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Abstract

The sensitivity analysis of objective functions including the eigenmodes of

continuum systems governed by scalar Helmholtz equations is carried out in

continuum form. In addition, based on the sensitivity, the mode shapes are

specified through numerical optimization. Using the continuum sensitivity

and adjoint equation, the physical nature of them can be analyzed, which

helps to explain the nature of the target optimization problem. Moreover,

the continuum sensitivity and adjoint equation contribute to the quick nu-

merical implementation of sensitivity analysis using software that can solve

an arbitrary partial differential equation directly. A scalar Helmholtz equa-

tion in 1D or 2D domain is considered. The sensitivity analysis is performed

for the general objective function formulated as a function of the eigenmode

in continuum form. A minimization problem using the least squared error

(i.e., difference) between the eigenvector and target mode shape is set as a

sample objective function for both the first and second eigenmodes. The sen-
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sitivity and the adjoint equation are derived for this objective function. 1D

and 2D numerical sensitivity analysis and optimization examples are studied

to illustrate the validity of the derived sensitivity.

Keywords: Sensitivity analysis, Eigenmode, Helmholtz equation, Optimal

design, Finite element method

1. INTRODUCTION

The dynamic characteristics are one of the most important sets of proper-

ties in mechanical devices. To design devices with specified dynamic charac-

teristics, various numerical optimization techniques were proposed in the con-

text of a structural optimization field. In terms of the mechanical vibration,

the most fundamental design specification is to avoid external disturbance

vibrations resonating in the device. The fundamental method of achieving

this is to maximize the lowest eigenfrequency. Starting from the early work in

conventional shape optimization and grillage layout optimization [1, 2], the

homogenization or solid isotropic material with penalization (SIMP) based

topology optimization [3, 4] was applied to the problem [5, 6, 7, 8, 9]. More-

over, it was studied in various structural optimization methodologies as a

benchmark problem [10, 11, 12, 13]. Specifying an eigenfrequency for the

target value [14] is also an effective way of avoiding resonance. Another ap-

proach for optimizing the response against an external dynamic load is the

optimization of output displacement based on frequency response analysis

[15, 16, 17, 18] or time transient response analysis [19, 20, 21]. The maxi-

mization of the gap of the eigenfrequencies is also an interesting branch of

the eigenfrequency optimization [10, 22].
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Eigenmodes are also an important factor in the optimization of vibration

characteristics. For example, as proposed in [7], the eigenmode shape is used

to track the desired vibration during the optimization entailing eigenmode

switching based on the modal assurance criterion (MAC). Moreover, aside

from the above work, which regards vibration as a phenomenon to be avoided,

some research has proposed the optimization methodology of the vibration

resonators that uses vibrations for the mechanical function [23, 24, 25, 26].

In this type of resonator, the eigenmode that dominates the shape of defor-

mation against the external periodic load is an important design factor in

addition to the resonance frequency. Some research had difficulty with the

optimization of the shape of the vibration mode [25, 27, 28]. Their approach

was based on the discretization of the original continuum problem to a dis-

crete problem using the finite element method (FEM). This discretization

enabled the optimization of eigenmodes based on the eigenvector sensitivity

analysis of matrices [29, 30, 31].

The concept of sensitivity analysis is not limited to discrete systems. As

treated in some textbooks, the sensitivity and adjoint equations can be de-

rived in the form of a continuum (e.g., [32, 33, 34, 35, 36]). This is the

fundamental sensitivity analysis of continuum systems independent of dis-

cretization using numerical methods. By performing the sensitivity anal-

ysis in continuum form, an adjoint equation similar to the state equation

can be obtained. Using this equation, the physical sense of the sensitivity

and the adjoint equation can be analyzed as in [36]. This must be helpful

for researchers and engineers studying the nature of vibration optimization.

