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Introduction 

In the present thesis we aim to establish a method of finite 

element approximations on a Riemann surface. Our method matches 

the abstract definition of Riemann surfaces, and also offer a 

new technique of high practical use in numerical calculation not 

only for the case of Riemann surfaces but also for the case of 

plane domains. It is characteristic of our method that we adopt 

ordinary triangular meshes and linear elements on a subregion of 

every fixed parametric disk, and thus our approximating 

differentials express singular property exactly near singularities. 

Hence the approximations of high precision of differentials are 

obtained. It should be noted that we do not adopt any so-called 

refined or curvilinear mesh near singularities. 

Let ~ be a closed Riemann surface or a subdomain of a Riemann 

surface W whose closure ~ is a compact bordered subregion of W. 

We choose a fixed finite collection ~ = {z = ~ . (p), P E U.; j = 
J J 

1,"', m} of local parameters z = ~j(p) and parametric disks V. 
J 

so that m 
~ c Uj =1 Uj . Chapter 1 is devoted to construction of a 

triangulation K of IT with width h associated to ~ (cf. § 1.2), 

a normal subdivision of K (cf. § 1.3), and a naturalized 

triangulation K' associated to K (cf. § 1.4). The triangulation K 

of IT is constructed as the sum of subtriangulations K. (j = 1,···. 
J 

m) in such a way that IK j I C Uj' each 2-simplex s of K belongs 

to one and only one Kj' each s E Kj is natural (see § 1.2) at most 

except for the case when it has a common side with another 

(k ~ j), and the diameter of ~ . (s) 
J 

is at most h for each 

S 'E K 
k 

s E K . 
J 

( j 1 , . . " m). Let K j (j = 1, " ', m ) bet r i an gu I a t ion s con sis tin g 
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of all 2-simplices of K. 
J 

which are not minor or major, and all 

naturalized simplices of Kj (see § 1.4). Then the triangulation K' 

is defined as the sum of K '. (j = 1,···, m). 
J 

In Chapter 2, we introduce and investigate two spaces A A(K) 

and A' = A' (K') of differentials: the comparable space A A(K) 

(with w) and the computable space A' = A' (K ' ). The space A 

consists of locally exact differentials a
h 

such that for each 

2-simplex S E K. (j = 1,'·', m) 
J 

the coefficients of a
h 

are 

constant on ~.(s) except that 
J 

a
h 

is modified on all lunes of minor 

or major simplices (see § 1.4 and § 2.1). To each a
h 

E A, we 

associate a differential a~ = F(a h ) on K' whose coefficients are 

constant on ~ . ( s) 
J 

\ 

for each 2-simplex s E K'. (j = 1,···, m) and 
J 

which is equal to a
h 

on n except for all lunes of K (cf. § 2.2). 

The space A' consists of all a' = 
h 

investigate estimates of differences of Dirichlet norms 

(see Lemma 2.2). 

We shall 

2 
lIahllO and 

Let e be a given closed differential on 0 with finite norm, and 

let re be a set of all closed differentials which have finite norms 

and satisfy same period conditions and boundary behaviors as e. 

Then there exists a unique harmonic differential w which satisfies 

the minimal property (see § 3.1): 

11(;)11 = min IIali. 
aEfe 

The finite element approximations IJ!h and of are defined in 

the spaces A and A' respectively (cf. § 3.2 and § 3.3 resp.). The 

differential w~ can be numerically calculated. Chapter 3 is devoted 

-1 ( ') to error estimates of IJ!h and (;)h for w, where w
h 

= F w
h

· 
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shall make use of Bramble and Zlamal's lemma (see Lemma 3.5 ). In 

Theorems 3.1 and 3.2, we obtain error estimates: 

and 

where C and C' are constants which depend only on the 

differential wand the smallest value of interior angles of 

triangles C/J.(s) 
J 

for all S E Kj (j = 1,··', m). 

Theorem 3.2, we obtain an estimate for 

I 2 I 12 (' ) II w I ~ II wh I + S wh 

2 IIwll : 

Further, in 

in a special case (see § 3.2), where S(wh) is a quantity of O(h 2 ) 

which can be numerically calculated. 

In Chapter 4 we apply our results to numerical calculation of 

periodicity moduli of closed and compact bordered Riemann surfaces, 

and we shall show that calculation results for some concrete Riemann 

surfaces of genus one are very good. Let {A, B} be a canonical 

homology bas i s of IT such that A x B = 1. Then there exists a 

unique system of harmonic differentials {¢, p, x,~} on n 
satisfying some period and boundary conditions (see (4.1) ~ (4.4) ) . 

The periodicity moduli and of with respect to A and 

B respectively are determined by 

and 

With respect to the problems of this type, there have been some 

investigations by means of finite-difference method (Gaier [11], [12], 

Mizumoto [14 ] ,[15],[16], Opfer [21],[22]). 

Finally, in Chapter 5 we apply our results to numerical calculation 

of the modulus of quadrilaterals . Let n be a simply-connected 
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subdomain of a Riemann surface whose closure ~ is a compact 

bordered subregion. We assume that the boundary 80 of 0 is a 

piecewise analytic curve. We assign four points and 

on 80 (in positive orientation w.r.t. 0), and the two opposite arcs 

quadrilateral Q with opposite sides and is given. 

We can conformally map the domain 0 onto a rectangular domain 

R = { w o < Re w < I, 0 < 1m w < M} by a function w = f(p) 

so that and are mapped to iM, 0, 1 and 1 + i:vI 

respectively .. Let e be the differential in satisfying 

8 = 0 along Co U c 1 and fy 8 = 1 where y is a path from 

a point on Co to a point on c l . Then the modulus M(Q) = M 

of the quadrilateral Q is uniquely determined by Q, and is 

given by 

M(Q) min 110112. 
OEre 

Next we assign the two opposite arcs and 

"-

(from P4 to PI) on 80. Then a quadrilateral Q with the 

opposite sides and is defined. We can easily see that M(Q) 

= l/M(Q) . By making use of this relation Gaier [11] presented a 

method to obtain upper and lower bounds for the modulus M(Q) in the 

case of some restricted domain 0 (e.g. a lattice domain, etc.) by 

the finite difference approximation which originates from Opfer [21], 

[22]. We shall present a method to obtain good upper and lower 

bounds for T(Q) by our finite element approximation even in the case 

of a domain 0 with curvilinear boundary arcs, and with inner and 

corner singularities of high order. It should be noted that the 
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approximating differentials satisfy the bounda ry cond iti ons exactly 

in al l cases of Chapters 4 and 5. 

Our treatment at critical points of a Riemann surfac e is closely 

related to that at boundary singularities on a plane (cf. Akin r 2 ]. 

Babu¥ka [3], Babu¥ka and Rosenzweig [4], Babu¥ka, Szabo and Katz [5], 

Barnhill and Whiteman [6], Blackburn [7], Craig, Zhu and Zienki ewi cz 

[10], Opfer and Puri [23], Rivara [24], Schatz and Wahlbin [25]. 

[26], Thatcher [29], Tsamasphyros [30], Weisel [31], Whiteman an d 

Akin [32], and Yserentant [33]) . 
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Chapter l. Triangulation. 

§ 1..1.. Collection ctJ of local parameters. Let 0 be a closed 

Riemann surface or a subdomain of a Riemann surface W whose closure 

o is a compact bordered subregion of W. In the latter case, we 

assume that the boundary ao consists of a finite number of analytic 

arcs meeting at vertices Pk (k = 1,"', t), and there exist 

parametric disks Vk (k = 1,···, t) wi th the centers P~ and local 

parameters z = ~k(P) by which Vk n IT are mapped onto sectors 

{Izl ~ r k } n {O ~ arg z ~ Bk } (0 < Bk ~ 2n, Bk ~ n). For conformity, 

if 0 is a closed Riemann surface, then we interpret that 0 = K. 

Let {C
1 , C

2 , C
3 , C

4 } be a partition to four parts of the 

boundary 80 such tha teach C j (j = 1, ... , 4) is a sum of boundary 

components of 80 and C4 consists at most one boundary component. 

We assign 2n points P1' ... , P2n (n ~ 1) on C4 (in the positive 

orientation with respect to n). 

By clJ = {z = cP j (p), U j; j 

collection of local parameters 

1,···, m} we denote a finite 

Z = CPj(p) (j = 1,···, m) and 

parametric di.sks U. (j = 1,"', m) 
J 

on W which satisfies the 

following conditions ( i )~(iv): 

i By the mapping 

onto a disk I z I < p . . 
J 

( i i ) n is covered by 

Z = cp.(p) (j 
J 

ill 
{U . }. l' J J= 

1, m) , C. 
J 

( iii) If Uj n Uk ~ ¢, then there exists a constant 

is mapped 

L ( >1 

such that for the mapping t = fez) ~ CPk ocp ;l(Z), 11L < If' (z) I < L 

on cp . (U. n Uk) . 
J J 

Let Pk (k = 2n + 1, v) be the all vertices of an which 
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are defined as points of 

( i v) 

1, 

Each U . (j = 1, "', m) 
J 

\) ) and if Pk E U. 
J 

contains at most on e Pk (k 

v ) I f U. n 8~ 
J 

-.< ¢ r- and U . 
J 

does not conta i n any p ( k = 1, 
k 

\)) , then C+lj(U j n ~) is a half disk { I z I < p.} n {1m z > O}. 
J 

If U . contains some Pk (k = 1, \)) , then C+lj( Uj n~) is a 
J 

~ 2rr). sector { I z I < p . } n {O < arg z < O:j} (0 < 0:. 
J J 

In the latter case of ( v ) and the case of Pk r= p 1 ' P 2n ' 

if Pk E C1 , 

(C+l
j 

(p) )rr/a j , 

or Pk ~ C1 and O:j > rr/2, then by the mapping ~ = 

U. n ~ is mapped onto a half disk {lsi < p~/C(j} n 
J J 

In this case we define anew z = <,D.(p) 
J 

and {1m s > O}. 

(C+l. (p) )rr/a j 
J 

Pjn/aj respectively. Further, in the case wh e re 

U j con tains some Pk (k = 1, "', 2n), then by the rnapp ing s 
and 

( ())rr/20:. v. n ~ is mapped onto a sector {I~_ I < PJ.rr/2O: J.} n C+l j p J, J 

{O < arg S < rr/2}. In this case we define anew z = C+lJ. ( p ) and p . 
.J 

by s = (c+'j(p))n/2a j and rr/2a. 
p J respectively. Then, in the ca s e 

that U. contains some 
J 

p (k = 1, "', \)) 
k 

the local parameter 

C+lj(p) is no longer conformal at the center of Uj 

case when Uj con tains some Pk (k = 1, "', 2n) 

except for the 

and 0:. = rr/2. 
J 

§ l.~. Triangulation K associated to ~. For the col l ec ti on 

~ of local parameters and parametric disks defined in § 1 . 1 , 

and for a sufficiently small positive number h, we construct 

a triangulation K Kh of ~ which satisfies the following 

z = 

conditions ( i )"-( v ). This is called a triangulation of IT \r i th 

width h associated to ~. 

( i The points P1' Pv are carriers of some O- si mpljce s 
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o f K. 

(ii) K is the sum of subtriangulations Kl , K of 1\ m 

such tha t e ach 2-simplex of K belongs to one and on l y on e 1\ . 
J 

( j 1,"', m), and the carrier I s I of each 2-simplex s o f K . 
J 

is contained in U .. 
J 

If a l-simplex e E K. 
J 

does not belong to another Kk ( k ¢ j), 

or a l-simp lex e belongs to Kj n Kk (j ~ k) and the mappin g 

is an affine transformation, then e is said to b e l i n e ar. 

I f each e dge of a 2-simplex s E K. 
J 

is linear and ~.(s ) 
J 

ordinary triangle, then s is called a natural simplex. 

is an 

( iii ) Each 2-simplex s E K. 
J 

which has not a common edge with 

any 2-simplex of another Kk (k ~ j), is a natural simplex. 

