PH．D．THESIS

```
博 士 論 文
```

```
THE FINNITE ELEMENT METHOD
        ON A RI EMANN S URFAC E
```

 リーマン面 上 - の 有 限 要 素 法
 1989
 平成元年
 HE I H A C H I R O H A R A
 原 平 八 郎

The Finite Element Method on a Riemann Surface

by

Heihachiro HARA

Thesis presented in fulfillment of the requirements for the degree of Doctor of Philosophy of

Hiroshima University
1989

Acknowledgements

I would like to express my gratitude to Professor Hisao Mizumoto, Hiroshima University, for his continued guidance and invaluable advice during the period of carrying out this research. He oriented firstly my interest to numerical analysis in my undergraduate study at Okayama University.

I would also like to express my gratitude to Professor 0. C. Zienkiewicz and Professor Peter Bettess (currently the University of Newcastle upon Tyne) for their kind guidances during my study in the Master of Science course of the University of Wales, Swansea. They gave me the best education to assist the essential understanding of finite element method in engineering science.

Furthermore I would like to express my special gratitude to Professor Emeritus Tadahiko Kawai, the University of Tokyo, for his kind encouragement of my study in computational mechanics.

I am grateful to Dr. T. Watanabe, Dr. N. Tanaka, Dr. Y.
Nagashima and Dr. T. Ohi who were heads of Tamano Laboratory, Mitsui E \& S Co. Ltd. and gave me the opportunities of study in comfort. Special thanks should go to Dr. T. Iwaki, Dr. M. Kishi and Mr. A. Urushihara who have given me the fresh stimulations through their ways of lives as researchers in a private company.

Finally I thank my wife Tomoko, and sons Soichiro and Mikijiro for their help of giving me enough time at home to prepare this thesis.

Contents

Introduction 1
Chapter 1. Triangulation 6
\S 1.1. Collection Φ of local parameters 6
\S 1.2. Triangulation K associated to $Ф$ 7
\S 1.3. Normal subdivision of triangulation K 10
§ 1.4. Naturalized triangulation 11
$\S 1.5$. Parametrization of lunar domains 13
\S 1.6. Area of lune 14
Chapter 2. Spaces of differentials 16
$\S 2.1$. Subspace Λ of Γ_{c} 16
$\S 2.2 . \operatorname{Space} \quad \Lambda^{\prime}$ 17
$\S 2.3$. Finite element interpolations 19
$\S 2.4$. Harmonic differentials on a lune 19
$\S 2.5$. Difference of norms of σ_{h} and σ_{h}^{\prime} 20
Chapter 3. Finite element approximations 24
§ 3.1. Formulation of problems 24
$\S 3.2$. Finite element approximation ψ_{h} in Λ 26
§ 3.3. Finite element approximation $\quad \omega_{h}^{\prime}$ in Λ^{\prime} 28
§ 3.4. Lemma of Bramble and Zlámal 29
$\S 3.5$. Pointwise estimate 29
$\S 3.6$. Smoothness of ω on $\bar{\Omega}$ 31
$\S 3.7$. Approximation by ψ_{h} 33
$\S 3.8$. Approximation by ω_{h}^{\prime} 36
§ 3.9. Estimate of $\left\|\omega_{h}^{\prime}-\hat{\omega}^{\prime}\right\|$ 39

Chapter 4. Determination of the periodicity moduli of Riemann surfaces 41
§ 4.1. Periodicity moduli of Riemann surfaces 41
§ 4.2. Calculation of periodicity moduli 42
§ 4.3. Numerical example 1
(the case of a closed Riemann surface) 43
§ 4.4. Numerical example 2
(the case of a compact bordered Riemann surface) 51
Chapter 5. Determination of the modulus of quadrilaterals 60
§ 5.1. Quadrilateral on a Riemann surface 60
§ 5.2. Formulation of problems 60
§ 5.3. Numerical example 3
(the case of Gaier's example) 62
§ 5.4. Numerical example 4
(the case of a Riemann surface) 68
§ 5.5. Numerical example 5
(the case of an unbounded domain) 75
§ 5.6. Numerical example 6
(the case of a curvilinear domain) 77
References 81

In the present thesis we aim to establish a method of finite element approximations on a Riemann surface. Our method matches the abstract definition of Riemann surfaces, and also offer a new technique of high practical use in numerical calculation not only for the case of Riemann surfaces but also for the case of plane domains. It is characteristic of our method that we adopt ordinary triangular meshes and linear elements on a subregion of every fixed parametric disk, and thus our approximating differentials express singular property exactly near singularities. Hence the approximations of high precision of differentials are obtained. It should be noted that we do not adopt any so-called refined or curvilinear mesh near singularities.

Let Ω be a closed Riemann surface or a subdomain of a Riemann surface W whose closure $\bar{\Omega}$ is a compact bordered subregion of W. We choose a fixed finite collection $\Phi=\left\{z=\varphi_{j}(p), p \in U_{j} ; j=\right.$ $1, \cdots, m\}$ of local parameters $z=\varphi_{j}(p)$ and parametric disks U_{j} so that $\bar{\Omega} \subset \cup_{j=1}^{m} U_{j}$. Chapter 1 is devoted to construction of a triangulation K of $\bar{\Omega}$ with width h associated to $\Phi(c f . \S 1.2)$, a normal subdivision of $K(c f . \S 1.3)$, and a naturalized triangulation K^{\prime} associated to $K(c f . \S 1.4)$. The triangulation K of $\bar{\Omega}$ is constructed as the sum of subtriangulations $K_{j}(j=1, \cdots$, m) in such a way that $\left|K_{j}\right| \subset U_{j}$, each 2-simplex s of K belongs to one and only one K_{j}, each $s \in K_{j}$ is natural (see § 1.2) at most except for the case when it has a common side with another $s^{\prime} \in K_{k}$ $(k \neq j)$, and the diameter of $\varphi_{j}(s)$ is at most h for each $s \in K_{j}$ $(j=1, \cdots, m)$ Let $K_{j}^{\prime}(j=1, \cdots, m)$ be triangulations consisting
of all 2 -simplices of K_{j} which are not minor or major, and all naturalized simplices of $K_{j}(\operatorname{see} \S 1.4)$. Then the triangulation K^{\prime} is defined as the sum of $K_{j}^{\prime}(j=1, \cdots, m)$.

In Chapter 2 , we introduce and investigate two spaces $\Lambda=\Lambda(K)$ and $\Lambda^{\prime}=\Lambda^{\prime}\left(K^{\prime}\right)$ of differentials: the comparable space $\Lambda=\Lambda(K)$ (with ω) and the computable space $\Lambda^{\prime}=\Lambda^{\prime}\left(K^{\prime}\right)$. The space Λ consists of locally exact differentials σ_{h} such that for each 2-simplex $s \in K_{j}(j=1, \cdots, m)$ the coefficients of σ_{h} are constant on $\varphi_{j}(s)$ except that σ_{h} is modified on all lunes of minor or major simplices (see § 1.4 and $\S 2.1$). To each $\sigma_{h} \in \Lambda$, we associate a differential $\sigma_{h}^{\prime}=F\left(\sigma_{h}\right)$ on K^{\prime} whose coefficients are constant on $\varphi_{j}(s)$ for each 2 -simplex $s \in K_{j}^{\prime}(j=1, \cdots, m)$ and which is equal to σ_{h} on $\bar{\Omega}$ except for all lunes of $K(c f . \S 2.2)$. The space Λ^{\prime} consists of all $\sigma_{h}^{\prime}=F\left(\sigma_{h}\right) \quad\left(\sigma_{h} \in \Lambda\right)$. We shall investigate estimates of differences of Dirichlet norms $\left\|\sigma_{h}\right\|_{\Omega}^{2}$ and $\left\|\sigma_{\mathrm{h}}^{\prime}\right\|_{\mathrm{K}^{\prime}}^{2} \quad($ see Lemma 2.2).

Let Θ be a given closed differential on Ω with finite norm, and let Γ_{Θ} be a set of all closed differentials which have finite norms and satisfy same period conditions and boundary behaviors as θ.

Then there exists a unique harmonic differential ω which satisfies the minimal property (see § 3.1):

$$
\|\omega\|=\min _{\sigma \in \Gamma_{\Theta}}\|\sigma\|
$$

The finite element approximations ψ_{h} and ω_{h}^{\prime} of ω are defined in the spaces Λ and Λ^{\prime} respectively (cf. § 3.2 and $\S 3.3$ resp.). The differential ω_{h}^{\prime} can be numerically calculated. Chapter 3 is devoted to error estimates of ψ_{h} and ω_{h} for ω, where $\omega_{h}=F^{-1}\left(\omega_{h}^{\prime}\right)$. We
shall make use of Bramble and Zlámal's lemma (see Lemma 3.5). In Theorems 3.1 and 3.2 , we obtain error estimates:

$$
\left\|\psi_{h}-\omega\right\|^{2} \leqq \mathrm{Ch}^{2} \quad \text { and } \quad\left\|\omega_{h}-\omega\right\|^{2} \leqq \mathrm{C}^{\prime} \mathrm{h}^{2},
$$

where C and C^{\prime} are constants which depend only on the differential ω and the smallest value of interior angles of triangles $\varphi_{j}(s)$ for all $s \in K_{j}^{\prime}(j=1, \cdots, m)$. Further, in Theorem 3.2 , we obtain an estimate for $\|\omega\|^{2}$:

$$
\|\omega\|^{2} \leqq\left\|\omega_{\mathrm{h}}^{\prime}\right\|^{2}+\varepsilon\left(\omega_{\mathrm{h}}^{\prime}\right)
$$

in a special case (see § 3.2), where $\varepsilon\left(\omega_{h}^{\prime}\right)$ is a quantity of $O\left(h^{2}\right)$ which can be numerically calculated.

In Chapter 4 we apply our results to numerical calculation of periodicity moduli of closed and compact bordered Riemann surfaces, and we shall show that calculation results for some concrete Riemann surfaces of genus one are very good. Let $\{A, B\}$ be a canonical homology basis of $\bar{\Omega}$ such that $A \times B=1$. Then there exists a unique system of harmonic differentials $\{\phi, \rho, \chi, \tau\}$ on Ω satisfying some period and boundary conditions (see (4.1) ~ (4.4)). The periodicity moduli p_{1} and p_{2} of Ω with respect to A and B respectively are determined by

$$
p_{1} \equiv \int_{A} * \phi=\|\phi\|^{2}=\frac{1}{\|\tau\|^{2}} \quad \text { and } \quad p_{2} \equiv \int_{B} * \rho=\|\rho\|^{2}=\frac{1}{\|x\|^{2}}
$$

With respect to the problems of this type, there have been some investigations by means of finite-difference method (Gaier [11],[12], Mizumoto [14],[15],[16], Opfer [21],[22]).

Finally, in Chapter 5 we apply our results to numerical calculation of the modulus of quadrilaterals. Let Ω be a simply-connected
subdomain of a Riemann surface whose closure $\bar{\Omega}$ is a compact bordered subregion. We assume that the boundary $\partial \Omega$ of Ω is a piecewise analytic curve. We assign four points p_{1}, p_{2}, p_{3} and p_{4} on $\partial \Omega$ (in positive orientation w.r.t. Ω), and the two opposite arcs c_{0} (from p_{1} to p_{2}) and c_{1} (from p_{3} to p_{4}). Then we say that a quadrilateral Q with opposite sides c_{0} and c_{1} is given.

We can conformally map the domain Ω onto a rectangular domain $R=\{W \mid 0<\operatorname{Re} w<1,0<\operatorname{Im} w<M\}$ by a function $w=f(p)$ so that p_{1}, p_{2}, p_{3} and p_{4} are mapped to $i M, 0,1$ and $1+i M$ respectively. Let θ be the differential in $\Gamma_{c}(\bar{\Omega})$ satisfying $\theta=0$ along $c_{0} \cup c_{1}$ and $\int_{\gamma} \theta=1$ where γ is a path from a point on c_{0} to a point on c_{1}. Then the modulus $M(Q)=M$ of the quadrilateral Q is uniquely determined by Q, and is given by

$$
M(Q)=\min _{\sigma \in \Gamma_{\Theta}}\|\sigma\|^{2} .
$$

Next we assign the two opposite $\operatorname{arcs} \tilde{c}_{0}$ (from p_{2} to p_{3}) and \tilde{c}_{1} (from p_{4} to p_{1}) on $\partial \Omega$. Then a quadrilateral \widetilde{Q} with the opposite sides \tilde{c}_{0} and \tilde{c}_{1} is defined. We can easily see that $M(Q)$ $=1 / \mathrm{M}(\widetilde{\mathrm{Q}})$. By making use of this relation Gaier [11] presented a method to obtain upper and lower bounds for the modulus $M(Q)$ in the case of some restricted domain Ω (e.g. a lattice domain, etc.) by the finite difference approximation which originates from Opfer [21],
[22]. We shall present a method to obtain good upper and lower bounds for $M(Q)$ by our finite element approximation even in the case of a domain Ω with curvilinear boundary arcs, and with inner and corner singularities of high order. It should be noted that the
approximating differentials satisfy the boundary conditions exactly in all cases of Chapters 4 and 5 .

Our treatment at critical points of a Riemann surface is closely related to that at boundary singularities on a plane (cf. Akin [2], Babuska [3], Babuška and Rosenzweig [4], Babuška, Szabo and Katz [5], Barnhill and Whiteman [6], Blackburn [7], Craig, Zhu and Zienkiewicz [10], Opfer and Puri [23], Rivara [24], Schatz and Wahlbin [25], [26], Thatcher [29], Tsamasphyros [30], Weisel [31], Whiteman and Akin [32], and Yserentant [33]).

Chapter 1. Triangulation.

§ 1.1. Collection Φ of local parameters. Let Ω be a closed Riemann surface or a subdomain of a Riemann surface W whose closure $\bar{\Omega}$ is a compact bordered subregion of W. In the latter case, we assume that the boundary $\partial \Omega$ consists of a finite number of analytic arcs meeting at vertices $p_{k}^{\prime}(k=1, \cdots, \imath)$, and there exist parametric disks $\mathrm{V}_{\mathrm{k}}\left(\mathrm{k}=1, \cdots, t^{\prime}\right)$ with the centers $\mathrm{p}_{\mathrm{k}}^{\prime}$ and local parameters $z=\psi_{k}(p)$ by which $V_{k} \cap \bar{\Omega}$ are mapped onto sectors $\left\{|z| \leqq r_{k}\right\} \cap\left\{0 \leqq \arg z \leqq \beta_{k}\right\} \quad\left(0<\beta_{k} \leqq 2 \pi, \beta_{k} \neq \pi\right)$. For conformity, if Ω is a closed Riemann surface, then we interpret that $\Omega=W$.

Let $\left\{C_{1}, C_{2}, C_{3}, C_{4}\right\}$ be a partition to four parts of the boundary $\partial \Omega$ such that each $C_{j}(j=1, \cdots, 4)$ is a sum of boundary components of $\partial \Omega$ and C_{4} consists at most one boundary component. We assign $2 n$ points $p_{1}, \cdots, p_{2 n}(n \geq 1)$ on C_{4} (in the positive orientation with respect to Ω).

By $\Phi=\left\{z=\varphi_{j}(p), U_{j} ; j=1, \cdots, m\right\}$ we denote a finite collection of local parameters $z=\varphi_{j}(p)(j=1, \cdots, m)$ and parametric disks $U_{j}(j=1, \cdots, m)$ on W which satisfies the following conditions (i)~(iv):
(i) By the mapping $z=\varphi_{j}(p)(j=1, \cdots, m), U_{j}$ is mapped onto a disk $|z|<\rho_{j}$.
(ii) $\bar{\Omega}$ is covered by $\left\{U_{j}\right\}_{j=1}^{m}$.
(iii) If $U_{j} \cap U_{k} \neq \phi$, then there exists a constant $L(>1)$ such that for the mapping $\zeta=f(z) \equiv \varphi_{k} \circ \varphi_{j}^{-1}(z), \quad 1 / L<\left|f^{\prime}(z)\right|<L$ on $\varphi_{j}\left(U_{j} \cap U_{k}\right)$.

