining (5.8), (5.3) and (5.2), we obtainZ t

0

kU.s/. Eg/k2H.�\B
R0C

QR0
.0//ds � CkEgk

2
Hm.Rn/

.t � 0; Eg 2 Hm.R
n//:

(5.9)

For the cutoff function  2 C1.Rn/, we choose Q 2 C1.Rn/ with supp Q �
Rn n B

R0C QR0=12
.0/ and Q .x/ D 1 for jxj � R0 C QR0=6. For any Ef 2 D.Lm/,

we have Q Ef 2 Hm.Rn/. We put Eg D Q Ef in (5.9). Since  Eg D  Q Ef D  Ef , it
follows thatZ t

0

kU.s/. Ef /k2H.�\B
R0C

QR0
.0//ds � Ck

Q Ef k2Hm.Rn/ � Ck
Ef k2Hm.�/

.t � 0; Ef 2 D.Lm//:

(5.10)

Since .1� / Ef 2 D.Lm/, supp.1� / Ef � B
R0C QR0

, from assumption (E1) and
Hardy’s inequality (3.9), there exist a function p 2 C 0.Œ0;1//\L1.Œ0;1// and
a constant C > 0 such that

kU.t/.1 �  / Ef kH.�\B
R0C

QR0
.0//CkŒU.t/.1 �  / Ef �1kL2.�\B

R0C
QR0
.0//

� p.t/k.1 �  / Ef kHm.�/ � Cp.t/k
Ef kHm.�/ .t � 0; Ef 2 D.Lm//:

(5.11)

We put Eh D .1 �  / Ef . The above estimate impliesZ t

0

kU.s/Ehk2H.�\B
R0C

QR0
.0//ds

� C

Z t

0

kU.s/EhkH.�\B
R0C

QR0
.0//kU.s/EhkH.�/ds

� C

Z t

0

p.s/k Ef kHm.�/k
Ef kH.�/ds;
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1246 M. Kawashita and H. Sugimoto

which yieldsZ t

0

kU.s/.1 �  / Ef k2H.�\B
R0C

QR0
.0//ds � Ck

Ef k2Hm.�/ .t � 0; Ef 2 D.Lm//:

(5.12)

Combining the estimates (5.12) and (5.10), we obtain (i) of Proposition 5.4.
Next we show (ii). We divide the term

R t
0 kŒU.s/. Eg/�1k

2
L2.�\B

R0C
QR0
.0//
ds

similarly to (5.2). From (5.5), the argument for (5.8) impliesZ t

0

�Z s

0

kŒU.s � �/Q U0.�/Eg�1kL2.�\B
R0C

QR0
.0//d�

�2
ds � CkEgk2Hm.Rn/

.t � 0; Eg 2 Hm.R
n//:

Combining these estimates with the case l D 2 in (2) of Proposition 5.2, we obtainZ t

0

kŒU.s/. Eg/�1k
2
L2.�\B

R0C
QR0
.0//
ds � CkEgk2Hm.Rn/ .t � 0; Eg 2 Hm.R

n//:

Hence noting (5.11), we get (ii) similarly to (i). This completes the proof of Propo-
sition 5.4.

For the estimate in x far from the boundary, we have the following one:

Proposition 5.5. Assume that n � 3 and (E1) is satisfied. Then there exists a
constant C > 0 such thatZ t

0

k U.s/ Ef k2H0;l .Rn/ds C

Z t

0

k.1C j � j/�.lC2/Œ U.s/ Ef �1.�/k
2
L2.Rn/ds

� Cql.t/k Ef k
2
Hm.�/

.t � 0; l � 0; Ef 2 D.Lm//:

Proof. We choose an arbitrary Ef 2 D.Lm/ and put

W.t/ Ef D

Z t

0

U0.t � s/Q U.s/ Ef ds:

From (1) of Lemma 5.1, we have  U.t/ Ef D U0.t/. Ef /CW.t/ Ef in H0, which
yields Z t