A 2-simplex of Kk which has a common edge with a 2-simpl ex 

s E K. (j ~ k), is said to be an adjoint (simplex) of s and is 
J 

denoted by s'. 

( i v) For each pair of a 2-simplex s E K. 
J 

and its adjoint 

S' E Kk with a common edge e, either one of the following thr ee 

cases ( a ), ( b ), ( c ) occurs . 

a) Both sand s are natural simplices. 

b cp.(s) 
J 

is a curvilinear triangle such that ~ . ( e ) 
J 

strictly concave arc w.r.t. ~j(s), ~k(s') is an ordinary 

is a 

triangle. and all edges of sand s except for e are l in ea r 

( cf . Fig.l ) . 

Fig. 1 Minor simplex s and its adjoint s 
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Then s is called a minor simplex. The cas e where s is a mi n o r 

simplex and s is its adjoint may also occur. 

( c ) <p.(s) 
J 

is a curvilinear triangle such that <pj(e) is a 

stric t l y convex arc w.r.t. <pj(s), <Pk(s') is an ordinary t ri angle . 

and all edges of sand s' except for e are linear ( c f. Fig .2 ) . 

Fig. 2 Major simplex s and its adjoint s' 

Then s is called a major simplex. The case where s is a major 

simplex and s is its adjoint may also occur. 

If s is a minor or major simplex of Kj' then it is assum e d 

that Is' I c U. for its adjoint s'. 
J 

v ) For each 2-simplex S E K. (j = 1,"', m), 
J 

d(<pj(s)) ~ h, 

where throughout the present paper we denote the diameter of a r e gion 

G b y d (G) . 

Next, we assume that for the fixed ~ the class of th e 

triangulations K = Kh satisfies th e following conditions ( j ' ) a nd 

( ii' ) : 

( i') For each j 

and major simplices of 

1,"', ill the union of carriers of all minor 

K., and all their adjoints is contained in a 
J 

closed subset Rj of Uj n IT which is independent of the ind iv idua l 

triangulation K. 
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(ii') The number N of minor and major simplices of K 

satisfies the inequality: 

( 1 . 1 ) 

where ~ is a constant which is independent of the individual 

triangulation K. 

§ .l.~. Normal subdivision of triangulation K. For a 

triangulation K Kh of TI with width h associated to ~ 

we can construct a subdivision K1 = K1 ,h/2, called the normal 

subdivision of K = Kh by the following procedure: 

( i ) is the sum of the subtriangulations K1 which 
m 

are the subdivisions of K
1

, ... , Km respectively which are defined 

in the following (ii), (iii). 

( i i ) 

then 

of I\~ 
J 

s 

If s E K. is a 2-simplex which is not minor or major, 
J 

is subdivided to four 2-simplices and 

so that and are mutually 

congruent ordinary triangles as in Fig.3. 

(a: simplex) 

Fig. 3 Normal subdivision of 2-simplex 
which is not minor or major 
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(iii) Let s E K
j 

and S' E Kk be a minor (or major) simplex 

and its adjoint, and let e
1

, e 2 and e 3 be edges of s such 

that is the edge of and 
, 

We subdivide the e
1 

common s s 

edges e
1

, <8 2 
and e

3 
to two edges ell and e

12
, e

21 
and e

22
, 

and e 31 
and e 32 

respectively so that Cfl
k

(e
11

) and Cfl k ( e 12 ) . 

Cfl j (e 21 ) and Cfl.(e 22 ), and Cfl j (e 31 ) and Cfl j (e 32 ) have the same 
.J 

length respectively. Then we subdivide the simplex s to two minor 

(or major resp. ) simplices sl and s2 of K~ and, two natural 
J 

simplices s and s4 of K~ so that ell' e
12

, e 21 , e
22

, e
31 3 .J 

and e 32 
are edges of sl' s2 and s3 (cf. Fig.4) . Here we note 

that such a subdivision is always possible if h is sufficiently 

small. 

a == <po (a) 
J 

(a: simplex) 

Fig. 4 Normal subdivision of minor and major simplices 

We can easily see that the normal subdivision 1 ~ 1 
K = 2... 1K. 

J = J 
is a 

triangulation of ~ with width h/2 + O(h 2 ) associated to ~ (cf. 

(1.10)) . 

§ !.1. Naturalized triangulation . For each minor (or major) 

simplex s ~= K . 
J 

we define the naturalized simplex ~s of s as the 
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2-sirnplex such that I sic I ~ s I (I~sl c lsi resp.) and cp. ( ~ s ) 
J 

is the ordinary triangle which has two common sides with CPj(s ) . 

Further we define a 2-simplex bl = b!(s) 

two edges whose carrier is the closed region I~sl-Isl (Isl-I~sl 

resp.). b{(s) (*t(s) resp.) is called the deficient (excessive 

resp.) lune of s. 

Each triple of a minor (or major) simplex s E Kj' its adjoint 

s' E Kk and its deficient lune bl (excessive lune *l resp.) 

is denoted by (s, s', bl) ( ( s, s', * l ) res p . ), an dis call e d 

a triple for ~ minor (major resp.) simplex s or for a defici ent 

(excessive resp.) lune b{ (*l resp.) (cf. Fig.5), where it is 

always assumed that Ibl l cis' for each (s, s', b":). 

Fig . 5 

c,o . (b {) 
J 

Triple for a minor simplex 
triple for a major simplex 

(s, 
( s , 

s' , 
s' , 

<P j (~t) 

and 

For simplicity of notation, we also denote bl = bl(s) or 

by l ( s) . If a minor or major simplex s is in 

then we say that l = {(s) is a lune of t E K .. 
J 

K. 
J 

and write 

l OW we shall define the naturalized triangulation K' associated 

to K. 

First, K '. (j 
J 

1,"', m) are defined as triangulations such 
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that the collection of all 2-simplices of K'. 
J 

consists of all 

2-simplices of K. 
J 

which are not minor or major, and of all 

naturalized simplices of minor and major ones of K .. 
J 

Then th e 

triangulation K' is defined as the sum of K '. (j = 1,"', m). 
J 

We should note that K' is no longer a triangulation of IT, and 

also is not an ordinary triangulation. 

§ !.~. Parametrization of lunar domains. Let ( s, s , t ) b e an 

arbi t rary triple for a deficient or excessive lune l, and let e
1 

and be two edges of such that Further. let 

( 1 . 2 ) z' = (1 - t)zl + tZ
2 (0 ~ t ~ 1) 

and 

(1.3) s" = (1 - t)s + ts 1 2 (0 ~ t ~ 1) 

be parameter representations of the oriented segments ~j(-e2) and 

~k(e1) respectively. The representation (1.3) induces a parameter 

representation of the curve ~j(el): 

(1.4) z" = g((l - t)sl + ts 2 ) (0 ~ t ~ 1), 

\vhere -1 
z = g(~) == ~jO~k (~). By (1 . 2) and (1.4) we obtain a 

parameter representation of the lunar domain ~.({): 
J 

( 1 .5) Z = Z ( t , "() == (1 - "() z ' + "( Z I' 

(1 - "()((1 - t)zl+ tz 2) + "(g((l - t)sl+ ts 2) 

(0 ~ t ~ 1, 0 ~ "( ~1). 
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LE~1;VIA 1.1. Let (s, s', t) be a tr iple for an arbi trary 

deficient or excessive lune i. Then, the estimate 

( 1 . 6 ) 

holds. wh e re throughout the present paper we denot e the ar e a of 

A (G) , g ( s) -1 
hI d ( (,O . ({ ) ) a r e gion G by 2 = - (,OjO CPk (s), = 

J 

and sl is one of the vertices of the lunar domain (,Ok ( {.) . 

PROOF. Here we shall preserve the notations in § 1.5 . By 

Taylor's expansion we have 

(1 . 7) z" - 21 g'(Sl)(S2- Sl)t +! g"(Sl)(S2- Sl)2 t 2 + ... 

( 1 .8) 

g'(Sl)(S2- Sl)t + ~ g"(Sl)(S2- SI)2 t + •.• 

for the point 2 of (1.2) on (,OJ(-e 2 ), where we assume that t h e 

triangulation K is so chosen that (,Ok(e 1 ) is contained in a 

disk V c e ntered at sl such that (,O~l(V) C Lj n Ck . By (1.7 ) 

and (1.8) we find that the equality 

( 1 . 9 ) zrl - Z (S - ( )2. t(t - l) ' (J'rI(( ) + 0((( _ ( ) 3) 
2 -1 2 b -1 -2-1 

holds for the point z' of (1.2) on (,OJ( - e 2 ) and the poin t Z" 

of (1.4) on (,OJ(e 1 ) with common t. 

Since IS2 - s1 1 ~ h 1 ( 1/ Ig'(Sl) 1 + O(h1 )), the equality (1.9 ) 

implies 
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(1.10) I z" - Z I I ~ 

Therefore we obtain the estimates 

A ( cp • ( .e )) ;:;; I z - z I· max I z I - z" I 
J 2 1 O~t~l 
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Chapter ~. Spaces of differentials. 

§ ~.1.. Subspace A of rc' 

locally exact differentials 0 

finite Dirichlet norm 

Let rO = rO(IT) be the set of all c c 

in the class CO on IT with the 

where by *0 we denote the conjugate differential of o. Let 

r = r (IT) c c be the completion of We should note that in 

Chapter V of Ahlfors and Sario [1], r is defined as the completion c 

of r1 ~ rO n C1 . 
c c 

We define a subspace A = A(K) of r as the space of c 

differentials 0h which satisfy the following conditions ( i )~(iv): 

( i) 0h E rc' 

( i i ) If s E K. (j=l,·· ·,m) is a natural simplex, then 
J 

on <Pj(s) (z = x + iy), 

where a O and b o are constants. 

(iii) Let (s, S', b-l) be a triple for a minor simplex s, 

and let 

Then 

and 

and be two edges of 

aOdx + bOdY 

Ctod~ + BOdn 

on 

on 

<Pj(s), 

<Pk ( s I ) 

is a harmonic differential in 

boundary conditions 

and 

- 16 -
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( ~o 8~ (71) dx ( ~O 8~ 

BO (71) d along (,OJ (e 2 ), a
h = ~ + BO + ~ + 

8x 8x Ely 8y y 

where 

(i v) 

and let 

Then 

a O' b O' ~O and BO are constants, 

-1 (z ~ = fez) (,Ok0(,Oj (z) = x + -

Let ( s , S I , *~) be a triple for 

e
1 

and e 2 be two edges of ~~ 

aOdx + bOdY 

~odt; + BOdn 

on (,0. ( b, s) , 
J 

on (,Ok ( s' ) , 

and 

iy, ~ = t; + in) . 

a major simplex s, 

such that e
1 

c as. 

and a
h 

is a harmonic differential in ~f which satisfies the 

boundary conditions 

and 

( ~O 8t; 
Bo ~)dX ( 8~ Bo an) d along (,OJ (e 1 ), a

h 
= + + ~o 8y + 8x 8x 8y y 

where a O' b O' ~O and BO are constants, and S t; + in is as 

in (iii) . 

We note that a h E A is generally discontinuous on each edge 

of 2-simplices of K. 

Let K' be the naturalized triangulation 

associated to K. For each differential a h E A, we define the 

differential a' on K' 
h 

associated to a h as the differential 

a~ which satisfies the following conditions ( i )-(iv): 

( i ) For each 2-simplex s E K'. 
J 

(j = 1,···, m) 

on 

- 17 -



where a
O 

and b o are constants. 

(ii) If s E K is a natural simplex, then 

all °h 
on I s I. 