Let $p_{k}(k=2 n+1, \cdots, \nu)$ be the all vertices of $\partial \Omega$ which
are defined as points of $\left\{\mathrm{p}_{\mathrm{k}}^{\prime}\right\}_{\mathrm{k}=1}^{\ell}-\left\{\mathrm{p}_{\mathrm{k}}\right\}_{\mathrm{k}=1}^{2 \mathrm{n}}$.
(iv) Each $\mathrm{U}_{\mathrm{j}}(\mathrm{j}=1, \cdots, \mathrm{~m})$ contains at most one $\mathrm{p}_{\mathrm{k}}(\mathrm{k}=$ $1, \cdots, \nu)$ and if $p_{k} \in U_{j}$ then $\varphi_{j}\left(p_{k}\right)=0$.
(v) If $U_{j} \cap \partial \Omega \neq \phi$ and U_{j} does not contain any $p_{k}(k=1$, $\cdots, \nu)$, then $\varphi_{j}\left(U_{j} \cap \Omega\right)$ is a half disk $\left\{|z|<\rho_{j}\right\} \cap\{\operatorname{Im} z>0\}$. If U_{j} contains some $p_{k}(k=1, \cdots, \nu)$, then $\varphi_{j}\left(U_{j} \cap \Omega\right)$ is a sector $\left\{|z|<\rho_{j}\right\} \cap\left\{0<\arg z<\alpha_{j}\right\} \quad\left(0<\alpha_{j} \leqq 2 \pi\right)$.

In the latter case of (v) and the case of $p_{k} \neq p_{1}, \cdots, p_{2 n}$, if $p_{k} \in C_{1}$, or $p_{k} \notin C_{1}$ and $\alpha_{j}>\pi / 2$, then by the mapping $\xi=$ $\left(\varphi_{j}(p)\right)^{\pi / \alpha_{j}}, \quad U_{j} \cap \Omega \quad$ is mapped onto a half disk $\left\{|\xi|<\rho_{j}^{\pi / \alpha_{j}} \cap\right.$ $\{\operatorname{Im} \xi>0\}$. In this case we define anew $z=\varphi_{j}(p)$ and ρ_{j} by $\xi=$ $\left(\varphi_{j}(p)\right)^{\pi / \alpha_{j}}$ and $\rho_{j}{ }^{\pi / \alpha_{j}}$ respectively. Further, in the case where U_{j} contains some $\mathrm{p}_{\mathrm{k}}(\mathrm{k}=1, \cdots, 2 \mathrm{n})$, then by the mapping $\xi=$ $\left(\varphi_{j}(p)\right)^{\pi / 2 \alpha_{j}}, \quad U_{j} \cap \Omega$ is mapped onto a sector $\left\{|\xi|<\rho_{j}^{\pi / 2 \alpha_{j}} \cap\right.$ $\{0<\arg \zeta<\pi / 2\}$. In this case we define anew $z=\varphi_{j}(p)$ and ρ_{j} by $\xi=\left(\varphi_{j}(p)\right)^{\pi / 2 \alpha_{j}}$ and $\rho^{\pi / 2 \alpha_{j}}$ respectively. Then, in the case that U_{j} contains some $p_{k}(k=1, \cdots, \nu)$ the local parameter $z=$ $\varphi_{j}(p)$ is no longer conformal at the center of U_{j} except for the case when U_{j} contains some $p_{k}(k=1, \cdots, 2 n)$ and $\alpha_{j}=\pi / 2$.
$\S \underline{1} \cdot \underline{2}$ Triangulation K associated to Φ. For the collection Φ of local parameters and parametric disks defined in § 1.1, and for a sufficiently small positive number h, we construct a triangulation $K=K^{h}$ of $\bar{\Omega}$ which satisfies the following conditions (i) ~(v). This is called a triangulation of $\bar{\Omega}$ with width h associated to \varnothing.
(i) The points p_{1}, \cdots, p_{v} are carriers of some 0-simplices
of K .
(ii) K is the sum of subtriangulations K_{1}, \cdots, K_{m} of K such that each 2 -simplex of K belongs to one and only one K_{j} $(j=1, \cdots, m)$, and the carrier $|s|$ of each 2-simplex s of K_{j} is contained in U_{j}.

If a 1 -simplex $e \in K_{j}$ does not belong to another $K_{k}(k \neq j)$, or a 1-simplex e belongs to $K_{j} \cap K_{k}(j \neq k)$ and the mapping $\varphi_{k} \circ \varphi_{j}^{-1}$ is an affine transformation, then e is said to be linear. If each edge of a 2 -simplex $s \in K_{j}$ is linear and $\varphi_{j}(s)$ is an ordinary triangle, then s is called a natural simplex.
(iii) Each 2-simplex $s \in K_{j}$ which has not a common edge with any 2-simplex of another $K_{k}(k \neq j)$, is a natural simplex.

A 2-simplex of K_{k} which has a common edge with a 2-simplex $s \in K_{j}(j \neq k)$, is said to be an adjoint (simplex) of s and is denoted by s^{\prime}.
(iv) For each pair of a 2 -simplex $s \in K_{j}$ and its adjoint $s^{\prime} \in K_{k}$ with a common edge e, either one of the following three cases (a), (b), (c) occurs.
(a) Both s and s^{\prime} are natural simplices.
(b) $\varphi_{j}(s)$ is a curvilinear triangle such that $\varphi_{j}(e)$ is a strictly concave arc w.r.t. $\varphi_{\mathrm{j}}(\mathrm{s}), \varphi_{\mathrm{k}}\left(\mathrm{s}^{\prime}\right)$ is an ordinary triangle, and all edges of s and s^{\prime} except for e are linear (cf. Fig.1).

Fig. 1 Minor simplex s and its adjoint s^{\prime}

Then s is called a minor simplex. The case where s ' is a minor simplex and s is its adjoint may also occur.
(c) $\varphi_{j}(s)$ is a curvilinear triangle such that $\varphi_{j}(e)$ is a strictly convex arc w.r.t. $\varphi_{j}(s), \varphi_{k}\left(s^{\prime}\right)$ is an ordinary triangle, and all edges of s and s^{\prime} except for e are linear (cf. Fig.2).

$$
\text { Fig. } 2 \text { Major simplex } s \text { and its adjoint } s^{\prime}
$$

Then s is called a major simplex. The case where s^{\prime} is a major simplex and s is its adjoint may also occur.

If s is a minor or major simplex of K_{j}, then it is assumed that $\left|s^{\prime}\right| \subset U_{j}$ for its adjoint s^{\prime}.
(v) For each 2 -simplex $s \in K_{j}(j=1, \cdots, m), d\left(\varphi_{j}(s)\right) \leqq h$, where throughout the present paper we denote the diameter of a region G by $d(G)$.

Next, we assume that for the fixed ϕ the class of the triangulations $K=K^{h}$ satisfies the following conditions (i^{\prime}) and (ii') :
(i^{\prime}) For each $j=1, \cdots, m$ the union of carriers of all minor and major simplices of K_{j}, and all their adjoints is contained in a closed subset R_{j} of $U_{j} \cap \bar{\Omega}$ which is independent of the individual triangulation K.
(ii') The number N of minor and major simplices of K satisfies the inequality:

$$
\begin{equation*}
N \leqq M \cdot \frac{1}{h} \tag{1.1}
\end{equation*}
$$

where M is a constant which is independent of the individual triangulation K.
§ $\underline{1} \cdot \underline{3}$. Normal subdivision of triangulation K. For a triangulation $K=K^{h}$ of $\bar{\Omega}$ with width h associated to $Ф$ we can construct a subdivision $K^{1}=K^{1, h / 2}$, called the normal subdivision of $K=K^{h}$ by the following procedure:
(i) K^{1} is the sum of the subtriangulations $K_{1}^{1}, \cdots, K_{m}^{1}$ which are the subdivisions of K_{1}, \cdots, K_{m} respectively which are defined in the following (ii), (iii).
(ii) If $s \in K_{j}$ is a 2-simplex which is not minor or major, then s is subdivided to four 2 -simplices s_{1}, s_{2}, s_{3} and s_{4} of K_{j}^{1} so that $\varphi_{j}\left(s_{1}\right), \varphi_{j}\left(s_{2}\right), \varphi_{j}\left(s_{3}\right)$ and $\varphi_{j}\left(s_{4}\right)$ are mutually congruent ordinary triangles as in Fig. 3 .

Fig. 3 Normal subdivision of 2 -simplex which is not minor or major
(iii) Let $s \in K_{j}$ and $s^{\prime} \in K_{k}$ be a minor (or major) simplex and its adjoint, and let e_{1}, e_{2} and e_{3} be edges of s such that e_{1} is the common edge of s and s^{\prime}. We subdivide the edges e_{1}, e_{2} and e_{3} to two edges e_{11} and e_{12}, e_{21} and e_{22}, and e_{31} and e_{32} respectively so that $\varphi_{k}\left(e_{11}\right)$ and $\varphi_{k}\left(e_{12}\right)$. $\varphi_{j}\left(e_{21}\right)$ and $\varphi_{j}\left(e_{22}\right)$, and $\varphi_{j}\left(e_{31}\right)$ and $\varphi_{j}\left(e_{32}\right)$ have the same length respectively. Then we subdivide the simplex s to two minor (or major resp.) simplices s_{1} and s_{2} of K_{j}^{1} and, two natural simplices s_{3} and s_{4} of K_{j}^{1} so that $e_{11}, e_{12}, e_{21}, e_{22}, e_{31}$ and e_{32} are edges of s_{1}, s_{2} and s_{3} (cf. Fig.4). Here we note that such a subdivision is always possible if h is sufficiently small.

$$
\bar{a}=\varphi_{j}(a) \quad(a: \text { simplex })
$$

Fig. 4 Normal subdivision of minor and major simplices
We can easily see that the normal subdivision $K^{1}=\sum_{j=1}^{m} K_{j}^{1}$ is a triangulation of $\bar{\Omega}$ with width $h / 2+O\left(h^{2}\right)$ associated to $\Phi(c f$. (1.10)) .
\S 1. $\underline{4}$. Naturalized triangulation. For each minor (or major) simplex $s \in K_{j}$ we define the naturalized simplex $\hbar s$ of s as the

2-simplex such that $|s| \subset|h s|\left(|h s| \subset|s|\right.$ resp.) and $\varphi_{j}(\hbar s)$ is the ordinary triangle which has two common sides with $\varphi_{j}(s)$. Further we define a 2 -simplex $b \ell=b \ell(s)(\nVdash=\neq\{(s)$ resp.) with two edges whose carrier is the closed region $\overline{|4 s|-|s|}(\overline{|s|-|E s|}$ resp.). $\quad b \ell(s)(\nVdash(s)$ resp.) is called the deficient (excessive resp.) lune of s.

Each triple of a minor (or major) simplex $s \in K_{j}$, its adjoint $s^{\prime} \in K_{k}$ and its deficient lune $b \ell$ (excessive lune \# ℓ resp.) is denoted by ($\left.s, s^{\prime}, b \ell\right)\left(\left(s, s^{\prime}, \not \subset\right)\right.$ resp. $)$, and is called a triple for $\underline{\text { a minor (major }}$ resp.) simplex s or for $\underline{\text { a deficient }}$ (excessive resp.) lune $b \ell(\not \subset \ell$ resp.) (cf. Fig.5), where it is always assumed that $|b i| \subset\left|s^{\prime}\right|$ for each ($\left.s, s^{\prime}, b i\right)$.

Fig. 5 Triple for a minor simplex ($s, s^{\prime}, b \ell$) and triple for a major simplex ($\left.s, s^{\prime}, \not \vDash \ell\right)$

For simplicity of notation, we also denote $b \ell=b \ell(s)$ or $\sharp \ell=\sharp \ell(s)$ by $\ell=\ell(s)$. If a minor or major simplex s is in K_{j}, then we say that $i=\ell(s)$ is a lune of K_{j} and write $\quad i \in K_{j}$.

Now we shall define the naturalized triangulation K^{\prime} associated to K.

First, $K_{j}^{\prime}(j=1, \cdots, m)$ are defined as triangulations such
that the collection of all 2-simplices of K_{j}^{\prime} consists of all 2-simplices of K_{j} which are not minor or major, and of all naturalized simplices of minor and major ones of K_{j}. Then the triangulation K^{\prime} is defined as the sum of $K_{j}^{\prime}(j=1, \cdots, m)$. We should note that K^{\prime} is no longer a triangulation of $\bar{\Omega}$, and also is not an ordinary triangulation.
§ 1. 5. Parametrization of lunar domains. Let (s, s', ℓ) be an arbitrary triple for a deficient or excessive lune ℓ, and let e_{1} and e_{2} be two edges of ℓ such that $\left|e_{1}\right| \subset|\partial s|$. Further, let (1.2) $\quad z^{\prime}=(1-t) z_{1}+t z_{2} \quad(0 \leqq t \leqq 1)$
and
(1.3) $\quad \xi^{\prime \prime}=(1-t) \xi_{1}+t \xi_{2} \quad(0 \leqq t \leqq 1)$
be parameter representations of the oriented segments $\varphi_{j}\left(-e_{2}\right)$ and $\varphi_{k}\left(e_{1}\right)$ respectively. The representation (1.3) induces a parameter representation of the curve $\varphi_{j}\left(e_{1}\right)$:
(1.4) $\quad z^{\prime \prime}=g\left((1-t) \zeta_{1}+t \xi_{2}\right) \quad(0 \leqq t \leqq 1)$,
where $\mathrm{z}=\mathrm{g}(\xi) \equiv \varphi_{\mathrm{j}} \circ \varphi_{\mathrm{k}}^{-1}(\xi)$. By (1.2) and (1.4) we obtain a parameter representation of the lunar domain $\varphi_{j}(\ell)$:
(1.5)

$$
\begin{aligned}
& z= z(t, \tau) \equiv(1-\tau) z^{\prime}+\tau z^{\prime \prime} \\
&=(1-\tau)\left((1-t) z_{1}+t z_{2}\right)+\tau g\left((1-t) \zeta_{1}+t \zeta_{2}\right) \\
&(0 \leqq t \leqq 1,0 \leqq \tau \leqq 1) .
\end{aligned}
$$

§ 1. $\underline{6}$. Area of lune.

LEMMA 1.1. Let ($\left.\mathrm{s}, \mathrm{s}^{\prime}, \ell\right)$ be a triple for an arbitrary deficient or excessive lune $\boldsymbol{\ell}$. Then, the estimate

$$
\begin{equation*}
A\left(\varphi_{j}(\ell)\right) \leqq \frac{h_{1}^{3}}{8}\left(\left|\frac{g^{\prime \prime}\left(\xi_{1}\right)}{g^{\prime}\left(\zeta_{1}\right)^{2}}\right|+O\left(h_{1}\right)\right) \tag{1.6}
\end{equation*}
$$

holds, where throughout the present paper we denote the area of a region G by $A(G), \quad z=g(\zeta) \equiv \varphi_{j} \circ \varphi_{k}^{-1}(\zeta), \quad h_{1}=d\left(\varphi_{j}(\ell)\right)$ and ξ_{1} is one of the vertices of the lunar domain $\varphi_{k}(\ell)$.