Moreover, in some commercial or open-source software, an arbitrary partial
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differential equation can be directly solved numerically by writing the PDE

directly in the software [37, 38]. If the adjoint equation is derived in contin-

uum form, it can be directly solved using such software without self-produced

code. Thus, it is necessary to broaden the design freedom of devices using

external excitation vibrations. However, to the best of the authors’ knowl-

edge, sensitivity analysis in continuum form for the optimization problem

of eigenmodes of continuum systems was studied only by [39]. In [39], the

adjoint variable is calculated through modal analysis. Thus, the derivation

of eigenmode sensitivity requires eigenfrequencies and eigenmodes that are

of higher order than the target eigenfrequencies and eigenmodes. This must

increase the computational cost of the optimization simply for solving the

adjoint equation.

In this research, we derive the continuum sensitivity of the objective func-

tion including the eigenmodes of continuum systems governed by the scalar

Helmholtz equations without using a modal method. Numerical optimiza-

tion for the simple 1D and 2D vibration problems are also performed. That

is, a scalar Helmholtz equation in the 1D or 2D domain is first considered.

Then the sensitivity analysis is performed according to the procedure shown

in [36]. A sample objective function is set as a minimization problem of the

least square error of the first or second eigenvector and the target function.

For this objective function, the sensitivity and the adjoint equation are de-

rived in continuum form. The simple 1D string and 2D membrane vibration

problems are set as numerical examples. The Helmholtz equation and the

adjoint equation are solved numerically using the FEM for these problems.

The sensitivity is calculated using the obtained state and adjoint variables.

4



The results are compared with the sensitivity derived by the finite difference

method to illustrate the validity of the derived sensitivity. Finally, some

optimization problems are solved based on the derived sensitivity.

2. Formulation

2.1. Equations of state

In this research, the following simple scalar wave equation in the 1D or

2D domain Ω is considered as the equation of state:

∂2U(x, t)

∂t2
= c(x)∇2U(x, t) in Ω (1)

U(x, t) = 0 on ΓD (2)

where U is a scalar function with respect to time and space (representing

the height of wave), c is the coefficient function defined in the whole domain

and ΓD defines the boundaries on which the Dirichlet condition is imposed

with respect to u. The equations correspond to the free vibration of the

strings or membranes, axial or torsion vibration of rods, etc. Assuming the

time harmonic solution U(x, t) = e−iωtu(x) where ω is the frequency and

U is the amplitude, the above wave equation is converted into the following

Helmholtz equation:

−λu(x) = c(x)∇2u(x) (3)

u(x) = 0 on ΓD (4)

where

λ = ω2 (5)
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where λ is the eigenvalue. For the sensitivity analysis and numerical cal-

culation using the FEM, the variational form of the above equation is also

derived as follows:

a(u, v) − λb(u, v) = 0 (6)

where

a(u, v) =

∫
Ω

c∇u · ∇vdx (7)

b(u, v) =

∫
Ω

uvdx (8)

where v is the test function. The solution of the Eqs.(3) or (6) are represented

by the infinite family (λk, uk)k≥1. The k-th eigenvalue λk is obtained as

follows (e.g. Chapter 4 in [40]):

λk = min
u

b(u,ul)=0, (l=1,...,k−1)

a(u, u)

b(u, u)
(9)

The minimizer of the above k-th equation is the k-th eigenmode uk.

2.2. Optimization problem

The space dependent function c(x) is regarded as the design variable

of the optimization problem. Here we consider the general objective func-

tional calculated from the k-th eigenmode J(uk) =
∫
Ω
j(uk)dx. We assume

that the k-th eigenvalue cannot be the repeated eigenvalue. Introducing the

eigenvalue constraint which controls the eigenvalue of the converged solution,

the optimization problem is formulated as follows:

minimize
c

J(c, uk) =

∫
Ω

j(uk)dx (10)
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subject to

λk ≤ λmax (11)

cmin ≤ c(x) ≤ cmax (12)

and the state equation in Eq.(6) and the normalized condition |uk| = 1,

where λmax is the upper bound of the k-th eigenvalue and cmin and cmax are

the lower and the upper bound of c.