( iii) If ( s , 
, 

b t) is a triple for a minor simplex s, s , 

then 

I on I s I u Is' I - I b 1. I . 0 11 = °h 

( i v) If ( s , s' , *{) is a triple for a major simplex s, 

then 

a' = °h on I ~ s I u Is' I. 
11 

We should note that the differential o~ is defined just t~ice 

on each deficient lune b{, while it is never defined on any 

excessive lune *{. In the former case, for each triple (s, s', b{) 

we shall denote the differential a' on 
h 

by I 
a 

h, ~ s 
and °h' , ,s 

respectively. 

~ S E K'. 
J 

and 

The space of all differentials a' 
h associated to 0h E A is 

denoted by A' = A' (K' ). Let 

of A'. Then the inner product 

defined by 

(at, X' ) 
h 

(at, Xh)K' 

, 

and X~ 

(at, Xh) 

, 
2 JISI 

= °h*Xh ' 
sEK' 

and the norm lIo~1I of at is defined by 

- 18 -

be two differentials 

of a' and 
h is 



We see that o~ = F(oh) defines a one-to-one mapping of A 

onto A'. 

§ 2.3. Finite element interpolations. Let a be an element of 
/'- . 

We define the finite element interpolation a of a in the 

space A as the differential uniquely determined by the follo~ing 

conditions ( i ) and (ii): 
A 

( i) a E A; 

(ii) For each I-simplex e E K, 

f ;;. = f o. 
e e 

§ ~.i. Harmonic differentials on ~ lune. 

LEM~A 2 .1. Let t = t(s) be a deficient or excessive lune of 

and be two edges of -t, and let and 

be exact differentials in the class on which satisfy the 

condition 

Further. let X be the differential harmonic in { and continuous 

on t which satisfies the boundary conditions 

X = o. 
1 

along e. (i 
1 

1) We shall use the common notations 

1, 2). 

and II II for both 

inner products and both norms of differentials of the spaces A 

and A'. 

- 19 -



Then the inequalities 

( 2 .1 ) 
2 

IIx II p ~ 
1... ffcp.(~) 

J 

{ 2 2 2 2} max (a
1 

+b
1 

), (a 2 +b 2 ) dxdy 

hold, where 

IIXIl~ II tl x*x, etc., 

and 

on 

PROOF. By making use of the parameter representation (1.5) of 

the lunar domain we define a differential a on 

(z = z(t,~) E cp.(~)). 
J 

We note that a satisfies the same boundary conditions as X 

on a~. Since X is harmonic in ~, the inequality 

( 2 . 2 ) 

holds. 

(2.3) 

2 2 
IIxll~ ~ lIall~ 

Further, the inequalities 

II a II ~ ~ f f cp . ( {) (( 1 - ~) ja1 2 + b 1 2 
J 

~ ffcp.({ ) max{(a1
2

+b 1
2

), (a 2
2

+b 2
2

)}dXdY 
J 

by 

hold. The inequalities (2.2) and (2.3) imply the inequality (2.1). 

§ 2.5. Difference of norms of a
h 

and a~ . 

LEMMA 2.2. Let a h be an arbitrary differential of the space 

- 20 -



A and let a h = F(ah )· 

(i The inequalities 

(2.4) 
2 lI ahll

2 I 
2 

lIohll ~ + lIahll*t 
*tEK 

2 
m 

I A(CP.(*{))·(1. Je
2

0 {J2(1 + ~ "ah" + I Kh) 
j=l *-tEK. J A 

J 

hold, where e
2 

is the edge of *-t such that cpj(e 2 ) is a 

segment, A is the length of cpj(e 2 ) and K is a constant which 

transformations f(z) -1 
depends only on the = CPkoCPj (z). 

( i i ) 

( 2 . 5 ) 

2 m 2 2 
lIahll + I L {A(CP.(b-t))·(ao + b O) 

j=l b{EK. J 
J 

+ A(CPk(bt)) .(a; + 6;)}, 

where for each triple (s, 
, 

s , b-t) the notations in (iii) of § 2.1 

are preserved. 

PROOF. ( i By Lemma 2.1 we see that for each triple (s, 

( 2 . 6 ) II 2 , 2 I I 2 
ahllb-t ~ lIah,bsllb-t + lah ,s,lI b-t· 

Hence the first inequality of (2.4) is obtained. 

Let (s, s', *.t) be a triple for an excessive lune *t. We 

preserve the notations in (iv) of § 2.1. We shall prove the 

inequality 

( 2 . 7) 

from which the second inequality of (2.4) follows. 

- 21 -
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By y and 0 we denote the arguments of the oriented segments 

CfJ j (-e
2

) and CfJ
1
{ (e

1
) respecti vely. By making use of the parameter 

representation (1.5) of the lunar domain CfJj(*t), we define a 

differential a on §! by 

( 2 . 8 ) cr a dx + b dy 

_ (1 ~)(aocos y + bosin y) '((cos y)dx + (sin y)dy) 

+ ~(~ocos 0 + Bosin 0)' 

. ((COS 0) ( ~~ dx + ~~ dy ) + (sin 6) ( ~~ dx + ~~ dy )) 

(z = z(t,~) E CfJ.(*-t)). 
J 

We note that a satisfies the same boundary conditions as a
h 

on 3(*{). Hence 

( 2 .9 ) 

since is harmonic in 

From the equation (2.8) it follows that 

(2.10) 

(C(ocos 0 + BOsin 0)2 max If' (z) 12}. 
CfJ j (*!) 

Further we note that 

(2.11) ~ f-e 2 
a ' 

h 

and 

(2.12) 

where 

- 22 -



(2.13) and Jl - f If' (z)dzl. - (pj(e
1

) 

By making use of the power series expansion of f' around 

a vertex zl of the lunar domain (Pj(*{)' we see that 

( 2 . 14) max If' (z) I 2 ~ If' (z 1) I 2 (1 + K 1 h) 
(Pj(*{) 

and 

(2.1.=)) 1.1 ;;:, (If' (zl) I - K2h) L
j 

(e
2

) Idz I ~ A( If' (zl) I - K
2
h) 

with constants K1 , K2 > 0 depending only on f. Then the 

estimate (2.7) follows from (2.9)-(2.15). 

(ii) The inequality (2 . 5) is obvious from the definition 

of 

- 23 -



Chapter ~. Finite element approximations. 

§ ~.l. Formulation of problems. 

the boundary components of C
2

. Let 

2 Let Yk (k = 1. K) b e 

arcs on 

let C' 
4 

to 

Cr' 
4 

4 Yk (k = 1 ..... 2n) be th e 

Pk + 1 (k = 1. 2n; p p) and 2n+l = 1 
n 4 

Lk=l Y2k . where 
2n 

{Pk}k=l are the 

assigned 2n points on C4 defined in § 1.1. 

Let G be a differential in rc which satisfies the following 

conditions 

( i ) 

of <pj(U j 

( i i ) 

If 

n 

G 

i ) . 
U. 

J 

C
1

) ; 

= 0 

( i i ) and (iii): 

then -1 n C
1 

;c ¢. G o<p . 
J 

is harmonic on a neighborhood 

along C2 u C~; 

(iii) G is exact on a neighborhood of each boundary component of 

C3 . where the conditions i ). (ii) and (iii) may be ignored if 

8r2 = ¢. 

By ra we denote the subspace of r consisting of all differentials c 

a for which there exists a function v on r2 such that 

dv = 8 - a on IT. 

v = 0 on C1 U c~. 

const. 2 
(k K) . v = on Yk = 1 ... . . 

By ~ we denote the harmonic differential in ra uniquely 

determined by the conditions 

( 3 .1 ) (k = 1.···. K) 

and 

( 3 . 2) o 

- 24 -



The differential ~ can be constructed by the following procedure. 

Let X b e the harmonic component of 8 in the orthogona l 

decomposition of r (cf. Chapter V of Ahlfors and Sario [1]), and 
c 

let u b e the solution of the boundary value problem: 

u is a harmonic function on ~, 

u = 0 on C1 
u c~, 

2 
u = const. on 1" k ' 

J 2 
*du = J 2 *x (k 1 ... K) , , 

1" k 1" k 

and 

Then, ~ = X - duo We note that the differential ~ is harmonic 

on the closure 
- 1) 
~. 

LEMMA 3.1. The harmonic differential ~ satisfies the minimal 

property 

(3.3) II~II min 11011. 
OEre 

In the equality (3.3), the minimum of the right hand side is 

attained if and only if a ~. 

PROOF. For each 0 E re there exists a function v such that 

I dv = 0 - ~, 

(3.4) ) v = 0 on C1 
u C~, I 

v const. 2 (k K) . = on 1"k = 1 ... , , 

From (3.1), (3.2) and (3.4) it follows that 

1) It is sufficient for our purpose that ~ is of the class C
1 

on the closure IT and hence we can weaken the assumption ( i ) for 8. 

- 25 -



(3.5) (0 - W, ~) = f8~ v*w 

f v*w + ~ f 2 v*w + fc
3

V *W + fc
4
' V*~ + fc

4
" V*u 

C1 k=l Y
k 

where 

(0, T) = (0, T)~ = J~ O*T. 

The equal i. ty ( 3 . 5 ) implies that 

1117112 2 110 wII2 2 
= lIuli + - ~ lIuli . 

In the last inequality, the equality holds if and only if 0 = ~. 

The unique harmonic differential ~ in re is called the 

harmonic solution in f e. 

Our aim is to obtain finite element approximations of W in 

the spaces A and A', and error estimates between them and u. 

0, 

§ ~.~. Finite element approximation ~h in A. Let @ be the 

finite element interpolation of e in the space A. By AS we 

denote the subspace of A consisting of all differentials 0h E A 

for which there exists a function v on ft such that 

dv = © - 0h' 

v = ° 

v = const. 2 on Yk (k = 1,··', K). 

By ~h we denote the differential of AS such that 

( 3 .6 ) 

- 26 -



We call ~h the finite element approximation of ~ 

space 1\. 

in the 

Next, we consider the special case where the differential 

8 satisfies the condition: 

8 = 0 along C1 · 

We denote such a differential 8 by 80 . Since 1\8 c re ' 
o 0 

we see that 

(3.7 ) 

LE~1MA :3. 2 . i) In the case of general 8, the equality 

(3.8) 

holds, wh,ere the minimum is attained if and only if °h 

( i i ) In the case of 8 = 8
0

, the equality 

(3.9) 1I~(h 
2 2 2 - ~II 1I~(h II - II~II 

holds. 

PROOF. i First, by a method similar to (3.5), it is shown 

that 

(3.10) 

By (3 . 6), standard arguments imply that 

(3.11) 

From (3.10) and (3.11), it follows that 

2 2 2 2 
II~ - 0h II = II~ - ~(h II + lIoh - "'h II ~ II~ - ~(h" 

In the last inequality, the equality holds if and only if 0h ~h. 
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( i i ) Since A8 c re ' both tJr h 
and (.:) are elements of 

0 0 

Hence, by ( 3 .5 ) (w, ~(h - (.:)) = 0 and thus 

2 2 2 
1I~(h - (.:)11 = 1I~(h II - IIwll . 

From (3.11) the following lemma immediately follows . 

LEMMA 3.3. In the case of general 8, the equality 

(3.12) 
2 

~(h II 

holds for each ah E A8 · 

§ 1.1. Finite element approximation (.:)h in A' . Let A' = 
8 

ra . 
0 

{ah I a~ = F(ah ), 

of A~ such that 

By 
, 

(.:) 
h 

we denote the differential 

(3.13) 11(.:)' II = 
h 

We call the finite element approximation of (.:) in the 

space A'. 

LEMl\1A :3.4. The equality 

(3.14) lIat - ' 112 wh = lIa~1I2 - IIwh"
2 

holds for each a' 
h E AG· 

PROOF. By a method similar to the proof of (3.11), it is 

shown that the equality 

(3.15) ((.:)h, , 
(.:)' ) 0 a h 

-
h 

holds for each a' 
h E A8· This implies (3.14). 
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§ 3.4. Lemma of Bramble and Zlamal. The following lemma is due to 

J.H. Bramble and M. Zlamal (cf. [9]). 