PROOF. Here we shall preserve the notations in § 1.5. By Taylor's expansion we have
(1.7) $\quad z^{\prime \prime}-z_{1}=g^{\prime}\left(\zeta_{1}\right)\left(\zeta_{2}-\zeta_{1}\right) t+\frac{1}{2} g^{\prime \prime}\left(\zeta_{1}\right)\left(\zeta_{2}-\zeta_{1}\right)^{2} t^{2}+\cdots$ for the point $z^{\prime \prime}$ of (1.4) on $\varphi_{j}\left(e_{1}\right)$, and

$$
\begin{align*}
z^{\prime}-z_{1} & =t\left(z_{2}-z_{1}\right) \tag{1.8}\\
& =g^{\prime}\left(\xi_{1}\right)\left(\xi_{2}-\xi_{1}\right) t+\frac{1}{2} g^{\prime \prime}\left(\xi_{1}\right)\left(\xi_{2}-\xi_{1}\right)^{2} t+\cdots
\end{align*}
$$

for the point z^{\prime} of (1.2) on $\varphi_{j}\left(-e_{2}\right)$, where we assume that the triangulation K is so chosen that $\varphi_{k}\left(e_{1}\right)$ is contained in a disk V centered at ξ_{1} such that $\varphi_{k}^{-1}(V) \subset U_{j} \cap U_{k}$. By (1.T) and (1.8) we find that the equality
(1.9) $z^{\prime \prime}-z^{\prime}=\left(\xi_{2}-\zeta_{1}\right)^{2} \cdot \frac{t(t-1)}{2} \cdot g^{\prime \prime}\left(\xi_{1}\right)+0\left(\left(\xi_{2}-\xi_{1}\right)^{3}\right)$
holds for the point z^{\prime} of (1.2) on $\varphi_{j}\left(-e_{2}\right)$ and the point $z^{\prime \prime}$ of (1.4) on $\varphi_{j}\left(e_{1}\right)$ with common t.

Since $\left|\xi_{2}-\xi_{1}\right| \leqq h_{1}\left(1 /\left|g^{\prime}\left(\xi_{1}\right)\right|+O\left(h_{1}\right)\right)$, the equality (1.9) implies
(1.10) $\left|z^{\prime \prime}-z^{\prime}\right| \leqq \frac{h_{1}^{2}}{8}\left(\left|\frac{g^{\prime \prime}\left(\xi_{1}\right)}{g^{\prime}\left(\xi_{1}\right)^{2}}\right|+o\left(h_{1}\right)\right)$.

Therefore we obtain the estimates

$$
\begin{aligned}
A\left(\varphi_{j}(\ell)\right) & \leqq\left|z_{2}-z_{1}\right| \cdot \max _{0 \leqq t \leqq 1}\left|z^{\prime}-z^{\prime \prime}\right| \\
& \leqq \frac{h_{1}^{3}}{8}\left(\left|\frac{g^{\prime \prime}\left(\xi_{1}\right)}{g^{\prime}\left(\xi_{1}\right)^{2}}\right|+o\left(h_{1}\right)\right) .
\end{aligned}
$$

Chapter 2. Spaces of differentials.

$\S \underline{2} \cdot \underline{1}$ Subspace Λ of Γ_{c}. Let $\Gamma_{c}^{0}=\Gamma_{c}^{0}(\bar{\Omega})$ be the set of all locally exact differentials σ in the class C^{0} on $\bar{\Omega}$ with the finite Dirichlet norm

$$
\|\sigma\|^{2}=\|\sigma\|_{\Omega}^{2}=\int_{\Omega} \sigma * \sigma<\infty,
$$

where by $* \sigma$ we denote the conjugate differential of σ. Let $\Gamma_{\mathrm{c}}=\Gamma_{\mathrm{c}}(\bar{\Omega})$ be the completion of Γ_{c}^{0}. We should note that in
Chapter V of Ahlfors and Sario [1], Γ_{c} is defined as the completion of $\Gamma_{c}^{1} \equiv \Gamma_{c}^{0} \cap \mathrm{C}^{1}$.

We define a subspace $\Lambda=\Lambda(K)$ of Γ_{C} as the space of
differentials σ_{h} which satisfy the following conditions (i) (iv):
(i) $\sigma_{h} \in \Gamma_{c}$.
(ii) If $s \in K_{j}(j=1, \cdots, m)$ is a natural simplex, then

$$
\sigma_{h}=a_{0} d x+b_{0} d y \quad \text { on } \quad \varphi_{j}(s) \quad(z=x+i y),
$$

where a_{0} and b_{0} are constants.
(iii) Let (s, $\left.s^{\prime}, b \ell\right)$ be a triple for a minor simplex s, and let e_{1} and e_{2} be two edges of b such that $-e_{1} \subset \partial s$. Then

$$
\begin{array}{ll}
\sigma_{h}=a_{0} d x+b_{0} d y & \text { on } \varphi_{j}(s), \\
\sigma_{h}=\alpha_{0} d \xi+\beta_{0} d \eta & \text { on } \varphi_{k}\left(s^{\prime}\right)-\varphi_{k}(b \ell),
\end{array}
$$

and σ_{h} is a harmonic differential in $b i$ which satisfies the boundary conditions

$$
\sigma_{h}=a_{0} d x+b_{0} d y \quad \text { along } \quad \varphi_{j}\left(e_{1}\right)
$$

and

$$
\sigma_{h}=\left(\alpha_{0} \frac{\partial \xi}{\partial x}+\beta_{0} \frac{\partial \eta}{\partial x}\right) d x+\left(\alpha_{0} \frac{\partial \xi}{\partial y}+\beta_{0} \frac{\partial \eta}{\partial y}\right) d y \text { along } \varphi_{j}\left(e_{2}\right)
$$

where a_{0}, b_{0}, α_{0} and β_{0} are constants, and

$$
\xi=f(z) \equiv \varphi_{k} \circ \varphi_{j}^{-1}(z) \quad(z=x+i y, \xi=\xi+i \eta)
$$

(iv) Let ($s, s^{\prime}, \notin \ell$) be a triple for a major simplex s, and let e_{1} and e_{2} be two edges of \neq such that $e_{1} \subset \partial s$. Then

$$
\begin{array}{ll}
\sigma_{\mathrm{h}}=a_{0} \mathrm{dx}+\mathrm{b}_{0} \mathrm{dy} & \text { on } \varphi_{\mathrm{j}}(h \mathrm{~s}), \\
\sigma_{\mathrm{h}}=\alpha_{0} \mathrm{~d} \xi+\beta_{0} \mathrm{~d} \eta & \text { on } \varphi_{\mathrm{k}}\left(\mathrm{~s}^{\prime}\right),
\end{array}
$$

and σ_{h} is a harmonic differential in $\sharp i$ which satisfies the boundary conditions

$$
\sigma_{h}=a_{0} d x+b_{0} d y \quad \text { along } \varphi_{j}\left(e_{2}\right)
$$

and

$$
\sigma_{h}=\left(\alpha_{0} \frac{\partial \xi}{\partial x}+\beta_{0} \frac{\partial \eta}{\partial x}\right) d x+\left(\alpha_{0} \frac{\partial \xi}{\partial y}+\beta_{0} \frac{\partial \eta}{\partial y}\right) d y \text { along } \varphi_{j}\left(e_{1}\right)
$$

where $\mathrm{a}_{0}, \mathrm{~b}_{0}, \alpha_{0}$ and B_{0} are constants, and $\xi=\xi+i n$ is as in (iii).

We note that $\sigma_{h} \in \Lambda$ is generally discontinuous on each edge of 2 -simplices of K.
§ $\underline{2} \cdot \underline{2}$. Space Λ^{\prime}. Let K^{\prime} be the naturalized triangulation associated to K. For each differential $\sigma_{h} \in \Lambda$, we define the differential σ_{h}^{\prime} on K^{\prime} associated to σ_{h} as the differential σ_{h}^{\prime} which satisfies the following conditions (i) $\sim(i v):$
(i) For each 2 -simplex $s \in K_{j}^{\prime} \quad(j=1, \cdots, m)$

$$
\sigma_{h}^{\prime}=a_{0} d x+b_{0} d y \quad \text { on } \varphi_{j}(s)
$$

where a_{0} and b_{0} are constants.
(ii) If $s \in K$ is a natural simplex, then

$$
\sigma_{h}^{\prime}=\sigma_{h} \quad \text { on } \quad|s|
$$

(iii) If (s, s', bi) is a triple for a minor simplex s, then

$$
\sigma_{h}^{\prime}=\sigma_{h} \quad \text { on }|s| \cup\left|s^{\prime}\right|-|b \ell|
$$

(iv) If ($s, s^{\prime}, \not \vDash$) is a triple for a major simplex s, then

$$
\sigma_{\mathrm{h}}^{\prime}=\sigma_{\mathrm{h}} \quad \text { on }|h \mathrm{~s}| \cup\left|\mathrm{s}^{\prime}\right| .
$$

We should note that the differential σ_{h}^{\prime} is defined just twice on each deficient lune $b \ell$, while it is never defined on any excessive lune $\not \subset \ell$. In the former case, for each triple (s, s', bi) we shall denote the differential σ_{h}^{\prime} on $\hbar s \in K_{j}^{\prime}$ and $s^{\prime} \in K_{k}^{\prime}$ by $\sigma_{h, h s}^{\prime}$ and $\sigma_{h, s}^{\prime}$, respectively.

The space of all differentials σ_{h}^{\prime} associated to $\sigma_{h} \in \Lambda$ is denoted by $\Lambda^{\prime}=\Lambda^{\prime}\left(K^{\prime}\right)$. Let σ_{h}^{\prime} and χ_{h}^{\prime} be two differentials of Λ^{\prime}. Then the inner product $\left(\sigma_{h}^{\prime}, x_{h}^{\prime}\right)$ of σ_{h}^{\prime} and χ_{h}^{\prime} is defined by

$$
\begin{aligned}
\left(\sigma_{h}^{\prime}, x_{h}^{\prime}\right) & =\left(\sigma_{h}^{\prime}, x_{h}^{\prime}\right)_{K}^{\prime} \\
& =\sum_{\mathrm{s} \in \mathrm{~K}^{\prime}} \int_{|\mathrm{S}|} \sigma_{\mathrm{h}}^{\prime}{ }^{*} \chi_{\mathrm{h}}^{\prime},
\end{aligned}
$$

and the norm $\left\|\sigma_{h}^{\prime}\right\|$ of σ_{h}^{\prime} is defined by

$$
\left.\left\|\sigma_{h}^{\prime}\right\|=\left\|\sigma_{h}^{\prime}\right\|_{K^{\prime}}=\sqrt{\left(\sigma_{h}^{\prime}, \sigma_{h}^{\prime}\right)^{\prime}}{ }^{\prime} .1\right)
$$

We see that $\sigma_{h}^{\prime}=F\left(\sigma_{h}\right)$ defines a one-to-one mapping of Λ onto Λ^{\prime}.
$\S \underline{2} \cdot \underline{3}$. Finite element interpolations. Let σ be an element of Γ_{C}. We define the finite element interpolation $\hat{\sigma}$ of σ in the space Λ as the differential uniquely determined by the following conditions (i) and (ii):
(i) $\hat{\sigma} \in \Lambda$;
(ii) For each 1-simplex $e \in K$,

$$
\int_{e} \hat{\sigma}=\int_{e} \sigma
$$

$\S \underline{2} \cdot \underline{4}$ Harmonic differentials on a lune.
LEMMA 2.1. Let $\ell=\boldsymbol{\ell}(\mathrm{s})$ be a deficient or excessive lune of K_{j}, let e_{1} and e_{2} be two edges of ℓ, and let σ_{1} and σ_{2} be exact differentials in the class C^{0} on ℓ which satisfy the condition

$$
\int_{e_{1}} \sigma_{1}=-\int_{e_{2}} \sigma_{2}
$$

Further, let χ be the differential harmonic in i and continuous on ℓ which satisfies the boundary conditions

$$
x=\sigma_{i} \quad \text { along } e_{i}(i=1,2)
$$

1) We shall use the common notations (,) and \| \| for both inner products and both norms of differentials of the spaces Λ and Λ^{\prime}.

Then the inequalities

$$
\begin{align*}
\|x\|_{\ell}^{2} & \leqq \iint_{\varphi_{j}}(\ell) \max \left\{\left(\mathrm{a}_{1}^{2}+\mathrm{b}_{1}^{2}\right),\left(\mathrm{a}_{2}^{2}+\mathrm{b}_{2}^{2}\right)\right\} \mathrm{dxdy} \tag{2.1}\\
& \leqq\left\|\sigma_{1}\right\|_{\ell}^{2}+\left\|\sigma_{2}\right\|_{\ell}^{2}
\end{align*}
$$

hold, where

$$
\|x\|_{i}^{2}=\int|\ell| \quad x * x, \quad \text { etc. }
$$

and

$$
\sigma_{1}=a_{1} d x+b_{1} d y \text { and } \sigma_{2}=a_{2} d x+b_{2} d y \quad \text { on } \varphi_{j}(\ell)
$$

PROOF. By making use of the parameter representation (1.5) of the lunar domain $\varphi_{j}(\ell)$, we define a differential σ on ℓ by

$$
\begin{array}{r}
\sigma \circ \varphi_{j}^{-1}(z)=(1-\tau) \sigma_{1} \circ \varphi_{j}^{-1}(z)+\tau \sigma_{2} \circ \varphi_{j}^{-1}(z) \\
\left(z=z(t, \tau) \in \varphi_{j}(\ell)\right)
\end{array}
$$

We note that σ satisfies the same boundary conditions as χ on $\partial \ell$. Since x is harmonic in ℓ, the inequality
(2.2) $\quad\|x\|_{\ell}^{2} \leqq\|\sigma\|_{\ell}^{2}$
holds. Further, the inequalities

$$
\begin{align*}
\|\sigma\|_{\ell}^{2} & \leqq \iint_{\varphi_{j}(\imath)}\left((1-\tau) \sqrt{a_{1}^{2}+b_{1}^{2}}+\tau \sqrt{a_{2}^{2}+b_{2}^{2}}\right)^{2} d x d y \tag{2.3}\\
& \leqq \iint_{\varphi_{j}(\ell)^{\max }\left\{\left(a_{1}^{2}+b_{1}^{2}\right),\left(a_{2}^{2}+b_{2}^{2}\right)\right\} d x d y}
\end{align*}
$$

hold. The inequalities (2.2) and (2.3) imply the inequality (2.1).
$\S \underline{2} \cdot \underline{5}$ Difference of norms of σ_{h} and σ_{h}^{\prime}.
LEMMA 2.2. Let σ_{h} be an arbitrary differential of the space
Λ and let $\sigma_{h}^{\prime}=F\left(\sigma_{h}\right)$.
(i) The inequalities
(2.4)

$$
\begin{aligned}
\left\|\sigma_{h}\right\|^{2} & \leqq\left\|\sigma_{h}^{\prime}\right\|^{2}+\sum_{\sharp \ell \in \mathrm{K}}\left\|\sigma_{h}\right\|_{\sharp \ell}^{2} \\
& \leqq\left\|\sigma_{h}^{\prime}\right\|^{2}+\sum_{j=1}^{m} \sum_{\sharp \ell \in K_{j}} A\left(\varphi_{j}(\sharp \ell)\right) \cdot\left(\frac{1}{\lambda} \int e_{2} \sigma_{h}^{\prime}\right)^{2}(1+k h)
\end{aligned}
$$

hold, where e_{2} is the edge of $\not \approx \ell$ such that $\varphi_{j}\left(e_{2}\right)$ is a segment, λ is the length of $\varphi_{j}\left(e_{2}\right)$ and k is a constant which depends only on the transformations $f(z)=\varphi_{k} \circ \varphi_{j}^{-1}(z)$.
(ii)
(2.5)

$$
\begin{aligned}
&\left\|\sigma_{h}^{\prime}\right\|^{2} \leqq\left\|\sigma_{h}\right\|^{2}+\sum_{b \ell \in K}\left(\left\|\sigma_{h, h s}^{\prime}\right\|_{b \ell}^{2}+\left\|\sigma_{h, s}^{\prime},\right\|_{b \ell}^{2}\right) \\
&=\left\|\sigma_{h}\right\|^{2}+\sum_{j=1}^{m} \sum_{b i \in K}\left\{A\left(\varphi_{j}(b \ell)\right) \cdot\left(a_{0}^{2}+b_{0}^{2}\right)\right. \\
&\left.+A\left(\varphi_{k}(b \ell)\right) \cdot\left(\alpha_{0}^{2}+B_{0}^{2}\right)\right\},
\end{aligned}
$$

where for each triple ($s, s^{\prime}, b \ell$) the notations in (iii) of § 2.1 are preserved.