2.3. Sensitivity analysis

The derivative of the objective function in Eq.(10) with respect to the

design variable c is determined. It is performed using the procedure shown

in Chapter 5 of [36]. All eigenvalues treated here are assumed not to be

repeated.

The derivative of the objective function in Eq.(10) in the direction θ is

then:

〈J ′(c), θ〉 =

∫
Ω

j′ (uk) 〈u′
k(c), θ〉 dx

=

∫
D

j′(uk)vdx

(13)

where v = 〈u′
k(c), θ〉.

Using the weak form of the equations of state in Eq.(6) and introducing

the adjoint state p as the test function, the Lagrangian is:

L(c, uk, p) =

∫
Ω

j(uk)dx + a(uk, p) − λkb(uk, p) (14)

Using this, the derivative of the objective function can be expressed as:

〈J ′(c), θ〉 =

〈
∂L

∂c
(c, uk, p), θ

〉
+

〈
∂L

∂uk

(c, uk, p), 〈u′
k(c), θ〉

〉
=

〈
∂L

∂c
(c, uk, p), θ

〉
+

〈
∂L

∂uk

(c, uk, p), v

〉 (15)
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We consider the case where the second term is zero. It is calculated as follows:〈
∂L

∂uk

(c, uk, p), v

〉
=

∫
Ω

j′(uk)vdx+a(v, p)−
〈
∂λk

∂uk

, v

〉
b(uk, p)−λkb(v, p) = 0

(16)

When uk is normalized as b(uk, uk) = 1, the derivative of λk with respect to

uk is calculated as follows from Eq.(9):〈
∂λk

∂uk

, v

〉
= 2a(uk, v) − 2λkb(uk, v) (17)

Since this equation equals the equations of state, it becomes zero. Thus,

Eq.(16) is simplified as follows:∫
Ω

j′(uk)vdx + a(v, p) − λkb(v, p) = 0 (18)

In the case that the adjoint state p satisfies the above adjoint equation, the

second term of Eq.(15) can be ignored. On the other hand, the derivative of

Eq.(6) about the k-th eigenvalue with respect to c in the direction θ is:∫
Ω

∇uk · ∇pθdx + a(〈u′
k(c), θ〉 , p) − 〈λ′

k(c), θ〉 b(uk, p) − λkb(〈u′
k(c), θ〉 , p)

=

∫
Ω

∇uk · ∇pθdx + a(v, p) − 〈λ′
k(c), θ〉 b(uk, p) − λkb(v, p) = 0.

(19)

The derivative of λk with respect to c in the direction θ is calculated as

follows:

〈λ′
k(c), θ〉 =

〈
∂λk

∂c
, θ

〉
+

〈
∂λk

∂uk

, v

〉
=

∫
Ω

∇uk · ∇ukθdx

(20)

Thus, Eq.(19) becomes:∫
Ω

∇uk · ∇pθdx + a(v, p) − b(uk, p)

∫
Ω

∇uk · ∇ukθdx− λkb(v, p) = 0. (21)
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Comparing this equation with Eq.(18), the following is obtained:∫
Ω

j′(uk)vdx +

∫
Ω

∇uk · ∇pθdx− b(uk, p)

∫
Ω

∇uk · ∇ukθdx = 0 (22)

Substituting Eq.(22) into Eq.(13), the derivative of the objective function is:

J ′(c) = ∇uk · ∇p− b(uk, p)∇uk · ∇uk (23)