LEM~A 3.5. Let ~ be a closed triangle on the z-plane (z = 

x + iy) with d(~) ~ h, let v be a function of the class C
2 

defined on 6 such that v = 0 at each vertex of 6. Then, the 

inequality 

(3.16) 

B h2 
. 28 Sln 

(~;) 2) dxdy 

fLU ::~ )2 ) 2) dxdy 

holds, where B is an absolute constant and 8 is the smallest 

interior angle of the triangle 6. 

§ ~.~. Pointwise estimate. 

LEMMA 3.6. Let ~ be a closed curvilinear triangle on the z-plane 

(z = x + iy) with d(6) ~ h which is the image of some 2-simplex 

S E K . (j = 1,"', m) 
J 

by z = ~.(p), and let v be a function of 
J 

the class C2 defined on ~ such that v = 0 at each vertex of ~. 

Then, 

Ig~l, I~~I 

~ h· .4 A max (1 82
V2 1 + 218

2
V I + I 88y2V2 I) (1 + Kh) 

Sln - ZE~ 8x 8x8y 

on 6, where 8 is the smallest interior angle of the ordinary 

triangle which has common vertices with 6, and K is a constant 

which depends only on -1 
f(z) = ~kO~j (z). 

PROOF. (Cf . Theorem 3.1 of Strang and Fix [27].) 

- 29 -
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x + o be a fixed point and z = x + iy an arbitrary point in 

and let k = x and Here we choose the point 

so that for each z E 6. the segment between Zo and z is 

contained in 6.. 

By Taylor's theorem we have that 

v(z) = P(z) + r(z), 

where 

P(z) 

(3.17) r(z) 

with some point z' on the segment between Zo and z. First, 

from (3.17) the estimate 

(3.18) h
2 

(1
82 

1 Ir(z) I ~ --2- max ; 
ZE6. 8x 1

8
2 

1 + 2 8X~y + (z E 6.) 

z o 

immediately follows. Let z. (j 
J 

1, 2, 3) be the vertices of ~. 

Then, by the assumption of the lemma 

(3.19) v (z . ) 
J 

P(z.) + r(z.) = 0 
J J 

(j = 1,2,3). 

Since P(z) is a linear function of x and y, by (3.19) we 

have the expressi on 

(3.20) 

6., 

where ¢j (j = 1, 2, 3) 

¢ j (zk) = 6 jk 

are linear functions of x and y such that 

(j, k = 1,2,3) 

with Kronecker's symbol 6
jk

. 

estimate 

(3.21) 

(3.18) and (3.20) imply the 
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3 h2 
~ 2 max 

zE6 

Here we can easily verify that 

(3.22) 
1 

acp'l 1 -~ ~ 
ax - hI sin e 

2 

where hI :L s the diameter of the 

vertices with 6. From (3.21) and 

(j = 1,2,3), 

ordinary triangle which 

(3.22) it follows tha t 

(I 8
2

; 1 
2 2 

(3.23) I~PI ~ 3h· 1 max + 218 v I + 1 ~) I) (1 ax sin e zE6 ax 8x8y 

By Taylor's theorem we have that 

dV ( z) = 8v ( z 0) + (k ~ + ~ 8 ) a v ( z fl ) 

E~ dX 8x 8y 8x 

has common 

+ Kh) . 

wit h so m e poi n t z " 0 nth e s e g"m e n t bet wee n z 0 an d z . Sin c e 

I (~ k ~ + ~ ~) ~ v ( z" ) 1 
, 8x ,8y ax 

by (3.23) we obtain the estimate 

~ h max 
ZE6 

I ~IV(Z) I ~ 4h 
8x - sin e max (I a2; 1 + 21 ~2~ 1 + 1 a

2
v I) (1 

zE6 dX x Y dy2 

Analogously the estimate for I~;I is obtained. 

§ 3.6. Smoothness of ~ on O. 

LE~'llYIA 3. 1 . Let ~ be the harmonic solution in 

+ Kh). 

Then 
-1 

(:) 0qJ . 
J 

(j = 1,"', m) are of the class C1 on ~ . (U. n 0) respectively. 
J J 

PROOF. i The case where U. 
J 

contains some Pk (k 1, 

2n) . 
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Let us assume that U. contains Pl· The other cases are 
J 

also similar. Then, c,oj(Pl) 

{O ~ arg z ~; n/2} , and there 

u. n IT such that ~ = du, 
J 

(3.24) 

and 

(3.25) 

-1 U(>c,o . 
J 

o 

= 0, c,o . (U . n IT) = { I z I < p . } n 
J J J 

exists a harmonic function u on 

on {z I 1m z 0, 0 ~ Re z ~ p.} 
.J 

on {z I Re z = 0, 0 < 1m z ~ p j } , 

where by a/an we denote the inner normal derivative. By (3.24) and 

(3.25) we see that 
-1 uoc,o . 
J 

can be harmonically continued to c,o . (l .) = 
J J 

{Izl < P
j

} and thus especially is of the class C
2 on c,oj(U j n IT). 

( i i ) The case where c,o.(U. n Q) = {Izl < p.} n {O ~ arg z ~ a.} 
J J J - J 

and cx. ~ n/2. 
J 

There exists an analytic function f on U. n IT such that 
J 

d(Re f ) = ~. Let g be the function defined on D {1m S > 

n/a. 1 a./n 
{ I s I < p . J } by g ( s) - foc,o~ (t J ) . Since Re g = const. 

J J -

O} 

1m g = const. on {1m ~ O} n {I~I < 
n/cx j 

P j } , g is analytic 

the 

and 

on 

closure D. Then 

-1 dfoc,o . (z) 
J 

dz 

2 -1 d foc,o. (z) 
J 

d rr./cx. 
2( z J ) . 
d~ cx. 

J 

n 

d n/cx. 

n/cx . -l 
z J 

n + 2( z J ) . ds cx. 
J 

(~. ~ 1) 
J 

Hence, a j ~ n/2 implies that 

- 32 -

n/cx.-2 
z J 

2 -1 2 d foc,o. (z)/dz 
J 

n 

or 

on 



is continuous on 

the class on 

(,O.(U. n 0) 
J J 

(,0.((;. nO). 
J J 

and thus 
-1 UO(,O . 
J 

Re fo(,O~ l 
.J 

is of 

(iii) The cases except ( i ) and (ii). 

Since uo(,O~l = const., auo(,O~1/8n 0 
J J 

-1 or UO(,O. is harmonic on 
J 

(,O.(U. n 3~) = {Izl < P
J
.} n {1m z = O}, or 

J J 

is harmonic on (,0. (U. n ~) . 
J J 

§ ~·2· Approximation by ~h' 

(,0 • ( u. n 3~) = if> , 
J J 

-1 UO(,O . 
J 

THEOREM 3.1 . Let w be the harmonic solution in fe defined in 

§ 3.1 and let ~h be the finite element approximation of w in the 

space A. Then, 

(3.26) 

where Band C are constants independent of the triangulation K 

and the differential e, e is the smallest value of interior 

angles of a l l triangles 

w = a dx + b dy 

~ 

(,0 • ( s) (s E K'.; j = 1,"', m), 
J J 

on (,0. (U . nIT) (j = 1,"', m), 
J J 

by (,0 • (K '. ) 
J J 

we denote the image set by (.p • 
J 

of the carrier of K'. , 
J 

and R j (j =: 1,"', m) are the closed subsets of U.n IT 
J 

defin ed 

in i') of § 1.2. 

PROOF. First, by ( i ) of Lemma 3.2, 
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(3.27) 

Hence it is sufficient to estimate lie:; - (:)11. 

\Ye have 

2 m 2 .-" /'. 

(3.28) 11(;) (;)11 I I 11(:) (:.)11 . 
~ j=l sEK. s 

J 

Here note that -1 ( j m) is of the class C1 we (:.)ocp. = 1 ... on 
J ' , 

cp.(U.n r2). 
J J 

Then, by Lemma 3.5, 

(3.29) 11(; _ (:.)11
2 
s 

~ B h2 II ((8a) 2 + (aa) 2 + (8b) 2 + (ab) 2) dxdv 
sin2e CPj(s) 8x 8y 8x 8y 'v 

for each natural simplex s of K .. For simplicity, we denote 
J 

the right hand side of (3.29) by I[cpj (s)]. 

For a triple (s, s', .[) for a minor simplex s, we denote the 

differential "', (:.) on ~ S E K '. 
J 

and s' E K I by 
k 

respectively. Then, by Lemma 2.1 

(3.30) 

This inequality and Lemma 3.5 imply that 

(3.31) "" 2 A, 2 "', 2 1/(:) - c.oll s + s ~ 11(:.) - (:.)11 + lI(:)s' (:.)lIs' ~ s ~ s 

~ I[cp.(~s)] + I [ (.pk ( s' ) ] . 
J 

Let ( s , c' -t) be a triple for a major simplex ,:J , 

by Lemma 3.5 

(3.32) 
A 2 A 2 

1/(:.) - (:.)lIs ~ I[cpj(~s)J + 11(:.) - (:.)11.[ 

and 

(3.33) 

- 34 -
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S 

s. Then, 



Let 

on qJ j ( ~ s ), and 

on qJk ( s' ) , 

where a O' bO' a O and 60 are constants. Then we define 

differentials (.:) 
s and on s and s' + t respectively by 

(.:) 
s 

.A. 

(.:), = a dt; s +{ 0 

Then. by Lemma 2.1 

(3.34) 

Further, by Lemma 3.6 

(3.35) 

and 

(3.36) 

2 
~A(qJ.({))' 32~ 

J sin 8 

on qJ j ( s ), and 

on 

2 

. max ( 1 a~ 1 + 1
8a 

I + 1
86

1 + I ~ I) ( 1 
cp (s' +.t) 8~ 8n 8t; 8n 

where '(.:) = a dx + b dy 

CPk ( s '+ .t). 

k 

on qJ. ( s ) 
J 

and (.:) = a dt; + 6 dn on 

2 
+ Kh) , 

By (3.21)~(3.36), Lemma 1.1 and (1.1), the estimate (3.26) is 

obtained. 
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§ ~ . .§.. Approximation by (:)h' 

THEORE01 3.2. ( i) Let (:) be the harmonic solution in fe 
defined in § 3.1, let (:)h be the finite element approximation 

of (:) 

(3.37) 

in the space 

m 
-+- B'h2 I 

j=l 

/\' and let Then 

where A', B' and C' are constants independent of the 

triangulation K and the differential 8, and other notations 

are the same as in Theorem 3.1. 