PROOF. (i) By Lemma 2.1 we see that for each triple (s, s^{\prime}, b ℓ)

$$
\begin{equation*}
\left\|\sigma_{h}\right\|_{b \ell}^{2} \leqq\left\|\sigma_{h, h s}^{\prime}\right\|_{b \ell}^{2}+\left\|\sigma_{h, s}^{\prime},\right\|_{b \ell}^{2} \tag{2.6}
\end{equation*}
$$

Hence the first inequality of (2.4) is obtained.
Let ($s, s^{\prime}, \sharp_{\ell}$) be a triple for an excessive lune \sharp_{i}. We preserve the notations in (iv) of § 2.1 . We shall prove the inequality
(2.7)

$$
\left\|\sigma_{h}\right\|_{\sharp \ell}^{2} \leqq A\left(\varphi_{j}(\nvdash \ell)\right) \cdot\left(\frac{1}{\lambda} \int_{e_{2}} \sigma_{h}^{\prime}\right)^{2} \cdot(1+k h),
$$

from which the second inequality of (2.4) follows.

By $\quad \gamma$ and δ we denote the arguments of the oriented segments $\varphi_{j}\left(-e_{2}\right)$ and $\varphi_{k}\left(e_{1}\right)$ respectively. By making use of the parameter representation (1.5) of the lunar domain $\varphi_{j}(\nVdash \ell)$, we define a
differential σ on \neq by
(2.8)

$$
\begin{aligned}
& \sigma=a d x+b d y \\
& \equiv(1-\tau)\left(a_{0} \cos \gamma+b_{0} \sin \gamma\right) \cdot((\cos \gamma) d x+(\sin \gamma) d y) \\
& \quad+\tau\left(\alpha_{0} \cos \delta+\beta_{0} \sin \delta\right) \cdot \\
& \cdot\left((\cos \delta)\left(\frac{\partial \xi}{\partial x} d x+\frac{\partial \xi}{\partial y} d y\right)+(\sin \delta)\left(\frac{\partial \eta}{\partial x} d x+\frac{\partial \eta}{\partial y} d y\right)\right) \\
& \quad\left(z=z(t, \tau) \in \varphi_{j}(\nmid \ell)\right) .
\end{aligned}
$$

We note that σ satisfies the same boundary conditions as σ_{h} on $\partial(\nVdash i)$. Hence
(2.9)

$$
\left\|\sigma_{h}\right\|_{\nVdash \ell}^{2} \leqq\|\sigma\|_{\nVdash \ell}^{2} \leqq A\left(\varphi_{j}(\nsucceq \ell)\right) \max _{\varphi_{j}(\nvdash \ell)}\left(a^{2}+b^{2}\right),
$$

since σ_{h} is harmonic in $\sharp \ell$.
From the equation (2.8) it follows that
(2.10)

$$
\begin{aligned}
& \max _{j}(\nvdash \ell) \\
&\left.\varphi^{2}+\mathrm{a}^{2}\right) \leqq \max \left\{\left(\mathrm{a}_{0} \cos \gamma+\mathrm{b}_{0} \sin \gamma\right)^{2},\right. \\
&\left.\left(\alpha_{0} \cos \delta+\beta_{0} \sin \delta\right)^{2} \max _{\varphi_{j}(\nvdash \ell)}\left|f^{\prime}(z)\right|^{2}\right\} .
\end{aligned}
$$

Further we note that
(2.11)

$$
a_{0} \cos \gamma+b_{0} \sin \gamma=\frac{1}{\lambda} \int_{-e_{2}} \sigma_{h}^{\prime}
$$

and
(2.12)

$$
\alpha_{0} \cos \delta+\beta_{0} \sin \delta=\frac{1}{\mu} \int_{\mathrm{e}_{1}} \sigma_{\mathrm{h}}^{\prime}=\frac{1}{\mu} \int_{-\mathrm{e}_{2}} \sigma_{\mathrm{h}}^{\prime},
$$

where
(2.13)

$$
\lambda=\int_{\varphi_{j}}\left(e_{2}\right)|d z| \quad \text { and } \quad \mu=\int_{\varphi_{j}}\left(e_{1}\right)\left|f^{\prime}(z) d z\right|
$$

By making use of the power series expansion of f^{\prime} around a vertex z_{1} of the lunar domain $\varphi_{j}(\nVdash \imath)$, we see that (2.14)

$$
\max _{\varphi_{j}(\sharp \ell)}\left|f^{\prime}(z)\right|^{2} \leqq\left|f^{\prime}\left(z_{1}\right)\right|^{2}\left(1+k_{1} h\right)
$$

and
(2.15)

$$
\mu \geqq\left(\left|f^{\prime}\left(z_{1}\right)\right|-k_{2} h\right) \int_{\varphi_{j}}\left(e_{2}\right)|d z|=\lambda\left(\left|f^{\prime}\left(z_{1}\right)\right|-k_{2} h\right)
$$ with constants $k_{1}, k_{2}>0$ depending only on f. Then the estimate (2.7) follows from (2.9)~(2.15).

(ii) The inequality (2.5) is obvious from the definition of σ_{h}^{\prime}.

Chapter 3. Finite element approximations.

§ $\underline{3} \cdot \underline{1}$. Formulation of problems. Let $\gamma_{k}^{2}(k=1, \cdots, k)$ be the boundary components of C_{2}. Let $\gamma_{k}^{4}(k=1, \cdots, 2 n)$ be the arcs on C_{4} from p_{k} to $p_{k+1}\left(k=1, \cdots, 2 n ; p_{2 n+1}=p_{1}\right)$ and let $C_{4}^{\prime}=\Sigma_{k=1}^{n} \gamma_{2 k-1}^{4}, \quad C_{4}^{\prime \prime}=\sum_{k=1}^{n} \gamma_{2 k}^{4}$, where $\left\{p_{k}\right\}_{k=1}^{2 n}$ are the assigned 2 n points on C_{4} defined in § 1.1.

Let Θ be a differential in Γ_{c} which satisfies the following conditions (i), (ii) and (iii):
(i) If $U_{j} \cap C_{1} \neq \phi$, then $\Theta \circ \varphi_{j}^{-1}$ is harmonic on a neighborhood of $\varphi_{j}\left(U_{j} \cap C_{1}\right)$;
(ii) $\quad \Theta=0$ along $C_{2} \cup C_{4}^{\prime}$;
(iii) Θ is exact on a neighborhood of each boundary component of C_{3}, where the conditions (i), (ii) and (iii) may be ignored if $\partial \Omega=\phi$.

By Γ_{Θ} we denote the subspace of Γ_{c} consisting of all differentials σ for which there exists a function v on $\bar{\Omega}$ such that

$$
\begin{array}{ll}
\mathrm{dv}=\Theta-\sigma & \text { on } \bar{\Omega}, \\
\mathrm{v}=0 & \text { on } \mathrm{C}_{1} \cup \mathrm{C}_{4}^{\prime}, \\
\mathrm{v}=\text { const. } & \text { on } \gamma_{\mathrm{k}}^{2}(\mathrm{k}=1, \cdots, k) .
\end{array}
$$

By ω we denote the harmonic differential in Γ_{θ} uniquely determined by the conditions
(3.1)

$$
\int_{\gamma_{\mathrm{k}}^{2}}{ }^{* \omega}=0 \quad(\mathrm{k}=1, \cdots, \mathrm{k})
$$

and
(3.2)

$$
* \omega=0 \quad \text { along } C_{3} \cup C_{4}^{\prime \prime}
$$

The differential ω can be constructed by the following procedure. Let χ be the harmonic component of Θ in the orthogonal decomposition of $\Gamma_{c}(c f$. Chapter V of Ahlfors and Sario [1]), and let u be the solution of the boundary value problem:
u is a harmonic function on Ω,

$$
\begin{array}{ll}
u=0 & \text { on } \mathrm{C}_{1} \cup \mathrm{C}_{4}^{\prime}, \\
\mathrm{u}=\text { const. } & \text { on } \gamma_{\mathrm{k}}^{2}, \\
\int_{\gamma_{\mathrm{k}}^{2}}{ }^{* d u}=\int_{\gamma_{\mathrm{k}}^{2}}^{* *} & (\mathrm{k}=1, \cdots, k)
\end{array}
$$

and

$$
* d u=* x \quad \text { along } \quad C_{3} \cup C_{4}^{\prime \prime}
$$

Then, $\omega=x-d u$. We note that the differential ω is harmonic on the closure $\bar{\Omega}$. ${ }^{1)}$

LEMMA 3.1. The harmonic differential ω satisfies the minimal property
(3.3) $\|\omega\|=\min _{\sigma \in \Gamma_{\Theta}}\|\sigma\|$.

In the equality (3.3), the minimum of the right hand side is attained if and only if $\sigma=\omega$.

PROOF. For each $\sigma \in \Gamma_{\Theta}$ there exists a function v such that
(3.4) $\left\{\begin{array}{l}d v=\sigma-\omega, \\ v=0\end{array} \quad\right.$ on $C_{1} \cup C_{4}^{\prime}$,

$$
\mathrm{v}=\text { const. } \quad \text { on } \quad \gamma_{\mathrm{k}}^{2}(\mathrm{k}=1, \cdots, \mathrm{k}) .
$$

From (3.1), (3.2) and (3.4) it follows that

1) It is sufficient for our purpose that ω is of the class C^{1} on the closure $\bar{\Omega}$ and hence we can weaken the assumption (i) for Θ.
(3.5)

$$
\begin{aligned}
& (\sigma-\omega, \omega)=\int_{\mathrm{K}} \partial \Omega \mathrm{~V}^{* \omega} \\
& \quad=\int_{C_{1}} \mathrm{~V} * \omega+\sum_{\gamma_{\mathrm{k}}^{2}} \int^{\mathrm{V} * \omega}+\int_{C_{3}} \mathrm{~V} * \omega+\int_{C_{4}^{\prime}} \mathrm{V}^{*} \omega+\int_{C_{4}^{\prime \prime}} \mathrm{V} * \omega=0
\end{aligned}
$$

where

$$
(\sigma, \quad \tau)=(\sigma, \quad \tau)_{\Omega}=\int_{\Omega} \sigma * \tau
$$

The equality (3.5) implies that

$$
\|\sigma\|^{2}=\|\omega\|^{2}+\|\sigma-\omega\|^{2} \geqq\|\omega\|^{2} .
$$

In the last inequality, the equality holds if and only if $\sigma=\omega$.
The unique harmonic differential ω in Γ_{Θ} is called the $\underline{\text { harmonic solution }} \underline{\underline{n}} \Gamma_{\Theta}$.

Our aim is to obtain finite element approximations of ω in the spaces Λ and Λ^{\prime}, and error estimates between them and ω.
§ $\underline{3} \cdot \underline{2}$. Finite element approximation $\psi_{h} \underline{i n} \Lambda$. Let $\hat{\theta}$ be the finite element interpolation of Θ in the space Λ. By Λ_{Θ} we denote the subspace of Λ consisting of all differentials $\sigma_{h} \in \Lambda$ for which there exists a function v on $\bar{\Omega}$ such that

$$
\begin{array}{ll}
\mathrm{d} v=\hat{\Theta}-\sigma_{\mathrm{h}}, \\
\mathrm{v}=0 & \text { on } \mathrm{C}_{1} \cup \mathrm{C}_{4}^{\prime}, \\
\mathrm{v}=\text { const. on } \gamma_{\mathrm{k}}^{2}(\mathrm{k}=1, \cdots, k)
\end{array}
$$

By ψ_{h} we denote the differential of Λ_{Θ} such that
(3.6)

$$
\left\|\psi_{h}\right\|=\min _{\sigma_{h} \in \Lambda_{\Theta}}\left\|\sigma_{h}\right\|
$$

We call ψ_{h} the finite element approximation of ω in the space Λ.

Next, we consider the special case where the differential θ satisfies the condition:

$$
\Theta=0 \quad \text { along } \quad C_{1}
$$

We denote such a differential Θ by Θ_{0}. Since $\Lambda_{\Theta_{0}} \subset \Gamma_{\Theta_{0}}$, we see that
(3.7)

$$
\|\omega\| \leqq\left\|\psi_{\mathrm{h}}\right\| .
$$

LEMMA 3.2. (i) In the case of general Θ, the equality
(3.8)

$$
\left\|\psi_{h}-\omega\right\|=\min _{\sigma_{h} \in \Lambda_{\Theta}}\left\|\sigma_{h}-\omega\right\|
$$

holds, where the minimum is attained if and only if $\sigma_{h}=\psi_{h}$.
(ii) In the case of $\theta=\Theta_{0}$, the equality
(3.9) $\left\|\psi_{h}-\omega\right\|^{2}=\left\|\psi_{h}\right\|^{2}-\|\omega\|^{2}$ holds.

PROOF. (i.) First, by a method similar to (3.5), it is shown that
$(3.10) \quad\left(\omega, \sigma_{h}-\psi_{h}\right)=0 \quad$ for each $\sigma_{h} \in \Lambda_{\Theta}$.
By (3.6), standard arguments imply that
(3.11) $\quad\left(\psi_{h}, \sigma_{h}-\psi_{h}\right)=0 \quad$ for each $\sigma_{h} \in \Lambda_{\Theta}$.

From (3.10) and (3.11), it follows that

$$
\left\|\omega-\sigma_{h}\right\|^{2}=\left\|\omega-\psi_{h}\right\|^{2}+\left\|\sigma_{h}-\psi_{h}\right\|^{2} \geqq\left\|\omega-\psi_{h}\right\|^{2}
$$

In the last inequality, the equality holds if and only if $\sigma_{h}=\psi_{h}$.
(ii) Since $\Lambda_{\Theta_{0}} \subset \Gamma_{\Theta_{0}}$, both ψ_{h} and ω are elements of $\Gamma_{\Theta_{0}}$. Hence, by (3.5) $\left(\omega, \psi_{\mathrm{h}}-\omega\right)=0$ and thus

$$
\left\|\psi_{h}-\omega\right\|^{2}=\left\|\psi_{h}\right\|^{2}-\|\omega\|^{2} .
$$

From (3.11) the following lemma immediately follows.
LEMMA 3.3. In the case of general 8 , the equality

$$
\begin{equation*}
\left\|\sigma_{h}-\psi_{h}\right\|^{2}=\left\|\sigma_{h}\right\|^{2}-\left\|\psi_{h}\right\|^{2} \tag{3.12}
\end{equation*}
$$

holds for each $\sigma_{h} \in \Lambda_{\Theta}$.
$\S \underline{3} \cdot \underline{3}$. Finite element approximation ω_{h}^{\prime} in Λ^{\prime}. Let $\Lambda_{\theta}^{\prime}=$ $\left\{\sigma_{h}^{\prime} \mid \sigma_{h}^{\prime}=F\left(\sigma_{h}\right), \quad \sigma_{h} \in \Lambda_{\Theta}\right\}$. By ω_{h}^{\prime} we denote the differential of $\Lambda_{\theta}^{\prime}$ such that
(3.13) $\quad\left\|\omega_{h}^{\prime}\right\|=\min _{\sigma_{h}^{\prime} \in \Lambda_{\theta}^{\prime}}\left\|\sigma_{h}^{\prime}\right\|$.

