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5-nm thick Co4N layers capped with 3-nm thick Au layers were grown epitaxially on SrTiO3(001)

substrates by molecular beam epitaxy using solid Co and a radio-frequency NH3 plasma. Spin and

orbital magnetic moments of the Co4N layers were estimated using x-ray magnetic circular dichroism

(XMCD) measurements at 300 K. The site-averaged Co 3d spin magnetic moment is evaluated to be

about 1.4 lB, which is smaller than that predicted theoretically (1.58 lB). The element-specific

XMCD intensities for the Co L3 edge and N K edge show that the magnetic moment is induced at the

N atoms. VC 2011 American Institute of Physics. [doi:10.1063/1.3670353]

Ferromagnetic iron nitrides are composed of abundant

and nontoxic elements and have been subjected to extensive

research for applications in magnetic recording devices. In

particular, the spin polarization of electrical conductivity

[Pr¼ (r: � r;)/(r:þ r;)] at the Fermi level is theoretically

predicted to be �1.0 in Fe4N.1 In addition, an inverse mag-

netoresistance ratio of �75% was reported at room tempera-

ture (RT) in CoFeB/MgO/Fe4N magnetic tunnel junctions.2

Recent spin polarization measurements of Pr by point-

contact Andreev reflection and magnetic moments obtained

using x-ray magnetic circular dichroism (XMCD) show that

Fe4N is considered to be an appropriate material for applica-

tion in spintronics devices.3,4 Very recently, the spin polar-

ization of the density of states [PDOS¼ (D: � D;)/(D:þD;)]

at the Fermi level in Co4N was theoretically predicted to be

larger (�0.88) than that in Fe4N (�0.67).5 Co4N has the

same cubic perovskite lattice structure as Fe4N, where a N

atom is located at the body center of a fcc-Co unit cell. There

have been a few reports on first-principles calculations of

magnetic moments at each Co site in a Co4N unit cell.5,6

According to these, the magnetic moments of Co atoms at

corner and face-centered sites, namely Co(I) and Co(II), are

approximately 2.0 and 1.5 lB, respectively. The magnetic

moment of N atom is calculated to be approximately

0.07 lB. However, there have been only a few reports on the

growth of single phase Co4N bulk and films.7,8 Thus, the

magnetic properties of Co4N have yet to be evaluated. In this

work, we have grown Co4N layers epitaxially on

SrTiO3(STO)(001) substrates by molecular beam epitaxy

(MBE) using solid Co and a radio-frequency (RF) NH3

plasma.9 We have already demonstrated growth of Fe4N epi-

taxial films using the same technique.10 XMCD measure-

ments were performed for the Co4N epitaxial film, and the

spin and orbital magnetic moments of Co4N were deduced.

There have been no reports thus far on the magnetic

moments of Co4N using XMCD measurements.

Au(3 nm)/Co4N(5 nm)/STO(001) (sample A) was grown

at 450 �C using 3N-Co and RF-NH3. After growth of the 5-

nm-thick Co4N layer, a 3-nm-thick Au capping layer was

subsequently deposited at RT in the same MBE chamber to

prevent oxidation of the surface. We also prepared

Au(3 nm)/hcp-Co(5 nm)/MgO(001) (sample B) by MBE as a

reference sample. The hole number of the Co 3d orbit (Nh) in

hcp-Co is known to be 2.49.11 X-ray absorption spectroscopy

(XAS) and XMCD spectra at Co L2,3 edges for samples A

and B were measured using the total electron yield method

at the BL23SU of the SPring-8 facility in Japan. Circularly

polarized x-rays were incident perpendicular to the sample

surface with an external magnetic field (H) applied perpen-

dicular to the sample surface. We confirmed that the mag-

netic moments of samples A and B were saturated at 300 K

under H¼ 4 T. In addition, the H dependence of element-

specific XMCD signals were measured with the same experi-

mental geometry and temperature at the Co L3 (778.25 eV)

and N K (396.4 eV) absorption edges for sample A.

Figure 1 shows (a) XAS and (b) XMCD spectra at the

Co L2,3 absorption edges of samples A and B measured at

300 K. The signals were averaged between those measured

under an external H of þ4 T and �4 T. Clear MCD signals

are observed in both samples. If cobalt oxides are contained

in these samples, the XAS spectrum at Co L2,3 edges is likely

to split into a multiplet.12 There are no multiplet peaks

observed in the present XAS spectra of samples A and B,

indicating that the surfaces of these samples are not oxidized.

A small shoulder structure is observed on the higher energy

side of the Co L3 absorption edge for sample A. The similar

feature has also been reported for the Fe L3 absorption spec-

trum of Fe4N.4,13 Here, we interpret that the observed

shoulder structure originates from different chemical bond-

ing at inequivalent 3d metal sites, which are characteristic of

3d metal perovskite nitrides.