(ii) Let GO be the differential defined in § 3.2, let (:) be 

the harmonic solution in and let be the finite element 

approximation of (i) in the space /\'. Then the estimate 

(3.38) 

holds with 

(3.39) 

.maX{l, 

where and are the edges of such that is a 

straight segment, ~ and g are the lengths of the segments 

and resp., and 
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PROOf. First, note that 

(3.40) "eD h -- eD" 2 ~ 2" ~(h - CD" 2 + 2 II eD h - ~ h ,,2 

From Lemmas 2.1, 2.2 and 3.3, and (3.13), it follows that 

(3.41) IIw 2 2 2 -- ~(h II IIwh " "~(h II h 

IIw' ,,2 "~hIl2 2 
~ - + L II wh II * ~ h 

*{EK 
II~' 112 lI~h"2 2 

~ - + L IIwh II * ~ h 
*~EK 

m 
( A ( (JJ j ( b ~) ) • (ao 2 

+ b 0 2 
) + A(~k(b{))· (~~2+6b2)) ~; I I 

j=l b{EK. 
J 

m 
( 2 2 2 2) + I I A(~j(*{))'(ao +b O ) + A(~k(*{)) ·(~O +6 0 ) , 

j=l *£EK . 
J 

where for each triple ( s , s' , b {) for b{ E K . 
J 

~(h ab dx + b'dy 
0 on ~j(~s), and 

~' = ~'d; + 6~dn on ~k ( s I ) , h 0 

for each triple ( s , I 
*~) for *~ E K. s , 

J 

w h aOdx + bOdY on ~j(~s), and 

wh = ~odt; + 60 dn on ~k ( s I ) 

with constants a~, bb, ~b, 6b' a O' b O' ~O and 60 , 

In the inequality (3.41), we have 

(3.42) 

A(,(Jj(b~)) 2 

A(,(J.(s)) lI~hlls 
J 

- 37 -



Since we 

A(<p.(b~)) 

~ 2 J 
( II ~'h A(<p.(s)) 

- CD II 
J 

A(<p.(bt)) 
2 

~ 2 ~1 1II/'h A(<p.(s)) 
- (:)11 

J 

can easily verify 

A(<p.(bs)) > 
J 

h 2 
1 
4 

s 

that 

sin e 

2 
+ s 

+ 2 

2 
II (:) II s ) 

2 
A(<p.(b~))· max (a 

J <p.(s) 
J 

d(<p.(~s))), 
J 

by Lemma 1.1 we have 

(3 .4 3) 
A(<p.(rz)) 

.J~""7"-:-_ 
A(<p .(s)) 

J 

A (<p . ( be) ) 
.J 

A(<p.(~s)) - A(<p.(b~)) 
J J 

g il (t ) _h_( -1 
~ 2 sin e 2 

g' (s ) 
1 

with the notations in Lemma 1.1. (3.42) and (3.43) imply 

(3.44) 
m 

b 
,2 12 I I A(<p.( t))'(ao + b ) 

j=1 blEK. J 0 
J 

+ b
2 ) . 

m m 
~ Ch e I I II tJi - CD 112 + 2 I L A (<p • ( b ~)) max (a 2 

+ b 2) , 
sin h s J j=1 b~EK. j=1 b{EK. <p.(s) 

J J J 

where C is a constant depending only on the transformations of 

local parameters. Since similar estimates for other terms of the 

right hand side of (3.41) are obtained. from (3.41) it follows that 

(3.45) 

Ch 2 Ch 2 
~ siDe 1/ (:)h - (:) II + sin e 1/ tJi h - CD II 

+ 2 ~ I (A(CP' U)) max (a
2 

+ b
2

) + A(CPk U )) ma~ (cx
2 

+ 6
2

)), 
j=1 tEKj J <Pj(s) <Pk(s ) 

where for each triple (s, s',~) for l E K. 
J 
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(;) = a dx + b dy on cP j ( s ), and 

(;) = ex dt; + 6 dn on CPk ( s' ) . 

(3.40), (3.45), Theorem 3.1, Lemma 1.1 and (1.1) imply the 

the estimate (3.37). 

(ii) (3.7) and Lemma 3.3 and the proof of Lemma 2.2( i ) imply 

the inequali ti,es 

§ 
, /"., 

~.~. Estimate of lI(;)h - (:) II. 

COROLLARY 3.1. Let (;) and (;)~ be the same as in Theorem 3.2, 
A 

W be the finite element interpolation of (;) in the space A, and 
A, /". 
W = F((;)). Then, the estimate 

holds, where A" is a constant dependent only on (;) and e in 

Theorem 3.1. 

PROOF. First, by Lemma 2.2(ii) and (3.43) we have 

- 39 -



A 2 m (A(CP.(b{)) r. 2 
~ II (:)h - (.:) II + I I .J II (.:) - (.:) II 

j=l btEK. A(CPj(S)) h S 
J 

A ( CPk ( r ~ ) ) 2 ) 
+ 11(.:) -;11 I 

A ( CPk ( S I )) - A ( CPk ( b { ) ) h S 

A 2 Ch m 
r.. 2 r.. 2 

~ llto h 
- (.:)11 + I I ( II (:,)h - (:,) II + 11(:') - (:,) II ,) sin e 

j=l D{EK. s h s 
J 

(1 Ch ) lIc.u h 
A 2 :;; + sin e - (;)11 

2 (1 Ch ) ( II (;)h 
2 11(;) 

A 2 
~ + sin 8 

- (;)11 + - (;) II ), 

where C is the same constant as in (3.44). Then, the proof of 

Theorem 3.1 and Theorem 3.2 imply (3.46). 
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Chapter 1. Determination of the periodicty moduli of Riemann surfaces. 

§ i.!. Periodicity moduli of Riemann surfaces. Let 0 be a 

closed or compact bordered Riemann surface of genus 1 with no or one 

boundary component. Let {A, B} be a canonical homology basis 

of 0 such that A x B 1. Then there exists a unique system of 

harmonic differentials {¢, p, X,~} on D satisfying the 

period and boundary conditions: 

(4.1) IB ¢ = IB X = 1, fA ¢ IA X 0, 

(4.2) IA p IA ~ -1, IB p IB 'C 0, 

(4.3) ¢ P *X *'C ° along aD 

and 

(4.4) 

where the conditions (4.3) and (4.4) may be ignored if aD ¢. 

If 8D = ¢, then ¢ = X and p = 'C. 

We can easily see that 

(4.5) 
[ II ¢ 112 = J A *¢. II p 112 = J B * P • and 

l (¢, p) = fE *¢ = fA *p 0. 

We call 

P = J *¢ 1 A 
and 

periodicity moduli of 0 with respect to A and B respectively, 

which are the quantities determining the conformal structure 

of D. By (4.1)~(4.5) we see that 
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1: = - ~ and X ~ 

1I¢1I 2 II p 112 

Thes e relations 1mply that 

(4.6) 1I¢1I 2 1 and II p 112 J 
PI = = P 2 ? 2 111:11- Ilxll 

If £)0 ¢, then 

(4.7) 1I¢1I 2 1 1 
PI = 

IIpll2 P2 

By making use of a relation analogous to (4.1) for the modulus 

of quadrilaterals on the complex plane, Gaier [11] presented a method 

to obtain upper and lower bounds for the modulus by the finite 

difference approximation. 

§ ± . ~. Calculation of periodicity moduli . 

be a system of differentials in r c (0) satisfying the period and 

boundary conditions: 

fB 8 1 fB 8 3 
1, fA 8

1 fA 8 3 0, 

fA 8 = 2 fA 84 
-1, fB 82 fB 8 4 0, 

8 
1 

= 8 2 = ° along 80, 

and 8 3 and 8 4 
are exact on a neighborhood of ao. Here we 

interpret that 80 = C2 
for 8 1 and 82 , and £)0 = C

3 for 8 3 

and 8 
4 

in the notations in § 3.1. We note that 8
1

, 8 2 , 8 3 and 

8 
4 satisfy the conditions for the differential 8 

° 
in § 3.2. Then 

we can easily see that ¢, p, X and 1: are the harmonic solutions 

in and ra ' respectively . 
4 

Let and 

T~ be the finite element approximations of <p, p, X and 1: 1n the 
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space /\' respectively. Then by (ii) of Theorem 3.2 and (4.6 ) . 

we obtatn upper and lo\ver bounds for PI and P2: 

(4 .8 ) 

and 

(4.9) 

If ar:1 = ¢, then ¢ = X an.d P ~, and thus (4.8) and (4.9) 

imply the In. equalities 

1 
~ 

"p~,,2 
PI 

+ S ( Ph) 

§ i.~. ~umerical example 1 (the case of a closed Riemann surface). 

Let r:1 be the two-sheeted covering surface with four branch points 

z = -3, -1, 1, 3 over the extended z-plane. Then r:1 is a closed 

Riemann surface of genus one. A canonical homology basis {A, B} 

of r:1 is chosen as in Fig.6. We aim to obtain good upper and lower 

approximate values of the periodicity moduli and of 

with respect to A and B respectively. 

B A 

\ 
-3 \ -1 

...... 
...... 

' ..... 
....._----

Fig. 6 Numerical example 1 (the case of a closed Riemann surface) 
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First, we construct a triangulation of the closed region: 

D = {z I I z I ~ ./3. Re z ~ O. 1m z ~ O} 

as in Fig.7. The closed regions G2 and G3 are mapped onto th e 

* * regions G2 and G3 resp. by the local parameters S = CP2(z) 

a j z - 1 a rld w = CP3(z) = b log z (a = 2 ( j 3 - 1)1/2 and b = ,/ 3) 

resp ec ti ve ly, where a and b are so determined that Ids/dzi = 1 

and I dw/dz I = 1 on Iz - 11 = )3 - 1 and Izl = j3 r e spectively. 

\Ye c onstruct ordinary triangulations 

* j_ n G
3 

a s F ig.7 resp e ctive ly. By K2 

triangulations of * 1\2 and * K3 by the 

respective ly . The triangulation Kl 

* * K2 and K3 of * G2 

and K3 we de note 

-1 mappings <P2 and 

of the region G = 
1 

and 

t h e im a ge 

-1 
<P3 

D - (G 2 u G3 ) in Fig.7 is so constructed that each 2-simplex s of 

Kl is natural, minor or major according as 

lsi n IK31 ¢ ¢, where if some intersection 

is a point then it is interpreted to be vacuous, and the local 

~ parameter <P
1

(z) of Kl is the identity mapping <P
1

(z) = z. 

A triangulation of the region IT = {z 
1 Izi ~ j3, Re z ~ 0, 

1m z ~ O} is defined by the reflection of the triangulation L_ 

Kl + K2 + K3 with respe c t to the circle I z I = ) 3 (cf. Fig. 8) . 

~ex t we de fin e a triangulation L2 of the fourth qua dr a nt by the 

reflection of the triangulation L + Ll "ith resp e ct to the r eal 

axis and then a triangulation L3 of the left half - plane by th e 

reflection of L + Ll + L2 with respect to the imaginary axis. 

Consequently, a triangulation L4 of the extended z-plane is 

defined by L4 = L + L1 + L2 + L3 · Then, a triangulation K of 

the covering surface 0 is so constructed that the projection T of 

K Orlto the extended z-plane is the triangulation L4 . We see that 
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w = 'P 3 Cz) = b log 

Fig. 7 Triangulation L of example 1 
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the triangulation K conforms to the definition in § 1.2. We 

denote the parts of T- 1 (D) and T- 1 (L) on the upper sheet of 0 

by D and L again respectively. 

Let ¢ = X and P = L be the differentials on the present 

0 defined in § 4.1. and let cp' and 
, 

be the finite element 
h Ph 

approximations of cp and P respectively in the space A'(K'), 

where l{' is the naturalized triangulation associated to the 

present K. 

Let A(L) be the space of differentials on D which are the 

restrictions of those in A(K) to D. Let Acp(L) be the subspace 

of A(L) which consists of the differentials a
h 

in A(L) 

satisfying the conditions: 

and 

and let 

o 

o 

along Co 

along c
1 

1 a = 
h 4 ' 

{z o ~ 1m z ~ j3, Re z 

{z 1 ~ Re z ~ j3, 1m z 

A~(I./) {/ F() E A (L)} I\~ - = a h = a h , a h I\cp • Further, let 

o} , 

o} 

A (L) 
P 

be the subspace of A(L) which consists of the differentials 

in A(L) satisfying the conditions: 

.. 
a

h 
0 along Co { z I 0 ~ Re z ~ 1, 1m z o} . 