0

k U.s/ Ef k2H0;l .Rn/ds

� 2

Z t

0

kU0.s/. Ef /k
2
H0;l .Rn/

ds C 2

Z t

0

kW.s/ Ef k2H0;l .Rn/ds:
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Weighted energy estimates for wave equations in exterior domains 1247

From Proposition 5.2 and Hardy’s inequality (3.9), the above estimate impliesZ t

0

k U.s/ Ef k2H0;l .Rn/ds � Cql.t/k
Ef k2H C 2

Z t

0

kW.s/ Ef k2H0;l .Rn/ds: (5.13)

Note that the same argument gives the following estimate:Z t

0

k.1C j � j/�.lC2/Œ U.s/ Ef �1.�/k
2
L2.Rn/ds

� Cql.t/k Ef k
2
H C 2

Z t

0

k.1C j � j/�.lC2/ŒW.s/ Ef �1.�/k
2
L2.Rn/ds:

(5.14)

Now we estimate W.t/ Ef . Note that for any Ef 2 D.L/, W.t/ Ef 2 D.L0/ and
W.t/ Ef satisfies

d

dt
W.t/ Ef D L0W.t/ Ef CQ U.t/ Ef in H0; W.0/ Ef D 0:

We express W.t/ Ef as W.t/ Ef .x/ D t.w1.t; x/; w2.t; x//. Then we have w1 2
C 0.RI PH 2.Rn//\C 1.RI PH 1.Rn//, w2 2 C 0.RIH 1.Rn//\C 1.RIL2.Rn// and

@tw1.t; x/ D w2.t; x/;

@tw2.t; x/ D 4w1.t; x/ � .2rx � rxu.t; x/C .4 /u.t; x//;

where u.t; x/ is the solution of (1.1) with the initial data Ef D t.f1; f2/ and inho-
mogeneous data f .t; x/ D 0.

We put G.t; x/ D �.2rx � rxu.t; x/C .4 /u.t; x// .D ŒQ U.t/ Ef �2.x//.
Then we have ´

.@2t �4/w1.t; x/ D G.t; x/ in R �Rn;

w1.0; x/ D 0; @tw1.0; x/ D 0 on Rn:

This fact and Theorem 4.1 imply that there exists a constant C > 0 such thatZ t

0

kW.s/ Ef k2H0;l .Rn/ds C

Z t

0

k.1C j � j/�.lC2/ŒW.s/ Ef �1.�/k
2
L2.Rn/ds

� Cql.t/

Z t

0

Z
Rn
.1C jxj/2jG.s; x/j2dxds .t � 0; l � 0/:

(5.15)

Since Q Eg D t.0;�Œ4;  �/Eg D t.0;�.2rx � rxg1C .4 /g1//, noting that

kQ EgkH0 � C
°
kEgkH.�\B

R0C
QR0
.0// C kg1kL2.�\B

R0C
QR0
.0//

±
.Eg 2 H/;
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1248 M. Kawashita and H. Sugimoto

from Proposition 5.4, we obtainZ t

0

kQ U.s/ Ef k
2
H0
ds � Ck Ef k2Hm.�/ .t � 0; Ef 2 D.Lm//: (5.16)

The fact suppG.t; �/ � ¹x 2 Rn j R0 � jxj � R0 C QR0º impliesZ
Rn
.1C jxj/2jG.s; x/j2dx � .1CR0 C QR0/

2

Z
Rn
jG.s; x/j2dx

� CkQ U.s/ Ef k
2
H0
:

(5.17)

Combining (5.15)–(5.17), we obtainZ t

0

kW.s/ Ef k2H0;l .Rn/ds C

Z t

0

k.1C j � j/�.lC2/ŒW.s/ Ef �1.�/k
2
L2.Rn/ds

� Cql.t/k Ef k
2
Hm.�/

.t � 0; l � 0; Ef 2 D.Lm//:

The above estimate, (5.13) and (5.14) imply the estimates in Proposition 5.5,
which completes the proof of Proposition 5.5.

Proof of Theorem 1.1. We divide the proof into three steps.