We call ω_{h}^{\prime} the finite element approximation of ω in the space Λ^{\prime}.

LEMMA 3.4. The equality
(3.14) $\left\|\sigma_{h}^{\prime}-\omega_{h}^{\prime}\right\|^{2}=\left\|\sigma_{h}^{\prime}\right\|^{2}-\left\|\omega_{h}^{\prime}\right\|^{2}$
holds for each $\sigma_{h}^{\prime} \in \Lambda_{\theta}^{\prime}$.
PROOF. By a method similar to the proof of (3.11), it is shown that the equality
(3.15) $\quad\left(\omega_{h}^{\prime}, \sigma_{h}^{\prime}-\omega_{h}^{\prime}\right)=0$
holds for each $\sigma_{h}^{\prime} \in \Lambda_{\Theta}^{\prime}$. This implies (3.14).
§ $\underline{3} \cdot \underline{4}$. Lemma of Bramble and Zlámal. The following lemma is due to J.H. Bramble and M. Zlámal (cf. [9]).

LEMMA 3.5. Let Δ be a closed triangle on the z-plane $(z=$ $x+i y)$ with $d(\Delta) \leqq h$, let v be a function of the class C^{2} defined on Δ such that $v=0$ at each vertex of Δ. Then, the inequality
(3.16) $\quad \iint_{\Delta}\left(\left(\frac{\partial v}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial y}\right)^{2}\right) d x d y$

$$
\leqq \frac{B}{\sin ^{2} \theta} h^{2} \iint_{\Delta}\left(\left(\frac{\partial^{2} v}{\partial x^{2}}\right)^{2}+2\left(\frac{\partial^{2} v}{\partial x \partial y}\right)^{2}+\left(\frac{\partial^{2} v}{\partial y^{2}}\right)^{2}\right) d x d y
$$

holds, where B is an absolute constant and θ is the smallest interior angle of the triangle Δ.

§ $\underline{3} \cdot \underline{5}$. Pointwise estimate.

LEMMA 3.6. Let Δ be a closed curvilinear triangle on the z-plane $(z=x+i y)$ with $d(\Delta) \leqq h$ which is the image of some 2 -simplex $s \in K_{j}(j=1, \cdots, m)$ by $z=\varphi_{j}(p)$, and let v be a function of the class C^{2} defined on Δ such that $v=0$ at each vertex of Δ. Then,

$$
\begin{aligned}
& \left|\frac{\partial v}{\partial x}\right|,\left|\frac{\partial v}{\partial y}\right| \\
& \leqq h \cdot \frac{4}{\sin \theta} \max _{z \in \Delta}\left(\left|\frac{\partial^{2} v}{\partial x^{2}}\right|+2\left|\frac{\partial^{2} v}{\partial x \partial y}\right|+\left|\frac{\partial^{2} v}{\partial y^{2}}\right|\right)(1+k h)
\end{aligned}
$$

on Δ, where θ is the smallest interior angle of the ordinary triangle which has common vertices with Δ, and k is a constant which depends only on $f(z)=\varphi_{k} \circ \varphi_{j}^{-1}(z)$.

PROOF. (Cf. Theorem 3.1 of Strang and Fix [27].) Let $z_{0}=$
$x_{0}+i y_{0}$ be a fixed point and $z=x+i y$ an arbitrary point in Δ, and let $k=x-x_{0}$ and $\varepsilon=y-y_{0}$. Here we choose the point z_{0} so that for each $z \in \Delta$ the segment between z_{0} and z is contained in Δ.

By Taylor's theorem we have that

$$
v(z)=P(z)+r(z),
$$

where
(3.17)

$$
\begin{aligned}
\mathrm{P}(\mathrm{z}) & =\mathrm{v}\left(\mathrm{z}_{0}\right)+\left(k \frac{\partial}{\partial x}+\ell \frac{\partial}{\partial y}\right) \mathrm{v}\left(z_{0}\right), \\
\text { (3.17) } \quad \mathrm{r}(\mathrm{z}) & =\frac{1}{2!}\left(k \frac{\partial}{\partial x}+\ell \frac{\partial}{\partial y}\right)^{2} v\left(z^{\prime}\right)
\end{aligned}
$$

with some point z^{\prime} on the segment between z_{0} and z. First, from (3.17) the estimate
(3.18) $|r(z)| \leqq \frac{h^{2}}{2} \max _{z \in \Delta}\left(\left|\frac{\partial^{2} v}{\partial x^{2}}\right|+2\left|\frac{\partial^{2} v}{\partial x \partial y}\right|+\left|\frac{\partial^{2} v}{\partial y^{2}}\right|\right) \quad\left(\begin{array}{lll}z & \in \Delta\end{array}\right)$
immediately follows. Let $z_{j}(j=1,2,3)$ be the vertices of Δ. Then, by the assumption of the lemma
(3.19) $V\left(z_{j}\right)=P\left(z_{j}\right)+r\left(z_{j}\right)=0 \quad(j=1,2,3)$.

Since $P(z)$ is a linear function of x and y, by (3.19) we have the expression
(3.20)

$$
P(z)=-r\left(z_{1}\right) \phi_{1}(z)-r\left(z_{2}\right) \phi_{2}(z)-r\left(z_{3}\right) \phi_{3}(z),
$$

where $\phi_{j}(j=1,2,3)$ are linear functions of x and y such that

$$
\phi_{j}\left(z_{k}\right)=\delta_{j k} \quad(j, k=1,2,3)
$$

with Kronecker's symbol $\delta_{j k}$. (3.18) and (3.20) imply the estimate
(3.21)

$$
\left|\frac{\partial P}{\partial x}\right| \leqq\left|r\left(z_{1}\right)\right|\left|\frac{\partial \phi_{1}}{\partial x}\right|+\left|r\left(z_{2}\right)\right|\left|\frac{\partial \phi_{2}}{\partial x}\right|+\left|r\left(z_{3}\right)\right|\left|\frac{\partial \phi_{3}}{\partial x}\right|
$$

$$
\leqq \frac{3}{2} h^{2} \max _{z \in \Delta}\left(\left|\frac{\partial^{2} v}{\partial x^{2}}\right|+2\left|\frac{\partial^{2} v}{\partial x \partial y}\right|+\left|\frac{\partial^{2} v}{\partial y^{2}}\right|\right) \cdot \max _{1 \leqq j \leqq 3}\left|\frac{\partial \phi}{\partial x}\right|
$$

Here we can easily verify that
(3.22) $\quad\left|\frac{\partial \phi}{\partial x}\right| \leqq \frac{1}{h_{1}} \cdot \frac{2}{\sin \theta}$
$(j=1,2,3)$,
where h_{1} is the diameter of the ordinary triangle which has common vertices with Δ. From (3.21) and (3.22) it follows that

$$
\begin{equation*}
\left|\frac{\partial P}{\partial x}\right| \leqq 3 h \cdot \frac{1}{\sin \theta} \max _{z \in \Delta}\left(\left|\frac{\partial^{2} v}{\partial x^{2}}\right|+2\left|\frac{\partial^{2} v}{\partial x \partial y}\right|+\left|\frac{\partial^{2} v}{\partial y^{2}}\right|\right)(1+k h) . \tag{3.23}
\end{equation*}
$$

By Taylor's theorem we have that

$$
\frac{\partial v(z)}{\partial x}=\frac{\partial v\left(z_{0}\right)}{\partial x}+\left(k \frac{\partial}{\partial x}+\ell \frac{\partial}{\partial y}\right) \frac{\partial}{\partial x} v\left(z^{\prime \prime}\right)
$$

with some point $z^{\prime \prime}$ on the segment between z_{0} and z. Since $\partial v\left(z_{0}\right) / \partial \mathrm{x}=\partial \mathrm{P}\left(\mathrm{z}_{0}\right) / \partial \mathrm{x}$ and

$$
\left|\left(k \frac{\partial}{\partial x}+\ell \frac{\partial}{\partial y}\right) \frac{\partial}{\partial x} v\left(z^{\prime \prime}\right)\right| \leq h \max _{z \in \Delta}\left(\left|\frac{\partial^{2} v}{\partial x^{2}}\right|+\left|\frac{\partial^{2} v}{\partial x \partial y}\right|\right)
$$

by (3.23) we obtain the estimate

$$
\left|\frac{\partial v(z)}{\partial x}\right| \leqq \frac{4 h}{\sin \theta} \max _{z \in \Delta}\left(\left|\frac{\partial^{2} v}{\partial x^{2}}\right|+2\left|\frac{\partial^{2} v}{\partial x \partial y}\right|+\left|\frac{\partial^{2} v}{\partial y^{2}}\right|\right)(1+k h) .
$$

Analogously the estimate for $\left|\frac{\partial v}{\partial y}\right|$ is obtained.
\S 3. $\underline{6}$. Smoothness of ω on $\bar{\Omega}$.
LEMMA 3.7. Let ω be the harmonic solution in Γ_{Θ}. Then $\omega \circ \varphi_{j}^{-1}$ $(j=1, \cdots, m)$ are of the class C^{1} on $\varphi_{j}\left(U_{j} \cap \bar{\Omega}\right)$ respectively.

PROOF. (i) The case where U_{j} contains some $p_{k}(k=1, \cdots$, in).

Let us assume that U_{j} contains p_{1}. The other cases are also similar. Then, $\varphi_{j}\left(p_{1}\right)=0, \quad \varphi_{j}\left(U_{j} \cap \bar{\Omega}\right)=\left\{|z|<\rho_{j}\right\} \cap$ $\{0 \leqq \arg \mathrm{z} \leqq \pi / 2\}$, and there exists a harmonic function u on $U_{j} \cap \bar{\Omega}$ such that $\omega=d u$,
(3.24) $\quad u \circ \varphi_{j}^{-1}=0$
on $\left\{\mathbf{z} \mid \operatorname{Im} z=0,0 \leqq \operatorname{Re} z \leqq \rho_{j}\right\}$
and
(3.25) $\quad \frac{\partial}{\partial n} u \circ \varphi_{j}^{-1}=0 \quad$ on $\left\{z \mid \operatorname{Re} z=0,0<\operatorname{Im} z \leqq \rho_{j}\right\}$,
where by $\partial / \partial n$ we denote the inner normal derivative. By (3.24) and (3.25) we see that $u \circ \varphi_{j}^{-1}$ can be harmonically continued to $\varphi_{j}\left(U_{j}\right)=$ $\left\{|z|<\rho_{j}\right\}$ and thus especially is of the class C^{2} on $\varphi_{j}\left(U_{j} \cap \bar{\Omega}\right)$.
(ii) The case where $\varphi_{j}\left(U_{j} \cap \bar{\Omega}\right)=\left\{|z|<\rho_{j}\right\} \cap\left\{0 \leqq \arg z \leqq \alpha_{j}\right\}$ and $\quad \alpha_{j} \leqq \pi / 2$.

There exists an analytic function f on $U_{j} \cap \bar{\Omega}$ such that $d(\operatorname{Re} f)=\omega$. Let 9 be the function defined on $D=\{\operatorname{Im} \xi>0\} \cap$ $\left\{|\xi|<\rho_{j}{ }^{\pi / \alpha_{j}}\right\}$ by $g(\xi) \equiv f \circ \varphi_{j}^{-1}\left(\xi^{\alpha_{j} / \pi}\right)$. Since $\operatorname{Re} g=$ cont. or $\operatorname{Im} g=$ const. on $\{\operatorname{Im} \zeta=0\} \cap\left\{|\zeta|<\rho_{j}^{\pi / \alpha_{j}}\right\}, \quad \rho \quad$ is analytic on the closure $\overline{\mathrm{D}}$. Then

$$
\frac{d f \circ \varphi_{j}^{-1}(z)}{d z}=\frac{d g}{d \xi}\left(z^{\pi / \alpha_{j}}\right) \cdot \frac{\pi}{\alpha_{j}} z^{\pi / \alpha_{j}-1}
$$

and

$$
\begin{aligned}
\frac{d^{2} f \circ \varphi_{j}^{-1}(z)}{d z^{2}}= & \frac{d^{2} g}{d \xi^{2}}\left(z^{\pi / \alpha_{j}}\right) \cdot\left(\frac{\pi}{\alpha_{j}}\right)^{2} z^{2\left(\pi / \alpha_{j}-1\right)} \\
& +\frac{d \xi}{d \xi}\left(z^{\pi / \alpha_{j}}\right) \cdot \frac{\pi}{\alpha_{j}}\left(\frac{\pi}{\alpha_{j}}-1\right) z^{\pi / \alpha_{j}-2}
\end{aligned}
$$

on $\varphi_{j}\left(U_{j} \cap \bar{\Omega}\right)$. Hence, $\alpha_{j} \leqq \pi / 2$ implies that $d^{2} f \circ \varphi_{j}^{-1}(z) / d z^{2}$
is continuous on $\varphi_{j}\left(U_{j} \cap \bar{\Omega}\right)$ and thus $u \circ \varphi_{j}^{-1}=\operatorname{Re} f \circ \varphi_{j}^{-1}$ is of the class C^{2} on $\varphi_{\mathrm{j}}\left(\mathrm{U}_{\mathrm{j}} \cap \bar{\Omega}\right)$.
(iii) The cases except (i) and (ii).

Since $u \circ \varphi_{j}^{-1}=$ const., $\partial u \circ \varphi_{j}^{-1} / \partial n=0$ or $u \circ \varphi_{j}^{-1}$ is harmonic on $\varphi_{j}\left(U_{j} \cap \partial \Omega\right)=\left\{|z|<\rho_{j}\right\} \cap\{\operatorname{Im} z=0\}$, or $\varphi_{j}\left(U_{j} \cap \partial \Omega\right)=\phi, \quad u \circ \varphi_{j}^{-1}$ is harmonic on $\varphi_{j}\left(U_{j} \cap \bar{\Omega}\right)$.

$\S \underline{3} \cdot \underline{7}$ Approximation by ψ_{h}.

THEOREM 3.1. Let ω be the harmonic solution in Γ_{θ} defined in $\S 3.1$ and let ψ_{h} be the finite element approximation of ω in the space Λ. Then,
(3.26) $\left\|\psi_{h}-\omega\right\|^{2}$

$$
\begin{aligned}
& \leqq \frac{h^{2}}{\sin ^{2} \theta}\left(B \sum_{j=1}^{m} \iint_{\varphi_{j}\left(K_{j}^{\prime}\right)}\left(\left(\frac{\partial a}{\partial x}\right)^{2}+\left(\frac{\partial a}{\partial y}\right)^{2}+\left(\frac{\partial b}{\partial x}\right)^{2}+\left(\frac{\partial b}{\partial y}\right)^{2}\right) d x d y\right. \\
& \left.+C h^{2} \sum_{j=1}^{m} \max _{\varphi_{j}}\left(R_{j}\right)\left(\left(\frac{\partial a}{\partial x}\right)^{2}+\left(\frac{\partial a}{\partial y}\right)^{2}+\left(\frac{\partial b}{\partial x}\right)^{2}+\left(\frac{\partial b}{\partial y}\right)^{2}\right)\right)
\end{aligned}
$$

where B and C are constants independent of the triangulation K and the differential θ, θ is the smallest value of interior angles of all triangles $\varphi_{j}^{\prime}(s)\left(s \in K_{j}^{\prime} ; j=1, \cdots, m\right)$,

$$
\omega=a d x+b d y \quad \text { on } \varphi_{j}\left(U_{j} \cap \bar{\Omega}\right)(j=1, \cdots, m),
$$

by $\varphi_{j}\left(K_{j}^{\prime}\right)$ we denote the image set by φ_{j} of the carrier of K_{j}^{\prime}, and $R_{j}(j=1, \cdots, m)$ are the closed subsets of $U_{j} \cap \bar{\Omega}$ defined in (i^{\prime}) of § 1.2 .