Spin and orbital magnetic moments of samples A and B

were deduced by applying magneto-optical sum-rules anal-

ysis.11,14,15 The backgrounds of the XAS spectra were

removed by subtracting the two step function from the raw
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XAS spectra. The Nh of the Co 3d orbital in sample A

(Co4N) was determined to be approximately 2.51 from the

XAS spectra of samples A and B by referring to the Nh

value in hcp-Co (2.49).11 The Nh value of the Fe 3d orbital

in Fe4N was also deduced using the same procedure as in

Ref. 13. The orbital, spin, and total magnetic moments of

samples A and B are summarized in Table I. The reported

values of the magnetic moments of Co4N and hcp-Co are

also shown for comparison.5,6,9,16 The orbital and spin mag-

netic moments of sample A were evaluated to be 0.06 6

0.01 lB and 1.31 6 0.11 lB per Co atom, respectively. The

deduced spin magnetic moment is smaller than that of the

theoretically predicted value of 1.58 lB.5 The site-averaged

magnetic moment summed over spin and orbital compo-

nents was 1.37 6 0.12 lB per Co atom. This value is also

smaller than that measured (1.6 lB, 1300 emu/cc) using a

superconducting quantum interface device magnetometer

(SQUID) at RT.9 It is known that the sum-rule analysis for

the XMCD experiment in the total electron yield mode

underestimates the magnetic moments. The orbital and spin

magnetic moments of sample B were evaluated to be

0.09 6 0.01 lB and 1.76 6 0.13 lB per Co atom, respec-

tively. In case that the light is incident normal to the film

plane with Co film thickness of 5 nm, the fractions of the

values for orbital and spin moments are 0.76 and 0.93 with

respect to the ideal values, respectively.17 Using these cor-

rection factors for sample B, the orbital and spin magnetic

moments are corrected to be as 0.12 and 1.89 lB, respec-

tively, which are close to those reported by neutron diffrac-

tion for hcp-Co.16 The correction should be made for

samples with thickness larger than the probing depth in the

total electron yield mode.17 Although the probing depth for

Co is not clear, this correction for Co seems appropriate in

this case. The film thickness of sample A is the same as in

sample B. We assume here that there is no significant differ-

ence in probing depth between Co and Co4N. Thus, the cor-

rection is also necessary for Co4N although there have been

no data thus far on the correction factors for this material.

We thus obtain the corrected values of orbital and spin mag-

netic moments of sample A as 0.08 and 1.40 lB, respec-

tively, which are closer to but are still smaller than those

obtained from the calculation and the saturation

magnetization.5,6,9

Figure 2 shows (a) XAS and (b) XMCD spectra at the N

K absorption edge of sample A measured at 300 K. Several

peaks were observed in the XAS spectrum as shown in

Fig. 2(a). The N K edge spectrum shows a sharp peak at

396 eV followed by two broad features at 398 and 399 eV.

Another absorption starts from the photon energy of 404 eV.

Among these features, a distinct MCD signal is observed at

the lowest energy peak position, whereas no dichroism is

found for the others. This trend is the same as that reported

in the XMCD spectrum of Fe4N at the N K edge,18 implying

that the magnetic moment is induced at the N sites. By com-

paring the present result at N K edge with the predicted den-

sity of states in Ref. 6, we can interpret that the first

absorption peak at 396 eV arises from the optical transition

from N 1s to unoccupied N 4p orbital strongly hybridized

with Co(II) 3d minority spin state.

FIG. 1. (Color online) (a) XAS and (b) XMCD spectra at the Co L2,3 edges

of samples A and B observed at 300 K. The external magnetic field

(H¼64 T) was applied perpendicular to the sample surface.

TABLE I. Orbital, spin, and total magnetic moments of Co4N and hcp-Co deduced by experimental and theoretical analyses. Corrected moment values of

samples after taking the saturation effect into account are listed in parentheses.

Compounds

Magnetic moment [lB per Co atom]

Method Referencemorb mspin mtotal

Co4N/STO 0.06 6 0.01 1.31 6 0.11 1.37 6 0.12 XMCD This work

(corrected) (�0.08) (�1.40) (�1.48)

hcp-Co/MgO 0.09 6 0.01 1.76 6 0.13 1.84 6 0.14 XMCD This work

(corrected) (�0.12) (�1.89) (�2.01)

Co4N — 1.58 — Theory 5

Co4N — 1.60 — Theory 6

Co4N — — 1.6 SQUID 9

hcp-Co 0.13 6 0.01 1.86 6 0.07 1.99 6 0.08 Neutron diffraction 16
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Figure 3 shows the H dependence of element-specific

XMCD signals for the Co L3 edge and N K edge of sample A

measured at 300 K. The XMCD signals at the N K edge are

very weak. However, we have confirmed that the XMCD in-

tensity for N atoms follows that of Co atoms and is saturated

under the same external H of approximately 62 T. This

result indicates that the magnetic moment is induced at the N

atoms, probably by band hybridization between Co and N

atoms. Interestingly, the sign of the MCD signal for the N K
edge is opposite to that for the Co L3 edge. Note that the cor-

responding sign was the same between the Fe L3 edge and N

K edge in Fe4N.4 The origin of this difference currently

remains an open question. Further theoretical studies are

required to address this issue.

In summary, we deduced the orbital and spin magnetic

moments of the MBE-grown Co4N(5 nm)/STO(001) epitax-

ial film using XMCD measurements. The orbital and spin

magnetic moments of Co4N were evaluated to be 0.06 6

0.01 lB (�0.08 lB) and 1.31 6 0.11 lB (�1.40 lB) per Co

atom before (after) considering the saturation effect, respec-

tively. These values are smaller than those of hcp-Co. The

element-specific XMCD intensities for the Co L3 edge and N

K edge imply that the magnetic moment is induced at the N

atoms.
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FIG. 2. (Color online) (a) XAS and (b) XMCD spectra at the N K absorption

edge of sample A observed at 300 K. The external magnetic field

(H¼64 T) was applied perpendicular to the sample surface.

FIG. 3. (Color online) H dependence of element-specific XMCD intensities

for Co and N atoms in sample A measured at 300 K. The external magnetic

field was applied perpendicular to the sample surface.
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