3. Problem definition

3.1. Definition of the analysis model and optimization problem

We consider the free vibration problems of a 1D string and a 2D mem-

brane. The coefficient c in Eq.(3) is represented as c = T
ρ
, where T is the

tension and ρ is the line density of the string or area density of the mem-

brane. Thus, the optimization problem of the distribution of c is regarded

as the mass distribution problem of the string or membrane having uniform

tension. Although a non-homogeneous mass distribution with uniform ten-

sion is difficult to implement in actual devices, this interpretation is helpful

in understanding the mechanical aspect of the optimal results in this prob-

lem. Here, as the optimization problem, the eigenmode matching problem is

considered. The objective function is formulated as the least squared error

(i.e., difference) between the target eigenmode u0 and the k-th eigenmode uk

as follows:

J1(c) =

√∫
Ω

(uk − u0)2dx. (24)

The k-th and target eigenmodes are both assumed to be normalized. That

is, b(uk, uk) = b(u0, u0) = 1 is satisfied.
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3.2. Derivation of sensitivity and the adjoint equation

To derive the sensitivity of the objective function J1(c) in Eq.(24) within

the framework described in Section 2.3, the objective function J(c) is rede-

fined as

J(c) =

∫
Ω

(uk − u0)
2dx (25)

It follows that the derivative of J1(c) is

J ′
1(c) =

1

J1(c)
J ′(c) (26)

J ′(c) is obtained as a function of the k-th eigenvector uk and the adjoint

state p in Eq.(23). Substituting Eq.(25) into Eq.(18), the adjoint equation is

obtained as follows:

2

∫
Ω

(uk − u0)vdx + a(v, p) − λkb(v, p) = 0 (27)

Note that the k-th eigenvalue λk is independent of the adjoint state p. Eq.(27)

can be regarded as a linear static problem. The first term can be deemed

to be a body force term whose magnitude depends on the error between the

current value and the target value. The second term represents the Neumann

boundary condition or spring boundary condition on the space whose spring

constant is the k-th eigenvalue. That is, the value of the adjoint state becomes

larger at the point where the error between the current and the target state

is larger.

4. Numerical examples

The following numerical examples are provided to confirm the validity

of the proposed method. Figure 1 shows the 1D string and 2D membrane
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analysis models. For simplicity, all physical values are treated as being di-

mensionless. The state and adjoint equations are solved using the FEM from

the commercial software of COMSOL Multiphysics [37]. The minimum and

maximum values of c, cmin and cmax are respectively set to 10−3 and 1 to

avoid a singularity. All finite elements are formulated as second order La-

grange elements. Note that we did not encounter the repeated eigenvalue

problem [41] or localized mode problem [6] in any numerical example.

Figures 1 is about here.

When the distributions of the design variable are uniform in these do-

mains the first and second eigenmodes are obtained as shown in Fig.2. In

these calculations, the 1D and 2D domains are respectively discretized by

100 line elements and 100×80 square elements.

Figure 2 is about here.

For the 1D problem, the target eigenmodes are set to the following two

patterns:

For the first mode optimization:

u0 = 0.8304 × ex sin(πx) (28)

For the second mode optimization:

u0 =

 0.8304 × e2x sin(2πx) for 0 ≤ x < 0.5

0.8304 × e2−2x sin(2πx) for 0.5 ≤ x ≤ 1
(29)
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For the 2D problem, the target eigenmodes are set as follows:

For the first mode optimization:

u0 = 0.6899 × exey sin(πx) sin(πy) (30)

For the second mode optimization:

u0 =

 1.1759 × e2x sin(2πx) sin(πy) for 0 ≤ x < 0.5

1.1759 × e2−2x sin(2πx) sin(πy) for 0.5 ≤ x ≤ 1
(31)

The coefficients are added to normalize u0. That is, the above target values

satisfy
∫
Ω
u2
0dx = 1 as well as uk. Eqs.(28) and (30), and Eqs.(29) and (31)

are used to optimize the first and the second eigenvalues respectively. These

functions are plotted in Fig.3.

Figure 3 is about here.

