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Most discriminative image processing operators (IPOs) nalysis of IPO: the spectral decomposition LDA + IPO = LDIPOA: find a set of discriminative IPOs

Goal Q: To reduce the memory cost of generating  * roPosition 1 4 fillering is defined as At each step k, estimate a single generating matrix _alpha step
Find a most discriminative set of image matrices, can we use a decomposition for / G(x,y)f(y)dy, represented as a linear combination. 56 _ praw (g, Rw)cwm i DTCO Ry GOT D
rocessing operations for LDA. operators just like for images? : '
P gop o 8 P ) o where the kernel is symmetric G(z,y) = G(y,z) and real valued. * <A o . 53 = DTG 5aGY Y- s a0 p_pa
Motivation =2 = A: Yes. G is an Hermite operator which satisfies G* = G. G = Z%‘ Gj (ozg ),ag ), .. A,a(J ))T =a® ~ = <
. 53 §1 J ~PCA step N
For a small sample size problem, many Lo 5| @ Definition 1 Let f(z), g(x) € L2(R?) be complez- ~ Proposition 2 A geometric (affine) transformation G is defined . . . .
studies use an approach to increase training = valued 2D functions where @ € R2. The inner as The proposed algorithm iteratively estimates ’
; : @ - * a (coeffs. of generating matrices) X0 = G0 (X = Ra) 69T+ g ZG"’R WG
samples by synthetically generating new 8 product is defined as Gf(z) = |A|V2f(Az +t), B (POA) -org 9
s 3} .
training samples. But, HOW ? / flx d:c, where |A| # 0. G is a unitary operator which satisfies G*G = I. « A (LDA) ~ -
@ Ad-hoc... &g discriminatively ! ; ~LDA step ~
where g is the complex conzugflte Of:q.‘ ] Corollary 1 Filtering or geometric transformation opera- at the same time. S _ G (S - R )c’:(’“)’#LicmR co”
Contribution \ A"( opemto)r G: f(’_3 g1s h(n()ear if it satis- tors G are normal operators which satisfy G*G = GG*. W e R
" . ) A - fies G(af + bg) = aG(f) + bG(g), Va,b € R. - o8 _ A BT
Simultaneous estimation of both LDA feature Generatlng matrices G* is the adjoint operator of G if it satis- G- Z AP, Anormal operator can be ' Algorithm 1 LDIPOA 5% = GW5,G® )
space and a set of discriminative generating (image processing operators) fies (Gf,g) = (f,G*g). decomposed into projection operators! 1: Compute PCA P and LDA A. G° « 1.
matrices. 2: for k=1,...,do oA m—pha —— Recog oes
3: repeat
== - - . s atk) = E(A P. a) 0%
But, is it feasible for a generating matrix? Yes! e oustep: ) = argmax, B4, Ly =
H — H H 4 . . 5: PCA step: C te P with a(®.
Linear IPO + LDA = LDA with increased samples : , o LDA stem A= g, B(A.P,a®) Lol .
~ls a fltering Hermite? ——— ~Are eigenvalues co‘m%I%ﬂ Use Hermite decomposition. —— 7 until E converges H mMa:u\:’mzegs o
. ] ; _ar -6 _ - 8 end f 4 -
Training sample Given {G;} , we don't need to actually Amost symmetric |G — G| < 10 G =H, +iH, g _G+GT . G-GT end for I °
i ini two Hermits t 1= , gy = . The Rayleigh quotient
a generating matrix e RS tralmng samples. an operator (w‘r’\ic:';z:/: ::;r:i;;values) 2 2 T2 233 4 48556 6 7 7 8 8 9 91010

(an image processing operator) But, need more memory to store... ~ls a geometric trans. Unitary? — \_ Y, amberctiarstons
increased sample /

. Lo an original sample " Transpose is apparently inverse
=G average of image . . . .
@) =Gy PCA - : (S0, two step approximation. Nl Experiments with FERET dataset
Mean of class i for increased samples \ !

1 \ Covariance matrix G~ Z a; B = Zaj (Hyj + iHyj) ~ Z a; Z(Aljiplji + iAo Paji)
— ms — . ’ " " n . . " .
m) = I, Z Z Gz = 3 Z Gjm; = Gm; X' =G (X - Ra)GT + = Z GjRaGT L J F] i V ) Size of images: 32x32 090 T ;fs:v generating matrices ae enough—,
) J=laeX; J=t = Size of generating matrices: 1024x1024 T SRS IDRbch sai ino bon” P P
Mean of all increased samples L X —— G-PCA 80%, LDA-PCA 95% (no blur)
. PCA projection matrix P Number of classes: 1001 (fa) 0.80 4
m' =Gm ’

Eigenoperators transorm images to variants. Training images per class: 1 (fa)
w . m . . . Test images per class: 1 (fb) | 3
0.70 4 Bad approximation of generating matrices

Ex  Ea  Eaw  Fae  Be  Eax do not lead to any improvement...

Scatter matrices LDA

Scatter matrix of class i for increased samples

S/ =G (Si—R)GT + ZGRGT

Feature space
scatter matrices

Eigen-generating matrices: 96

/ Real sigenvalues can be small so that we can compress them. \// Eigenprojections of eigenoperators transorm images to ... wavelets? \ Initial generating matrices: 567
(3 scaling, 7 rotations, 3 Gaussian and 9 motion blurs) S GTCA IS, LDAPCA B0 (with )

= real ima real ima; real imag | T g | coeo- GPCABO%, LDAPCABO% (with bl g e -
tr(S) | . E e e T GhcAos, bAPCABX (bl _me——--B-
B N . . i=1 " . 0.50 | —+— &PCAB0%. LDAPCA 80% (no biu) _
= f s s \ L Classifiers: nearest neighbor - =
i=2

y; =ATP 2, = ATPT Gy
i =ATPT = ATPTGm,
m =ATPTm’ = ATPTGm

0.60
Rayleigh quotient

Recognition rate

Sl

=ATPTSIPA

/ k: the number of estimated generating matrices

. o tr(Siy) H H i
Wlthln class scatter matrix for |ncreased sTmplEs Dimensionality w b i H \ _________
Ty T i g ) ) ) - [ 1
=G (Sw — Rw)G Z GjRwG; eductiog Sy =ATPT Sy, PA Gerersized : - - _ = = = u . = = == PCA rates: 80% and 95% 0.40 1
igenvalue problem TR e T il : i i i
Between-class scattex matrix for increased samples _ PT;’ P 75 PTg. p | . | S - ;Or glgin-gene[gtr%mzmces (G-PCA) 0 1 3 3 4 3 & 7 3 9 10
S}y = GG S =ATPT S PA (P8 Py P A ; ] @ [ EE or PeAstep (LDAPCA)

t iy k ! @ @ n E E No generating matrices are used
\ | 3 B : B (normal LDA)
Sw,Sp are scatter matrices for Rw = ZR‘ R e o e E
original (non-increased) samples ol E T \ (a) Hiy, Hy (b) Hia, Hao (c) Hys, Hos / K Pz Doz
n

TEX;

1 generating matrix is used
to increase the dataset double.

10 generating matrices are used
to increase the dataset 11 times.
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