Step 1 (the case that f D 0). We choose an arbitrary Ef 2 D.Lm/. Noting that
 D 1 for jxj � R0 C 2 QR0=3, we haveZ t

0

kU.s/ Ef k2H0;l .�/ds

�

Z t

0

kU.s/ Ef k2H.�\B
R0C

QR0
.0//ds C

Z t

0

k U.s/ Ef k2H0;l .Rn/ds

for any l � 0. From the above estimate, Propositions 5.4 and 5.5, we obtainZ t

0

kU.s/ Ef k2H0;l .�/ds � Cql.t/k
Ef k2Hm.�/ .t � 0; l � 0; Ef 2 D.Lm//:

(5.18)
Noting that

k.1C j � j/�.lC2/ŒU.s/ Ef �1k
2
L2.�/

� Ck.1C j � j/�.lC2/ŒU.s/ Ef �1k
2
L2.�\B

R0C
QR0
.0//

C k.1C j � j/�.lC2/Œ U.s/ Ef �1k
2
L2.Rn/ .l � 0/;

AUTHOR’S COPY | AUTORENEXEMPLAR 

AUTHOR’S COPY | AUTORENEXEMPLAR 



Weighted energy estimates for wave equations in exterior domains 1249

we can similarly show the following estimate:Z t

0

k.1C j � j/�.lC2/ŒU.s/ Ef �1.�/k
2
L2.�/

ds � Cql.t/k Ef k
2
Hm.�/

.t � 0; l � 0; Ef 2 D.Lm//:

(5.19)

Hence we have the estimate in Theorem 1.1 for the case that f .t; x/ D 0.

Step 2 (the case that m D 0 with non-zero inhomogeneous data). In this case,
we can assume that the initial data f1 and f2 satisfy f1 D 0 and f2 D 0. From
(5.1), we have

kV.t; E0; f /kH0;l .�/ �

Z t

0

kU.t � s/F.s/kH0;l .�/ds

D

Z t

0

Q�.t � s/kU.t � s/F.s/kH0;l .�/ds;

where Q� is the function defined by Q�.�/ D 1 for � � 0, Q�.�/ D 0 for � < 0. Thus
Minkowski’s inequality impliesZ t

0

kV.s; E0; f /k2H0;l .�/ds �

Z t

0

�Z s

0

Q�.s � �/kU.s � �/F.�/kH0;l .�/d�

�2
ds

�

²Z t

0

�Z t��

0

kU.s/F.�/k2H0;l .�/ds

�1=2
d�

³2
;

(5.20)

Using (5.18) with m D 0, which is a part of Theorem 1.1 and has already been
shown, we obtainZ t��

0

kU.s/F.�/k2H0;l .�/ds � Cql.t � �/kF.�/k
2
H0.�/

� Cql.t � �/kf .�; �/k
2
L2.�/

.t; � � 0; l � 0/:

Since ql is a non-decreasing function, it follows thatZ t

0

kV.s; E0; f /k2H0;l .�/ds � Cql.t/

²Z t

0

kf .�; �/kL2.�/d�

³2
;

which shows the estimate in Theorem 1.1 for weighted energy norms of the solu-
tions with inhomogeneous data. From (5.19), we can similarly show the estimate
of weighted L2-norm. This completes the task in Step 2.
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1250 M. Kawashita and H. Sugimoto

Step 3 (the case that m � 1). In this case, we cannot use the argument in
Step 2, since we have to handle the compatibility conditions. For Ef 2 Hm.�/ and
f 2

Tm�1
jD0 W

jC1;1
loc .Œ0;1/IHm�1�j .�//, we put F.s/ D t.0; f .s; �//, G0 D Ef

and Gj D LGj�1 C @
j�1
t F.0/ .j D 1; 2; : : : ; m/. In what follows, we assume

that .f1; f2; f / satisfies the compatibility condition of order m. Note that this is
equivalent to the fact that Gj 2 D.L/ .j D 0; 1; : : : ; m � 1/ holds.