.. ( ' . 
a

h 
0 along c

1 
< z I z I J3, 0 ~ arg z ~ ~> 
~ 2 ! 

and 

SAnD 
1 

a
h 

= -
4 

, 

and let A' (L I ) {at F(a
h

) , a
h 

E Ap(L)}. By CPh.L and / 

= = Ph . L P 
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denot e the diff e rentials in A' (L' ) and A' (L I ) r e spectively which ¢ P 

minimiz e norms lIahll L, in A' (L' ) and A' (L' ) respectively. Th e n, ¢ P 

by ma king use of th e symmetricity of K' , the period and boundary 

conditions of ¢h' Ph' ¢h,L and Ph,L' and their minimality w.r.t. 

norm, we can v e rify that ¢h,L and Ph,L are the restrictions of 

¢t an d Ph to L ' res p e c t i vel y, an d \I ¢h \I ~ , = 16 II ¢h , L II ~ , an d 

II Ph II ~ I 16 II Ph , L II ~ , C on seq u en t 1 y, to at t a in our aim i tis 

sufficient to make numerical calculations of ¢h,L and Ph,L 
(cf. Mizumoto and Hara [17J, [18J for the calculation method). 

We should note that the symmetricity of ¢ and P on g has not 

be e n used and thus our method does not reject an application to the 

differentials which do not have symmetricity on g . 

Table 1 shows the exact value of the periodicity moduli which 

can be calculated by making use of a complete elliptic integral, and 

the values of our finite element approximations . Furthermore, 

computational results for the normal subdivision Kl (see Fig.9) of 

the present K are shown. It can be said that the both of upper 

and lower bounds of are close to the exact value . 
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w = <P
3

(Z) = 

= a ./z - 1 

Fig. 9 Normal subdivision of example 1 
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Exa c t 
valu e 

Tab le 1 P e riodicit y moduli PI o f e x a mpl e 1 

(closed Riemann surfac e ) 

PI = SA *¢ = 0.781701 

Original triangulation (h = 0.213758) 

Upper II¢' 112 + E(¢~) II¢' - $' II h h 

bound = 0.782184 + 0.429347 x 10- 3 = 3.76256 

= 0.782613 (0.000912) 

1 

IIP~1I2 E(P~) IIP~ 
.A , t 

Lower + - P II 

bound 1 6.14254 = = 
1.280878 + 0.150405 x 10- 0 

Finite = 0.780714 (-0.000987) 

eleme nt 
Normal subdivision (h = 0.1068(9) approxi-

mations Upper IICP'1I
2 E(¢h) "cp' - $' II + 

h h 

bound = 0.781968 + 0.107413 x 10- 3 
= 1.12050 

= 0.782075 (0.000374) 

1 

Lower IPh "
2 

+ E(Ph) II Ph - p'lI 

bound 
1 

1.83821 = = 
1.279506 + 0.381486 x 10- 6 

= 0.781551 (-0.000150) 

x 10 - ~~ 

x 10 -~~ 

-~ 
x 10 vI 

x 10- 3 

): Deviation from exact value . 
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§ i·i· J\'urnertcal example ~ (the case of a compact bordered Rtemann 

sur face) . Let r2 be a two-sheeted compact bordered covertng 

surface with three branch points z = -1, 1, 3 over the ellipse: 

E r 
< Z = x + iy 
~ 

2 
x 
- + 
16 

2 L 'j 
15 ~ 1( . 

Then r2 is a compact bordered Riemann surface of genus one with 

one boundary component . A canon i cal ho mology basis {A, B} of 

IT is chosen as in Fig.10 . We ai m to obtaIn good upper and lo~er 

-4 4 

-1./15 

Fig. 10 Nume rical e x ample 2 
(the cas e of a compact borde red Riemann surface ) 
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approximate values of the periodicity moduli PI and P2 of 

TI with respect to A and B respectively. 

First, we construct a triangulation of the upper half ellipse 

15 E n {z I 1m z ~ O} as in Fig.11. The closed regions G2 , G
3

, 

G4 
and G_ 

:J 
are mapped onto the regions * G2 , * G3 , * G

4 
and 

* G5 
resp. by the local parameters S = CP2(z) = ajz + 1, 

~ (,o3(z) ajz - 1. S CP4(z) = biz - 3 and 

(f.!-(z) -1 (a 2/ 
_1/4 

and b 2/ 8S 1 / 4 ) respectively. \V = cosh z 0 
0 

where a and b are so determined that I d ~/dz I are equal to 

Idw/dzl at z = zO+ i (zO = -1,1 or 3). We construct ordinary 

* * K* triangulations K2 , K 3 , 
4 

in Fig.ll respectively. By 

triangulations of * I\: 2 ' * K3 , 

and * K-
0 

K2 , K3 , 

* and K4 

of 

K 4 
* K-
0 

* * * G2 , G3 , G4 and as 

and K_ we denote the image 
o 

by the mappings -1 -1 
CP2' CP3 ' 

-1 and -1 respectively. The triangulation Kl of the region CP4 cp-o 

G1 = ~ - (G 2 u G3 u G4 u G5 ) in Fig.11 is so constructed that 

each 2-simplex s of K1 is natural, minor or· maj or according as 

or I s I n IK-I ,,= </y, with 
0 

the convention as in the previous section, 

and the local parameter of K1 is (P1(z) - z. 

A triangnlation L1 of the lower half ellipse D = 1 

E n {z 1m z ~ O} is defined by the reflection of the trianglilation 

L _ K1 + K2 + K3 + K4 + Ks with respect to the real axis and 

a triangulation L2 of E is defined by L2 L + L1 . Then, a 

triangulation K of the covering surface 0 is so constructed 

that the projection T of K onto the z-plane is the triangulation 

L
2

. We see that the triangulation K conforms to the definition 

in § 1.2. We denote the parts of T- 1 (5) and T- 1 (L) on the upper 
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sheet of 0. by IT and L again respectively. 

Let cP, p, X and "'( be the differentials on the present 0 

defi.ned in § 4.1. and let CPt' 
, I and 

, 
be the finite eJement Ph' Xh "'(h 

approximations of cP, p, X and "'( respectively in the space 

/\' (1\'), \rhere K' is the naturalized triangulation associated to 

the present K. 

Let A(L) be the space of differentials on D which are the 

restrictions of those in A(K) to D. Let Acp(L). Ap(L), Ax(L) 

and A (L) be the s11bspaces of A(L) which consist of the 
"'( 

differentials 

satisfying the conditions: 

°hl 

°hl 

°h2 

°h2 

°hl 

fBnD 
and 

Further, let 

°h3 0 

°h3 0 

°h4 0 

°h4 0 

= °h2 0 

°hl fBnD 

°h2 = JAnD 

A' (L' ) 
¢ 

and 

along Co {z 

along c
1 

{z 

along *' Co {z 

*' along c
1 

{z 

/z along c = 
~ 

°h3 
1 
2 

1 
°h4 = - -2-' 

in A(L) respectively 

1 3 ~ Re z ~ 4, 1m z o} . 

1-1 ~ Re z ~ 1, 1m z O} . 

I 1 ~ Re z ~ 3, 1m z o} , 

1-4 ~ Re z ~-1, 1m z O} , 

I 
2 2 

iy x y 
1. x + + = y ~ 16 15 

and 

o} . 

I\~ (L ') = {o h4}' whe reo hj = F (0 hj) (j = 1, 2, 3. 4). By CPt , L' Ph, L ' 

Xh,L and "'(h.L we denote the differentials of A~(L'), A~(L'), A~(L') 

and A~(L') respectively which minimize norms in A~(L'), A~(L'), 

1\' (L') and A' (L') respectively. Then, by making use of the X "'( 

symmetricity of K'. the period and boundary conditions of ¢~. Ph' 
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x~, ~~, ¢~,L' P~,L' X~,L and ~~,L' and their minimality w.r.t. 

norm. we can verify that ¢~,L' P~.L' X~,L and ~~,L are the 

res t ric t ton s 0 f ¢~, Ph' X h and ~h to L' respectively. and 

II ¢~ II ~ I = 4 II ¢h , L II ~" II Ph II ~ , = 4 II Ph. L II f, , 
I ? I I 2 

and l~h"K' = 4 l~h,L"L' Consequently, to attain our aim it is 

sufficient to make numerical calculations of ¢h.L' Ph,L' Xh,L 

and 

The exact values of the periodicity moduli and can be 

calculated by the following procedure. 

Let and be the boundary parts of the upper half 

ellipse domain D defined by 

'" Co {z I 3 ~ Re z ~ 4, 1m z O} u 

( 2 2 , 
iy x :L 1. !;; OJ <z X + + y 

~. 16 15 

and 
./ 

'" c 1 {z I -1 ~ Re z ~ 1, 1m z = O} . 

Let 6. be the rectangular domain 

!::. = {W I 0 < Re W < 1, 0 < 1m W < ~} , 

and let YO and Y1 
be the boundary parts of 6. defined by 

YO = {W I 0 ~ 1m W ~ ~, Re \V = O} 

and 

Y1 
= {W I 0 ~ 1m \\, ~ L, Re W = l} . 

If D is conformally mapped onto 6 that 
"- "-so Co and c 1 are 

mapped onto YO and Y1 respectively, then the periodicity moduli 
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PI is equal to 1:. The conformal map W = f ( z) : D ~ 6 is 

constructed by the composition of the follov\'ing mappings: 

( i ) 2 -1 1; w 
-1 ·cosh z 

cosh 4 

(ii) S sn(K(k) ow) , where K' (k) 2n: 
K(k) -1 

, 
cosh 4 

Z - Zl Z3 - Z2 ~ - ~1 S3 - S2 
( iii) Z - Z2 Z3 - Zl S - ~2 s3 - sl 

, 

where (. sn(K(k) ow.) ( j 1, 2, 3, 4) with wI = 
-J J 

i(2n I 
-1 2 -1 I -1 + cosh 4), w2 = -1, \V = cosh 3 

3 

1 i(2n: I 
-1 and Zl -11K, Z2 \\'4 + cosh 4), = = 

2 
Z4 11K \yi th K = (jl/c - ./l/c - 1) , c = ( ( S 4 

Then we see that 

PI = 

Next, let 

and 

1: 
K' ( K) 
21\ ( K) . 

"', and "', be the boundary parts Co c l 

{z I 1 ~ Re z ~ 3, 1m z O} 

f 
< Z = x + iy 
~ 

2 x 
- + 

2 
L 

16 15 1, 
\ 

Y ~ 0> 
) 

u {z I -4 ~ Re z ~ -1, 1m z = O}. 

-1 1, cosh 4 -

-1, Z3 = 1, 

- sl)/(S4 - ( )) ° -2 

1. K' (K))) 
K ( K) . 

of D given by 

Let 6, YO and Yl be as above. If the domain D is conformally 

mapped onto the domain 6 so that and are mapped onto 
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and respectively, then the periodicity moduli is 

equal to ~. The conformal map W = f(p): D ~ 6 is constructed 

similarly to the case of periodicity moduli Pl' 

Tables 2 and 3 show the exact values of the periodicity moduli PI 

and P2' and the values of our finite element approximations. 