PROOF. First, by (i) of Lemma 3.2,
(3.27)

$$
\left\|\psi_{h}-\omega\right\| \leqq\|\hat{\omega}-\omega\| .
$$

Hence it is sufficient to estimate $\| \hat{\omega}$ - $\omega \|$.
We have

$$
\begin{equation*}
\|\hat{\omega}-\omega\|_{\Omega}^{2}=\sum_{j=1}^{m} \sum_{s \in K_{j}}\|\hat{\omega}-\omega\|_{s}^{2} . \tag{3.28}
\end{equation*}
$$

Here we note that $\omega \circ \varphi_{j}^{-1}(j=1, \cdots, m)$ is of the class C^{1} on $\varphi_{j}\left(U_{j} \cap \bar{\Omega}\right)$. Then, by Lemma 3.5,
(3.29) $\|\hat{\omega}-\omega\|_{S}^{2}$

$$
\leqq \frac{B}{\sin ^{2} \theta} h^{2} \iint_{\varphi_{j}(s)}\left(\left(\frac{\partial a}{\partial x}\right)^{2}+\left(\frac{\partial a}{\partial y}\right)^{2}+\left(\frac{\partial b}{\partial x}\right)^{2}+\left(\frac{\partial b}{\partial y}\right)^{2}\right) d x d y
$$

for each natural simplex s of K_{j}. For simplicity, we denote the right hand side of (3.29) by $I\left[\varphi_{j}(s)\right]$.

For a triple (s, s^{\prime}, ℓ) for a minor simplex s, we denote the differential $\hat{\omega}^{\prime}$ on $k s \in K_{j}^{\prime}$ and $s^{\prime} \in K_{k}^{\prime}$ by $\hat{\omega}_{h s}^{\prime}$ and $\hat{\omega}_{S^{\prime}}^{\prime}$, respectively. Then, by Lemma 2.1

$$
\begin{equation*}
\left\|\hat{\omega}^{-\omega}-\omega\right\|_{\ell}^{2} \leqq\left\|\hat{\omega}_{k S}^{\prime}-\omega\right\|_{\ell}^{2}+\left\|\hat{\omega}_{S}^{\prime},-\omega\right\|_{\ell}^{2} . \tag{3.30}
\end{equation*}
$$

This inequality and Lemma 3.5 imply that

$$
\begin{align*}
\|\hat{\omega}-\omega\|_{S+S}^{2} & \leqq\left\|\hat{\omega}_{\hbar S}^{\prime}-\omega\right\|_{\hbar S}^{2}+\left\|\hat{\omega}_{S}^{\prime}-\omega\right\|_{S^{\prime}}^{2} \tag{3.31}\\
& \leqq I\left[\varphi_{j}(\hbar s)\right]+I\left[\varphi_{k}\left(s^{\prime}\right)\right] .
\end{align*}
$$

Let ($\left.s, s^{\prime}, \ell\right)$ be a triple for a major simplex s. Then, by Lemma 3.5

$$
\begin{equation*}
\|\hat{\omega}-\omega\|_{S}^{2} \leqq I\left[\varphi_{j}(\text { hs })\right]+\|\hat{\omega}-\omega\|_{\ell}^{2} \tag{3.32}
\end{equation*}
$$

and
(3.33) $\|\hat{\omega}-\omega\|_{S^{\prime}}^{2} \leq I\left[\varphi_{k}\left(s^{\prime}\right)\right]$.

Let

$$
\begin{array}{ll}
\hat{\omega}=a_{0} d x+b_{0} d y & \text { on } \varphi_{j}(h s), \text { and } \\
\hat{\omega}=\alpha_{0} d \xi+B_{0} d \eta & \text { on } \varphi_{k}\left(s^{\prime}\right),
\end{array}
$$

where a_{0}, b_{0}, α_{0} and ${ }^{B}{ }_{0}$ are constants. Then we define differentials $\hat{\omega}_{S}$ and $\hat{\omega}_{S^{\prime}+\ell}$ on s and $s^{\prime}+\ell$ respectively by

$$
\begin{array}{ll}
\hat{\omega}_{s}=a_{0} d x+b_{0} d y & \text { on } \varphi_{j}(s), \text { and } \\
\hat{\omega}_{s^{\prime}+\ell}=\alpha_{0} d \xi+\beta_{0} d \eta & \text { on } \varphi_{k}\left(s^{\prime}+\ell\right)
\end{array}
$$

Then, by Lemma 2.1
(3.34) $\|\hat{\omega}-\omega\|_{\ell}^{2} \leqq\left\|\hat{\omega}_{s}-\omega\right\|_{\ell}^{2}+\left\|\hat{\omega}_{s^{\prime}+\ell}-\omega\right\|_{\ell}^{2}$.

Further, by Lemma 3.6
(3.35) $\left\|\hat{\omega}_{s}-\omega\right\|_{\ell}^{2}$

$$
\leqq A\left(\varphi_{j}(\ell)\right) \cdot \frac{32 h^{2}}{\sin ^{2} \theta} \cdot \max _{\varphi_{j}(s)}\left(\left|\frac{\partial a}{\partial x}\right|+\left|\frac{\partial a}{\partial y}\right|+\left|\frac{\partial b}{\partial x}\right|+\left|\frac{\partial b}{\partial y}\right|\right)^{2}(1+\kappa h)^{2}
$$

and
(3.36) $\quad\left\|\hat{\omega}_{s^{\prime}+\ell}-\omega\right\|_{\ell}^{2}$
$\leqq A\left(\varphi_{k}(\ell)\right) \cdot \frac{32 h^{2}}{\sin ^{2} \theta} \cdot \max _{k}\left(\mathrm{~s}^{\prime}+\ell\right)\left(\left|\frac{\partial \alpha}{\partial \xi}\right|+\left|\frac{\partial \alpha}{\partial \eta}\right|+\left|\frac{\partial \beta}{\partial \xi}\right|+\left|\frac{\partial \beta}{\partial \eta}\right|\right)^{2}(1+k h)^{2}$,
where $\omega=a d x+b d y$ on $\varphi_{j}(s)$ and $\omega=\alpha d \xi+\beta d n$ on $\varphi_{k}\left(s^{\prime}+\ell\right)$.

By (3.27)~(3.36), Lemma 1.1 and (1.1), the estimate (3.26) is obtained.

$\S \underline{3} \cdot \underline{8}$. Approximation by $\omega_{\mathrm{h}}^{\prime}$.

THEOREM 3.2. (i) Let ω be the harmonic solution in Γ_{θ} defined in § 3.1, let ω_{h}^{\prime} be the finite element approximation of ω in the space Λ^{\prime} and let $\omega_{h}=F^{-1}\left(\omega_{\mathrm{h}}^{\prime}\right)$. Then
(3.37) $\left\|\omega_{h}-\omega\right\|^{2}$

$$
\begin{aligned}
\leqq & \frac{h^{2}}{\sin ^{2} \theta}\left(A^{\prime} \sum_{j=1}^{m} \iint_{\varphi_{j}\left(K_{j}^{\prime}\right)}\left(\left(\frac{\partial a}{\partial x}\right)^{2}+\left(\frac{\partial a}{\partial y}\right)^{2}+\left(\frac{\partial b}{\partial x}\right)^{2}+\left(\frac{\partial b}{\partial y}\right)^{2}\right) d x d y\right. \\
& \left.+B^{\prime} h^{2} \sum_{j=1}^{m} \max _{j}\left(\left(\frac{\partial a}{\partial x}\right)^{2}+\left(\frac{\partial a}{\partial y}\right)^{2}+\left(\frac{\partial b}{\partial x}\right)^{2}+\left(\frac{\partial b}{\partial y}\right)^{2}\right)\right) \\
& +C^{\prime} h^{2} \sum_{j=1}^{m} \max _{j}\left(R_{j}\right)
\end{aligned}
$$

where A^{\prime}, B^{\prime} and C^{\prime} are constants independent of the triangulation K and the differential Θ, and other notations are the same as in Theorem 3.1.
(ii) Let θ_{0} be the differential defined in § 3.2, let ω be the harmonic solution in $\Gamma_{\theta_{0}}$ and let ω_{h}^{\prime} be the finite element approximation of ω in the space Λ^{\prime}. Then the estimate (3.38) $\|\omega\|^{2} \leq\left\|\omega_{h}^{\prime}\right\|^{2}+\varepsilon\left(\omega_{h}^{\prime}\right)$ holds with

$$
\begin{align*}
& \varepsilon\left(\omega_{\mathrm{h}}^{\prime}\right) \equiv \sum_{j=1}^{\mathrm{m}} \sum_{\sharp \ell \in K_{j}} A\left(\varphi_{j}(\sharp \ell)\right) \cdot\left(\frac{1}{\lambda} \int_{e_{2}} \omega_{\mathrm{h}}^{\prime}\right)^{2} \tag{3.39}\\
& \cdot \max \left\{1,\left(\frac{\lambda}{\mu}\right)^{2} \cdot \max _{\varphi_{j}(\sharp \ell)}\left|f^{\prime}(z)\right|^{2}\right\},
\end{align*}
$$

where e_{1} and e_{2} are the edges of $\sharp \ell$ such that $\varphi_{j}\left(e_{2}\right)$ is a straight segment, λ and μ are the lengths of the segments $\varphi_{j}\left(e_{2}\right)$ and $\varphi_{k}\left(e_{1}\right)$ resp., and $f(z) \equiv \varphi_{k} \circ \varphi_{j}^{-1}(z)$.

PROOF. (i) First, note that
(3.40)

$$
\left\|\omega_{h}-\omega\right\|^{2} \leqq 2\left\|\psi_{h}-\omega\right\|^{2}+2\left\|\omega_{h}-\psi_{h}\right\|^{2} .
$$

From Lemmas 2.1. 2.2 and 3.3 , and (3.13), it follows that
(3.41)

$$
\begin{aligned}
& \left\|\omega_{h}-\psi_{h}\right\|^{2}=\left\|\omega_{h}\right\|^{2}-\left\|\psi_{h}\right\|^{2} \\
& \leqq\left\|\omega_{h}^{\prime}\right\|^{2}-\left\|\psi_{h}\right\|^{2}+\sum_{\sharp \ell \in K}\left\|\omega_{h}\right\|_{\sharp \ell}^{2} \\
& \leqq\left\|\psi_{h}^{\prime}\right\|^{2}-\left\|\psi_{h}\right\|^{2}+\sum_{\neq \ell \in K}\left\|\omega_{h}\right\|_{\neq \ell}^{2} \\
& \leqq \sum_{j=1}^{m} \sum_{b i \in K_{j}}\left(A\left(\varphi_{j}(b \ell)\right) \cdot\left(a_{0}^{\prime}{ }^{2}+b_{0}^{\prime}{ }^{2}\right)+A\left(\varphi_{k}(b \ell)\right) \cdot\left(\alpha_{0}^{\prime 2}+B_{0}^{\prime 2}\right)\right) \\
& +\sum_{j=1}^{m} \sum_{\sharp \ell \in K_{j}}\left(A\left(\varphi_{j}(\nVdash \ell)\right) \cdot\left(a_{0}{ }^{2}+b_{0}{ }^{2}\right)+A\left(\varphi_{k}(\nsucceq \ell)\right) \cdot\left(\alpha_{0}{ }^{2}+B_{0}{ }^{2}\right)\right),
\end{aligned}
$$

where for each triple ($s, s^{\prime}, b i$) for $b i \in K_{j}$

$$
\begin{array}{ll}
\psi_{h}^{\prime}=a_{0}^{\prime} d x+b_{0}^{\prime} d y & \text { on } \varphi_{j}(h s), \text { and } \\
\psi_{h}^{\prime}=\alpha_{0}^{\prime} d \xi+\beta_{0}^{\prime} d \eta & \text { on } \varphi_{k}\left(s^{\prime}\right),
\end{array}
$$

for each triple (s, s^{\prime}, $\left.\sharp \ell\right)$ for $\sharp \ell \in K_{j}$

$$
\begin{array}{ll}
\omega_{h}=a_{0} d x+b_{0} d y & \text { on } \varphi_{j}(h s), \text { and } \\
\omega_{h}=\alpha_{0} d \xi+\beta_{0} d \eta & \text { on } \varphi_{k}\left(s^{\prime}\right)
\end{array}
$$

with constants $a_{0}^{\prime}, b_{0}^{\prime}, \alpha_{0}^{\prime}, \beta_{0}^{\prime}, a_{0}, b_{0}, \alpha_{0}$ and β_{0}.
In the inequality (3.41), we have
(3.42)

$$
\begin{aligned}
& A\left(\varphi_{j}(b \ell)\right) \cdot\left(a_{0}^{\prime 2}+b_{0}^{\prime 2}\right) \\
& =\frac{A\left(\varphi_{j}(b \ell)\right)}{A\left(\varphi_{j}(s)\right)}\left\|\psi_{h}\right\|_{s}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \leqq 2 \frac{A\left(\varphi_{j}(b \ell)\right)}{A\left(\varphi_{j}(s)\right)}\left(\left\|\psi_{h}-\omega\right\|_{S}^{2}+\|\omega\|_{s}^{2}\right) \\
& \leqq 2 \frac{A\left(\varphi_{j}(b \ell)\right)}{A\left(\varphi_{j}(s)\right)}\left\|\psi_{h}-\omega\right\|_{S}^{2}+2 A\left(\varphi_{j}(b \ell)\right) \cdot \max _{\varphi_{j}(s)}\left(a^{2}+b^{2}\right)
\end{aligned}
$$