Since L is skew self-adjoint, .LC I /�1 2 B.H/ exists. From the fact that f 2
W
m;1

loc .Œ0;1/IL2.�//, we have F 2 W m;1
loc .Œ0;1/IH/. For any k D 1; 2; : : : ; m,

we put Fk.t/ D .L C I /�k.@t C I /
k�1F.t/ 2 W

mC1�k;1
loc .Œ0;1/ID.Lk// �

Cm�k.Œ0;1/ID.Lk// and Egk D Ef C
Pk
jD1 Fj .0/.

Lemma 5.6. For Ef and f as above, the following hold:

(1) We have the identity

V.t; Ef ; f / D U.t/

�
Ef C

mX
jD1

Fj .0/

�
�

mX
jD1

Fj .t/

C

Z t

0

U.t � s/.@s C I /Fm.s/ds:

(2) For p D 1; 2; : : : ; m, we have Egp 2 D.Lp/ and

.LC I /p Egp D

pX
jD0

 
p

j

!
Gp�j :

(3) There exists a constant C > 0 such that kEgmk2D.Lm/ � CIm.t/ .t � 1/, where

Im.t/ D k Ef k
2
Hm.�/

C

1X
kD0

m�1X
pD0

�Z t

0

k@pCks f .s; �/kHm�1�p.�/ds

�2
:

Proof. We consider the case of m D 1. From F1 2 C
0.RID.L//, it follows that

U.t � s/F.s/ D .LC I /U.t � s/.LC I /�1F.s/ D
�
.�@sC I /.U.t � s//

�
F1.s/.

Therefore applying integration by parts to (5.1), we have

V.t; Ef ; f / D U.t/. Ef C F1.0// � F1.t/C

Z t

0

U.t � s/.@s C I /F1.s/ds:

Hence we obtain the case of m D 1. Repeating integration by parts for the above
identity, we have (1) of Lemma 5.6.

To show (2), we use induction. Since F1.0/ D .LC I /�1F.0/ 2 D.L/, noting
that G0 D Ef 2 D.L/, it follows that Eg1 2 D.L/ and .LC I /Eg1 D .LC I / Ef C
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Weighted energy estimates for wave equations in exterior domains 1251

F.0/ D G1 CG0. Thus we obtain (2) for p D 1. Assume that (2) holds for some
p with 1 � p � m� 1. Then it follows that EgpC1 D EgpCFpC1.0/ 2 D.Lp/ and

.LC I /p EgpC1 D

pX
jD0

 
p

j

!
Gp�j C .LC I /

�1.@t C I /
pF.0/:

Noting that Gj 2 D.L/ .j D 0; 1; : : : ; m � 1/, we have EgpC1 2 D.LpC1/ and

.LC I /pC1 EgpC1 D

pX
jD0

 
p

j

!®
.LC I /Gp�j C @

p�j
t F.0/

¯
D

pX
jD0

 
p

j

!®
GpC1�j CGp�j

¯

D

pC1X
jD0

 
p C 1

j

!
GpC1�j :

Thus we have the case of p C 1, which implies (2) of Lemma 5.6.
From (2) of Lemma 5.6, it follows that Egm D Ef C

Pm
jD1 Fj .0/ 2 D.L

m/ �

Hm.�/ and

kEgmkD.Lm/ � C

²
k Ef kHm.�/ C

mX
jD1

k.@s C I /
j�1F.0/kHm�j .�/

³

� C

²
k Ef kHm.�/ C

m�1X
pD0

k@
p
t f .0; �/kHm�p�1.�/

³

since k.L C I /�j .@s C I /j�1F.0/kHm.�/ � Ck.@s C I /j�1F.0/kHm�j .�/.
Choose � 2 C1.R/ with �.t/ D 1 .t < 1=3/ and �.t/ D 0 .t > 2=3/. For t � 1,
we have@pt f .0; �/Hm�1�p.�/

D

� Z t

0

@s
�
�.s/@ps f .s; �/

�
ds


Hm�1�p.�/

� max
t2R
¹j�.t/j C j@t�.t/jº

1X
kD0

Z t

0

k@pCks f .s; �/kHm�1�p.�/ds:

(5.21)

Combining these estimates, we obtain (3) of Lemma 5.6.
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Now we give the estimate for
R t
0 kV.s;

Ef ; f /k2
H0;l .�/

ds. It suffices to consider
the estimate for t � 1 since for 0 � t � 1, we can obtain the estimate from the
usual energy inequality for problem (1.1). From (1) of Lemma 5.6, we haveZ t

0

kV.s; Ef ; f /k2H0;l .�/ds

� C

´Z t

0

kU.s/Egmk
2
H0;l .�/

ds C

Z t

0


mX
jD1

Fj .s/


2

H0;l .�/

ds

C

Z t

0

Z s

0

U.s � �/.@� C I /Fm.�/d�

2
H0;l .�/

ds

µ
:

(5.22)

From (5.18) and (3) of Lemma 5.6, the first term on the right-hand side of (5.22)
is estimated byZ t

0

kU.s/Egmk
2
H0;l .�/

ds � Cql.t/Im.t/ .t � 0; l � 0; .f1; f2; f / 2 Dm.�//;

(5.23)

where .f1; f2; f / 2 Dm.�/ means that .f1; f2; f / satisfies the compatibility
condition of order m.

For the second term on the right-hand side of (5.22), since kFj .s/kH0;l .�/ �
kFj .s/kHm.�/ � k.@sCI /

j�1F.s/kHm�j .�/ � C
Pj�1
pD0 k@

p
s f .s; �/kHm�1�p.�/

we haveZ t

0


mX
jD1

Fj .s/


2

H0;l .�/

ds

� C

m�1X
pD0

Z t

0

k@ps f .s; �/k
2
Hm�1�p.�/

ds

� C

m�1X
pD0

sup
0�s�t

k@ps f .s; �/kHm�1�p.�/

Z t

0

k@ps f .s; �/kHm�1�p.�/ds:

Replacing � in the proof of (5.21) with the function s 7! �.s � .t � 1//, from the
same argument as for (5.21), we have@pt f .s; �/

Hm�1�p.�/
� C

1X
kD0

Z t

0

k@pCks f .s; �/kHm�1�p.�/ds

.t � 1; 0 � s � t � 1=2; p D 0; 1; : : : ; m � 1/:
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Using 1 � �.s/ in the above, we can see that the above estimate also hold for
t � 1=2 � s � t . Combining the above estimates, we obtainZ t

0


mX
jD1

Fj .s/


2

H0;l .�/

ds � C

m�1X
pD0

1X
kD0

�Z t

0

k@pCks f .s; �/kHm�1�p.�/ds

�2

.t � 1; f 2

m�1\
jD0

W
jC1;1

loc .Œ0;1/IHm�1�j .�///:

(5.24)

We consider the third term on the right side of (5.22). Since .@� C I /Fm.�/ D
.L C I /�m.@� C I /

mF.�/ 2 L1loc.Œ0;1/ID.L
m//, from (5.18) and the mono-

tonicity ql , it follows thatZ t��

0

kU.s/.@� C I /Fm.�/k
2
H0;l .�/

ds

� Cql.t � �/k.@� C I /Fm.�/k
2
Hm.�/

� Cql.t/k.@� C I /
mF.�/k2H0.�/

� Cql.t/

m�1X
pD0

1X
kD0

k@pCks f .�; �/k2
Hm�1�p.�/

:

Hence the argument for obtaining (5.20) implies thatZ t

0

Z s

0

U.s � �/.@� C I /Fm.�/d�

2
H0;l .�/

ds

�

²Z t

0

�Z t��

0

kU.s/.@� C I /Fm.�/k
2
H0;l .�/

ds

�1=2
d�

³2
� Cql.t/Im.t/:

(5.25)

Combining (5.22)–(5.25), we obtainZ t

0

kV.s; Ef ; f /k2H0;l .�/ds � Cql.t/Im.t/

.t � 0; l � 0; .f1; f2; f / 2 Dm.�//:

From (5.19), we can similarly show the estimate forZ t

0

k.1C j � j/�.lC2/ŒV .s; Ef ; f /�1.�/k
2
L2.�/

ds:

Thus we have finished Step 3. This completes the proof of Theorem 1.1.
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Remark. We consider the following uniform decay rate Qpm;R.t/ of the local en-
ergy of solutions u.t; x/ of (1.1) with zero inhomogeneous data f .t; x/ D 0:

Qpm;R.t/ D sup
²E.u;� \ BR; t /C ku.t; �/k2L2.�\BR/

krxf1k
2
Hm.�/

C kf2k
2
Hm.�/

ˇ̌̌
0 ¤ f1; f2 2 C

1
0 .� \ BR/; f1 2

PH 1
B.�/

³
:

In the definition of the rate Qpm;R.t/, we do not care about the compatibility con-
dition, but for the rate pm;R.t/ in (E1) it is considered. This is the difference
between them. Note that pm;R.t/ � Qpm;R.t/ is obvious, however for large m,
Qpm;R.t/ does not seem to be coincide with pm;R.t/. The lack of the compatibil-

ity condition may produce singularities which contain energy remaining near the
boundary. This may cause slowness of Qpm;R.t/.

In the case of m > 0, the argument of Walker [31] for showing pm;R.t/ ! 0

as t ! 1 also implies that Qpm;R.t/ ! 0 as t ! 1. Hence this rate also decay.
Note that the decay rates pm;R.t/ and Qpm;R.t/ are also defined for non-integers
m � 0. Note also that for m � 1=2, we have Qpm;R.t/ D pm;R.t/ since we do not
have boundary values of functions belonging to Hm.�/ in the trace sense. From
this fact and the interpolation theorems, we can also have estimates for Qpm;R.t/.

In the results of Ikawa [4, 5], which is introduced in Section 1, the solutions
with compatibility conditions for the case of the Dirichlet condition are treated.
This corresponds to considering the decay rate pm;R.t/. Recall the estimate of
Ikawa [5], that is, pm;R.t/ D O.e�˛t / with m � 2 for some ˛ > 0. From this, it
follows that

kU.t/ Ef kH0.�\BR/ C kŒU.t/
Ef �1k

2
L2.�\BR/

� Ce�˛t
�
kf1kH1Cm

0 .�/
C kf2kHm

0 .�/

�
.f1 2 H

1Cm
0 .�/; f2 2 H

m
0 .�/; suppf1 [ suppf2 � � \ BR/

(5.26)

form � 2 since the rate pm;R.t/ contains the compatibility condition and we have
H 1Cm
0 .�/�Hm

0 .�/ � D.L
m/ (m 2 N[¹0º). From the energy conservation law,

we also have estimate (5.26) for m D 0. Hence the interpolation theorem implies
that the estimates replaced e�˛t in (5.26) with e�m˛t=2 also hold for 0 � m � 2,
m ¤ 1=2; 3=2. Noting that the set ¹.f1; f2/ 2 H j f1; f2 2 C10 .� \ BR/
and f1 2 PH 1

B
.�/º is dense in H 1Cm.�/�Hm.�/ if 0 � m � 1=2, we obtain

Qpm;R.t/ D pm;R.t/ D O.e�.m˛=2/t / for 0 � m < 1=2. For m � 1=2, we also
have Qpm;R.t/ � Qp.1�ı/=2;R.t/ D O.e�..1�ı/˛=4/t / for 0 < ı < 1. Thus, in this
case, we still have exponential decay estimates for the uniform decay rate Qpm;R.t/.
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Now we consider the condition obtained by replacing pm;R.t/ to Qpm;R.t/
in (E1). If we assume that this condition holds, then the argument for (5.18) and
(5.19) imply thatZ t

0

kU.s/ Ef k2H0;l .�/ds C

Z t

0

k.1C j � j/�.lC2/ŒU.s/ Ef �1.�/k
2
L2.�/

ds

� Cql.t/k Ef k
2
Hm.�/

.t � 0; l � 0; Ef 2 Hm.�//:

Note that in this argument, we do not use the compatibility conditions. Hence from
the argument for Step 2 of the proof of Theorem 1.1, it follows that there exists a
constant C > 0 such thatZ t

0

Z
�

.1C jxj/�le.s; xIu/dxds C

Z t

0

Z
�

.1C jxj/�.lC2/ju.s; x/j2dxds

� Cql.t/

²
krxf1k

2
Hm.�/ C kf2k

2
Hm.�/ C

�Z t

0

kf .s; �/kHm.�/ds

�2³
.t � 0; l � 0; f1 2 PH

mC1.�/\ PH 1
B.�/; f2 2 H

m.�/;

f 2 L1loc.Œ0;1/;H
m.�///:

Thus, we can avoid the derivatives for t . Instead, we need one more spatial deriva-
tive than those in Theorem 1.1.

6 Appendix

Proposition 6.1. We have the following identities:

(i) Re
�
F.x � rxv/.@

2
t �4/v

�
D Re

�
@t
�
@tvF.x � rxv/

�
C .rxF � rxv/x � rxv

�
C F jrxvj

2
C 2�1div.F x/ �

�
j@tvj

2
� jrxvj

2
�

C div
®
2�1

�
jrxvj

2
� j@tvj

2
�
Fx

� Re
�
F.x � rxv/rxv/

�¯
;

(ii) Re
�
Fv.@2t �4/v

�
D Re

�
@t
�
@tvF v

��
� div

®
Re
�
Fvrxv

�
� 2�1jvj2rxF

¯
� F

�
j@tvj

2
� jrxvj

2
�
� 2�1.4F /jvj2:

Proof. First we compute the term @2t vF.x � rxv/. Since

@2t vF.x � rxv/ D @t
�
@tvF.x � rxv/

�
� @tvF.x � rx@tv/;
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we have

Re
�
@2t vF.x � rxv/

�
D Re

�
@t
�
@tvF.x � rxv/

��
� 2�1Fx � rx.j@tvj

2/

D Re
�
@t
�
@tvF.x � rxv/

��
� div

�
2�1F j@tvj

2x
�

C 2�1div.F x/j@tvj2:

(6.1)

For the second term, since

4v � F.x � rxv/ D

nX
jD1

@xj
�
@xj v � F.x � rxv/

�
�

nX
jD1

@xj v � @xj
�
F.x � rxv/

�
D div

�
F.x � rxv/rxv

�
� rxv � rxF.x � rxv/

�

nX
jD1

F j@xj vj
2
�

nX
jD1

@xj vF x � rx.@xj v/;

it follows that

Re
�
4v � F.x � rxv/

�
D div

�
Re
�
F.x � rxv/rxv

��
� Re

�
rxv � rxF.x � rxv/

�
� F jrxvj

2
� 2�1Fx � rx.jrxvj

2/

D div
�

Re
�
F.x � rxv/rxv

��
� Re

�
rxv � rxF.x � rxv/

�
� F jrxvj

2
� 2�1div

�
jrxvj

2Fx
�

C 2�1div.F x/jrxvj2:
(6.2)

Subtracting (6.2) from (6.1), we have proved (1) of Proposition 6.1.
We show (2). Note that

@2t vF v D @t
�
@tvF v

�
� F@tv@tv D @t

�
@tvF v

�
� F j@tvj

2: (6.3)

Since4v �Fv D
Pn
jD1 @xj .@xj v �Fv/�

Pn
jD1 @xj v.@xjF /v�

Pn
jD1 @xj vF @xj v

we have

Re
�
4v � Fv

�
D div

�
ReŒF vrxv�/ � 2�1

nX
jD1

@xjF@xj jvj
2
� F jrxvj

2

D div
�

ReŒF vrxv�/ � 2�1div
�
jvj2rxF

�
C 2�1jvj24F � F jrxvj

2:

(6.4)

Subtracting (6.4) from (6.3), we obtain (2) of Proposition 6.1.
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