Furthermore, computation results for the normal subdivision KI 

of the present K are shown. It can be said that the both of 

upper and lower bounds of PI and P 0 are close to the exact 
L 

values . 
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Table 2 Periodicity moduli PI of example 2 

(compact bordered Riemann surface) 

Exact PI = SA *¢ = 1.539330 
value 

Original triangulation (h = 0.138840) 

Upper IICP'II 2 
+ S(¢h) II¢' - $' 1/ 

h h 

bound = 1.540588 + 0.512262 x 10- 4 = 1.15335 

= 1.540645 (0.00132) 

1 

Lower lI"C h 11
2 

+ S("Ch ) lI"Ch - ~' II 

bound 1 3.14131 = = 
0.649100 + 0.225111 x 10- 3 

Finite = 1.538639 (-0.00069) 

element 
Normal subdivision (h = 0.069420) approxi-

mations Upper II¢' 112 S(¢h) II¢' $' II + -
h h 

bound = 1.539652 + 0.142916 x 10- 4 
= 5.89441 

= 1.539666 (0.00034) 

1 

Lower lI"Chll
2 

+ S("Ch) lI"Ch - ~' II 

bound 
1 

1.09209 = = 
0 . 649652 + 0 . 558093 x 10- 4 

= 1.539153 (-0.00018) 

x 10- 2 

x 10- 3 

x 10- 3 

x 10- 3 

): Deviation from exact value. 
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Exact 
value 

Table 3 Periodicity moduli P2 of example 2 

(compact bordered Riemann surface) 

P2 = IB *p = 1.839350 

Original triangulation (h = 0.138840) 

Upper IP h "
2 

S(Ph ) II Ph 
/'. I 

+ - P II 

bound = 1.841976 + 0.351532 x 10- 3 = 7.65797 

= 1.842328 (0.00298) 

1 

LOvver IXh"2 
+ S(Xh) IIXh - X'II 

bound 1 5.22574 = = 
0.544588 + 0.145580 x 10- 3 

Finite = 1.835760 (-0.00359) 

element 
Normal subdivision (h = 0.069420) 

approxi-

mations Upper IIPh"2 S(Ph) II p' 
/'. I 

+ - P II h 

bound = 1.840016 + 0.875764 x 10- 4 = 2.28613 

= 1.840104 (0.00075) 

1 

Lower IIXhll
2 

+ S(Xh) IIXh - x" II 

bound 
1 

1.73332 = = 
0.543904 + 0.361871 x 10- 4 

= 1.838437 (-0.00091) 

x 10- 3 

x 10- 3 

x 10- 3 

x 10- 3 

): Deviation from exact value. 
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Ch a p t er 5. Determination of the modulus of quadrila te ra l s. 

§ ~.l· Quadrilateral on a Riemann surface. Let ~ be a simply-

conn e ct e d subdoma in of a Riemann surface W whose closure 0 is 

a compact bord e red subregion. We consider the case of C1 
C = 

2 

C
3 

= ¢, C4 = 8~ and n = 2 for the notations defined in § 1. 1 . 

We assume that a~ satisfies the conditions in § 1.1. And thus 

four points PI' P2' P3 and P4 on an, and the two opposite arcs 

4 (from to P2) and 4 (from to P4 ) Co = 1'1 PI c
1 = 1'3 P3 a r e 

assigned. Then we say that a quadrilateral Q with opposit e sid e s 

Co and c
1 

is give n. 

§ ~ . ~. Formulation of problems. We can conformally map the domain 

~ defined in § 5.1 onto a rectangular domain 

R = {w o < Re w < 1, 0 < 1m w < M} 

by a function w f (p ) so that and are mapped to 

iM, 0, 1 and 1 + iM respectively. Then the modulus of the 

quadrilateral Q: 

l(Q) = M 

is uniquely determined by Q. Our aim is to determine ~I(Q) by 

finite el e ment method. 
"-

ow we assign the two opposite arcs Co (from P2 to P3) and 

~ "-

c
1 

(from P
4 

to PI) on 8~. Then a quadrilateral Q with 

"- "-

opposite sides Co and c 1 
is defined. We see that the domain 0 

can be conformally mapped onto a rectangular domain 
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{w o < Re w < 1, 0 < 1m w < 11M} 

by a function w = f(p) so that and are mapped to 

ilM, 0, 1 and 1 + ilM respectively. Hence 

( 5 . 1 ) '" _ 1 
1\'1 ( Q ) - M ( Q) . 

We characterize M(Q) by a minimal property. 

Let y (~) be a curve which connects a point on Co (~o) to a 

point on c
1 

(e
1

). Let {S, 8} be a system of differentials jn 

rc(~) satisfying the conditions 

8 0 along Co u c 1 ' 

S '" "V 

0 along Co u c 1 ' 

fy 8 f", 8 = 1. 
Y 

Let <.p ( ~) be the harmonic solution in rS (re) . Then <.p (~) 

satisfies the condition *<f = 0 ( *~ = 0) along 8~ - Co U c 1 

(8~ - Co U C
1

). We can easily see that ~ = d(Re f) (~= d(Re f)). 

Then by Lemma 3.1 the equalities 

( 5 . 2 ) M(Q) lI<.pll2 min lIall 2 , 
aEre 

( 5 .3) M(Q) II(f 112 min lIall 2 

aEf'" 8 

hold. 

Let A<.p(K) be the subspace of A(K) which consists of the 

differentials a
h 

in A(K) satisfying the conditions 

a
h 

0 along Co U c 1 ' 

fy a
h 1 

and let A' (K' ) {a' = F(a
h

) , a h E A~ ( K) } . Further t\~(K) be the 
~ h 
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subspace of A(K) which consists of the differentials a
h 

in A(K) 

satisfying the conditions 

and let 

Let 

a
h 

J~ 
y 

o 

a = 1 
h 

along 

A+ I (K ') = { a h = F ( a h)' a h E 1\+ ( K) } . 

~~ and +h be the finite element approximations of and 

~ in the space A' (K I ) 

<f 
and A~' (K I ) respectively. Then by (ii) of 

Theorem 3.2 we have the estimates 

( 5 .4) 1I<f 112 ~ 1I<f' ,,2 
h + S(<fh) 

and 

(5.5) 1I~1I2 ~ II~' 11 2 
h + S (+h) . 

By (5.1)~(5.5) we have upper and lower bounds for the modulus M(Q): 

( 5 . 6 ) 1 
~ ~1 (Q) ~ ,,~' ,,2 S (<fh) . + 

II~' 112 S(~h) h 
+ 

h 

§ ~.~. Numerical example ~ (the case of Gaier's example [11]). 

Let ~ be the simply-connected domain on the z-plane defined by 

~ = {z I 0 < x < 1, 0 < y < I} 

{z 
1 1, 

1 
~ y < I}, -

2 ~ x < 
2 

and let Co and c
1 

be the boundary parts of 0 defined by 

{z 0 ~ x ~ 
1 o} u {z I 0, o ~ y ~ I} Co 2' y x = 

{z I o ~ x ~ 1 
= I} u 2' y 

and 
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respecti vely. where z = x + iy. Let Q be the quadrilateral \\"i th 

the two opposite sides and c
1 

(cf. Fig. 12). We aim to obtain 

i r-----__ ... 1 + i 
"2 

o -
1 
"2 

1 

Fig. 12 Numerical example 3 (the example of Gaier) 

good upper and lower approximate values of the modulus of Q. 

We construct a triangulation of the closed region IT as in 

Fig. 13 The closed regions G2 and G3 are mapped onto the 

* * regions G2 and G3 respectively by the local parameters ~ 

a jz - 1/2 and s = CfJ (z) = b O/Z - (1 + i)/2 
3 (a = 1 and 

b e- ni / 6 ) respectively, where a and b are so determined 

that Id ~ /dzl = 1 on Iz - 1/21 1/4 an d I z - (1 + i) /2 I = 

1/./27 respectively. We construct ordinary triangulations 

and * and G
3 

as in Fig. J3 respectively. 

K3 we denote the image triangulations of and 
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1 
2" + 1 

~2 (z) 

- 64 -

= ~3(z) = b o/z - (1+1)/2 

1 

= a jz - 1/2 

Fig. 13 Triangulation of 

example 3 



ma ppings - 1 
CfJ 2 and -1 

CfJ 3 respectively. The triangulat i on K1 

of the region G
1 

= r2 - (G
2 U G

3
) in Fig. 13 is so constructed 

tha t each 2 - simpl e x s of K1 is natural or minor according as 

I s I n IK2 + K3 1 ¢ or I s I n IK2 + K3 1 ~ ¢, where if some 

intersection is a point then it is interpreted to be vacuous, 

and the local parameter CfJ
1

(z) of K1 is the identity mapping 

<P 1 (z) = z. 

Let <J; and ~ be the differentials on the present r2 defined 

§ 5.2, and let <J;' 
h and (f' 

h 
be the finite element approximations 

of <J; and (f respectively in the classes /\' (K' ) {a' = F (a
h

) , <J; h 

a
h 

E /\~ (K) } and /\ ' (K' ) = {a' = F(a
h

) , a
h 

E /\(f (K) } respectively, (f h 

in 

where K' is the naturalized triangulation associated to the present 

K. To attain our aim it is sufficient to make numerical calculations 

of <J;' 
h 

method) . 

and ~h (cf. Mizumoto and Hara [17], [18] for the calculation 

Table 4 shows the exact value of the modulus M(Q) (see Gaier 

[11] for the calculation method), Gaier's computation results 

and the values of our finite element approximations . Furthermore, 

computation results for the normal subdivision K1 (see Fig . 14) 

of the present K are shown. We note that E(~h) = E(~h) 0 

in the present example. It can be said that the both of 

upper and lower bounds of M(Q) by our method are much closer 

to the exact value than those by Gaier . 
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+ i 

~2 (z) 
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= ~3(z) = b o/z - (1+i)/2 

1 

= a ./z - 1/2 

Fig. 14 Normal subdivision 

of example 3 



Table 4 

Exact value 

Gaier's 

computation 

results 

( Ga i e r [ 11 ] ) 

our 

computa­

tion 

results 

Modulus M(Q) of example 3 

(the example of Gaier [11]) 

Upper 

bound 

Lower 

bound 

Upper 

bound 

Lower 

bound 

M(Q) = II<-PU 2 = 1.279262 

Upper bound = 1.49435 (0.21509) 

Lower bound = 1.09543 (-0.18383) 

Upper bound = 1.32659 (0.04733) 

Lower bound = 1.23368 (-0.04558) 

Original triangulation (h = 2- 4) 

II <-Ph II 2 + E ( <-Ph ) 

= 1.28396 + 0 
= 1 . 28396 (0.00470) 

1 

lI<f>h"2 + S(<f>h) 

1 
= 

0.783~99 + 0 

= 1.27616 (-0.00310) 

Normal subdivision (h = 2- 5) 

11th 112 + S (<Ph) 

= 1.28046 + 0 
= 1.28046 (0.00120) 

1 

U<f>h"
2 

+ S(~h) 
1 

= 0.782185 + 0 

= 1.27847 (-0.00079) 

lit' - q;, II 
h 

= 1.28545 x 10- 2 

/'. 

II~' - ~' II h 

-3 = 7.25518 x 10 

II<P' - q;' II 
h 

= 3.89364 x 10- 3 

'" 
II~' - ~' II h 

= 2 . 18573 x 10- 3 

): Deviation from exact value. 
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§ 5.4 . . umerical example 4 (the case of a Riemann surface). Let 

{z 1 Izl < m} - {z 1 0 ~ x < tn, Y o} and Co be the upper 

boundary part of Dl lying on {z 1 ~ x < ro y = o}. where z = 

x + iy. Le t D 2 = {z Izl < I} - {z 1 0 ~ x < 1, y O} and le t 

c 1 be the boundary part of D2 defined by c
1 {z 1 z 1 = 1, 

y ~ O}. Let ~ be the simply-connected covering surface obtained 

by connecting Dl and D2 crosswise along the segment {z 1 0 ~ x 

< 1, y = O} (cf. Fig. 15). Let Q be the quadrilateral with the 

00900000000090 

XXXXXXXXXXXXXX 
-1 

o 1 

Fig. 15 Numerical example 4 (the case of a Riemann surface) 

opposite sides Co and c 1 · By symmetricity of Q we immediately see 

that M(Q) = 1. We aim to obtain good upper and lower approximate 

values of 1(Q). The present example is one which exhibits remarkable 

validity of our method. ~amely, it is shown that an unbounded 

covering surface over the z-plane with many inner and corner 

singularities of high order, and with a curvilinear boundary is dealt 
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with by our local treatment method without use of any global 

conformal mapping. 

We construct a triangulation of the bordered region ~ as in 

Figs. 16 and 17. In Fig. 16, the closed regions G
1 

u G2 u . , , u G
5

, 

* * * are mapped onto the regions G
1 

u G2 
u ' , . u G_. 