Since we can easily verify that

$$
A\left(\varphi_{j}(\hbar s)\right)>\frac{h_{1}^{2}}{4} \sin \theta \quad\left(h_{1}=d\left(\varphi_{j}(\hbar s)\right)\right)
$$

by Lemma 1.1 we have
(3.43)

$$
\begin{aligned}
\frac{A\left(\varphi_{j}(b i)\right)}{A\left(\varphi_{j}(S)\right)} & =\frac{A\left(\varphi_{j}(b \ell)\right)}{A\left(\varphi_{j}\left(h_{S}\right)\right)-A\left(\varphi_{j}(b \ell)\right)} \\
& \leqq \frac{h}{2 \sin \theta}\left(\left|\frac{g^{\prime \prime}\left(\xi_{1}\right)}{g^{\prime}\left(\zeta_{1}\right)^{2}}\right|+O(h)\right)
\end{aligned}
$$

with the notations in Lemma 1.1. (3.42) and (3.43) imply
(3.44)

$$
\begin{aligned}
& \sum_{j=1}^{m} \sum_{b \ell \in K_{j}} A\left(\varphi_{j}(b \ell)\right) \cdot\left(a_{0}^{\prime 2}+b_{0}^{\prime 2}\right) \\
& \leq \frac{C h}{\sin \theta} \sum_{j=1}^{m} \sum_{b \ell \in K_{j}}\left\|\psi_{h}-\omega\right\|_{s}^{2}+2 \sum_{j=1}^{m} \sum_{b i \in K_{j}} A\left(\varphi_{j}(b \ell)\right) \max _{\varphi_{j}}(s)\left(a^{2}+b^{2}\right),
\end{aligned}
$$

where C is a constant depending only on the transformations of local parameters. Since similar estimates for other terms of the right hand side of (3.41) are obtained, from (3.41) it follows that $(3.45) \quad \| \omega_{h}-\psi h^{2}$

$$
\begin{aligned}
& \leqq \frac{C h}{\sin \theta}\left\|\omega_{h}-\omega\right\|^{2}+\frac{C h}{\sin \theta}\left\|\psi_{h}-\omega\right\|^{2} \\
+ & 2 \sum_{j=1}^{m} \sum_{\ell \in K_{j}}\left(A\left(\varphi_{j}(\imath)\right) \max _{\varphi_{j}(s)}\left(a^{2}+b^{2}\right)+A\left(\varphi_{k}(\ell)\right) \max _{\varphi_{k}\left(s^{\prime}\right)}\left(\alpha^{2}+B^{2}\right)\right),
\end{aligned}
$$

where for each triple $\left(s, s^{\prime}, \ell\right)$ for $\ell \in K_{j}$

$$
\begin{array}{ll}
\omega=a d x+b d y & \text { on } \varphi_{j}(s), \text { and } \\
\omega=\alpha d \xi+\beta d \eta & \text { on } \varphi_{k}\left(s^{\prime}\right) .
\end{array}
$$

(3.40), (3.45), Theorem 3.1, Lemma 1.1 and (1.1) imply the the estimate (3.37).
(ii) (3.7) and Lemma 3.3 and the proof of Lemma $2.2(\mathrm{i})$ imply the inequalities

$$
\begin{aligned}
&\|\omega\|^{2} \leqq\left\|\psi_{h}\right\|^{2} \leqq\left\|\omega_{h}\right\|^{2} \\
& \leqq\left\|\omega_{h}^{\prime}\right\|^{2}+\sum_{j=1}^{m} \sum_{\sharp i \in K} A\left(\varphi_{j}(\nVdash \ell)\right)\left(\frac{1}{\lambda} \int_{e_{2}} \omega_{h}^{\prime}\right)^{2} \\
& \cdot \max \left\{1,\left(\frac{\lambda}{\mu}\right)^{2} \max _{\varphi_{j}(\nvdash \ell)}^{\min }\left|f^{\prime}(z)\right|^{2}\right\} .
\end{aligned}
$$

$\S \underline{3} \cdot \underline{9}$. Estimate of $\left\|\omega_{\mathrm{h}}^{\prime}-\hat{\omega}^{\prime}\right\|$.
COROLLARY 3.1. Let ω and ω_{h}^{\prime} be the same as in Theorem 3.2, $\hat{\omega}$ be the finite element interpolation of ω in the space Λ, and $\hat{\omega}^{\prime}=F(\hat{\omega})$. Then, the estimate
(3.46) $\quad\left\|\omega_{h}^{\prime}-\hat{\omega}^{\prime}\right\| \leqq A^{\prime \prime} h$
holds, where $A^{\prime \prime}$ is a constant dependent only on ω and θ in Theorem 3.1.

PROOF. First, by Lemma $2.2($ ii) and (3.43) we have

$$
\begin{aligned}
& \left\|\omega_{h}^{\prime}-\hat{\omega}^{\prime}\right\|^{2} \\
& \leqq\left\|\omega_{h}-\hat{\omega}\right\|^{2}+\sum_{b \ell \in K}\left(\left\|\omega_{h, h s}^{\prime}-\hat{\omega}_{h s}^{\prime}\right\|_{b \ell}^{2}+\left\|\omega_{h, s}^{\prime},-\hat{\omega}_{s}^{\prime},\right\|_{b \ell}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leqq\left\|\omega_{h}-\hat{\omega}\right\|^{2}+\sum_{j=1}^{m} \sum_{b \ell \in K_{j}}\left(\frac{A\left(\varphi_{j}(b \ell)\right)}{A\left(\varphi_{j}(S)\right)}\left\|\omega_{h}-\hat{\omega}\right\|_{S}^{2}\right. \\
& \left.+\frac{A\left(\varphi_{k}(b \ell)\right)}{A\left(\varphi_{k}\left(s^{\prime}\right)\right)-A\left(\varphi_{k}(b \ell)\right)}\left\|\omega_{h}-\hat{\omega}\right\|_{s^{\prime}}^{2}\right) \\
& \leqq\left\|\omega_{h}-\hat{\omega}\right\|^{2}+\frac{C h}{\sin \theta} \sum_{j=1}^{m} \sum_{b \ell \in K_{j}}\left(\left\|\omega_{h}-\hat{\omega}\right\|_{S}^{2}+\| \omega_{h}-\hat{\omega}_{S^{\prime}}^{2}\right) \\
& \leqq\left(1+\frac{\mathrm{Ch}}{\sin \theta}\right)\left\|\omega_{\mathrm{h}}-\hat{\omega}\right\|^{2} \\
& \leqq 2\left(1+\frac{\mathrm{Ch}}{\sin \theta}\right)\left(\left\|\omega_{h}-\omega\right\|^{2}+\|\omega-\hat{\omega}\|^{2}\right) \text {, }
\end{aligned}
$$

where C is the same constant as in (3.44). Then, the proof of Theorem 3.1 and Theorem 3.2 imply (3.46).

Chapter 4 . Determination of the periodicty moduli of Riemann surfaces.
$\S \underline{4} \cdot \underline{1}$ Periodicity moduli of Riemann surfaces. Let $\bar{\Omega}$ be a closed or compact bordered Riemann surface of genus 1 with no or one boundary component. Let $\{\mathrm{A}, \mathrm{B}\}$ be a canonical homology basis of $\bar{\Omega}$ such that $A \times B=1$. Then there exists a unique system of harmonic differentials $\{\phi, \rho, \chi, \tau\}$ on Ω satisfying the period and boundary conditions:

$$
\begin{align*}
& \int_{B} \phi=\int_{B} x=1, \quad \int_{A} \phi=\int_{A} x=0, \tag{4.1}\\
& \int_{A} \rho=\int_{A} \tau=-1, \quad \int_{B} \rho=\int_{B} \tau=0, \tag{4.2}\\
& \phi=\rho=* x=* \tau=0 \quad \text { along } \partial \Omega \tag{4.3}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{\partial \Omega} * \phi=\int_{\partial \Omega} * \rho=\int_{\partial \Omega} x=\int_{\partial \Omega} \tau=0, \tag{4.4}
\end{equation*}
$$

where the conditions (4.3) and (4.4) may be ignored if $\partial \Omega=\phi$. If $\partial \Omega=\phi$, then $\phi=\chi$ and $\rho=\tau$.

We can easily see that
(4.5) $\left\{\begin{array}{l}\|\phi\|^{2}=\int_{A} * \phi, \quad\|\rho\|^{2}=\int_{B} * \rho, \quad \text { and } \\ (\phi, \rho)=\int_{B} * \phi=\int_{A} * \rho=0 .\end{array}\right.$

We call

$$
p_{1}=\int_{A} * \phi \quad \text { and } \quad p_{2}=\int_{B} * \rho
$$

periodicity moduli of Ω with respect to A and B respectively, which are the quantities determining the conformal structure of Ω. By (4.1)~(4.5) we see that

$$
\tau=-\frac{* \phi}{\|\phi\|^{2}} \quad \text { and } \quad \chi=\frac{* \rho}{\|\rho\|^{2}} .
$$

These relations imply that

$$
\begin{equation*}
p_{1}=\|\phi\|^{2}=\frac{1}{\|\tau\|^{2}} \quad \text { and } \quad p_{2}=\|\rho\|^{2}=\frac{1}{\|\chi\|^{2}} . \tag{4.6}
\end{equation*}
$$

If $\partial \Omega=\phi$, then

$$
\begin{equation*}
p_{1}=\|\phi\|^{2}=\frac{1}{\|\rho\|^{2}}=\frac{1}{p_{2}} . \tag{4.7}
\end{equation*}
$$

By making use of a relation analogous to (4.7) for the modulus of quadrilaterals on the complex plane, Gaier [11] presented a method to obtain upper and lower bounds for the modulus by the finite difference approximation.
$\S \underline{4} \cdot \underline{2}$. Calculation of periodicity moduli. Let $\left\{\Theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\right\}$ be a system of differentials in $\Gamma_{c}(\bar{\Omega})$ satisfying the period and boundary conditions:

$$
\begin{aligned}
& \int_{B} \theta_{1}=\int_{B} \theta_{3}=1, \quad \int_{A} \theta_{1}=\int_{A} \theta_{3}=0, \\
& \int_{A} \Theta_{2}=\int_{A} \theta_{4}=-1, \quad \int_{B} \theta_{2}=\int_{B} \Theta_{4}=0, \\
& \Theta_{1}=\theta_{2}=0 \quad \text { along } \partial \Omega,
\end{aligned}
$$

and θ_{3} and θ_{4} are exact on a neighborhood of $\partial \Omega$. Here we interpret that $\partial \Omega=C_{2}$ for Θ_{1} and Θ_{2}, and $\partial \Omega=C_{3}$ for θ_{3} and Θ_{4} in the notations in §3.1. We note that $\theta_{1}, \theta_{2}, \theta_{3}$ and θ_{4} satisfy the conditions for the differential θ_{0} in § 3.2. Then we can easily see that ϕ, ρ, x and τ are the harmonic solutions in $\Gamma_{\theta_{1}}, \Gamma_{\theta_{2}}, \Gamma_{\theta_{3}}$ and $\Gamma_{\theta_{4}}$, respectively. Let $\phi_{h}^{\prime}, \rho_{h}^{\prime}, x_{h}^{\prime}$ and τ_{h}^{\prime} be the finite element approximations of ϕ, ρ, x and τ in the
space Λ^{\prime} respectively. Then by (ii) of Theorem 3.2 and (4.6), we obtain upper and lower bounds for p_{1} and p_{2} :

$$
\begin{equation*}
\frac{1}{\left\|\tau_{h}^{\prime}\right\|^{2}+\varepsilon\left(\tau_{h}^{\prime}\right)} \leqq p_{1} \leqq\left\|\phi_{h}^{\prime}\right\|^{2}+\varepsilon\left(\phi_{h}^{\prime}\right) \tag{4.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{\left\|x_{h}^{\prime}\right\|^{2}+\varepsilon\left(x_{h}^{\prime}\right)} \leqq p_{2} \leqq\left\|\rho_{h}^{\prime}\right\|^{2}+\varepsilon\left(\rho_{h}^{\prime}\right) \tag{4.9}
\end{equation*}
$$

If $\partial \Omega=\phi$, then $\phi=\chi$ and $\rho=\tau$, and thus (4.8) and (4.9) imply the inequalities

$$
\frac{1}{\left\|\rho_{h}^{\prime}\right\|^{2}+\varepsilon\left(\rho_{h}^{\prime}\right)} \leqq p_{1}=\frac{1}{p_{2}} \leqq\left\|\phi_{h}^{\prime}\right\|^{2}+\varepsilon\left(\phi_{h}^{\prime}\right)
$$

$\S \underline{4} \cdot \underline{3}$. Numerical example $\underline{1}$ (the case of a closed Riemann surface). Let Ω be the two-sheeted covering surface with four branch points $z=-3,-1,1,3$ over the extended $z-p l a n e$. Then Ω is a closed Riemann surface of genus one. A canonical homology basis $\{A, B\}$ of Ω is chosen as in Fig. 6. We aim to obtain good upper and lower approximate values of the periodicity moduli p_{1} and p_{2} of Ω with respect to A and B respectively.

Fig. 6 Numerical example 1 (the case of a closed Riemann surface)

First, we construct a triangulation of the closed region:

$$
\bar{D}=\{z| | z \mid \leqq \sqrt{3}, \quad \operatorname{Re} z \geqq 0, \quad \operatorname{Im} z \geqq 0\}
$$

as in Fig.7. The closed regions G_{2} and G_{3} are mapped onto the regions G_{2}^{*} and G_{3}^{*} resp. by the local parameters $\zeta=\varphi_{2}(z)=$ $\mathrm{a} \sqrt{\mathrm{z}-1}$ and $\mathrm{w}=\varphi_{3}(\mathrm{z})=\mathrm{b} \log \mathrm{z} \quad\left(\mathrm{a}=2(\sqrt{3}-1)^{1 / 2}\right.$ and $\left.\mathrm{b}=\sqrt{3}\right)$ respectively, where a and b are so determined that $|d \xi / d z|=1$ and $|\mathrm{dw} / \mathrm{d} z|=1$ on $|z-1|=\sqrt{3}-1$ and $|z|=\sqrt{3}$ respectively. We construct ordinary triangulations K_{2}^{*} and K_{3}^{*} of G_{2}^{*} and G_{3}^{*} as in Fig. 7 respectively. By K_{2} and K_{3} we denote the image triangulations of K_{2}^{*} and K_{3}^{*} by the mappings φ_{2}^{-1} and φ_{3}^{-1} respectively. The triangulation K_{1} of the region $G_{1}=$
$\overline{\mathrm{D}-\left(G_{2} \cup G_{3}\right)}$ in Fig. 7 is so constructed that each 2-simplex s of K_{1} is natural, minor or major according as $|s| \cap\left|K_{2}+K_{3}\right|=\phi$. $|s| \cap\left|K_{2}\right| \neq \phi$ or $|s| \cap\left|K_{3}\right| \neq \phi$, where if some intersection is a point then it is interpreted to be vacuous, and the local parameter $\varphi_{1}(z)$ of K_{1} is the identity mapping $\varphi_{1}(z) \equiv z$. A triangulation L_{1} of the region $\bar{D}_{1}=\{z| | z \mid \geqq \sqrt{3}, \operatorname{Re} z \geqq 0$, $\operatorname{Im} z \geqq 0\}$ is defined by the reflection of the triangulation $L \equiv$ $K_{1}+K_{2}+K_{3}$ with respect to the circle $|z|=\sqrt{3}$ (cf. Fig.8). Next we define a triangulation L_{2} of the fourth quadrant by the reflection of the triangulation $L+L_{1}$ with respect to the real axis and then a triangulation L_{3} of the left half-plane by the reflection of $L+L_{1}+L_{2}$ with respect to the imaginary axis. Consequently, a triangulation L_{4} of the extended z-plane is defined by $\mathrm{L}_{4}=\mathrm{L}+\mathrm{L}_{1}+\mathrm{L}_{2}+\mathrm{L}_{3}$. Then, a triangulation K of the covering surface Ω is so constructed that the projection T of K onto the extended z-plane is the triangulation L_{4}. We see that

Fig. 7 Triangulation L of example 1

the triangulation K conforms to the definition in § 1.2. We denote the parts of $T^{-1}(\bar{D})$ and $T^{-1}(L)$ on the upper sheet of Ω by \bar{D} and L again respectively.

Let $\phi=x$ and $\rho=\tau$ be the differentials on the present Ω defined in $\S 4.1$, and let ϕ_{h}^{\prime} and ρ_{h}^{\prime} be the finite element approximations of ϕ and ρ respectively in the space $\Lambda^{\prime}\left(K^{\prime}\right)$, where K^{\prime} is the naturalized triangulation associated to the present K.