4.1. Validation of sensitivity analysis

The validity of the analytical sensitivity derived in Eq.(23) was estab-

lished by comparing the results with sensitivities obtained using the finite

difference method (FDM). The analytical sensitivity and the objective func-

tion required to calculate the FDM based sensitivity are obtained using the

FEM. The FDM is performed according to following equation:

J ′(ci) =
J(c + ai∆c) − J(c)

∆c
, (i = 1, ..., n) (32)

12



where

c = [c1, ..., ci, ...cn] (33)

where n is the number of design variables, ai is a vector whose i-th element

is 1 and other elements are 0, and ∆c is set to 10−3. The design variable c is

discretized and set for each finite element. The 1D domain is discretized by

100 line elements and the 2D domain is discretized by 50×40 square elements.

In the 1D and 2D models, the design variable c is set uniformly to 0.5.

Figure 4 shows comparison results for the 1D problem. Analytical sen-

sitivities are plotted using the curve and numerical sensitivities are plotted

using the points at the center of each finite element. Both sets of data were

normalized by dividing the values of each vector set by the maximum absolute

value for that vector set. The curve of analytical sensitivity coincided with

the discrete plot of the numerical sensitivities in both the first and second

eigenmodes.

Figure 4 is about here.

Figure 5 shows comparison results for the 2D problem. All

sensitivities are represented as distributions in grayscale after nor-

malization. The distributions are almost the same and the validity

of the sensitivity analysis is confirmed even in the 2D case.

Figure 5 is about here.
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4.2. Optimization examples

In the optimization examples, the design variable is updated by the

method of moving asymptotes (MMA) [42] according to the algorithm shown

in Fig.6.

Figure 6 is about here.

4.2.1. Examples of unconstrained optimization

As a first numerical study of the optimization, they are performed with-

out any constraints with the 1D problem for the first and second eigenmodes

and the 2D problem for the first eigenmode. The same analysis models are

used in this study as those used in the sensitivity analysis subsection. Fi-

nite element analysis was first performed with 100 line elements in the 1D

problem and with 50×40 square elements in the 2D problem. Figures 7 and

8 show the optimal distribution of c, the first order eigenmode u1 and the

history of the objective function and the first order eigenvalue of the 1D and

2D problems respectively. In both results, the obtained eigenmodes achieved

good approximations to the target eigenmodes. Since any constraints were

not introduced in this calculation, the optimal results were regarded as lo-

cal optima close to the initial shape and the eigenvalue varied significantly

during optimization in the first eigenmode optimization. In the second mode

optimization, although the objective function grew in value during the op-

timization owing to the unexpected discontinuous change of the eigenmode,

the solution finally converged. Regarding the distribution of c as the inverse
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of the distribution of the mass, the optimal solutions have lower mass at the

peak of the target shape. In the other part, the mass varies according to the

curvature of the target shape. That is, the curve becomes less steep because

of the gradual increase in mass in that part.

Figures 7 and 8 are about here.

As shown in Figs.7 and 8, the optimal distribution of c did not have a

smooth shape. As observed in the plate thickness optimization in [43], the

discretization of the function c could strongly affect the optimal solution. To

confirm this, the optimization of the first eigenmode was performed again

with different discretization of the design variable and the finite element

mesh. In the 1D problem, the optimization was performed with 50 and

200 line elements. In the 2D problem, the optimization was performed with

25×20 and 100×80 square elements. Figures 9 and 10 show the optimal

distribution of c and Tables 1 and 2 show the comparison of the objective

function. The higher resolution of the design variable achieved better results

and improved distribution of c.

Figure 9 is about here.

Table 1: Comparison of the objective functions with different discretization in the 1D

problem.

Mesh 50 100 200

Objective function 5.429 × 10−3 3.524 × 10−3 2.218 × 10−3
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Figure 10 is about here.

Table 2: Comparison of the objective functions with different discretization in the 2D

problem.