;) 

respectively by the mappjngs S CPl(z) = (1/4) . 

log z, s = (,0 6 ( z) = 1 I zan d s = cP 9 ( z) = . ./z res pee t i vel y . Fur the r , 

the regions and are mapped onto the regions 

** G** ** G4 , 5 and G7 respectively by the mappings Z = ~3(s) = vI, 
.J (}-) -ni/6 3/ }-
~4 ~ e 'J ~ - ni/2, 

~( 4 0 cP 1 ( z), cP 5 ( z) = t/-( 5 0 cP 1 ( z ) 

that 1 ::11 = 1 on I z I 

on Is ;il 
1 1::5 1 --

./27 

on Re S 
1 log 4, 1::7 1 4 

z = ~-(t) = e- ni/4
'jt - 3ni/4 and Z = 0--

and CP7(z) = ~7°CP6(z), We note 

1 
4' 

1 

= 1 

I:~ 31 = 1 on I s I 

Is _ 3~il 1 on = 4' 

I s I 
1 and on - 4 

1 

j27 
1:~41 
-1 

Id(\D~~\D1 ) 1 

1::9 1 = 1 011 

I z I 1 
4' We construct ordinary triangulations 

* and K9 
** ** ** and * G
4 

, G- , G
7 G

9 as in Fig. 17 
;) 

of 

respectively. By K
3

, K
4

, K
5

, K7 and K9 we denote the image 

** ** ** K** and * by the K3 ' K4 , K_ , K9 mappings 
;) 7 

-1 

Z 

1 

1 

triangulations of 

-1 -1 -1 -1 
~3 ' CP4 ' CP5 ' ~7 and CP9 respectively, and the local parameters 

and K9 are Z = CP3(z) , Z = CP4(z), z = cp-(z), 
;) 

of K3 , K4 , KS ' K7 

z = C{J7(z) and S = C{J9(z) respectively. The triangulations 

Kl and K2 of G
1 

and G
2 

respectively in Fig . 17 are so 

constructed that each 2-simplex s of K1 and K2 is natural or 

minor according as 
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KSI ~ ¢, where the local parameter of Kl + K2 is ~ = ~1(z). 

Also the triangulation K6 of G6 is so constructed that each 

2-simplex s of K6 is natural. minor or major according as 

the local parameter of K6 is s = ~6(z). Further. the triangu­

lation K8 of G8 is so constructed that each 2-simplex s of 

K8 is natural, minor or major according as lsi n IKI + K2 + Kgl 

¢, lsi n IKgl ~ ¢ or lsi n IKI + 1\21 ~ ¢, \vhere the local 

parameter of K8 is the identity mapping (,08(z) - z. 

Let ~ and ~ be the differentials on the present 0 defined 

§ 5.2, and let ~' 
h and ~' h be the finite element approximations 

of ~ and ~ respectively in the classes 1\' (K' ) 
~ 

and 1\ '(K ' ) 
~ 

respectively, where K' is the naturalized triangulation 

associated to the present K. To attain our aim it is sufficient 

to make numerical calculations of ~' 
h 

and 

~ow the differential ~ = du is obtained by the following 

procedure. Let 6. be the rectangular domain 

6. = {W o < Re W < 1, 0 < 1m W < I}, 

and let and Y
1 

be the boundary parts of 6. defined by 

Yo = {W I 0 ~ 1m W ~ 1, Re W = O} 

and 

Y
1 

= {W I 0 ~ 1m W ~ 1, Re \\ I}. 

The conformal map W = f(p) such that 0 is conformally mapped 

onto so that are mapped onto and 

respectively, is constructed by the composition of the following 

mappings, and then u = Re f(p): 

( i) w = jz; 
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( i i ) S (w - 1//3
, 

w + 1 ' 

Z - 21 23 - 22 S - sl s3 - s2 
( iii ) 

Z - 22 23 Z s s2 s3 - sl 
, 

- -
1 

where sl 0, s2 -1, s3 1, 21 = 1, 22 -1 and 23 11k 

with 11k 3 + 2/2; 

( i v) W 1 
(J: 

d2 (K iK I )) , - + 
2K 

Z2) (1 1{2 Z2) ./( 1 - -

where K = 1((k) and K' = K' (l{) are the complete elliptic 

integrals. 

Table 5 shows the values of our finite element approximations . 

Furthermore, computation results for the normal subdivision K1 of 

the present K are shown. It can be said that the both of upper and 

lower bounds of M(Q) are close to the exact values. 
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Table 5 

Exact 
value 

Upper 

bound 

Lower 

bound 

Finite 

element 

approxi-

mations Upper 

bound 

Lower 

bound 

Modulus M(Q) of example 4 
(the case of a Riemann surface) 

1( Q) = II <f; 112 = 1.0 

Original triangulation (h 

lit' 112 
h 

+ s(<fh ) 

= 1.00484 + 0.103287 x 10- 2 

= 1.00587 (0.00587) 

1 

IlqJ' 112 
h 

+ S(qJh) 

1 = 
1.00484 + 0.103287 x 10- 2 

= 0.994164 (-0.005836) 

= 0.141421) 

1I<f' - ~' II 
h 

= 1.88104 

/'. 

11+' - ~' II h 

= 1.88102 

Normal subdivision (h = 0.0707107) 

1I<f' 112 S(<f;h) 1I<f ' ~' II + -
h h 

= 1.00128 + 0.255952 x 10- 3 = 5.84884 

= 1.00154 (0.00154) 

1 
A 

II~' 112 + S(~h) II~' - ~' II h h 

1 
5.85420 = = 

1.00128 + 0.255957 x 10- 3 

= 0.998466 (-0.001534) 

x 10 - 2 

x 10- 2 

x 10- 3 

x 10- 3 

): Deviation from exact value. 
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§ ~.~. Numerical example 5 (the case of an unbounded domain; c f . 

example 1). Let 0 = {z I y> O}, and let Co and c 1 b e th e 

boundary parts of 0 defined by Co = {z I -3 ~ x ~ -1, y = O} a nd 

c
1 = {z I 1 ~ x ~ 3, y = O} respectively, where z = x + iy. Let 

Q be the quadrilateral with the t'vvo opposite sides Co and c
1 

(cf. Fig. 18). We obtain good upper and lower approximate values 

of the modulus of Q . See example 1 for the details. Table 6 shows 

Q 

/W//: -3?//7 /7 /77 ~ -·1 7/// /// //// ffi i ~ /// /7/7/// /); 3 7////7 

Fig . 18 Num e r i cal e x ampl e 5 (the case of an unboun ded domain ) 

the exact value of the modulus ~( Q ) which can be calculated 

by making use of a complete elliptic integral, and the values of 

our finite element approximations . 
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Table 6 Modulus M(Q) of example 0 

(the case of an unbounded domain) 

Exact iYI ( Q) = "<-P ,,2 = 0.781701 
value 

Original triangulation (h = 0.213758) 

Upper II <-P' II 2 + S (<-Ph) 1I<f ' - ~' II 
h h 

bound = 0.782184 + 0.429347 x 10- 3 = 3.76256 x 10- 3 

= 0.782613 (0.000912) 

1 /". 

II~' 112 S (Zf' ) II~' - ~' II Lower + h 
h h 

bound 1 6.14254 10- 3 = = x 
1.280878 + 0.150405 x 10- 0 

Finite = 0.780714 (-0.000987) 

element -

approxi- Normal subdivision (h = 0.1068(9) 

rnations Upper II <-P' 112 S(<fh) II <-P ' <1>' II + -
h h 

bound = 0.781968 + 0.107413 x 10- 3 = 1.12050 x 10- 3 

= 0.782075 (0.000374) 

1 

II~' 112 
,A 

Lower + S(~h) II~' - ~' II h h 

bound 
1 

1.83821 10- 3 = = x 
1.279506 + 0.381486 x 10- 6 

= 0.781551 (-0.000150) 

): Deviation from exact value. 
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§ ~.~. Numerical example 6 (the case of a curvilinear domain; cf. 

example 2) . Let 

( 2 2 ) 
0 x L 1, \Z + < y > o} , 16 15 

and let Co and c 1 
be the boundary parts of 0 defined by 

( 

I 
2 2 

{z I 3 ~ ~ 4, o} u x L- 1. ;;: o > Co x y \2 + y 
16 15 

and 

c
1 

= {z I -1 ~ x ~ 1, y = o} 

respectively, where z = x + iy. Let Q be the quadrilateral 

with the opposite sides and c
1 

(cf. Fig. 19). 

iJlS 

Fig. 19 Numerical example 6 (the case of a curvilinear domain: 
quadrilateral Q) 

Further, let I and 
, 

Co c
1 

be the boundary parts of 0 defined 

I {z I 1 ~ x ~ 3, Y = o} Co = 

and 

{z I 
2 2 

I {z I -4 ~ ~ -I, o} u x L 1, ~ 0 c 1 = x Y = + = y 
16 15 

. 1 h . Let Q' respectIve y, were z = x + lY· be the quadrilateraJ 
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by 



with the opposite sides and 

-4 -1 1 

c' 
1 

c' o 

(cf. Fig. 20). 

3 4 

Fig. 20 Numerical example 6 (the case of a curvilinear domain: 
quadrilateral Q') 

We obtain good upper and lower approximate values of the modulus 

of Q and Q'. See example 2 for the details. Tables 7 and 8 

s h 0 \V the e x act val u e s 0 f the mod 11 1 u s ~'1( Q ) and f\1( Q') res p e c t i vel y 

(see example 2 for the calculation method) and the values of 

our finite element approximations. 
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Table 7 Modulus M(Q) of example 6 
(the case of a curvilinear domain) 

Exact M(Q) = 1I<f.> 112 = 1.539330 
value 

Original triangulation (h = 0.138840) 

Cpper 1I<f.>' 112 + s(<f.>h) II <f' - $' II 
h h 

bound 1.540588 0.572262 10- 4 1.15335 -2 
= + x = x 10 

= 1.540645 (0.00132) 

1 
" 

Lower II~' 112 + S(~h) 1I:f ' - ~' II 
h h 

bound 1 3.74131 10- 3 = = x 
0.649700 + 0.225117 x 10- 3 

Finite = 1.538639 (-0.00069) 

element 
Normal subdivision (h = 0.069420) approxi-

mations Upper II<J;' 112 s(<J;h) II<J;' $' II + -
h h 

bound = 1.539652 + 0.142916 x 10- 4 
= 5.89447 x 10- 3 

= 1.539666 (0.00034) 

1 
"-

Lower 11+' 112 + S(~h) 11+' - ~' II h h 

bound 
1 

1.09209 10- 3 = = x 
0.649652 + 0.558093 x 10- 4 

= 1.539153 (-0.00018) 

): Deviation from exact value. 
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Table 8 

Exact 
va lue 

Finite 

element 

approxi-

mations 

Upper 

bound 

Lower 

bound 

Upper 

bound 

Lower 

bound 

Modulus M(Q') of example 6 
(the case of a curvilinear domain) 

i\1(Q') = lIf.fll2 = 1.839350 

Original triangulation (h = 0.138840) 

II<.J;' 112 + s(<.J;h) II<.J;' - ~' II h h 

= 1.841976 + 0.351532 x 10- 3 
= 7.65797 x 10- 3 

= 1.842328 (0 . 00298) 

1 
/' 

II~' 112 + E(~h) II~' - ~' II 
h h 

1 5.22574 10- 3 
= = x 

0.544588 + 0.145580 x 10- 3 

= 1.835760 (-0.00359) 

Kormal subdivision (h = 0.069420) 

II<.J;' ,,2 E(~h) II~' $' II + -
h h 

= 1.840016 + 0.875764 x 10- 4 
= 2.28613 x 10- 3 

= 1.840104 (0.00075) 

1 
." 

II~' ,,2 + E(~h) "~' - ~' " h h 

1 
1.73332 10- 3 = = x 

0.543904 + 0.361871 x 10- 4 

= 1.838437 (-0.00091) 

): Deviation from exact value. 
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