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Most discriminative image processing operators (IPOs)	

re
co

gn
iti

on
	

Fe
at

ur
e 

sp
ac

e	

LDA	

cl
as

si
fie

r	

Generating matrices 
(image processing operators) 

Goal	

Motivation	

Contribution	

Find a most discriminative set of image  
processing operations for LDA.	

For a small sample size problem, many 
studies use an approach to increase training 
samples by synthetically generating new 
training samples. But, HOW ?	

      Ad-hoc…           discriminatively !	

Simultaneous estimation of both LDA feature 
space and a set of discriminative generating 
matrices.	

Linear IPO + LDA = LDA with increased samples	
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increased sample	

Mean of class i for increased samples	

Mean of all increased samples	

an original sample	

a generating matrix 
(an image processing operator)	

average of image 
processing operations	

Scatter matrix of class i for increased samples	

Within-class scatter matrix for increased samples	

Between-class scatter matrix for increased samples	

              are scatter matrices for 
original (non-increased) samples	

scatter matrices 
Rayleigh quotient	

Generalized 
Eigenvalue problem	

Training sample	

Scatter matrices	

PCA	

LDA	Feature space	

PPCA projection matrix 

Covariance matrix 

SW , SB

Dimensionality 
reduction 

Given         , we don’t need to actually 
increase training samples. 
But, need more memory to store…	

{Gj}

Analysis of IPO: the spectral decomposition	

Definition 1 Let f(x), g(x) 2 L2
(R2

) be complex-

valued 2D functions where x 2 R2
. The inner

product is defined as

(f, g) ⌘
Z

R2

f(x)g(x)dx,

where ḡ is the complex conjugate of g.
An operator G : f 7! g is linear if it satis-

fies G(af + bg) = aG(f) + bG(g), 8a, b 2 R.

G⇤
is the adjoint operator of G if it satis-

fies (Gf, g) = (f,G⇤g).

Corollary 1 Filtering or geometric transformation opera-

tors G are normal operators which satisfy G⇤G = GG⇤
.

G =
X

�iPi
A normal operator can be 
decomposed into projection operators! 
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(a) H11, H21
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(b) H12, H22
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(c) H13, H23 P11ix P21ix P12ix P22ix P13ix P23ix

But, is it feasible for a generating matrix? Yes!	
Is a fltering Hermite?	

||G�GT || < 10�6Almost symmetric 

Is a geometric trans. Unitary?	
Transpose is apparently inverse 

G = H1 + iH2, H1 =
G+GT

2
, H2 =

G�GT

2i

i =
p
�1

Are eigenvalues complex?  Use Hermite decomposition.	

So, two step approximation.	

an operator two Hermite operators 
(which have real eigenvalues) 

G = H1 + iH2, H1 =
G+GT
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Examples	

Real eigenvalues can be small so that we can compress them. Eigenprojections of eigenoperators transorm images to … wavelets? 

Eigenoperators transorm images to variants. 

Q: To reduce the memory cost of generating 
matrices, can we use a decomposition for 
operators just like for images? 

A: Yes. 

LDA + IPO = LDIPOA: find a set of discriminative IPOs	
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Algorithm 1 LDIPOA

1: Compute PCA P and LDA A. G0  I.
2: for k = 1, . . . , do
3: repeat

4: ↵ step: ↵(k) = argmax↵ E(A,P,↵)
5: PCA step: Compute P with ↵(k).
6: LDA step: A = argmaxA E(A,P,↵(k))
7: until E converges
8: end for

alpha step	

PCA step	

LDA step	

At each step k, estimate a single generating matrix 
represented as a linear combination. 
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Experiments with FERET dataset	

The proposed algorithm iteratively estimates 
• α (coeffs. of generating matrices) 
• P (PCA) 
• A (LDA) 
at the same time. 

k: the number of estimated generating matrices 

10 generating matrices are used 
to increase the dataset 11 times. 

1 generating matrix is used 
to increase the dataset double. 

No generating matrices are used 
(normal LDA) 

          
























 
 
 
 

          
























 
 
 
 

The Rayleigh quotient 

xj = Gjx

Proposition 1 A filtering is defined as

Gf(x) =

Z
G(x,y)f(y)dy,

where the kernel is symmetric G(x,y) = G(y,x) and real valued.

G is an Hermite operator which satisfies G⇤ = G.

Proposition 2 A geometric (a�ne) transformation G is defined

as

Gf(x) = |A|1/2f(Ax+ t),

where |A| 6= 0. G is a unitary operator which satisfies G⇤G = I.

real	
 imag	
 real	
 imag	
 real	
 imag	


Size of images: 32x32 
Size of generating matrices: 1024x1024 
Number of classes: 1001 (fa) 
Training images per class: 1 (fa) 
Test images per class: 1 (fb) 
 
Eigen-generating matrices: 96 
Initial generating matrices: 567 
(3 scaling, 7 rotations, 3 Gaussian and 9 motion  blurs) 
 
Classifiers: nearest neighbor 
 
PCA rates: 80% and 95% 
  for eigen-generating matrices (G-PCA) 
  for PCA step (LDA-PCA) 

Maximized 
in a few steps 

A few generating matrices are enough 
to improve the performance. 

Bad approximation of generating matrices 
do not lead to any improvement… 

i = 1

i = 2

...