Mesh 25×20 50×40 100×80

Objective function 2.326 × 10−2 7.905 × 10−3 5.053 × 10−3

4.2.2. Examples of constrained optimization

As mentioned in the previous example, the eigenmode fitting problem

might have some local optima. To specify them, the eigenvalue constraint was

introduced here for the first eigenmode optimization problems. In general,

when the eigenvalue was constrained to a higher value, the solution space

became smaller. The lowest values of the first eigenvalue were set to 6, 7, 8

and 9 in the 1D problem and 14, 16, 18 and 20 in the 2D problem.

Figure 11 and Table 3 show optimal solutions for the 1D problem. When

the lowest eigenvalue is 6, the constraint was not active, although above 6

they were active. This means the design space was restricted by a constraint

of more than 7. Above the value, the objective function became worse as

the constraint became stricter. In the result with the higher constraint,

the difference between the resulting eigenmode and the target value were

clearly observed. To have a higher eigenvalue under the same tension, the

string must be light, and a high gradient of the mass distribution is difficult

to realize in this case. This restricts the generation of the smooth curve

required in optimization. Figure 12 and Table 4 show optimal solutions for

the 2D problem. The same applies to the 2D case.
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Figure 11 is about here.

Table 3: Comparison of the objective functions with different constraints for the 1D prob-

lem.

Constraints None 6 7 8 9

Objective function 3.524× 10−3 4.931× 10−3 1.035× 10−2 2.600× 10−2 5.933× 10−3

Eigenvalue 4.535 6.314 7.033 7.981 8.999

Figure 12 is about here.

Table 4: Comparison of the objective functions with different constraints for the 2D prob-

lem.

Constraints None 14 16 18 20

Objective function 7.905× 10−3 7.912× 10−3 9.633× 10−3 1.572× 10−2 3.455× 10−2

Eigenvalue 12.055 14.860 16.047 18.000 20.000

5. Conclusions

The continuum sensitivity of the objective function including the eigen-

modes of continuum systems governed by the scalar Helmholtz equations

was derived in this research. Numerical optimizations for the simple 1D and

2D vibration problems were performed based on the sensitivity. A scalar

Helmholtz equation in the 1D or 2D domain was considered. A sensitivity

analysis was performed for the general objective function which is a func-

tion of the eigenmode. A minimization problem of the least square error of
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the first or second eigenvector was set as a sample objective function. The

sensitivity and the adjoint equation were derived in continuum form for this

objective function. The simple 1D string and 2D membrane vibration prob-

lems were set for the numerical examples. The Helmholtz equation and the

adjoint equation were numerically solved using the FEM. The sensitivity was

calculated using both the state and adjoint state variables. The results were

compared with the sensitivity derived using the finite difference method and

the validity of the derived sensitivity was illustrated. Finally, some optimiza-

tion problems were solved based on the derived sensitivity.

Following from the work described in this paper, there are opportunities

for further research. The first is the extension of the proposed method to the

repeated eigenvalue problem. The proposed formulation cannot be applied

to eigenmode optimization with repeated eigenvalues. Different formulation

is required in the case of the repeated eigenvalue as reviewed in [41] for

eigenvalue optimization. Second, the sensitivity analysis performed in this

paper is limited to the scalar Helmholtz equation. By extending the proposed

methodology the vector Helmholtz equation version of the vibration equation

of linear elastic bodies, could be utilized for the optimization of the vibration

resonator. As performed in the existing research on the optimal design of

the resonators [25, 26, 27, 28], topology optimization will help to generate

the optimal shape.
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Figure 6: Flow chart of the optimization algorithm.
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Figure 10: Optimal results in the 2D problem with different discretizations. (a) 25×20
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Figure 11: Optimal results for the 1D problem. (a), (c), (e), (g) Distributions of c with the

constraints 6, 7, 8 and 9. (b), (d), (f), (h) Distributions of u0 and u1 with the constraints

6, 7, 8 and 9.
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Figure 12: Optimal results for the 2D problem. (a), (c), (e), (g) Distributions of c with
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