Let $\Lambda(L)$ be the space of differentials on \bar{D} which are the restrictions of those in $\Lambda(K)$ to \bar{D}. Let $\Lambda_{\phi}(L)$ be the subspace of $\Lambda(L)$ which consists of the differentials σ_{h} in $\Lambda(L)$ satisfying the conditions:

$$
\begin{array}{lll}
\sigma_{\mathrm{h}}=0 & \text { along } c_{0}=\{\mathrm{z} \mid 0 \leqq \operatorname{Im} \mathrm{z} \leqq \sqrt{3}, \operatorname{Re} \mathrm{z}=0\} \\
\sigma_{\mathrm{h}}=0 & \text { along } c_{1}=\{\mathrm{z} \mid 1 \leqq \operatorname{Re} \mathrm{z} \leqq \sqrt{3}, \operatorname{Im} \mathrm{z}=0\}
\end{array}
$$

and

$$
\int_{\mathrm{B} \cap \overline{\mathrm{D}}} \sigma_{\mathrm{h}}=\frac{1}{4} .
$$

and let $\Lambda_{\phi}^{\prime}\left(L^{\prime}\right)=\left\{\sigma_{h}^{\prime}=F\left(\sigma_{h}\right), \sigma_{h} \in \Lambda_{\phi}(L)\right\}$. Further, let $\Lambda_{\rho}(L)$ be the subspace of $\Lambda(L)$ which consists of the differentials σ_{h} in $\Lambda(L)$ satisfying the conditions:

$$
\begin{array}{ll}
\sigma_{h}=0 & \text { along } c_{0}^{*}=\{z \mid 0 \leqq \operatorname{Re} z \leqq 1, \operatorname{Im} z=0\} \\
\sigma_{h}=0 & \text { along } c_{1}^{*}=\left\{z| | z \mid=\sqrt{3}, 0 \leqq \arg z \leqq \frac{\pi}{2}\right\}
\end{array}
$$

and

$$
\int_{A \cap \bar{D}} \sigma_{h}=-\frac{1}{4},
$$

and let $\Lambda_{\rho}^{\prime}\left(L^{\prime}\right)=\left\{\sigma_{h}^{\prime}=F\left(\sigma_{h}\right), \sigma_{h} \in \Lambda_{\rho}(L)\right\}$. By $\phi_{h, L}^{\prime}$ and $\rho_{h, L}^{\prime}$, we
denote the differentials in $\Lambda_{\phi}^{\prime}\left(L^{\prime}\right)$ and $\Lambda_{\rho}^{\prime}\left(L^{\prime}\right)$ respectively which minimize norms $\left\|\sigma_{h}^{\prime}\right\|_{L^{\prime}}$ in $\Lambda_{\phi}^{\prime}\left(L^{\prime}\right)$ and $\Lambda_{\rho}^{\prime}\left(L^{\prime}\right)$ respectively. Then, by making use of the symmetricity of K^{\prime}, the period and boundary conditions of $\phi_{h}^{\prime}, \rho_{h}^{\prime}, \phi_{h, L}^{\prime}$ and $\rho_{h, L}^{\prime}$, and their minimality w.r.t. norm, we can verify that $\phi_{\mathrm{h}, \mathrm{L}}^{\prime}$ and $\rho_{\mathrm{h}, \mathrm{L}}^{\prime}$ are the restrictions of $\phi_{\mathrm{h}}^{\prime}$ and $\rho_{\mathrm{h}}^{\prime}$ to L^{\prime} respectively, and $\left\|\phi_{\mathrm{h}}^{\prime}\right\|_{\mathrm{K}^{\prime}}^{2}=16\left\|\phi_{\mathrm{h}, \mathrm{L}}^{\prime}\right\|_{\mathrm{L}^{\prime}}^{2}$ and $\left\|\rho_{\mathrm{h}}^{\prime}\right\|_{\mathrm{K}^{\prime}}^{2}=16\left\|\rho_{\mathrm{h}, \mathrm{L}}^{\prime}\right\|_{\mathrm{L}}^{2}$. Consequently, to attain our aim it is sufficient to make numerical calculations of $\phi_{h, L}^{\prime}$ and $\rho_{h, L}^{\prime}$ (cf. Mizumoto and Hara [17], [18] for the calculation method).

We should note that the symmetricity of ϕ and ρ on Ω has not been used and thus our method does not reject an application to the differentials which do not have symmetricity on Ω.

Table 1 shows the exact value of the periodicity moduli p_{1} which can be calculated by making use of a complete elliptic integral, and the values of our finite element approximations. Furthermore, computational results for the normal subdivision K^{1} (see Fig.9) of the present K are shown. It can be said that the both of upper and lower bounds of p_{1} are close to the exact value.

Fig. 9 Normal subdivision of example 1

Table 1 Periodicity moduli p_{1} of example 1 (closed Riemann surface)

Exact value	$p_{1}=\int_{A} * \phi=0.781701$						
Finite element approxi- mations	Original triangulation ($\mathrm{h}=0.213758$)						
	Upper bound	$\begin{aligned} & \left\\|\phi_{h}^{\prime}\right\\|^{2}+\varepsilon\left(\phi_{h}^{\prime}\right) \\ & =0.782184+0.429347 \times 10^{-3} \\ & =0.782613 \quad(0.000912) \end{aligned}$	$\begin{aligned} & \left\\|\phi_{h}^{\prime}-\hat{\phi}^{\prime}\right\\| \\ & =3.76256 \times 10^{-3} \end{aligned}$				
	Lower bound	$\begin{aligned} & \frac{1}{\left\\|\rho_{h}^{\prime}\right\\|^{2}+\varepsilon\left(\rho_{h}^{\prime}\right)} \\ & =\frac{1}{1.280878+0.150405 \times 10^{-5}} \\ & =0.780714 \quad(-0.000987) \end{aligned}$	$\begin{aligned} & \left\\|\rho_{\mathrm{h}}^{\prime}-\hat{\rho}^{\prime}\right\\| \\ & =6.14254 \times 10^{-3} \end{aligned}$				
	Normal subdivision ($\mathrm{h}=0.106879$)						
	Upper bound	$\begin{aligned} & \left\\|\phi_{h}^{\prime}\right\\|^{2}+\varepsilon\left(\phi_{h}^{\prime}\right) \\ & =0.781968+0.107413 \times 10^{-3} \\ & =0.782075 \quad(0.000374) \end{aligned}$	$\begin{aligned} & \left\\|\phi_{\mathrm{h}}^{\prime}-\hat{\phi}^{\prime}\right\\| \\ & =1.12050 \times 10^{-3} \end{aligned}$				
	Lower bound	$\begin{aligned} & \frac{1}{\left\\|\rho_{h}^{\prime}\right\\|^{2}+\varepsilon\left(\rho_{h}^{\prime}\right)} \\ & =\frac{1}{1.279506+0.381486 \times 10^{-6}} \\ & =0.781551 \quad(-0.000150) \end{aligned}$	$\begin{aligned} & \left\\|\rho_{h}^{\prime}-\hat{\rho}^{\prime}\right\\| \\ & =1.83821 \times 10^{-3} \end{aligned}$				

() : Deviation from exact value.
§ $\underline{4} \cdot \underline{4}$. Numerical example $\underline{2}$ (the case of a compact bordered Riemann surface). Let $\bar{\Omega}$ be a two-sheeted compact bordered covering surface with three branch points $z=-1,1,3$ over the ellipse:

$$
E=\left\{z=x+i y \left\lvert\, \frac{x^{2}}{16}+\frac{y^{2}}{15} \leqq 1\right.\right\} .
$$

Then $\bar{\Omega}$ is a compact bordered Riemann surface of genus one with one boundary component. A canonical homology basis $\{\mathrm{A}, \mathrm{B}\}$ of $\bar{\Omega}$ is chosen as in Fig. 10. We aim to obtain good upper and lower

Fig. 10 Numerical example 2
(the case of a compact bordered Riemann surface)
approximate values of the periodicity moduli p_{1} and p_{2} of $\bar{\Omega}$ with respect to A and B respectively.

First, we construct a triangulation of the upper half ellipse $\bar{D}=E \cap\{z \mid \operatorname{Im} z \geqq 0\}$ as in Fig.11. The closed regions G_{2}, G_{3}, G_{4} and G_{5} are mapped onto the regions $G_{2}^{*}, G_{3}^{*}, G_{4}^{*}$ and
G_{5}^{*} resp. by the local parameters $\xi=\varphi_{2}(z)=a \sqrt{z+1}$,
$\xi=\varphi_{3}(z)=a \sqrt{z-1}, \quad \zeta=\varphi_{4}(z)=b \sqrt{z-3}$ and $w=\varphi_{5}(z)=\cosh ^{-1} z \quad\left(a=2 / 5^{1 / 4}\right.$ and $\left.\quad b=2 / 85^{1 / 4}\right)$ respectively, where a and b are so determined that $|d \xi / d z|$ are equal to $|d w / d z|$ at $z=z_{0}+i\left(z_{0}=-1,1\right.$ or 3$)$. We construct ordinary triangulations $K_{2}^{*}, K_{3}^{*}, K_{4}^{*}$ and K_{5}^{*} of $G_{2}^{*}, G_{3}^{*}, G_{4}^{*}$ and G_{5}^{*} as in Fig. 11 respectively. By K_{2}, K_{3}, K_{4} and K_{5} we denote the image triangulations of $K_{2}^{*}, K_{3}^{*}, K_{4}^{*}$ and K_{5}^{*} by the mappings $\varphi_{2}^{-1}, \varphi_{3}^{-1}$, φ_{4}^{-1} and φ_{5}^{-1} respectively. The triangulation K_{1} of the region $G_{1}=\overline{\Omega-\left(G_{2} \cup G_{3} \cup G_{4} \cup G_{5}\right)} \quad$ in Fig. 11 is so constructed that each 2-simplex s of K_{1} is natural, minor or major according as $|s| \cap\left|K_{2}+K_{3}+K_{4}+K_{5}\right|=\phi, \quad|s| \cap\left|K_{2}+K_{3}+K_{4}\right| \neq \phi$ or $|s| \cap\left|K_{5}\right| \neq \phi$, with the convention as in the previous section, and the local parameter of K_{1} is $\varphi_{1}(z) \equiv z$.

A triangulation L_{1} of the lower half ellipse $\bar{D}_{1}=$
$E \cap\{z \mid \operatorname{Im} z \leqq 0\}$ is defined by the reflection of the triangulation $\mathrm{L} \equiv \mathrm{K}_{1}+\mathrm{K}_{2}+\mathrm{K}_{3}+\mathrm{K}_{4}+\mathrm{K}_{5}$ with respect to the real axis and a triangulation L_{2} of E is defined by $L_{2}=L+L_{1}$. Then, a triangulation K of the covering surface $\bar{\Omega}$ is so constructed that the projection T of K onto the z-plane is the triangulation L_{2}. We see that the triangulation K conforms to the definition in § 1.2 . We denote the parts of $T^{-1}(\bar{D})$ and $T^{-1}(L)$ on the upper

sheet of $\bar{\Omega}$ by \bar{D} and L again respectively.
Let ϕ, ρ, x and τ be the differentials on the present $\bar{\Omega}$ defined in $\S_{3} 4.1$, and let $\phi_{h}^{\prime}, \rho_{h}^{\prime}, x_{h}^{\prime}$ and τ_{h}^{\prime} be the finite element approximations of ϕ, ρ, x and τ respectively in the space $\Lambda^{\prime}\left(K^{\prime}\right)$, where K^{\prime} is the naturalized triangulation associated to the present K.

Let $\Lambda(L)$ be the space of differentials on \bar{D} which are the restrictions of those in $\Lambda(K)$ to \bar{D}. Let $\Lambda_{\phi}(L), \Lambda_{\rho}(L), \Lambda_{\chi}(L)$ and $\Lambda_{\tau}(L)$ be the subspaces of $\Lambda(L)$ which consist of the differentials $\sigma_{\mathrm{h} 1}, \sigma_{\mathrm{h} 2}, \sigma_{\mathrm{h} 3}$ and $\sigma_{\mathrm{h} 4}$ in $\Lambda(\mathrm{L})$ respectively satisfying the conditions:

$$
\begin{array}{ll}
\sigma_{\mathrm{h} 1}=\sigma_{\mathrm{h} 3}=0 & \text { along } c_{0}=\{z \mid 3 \leqq \operatorname{Re} z \leqq 4, \operatorname{Im} z=0\}, \\
\sigma_{\mathrm{h} 1}=\sigma_{\mathrm{h} 3}=0 & \text { along } c_{1}=\{z \mid-1 \leqq \operatorname{Re} z \leqq 1, \operatorname{Im} z=0\}, \\
\sigma_{\mathrm{h} 2}=\sigma_{\mathrm{h} 4}=0 & \text { along } c_{0}^{*}=\{\mathrm{z} \mid 1 \leqq \operatorname{Re} z \leqq 3, \operatorname{Im} z=0\}, \\
\sigma_{\mathrm{h} 2}=\sigma_{\mathrm{h} 4}=0 & \text { along } c_{1}^{*}=\{\mathrm{z} \mid-4 \leqq \operatorname{Re} z \leqq-1, \operatorname{Im} z=0\}, \\
\sigma_{\mathrm{h} 1}=\sigma_{\mathrm{h} 2}=0 \quad \text { along } c=\left\{z=x+i y \left\lvert\, \frac{x^{2}}{16}+\frac{y^{2}}{15}=1\right., y \leqq 0\right\}, \\
\int_{\mathrm{B} \cap \bar{D}}=\sigma_{\mathrm{h} 1}=\int_{\mathrm{B} \cap \bar{D}} \quad \sigma_{\mathrm{h} 3}=\frac{1}{2}
\end{array}
$$

and

$$
\int_{\mathrm{A} \cap \overline{\mathrm{D}}} \sigma_{\mathrm{h} 2}=\int_{\mathrm{A} \cap \overline{\mathrm{D}}} \sigma_{\mathrm{h} 4}=-\frac{1}{2} .
$$

Further, let $\Lambda_{\phi}^{\prime}\left(L^{\prime}\right)=\left\{\sigma_{h 1}^{\prime}\right\}, \quad \Lambda_{\rho}^{\prime}\left(L^{\prime}\right)=\left\{\sigma_{h 2}^{\prime}\right\}, \quad \Lambda_{\chi}^{\prime}\left(L^{\prime}\right)=\left\{\sigma_{h 3}^{\prime}\right\}$ and $\Lambda_{\tau}^{\prime}\left(L^{\prime}\right)=\left\{\sigma_{h 4}^{\prime}\right\}$, where $\sigma_{h j}^{\prime}=F\left(\sigma_{h j}\right)(j=1,2,3,4)$. By $\phi_{h, L}^{\prime}, \rho_{h, L}^{\prime}$, $\chi_{h, L}^{\prime}$ and $\tau_{h, L}^{\prime}$ we denote the differentials of $\Lambda_{\phi}^{\prime}\left(L^{\prime}\right), \Lambda_{\rho}^{\prime}\left(L^{\prime}\right), \Lambda_{\chi}^{\prime}\left(L^{\prime}\right)$ and $\Lambda_{\tau}^{\prime}\left(L^{\prime}\right)$ respectively which minimize norms in $\Lambda_{\phi}^{\prime}\left(L^{\prime}\right), \Lambda_{\rho}^{\prime}\left(L^{\prime}\right)$, $\Lambda_{\chi}^{\prime}\left(L^{\prime}\right)$ and $\Lambda_{\tau}^{\prime}\left(L^{\prime}\right)$ respectively. Then, by making use of the symmetricity of K^{\prime}, the period and boundary conditions of ϕ_{h}^{\prime}. ρ_{h}^{\prime},
$x_{h}^{\prime}, \tau_{h}^{\prime}, \phi_{h, L}^{\prime}, \rho_{h, L}^{\prime}, x_{h, L}^{\prime}$ and $\tau_{h, L}^{\prime}$, and their minimality w.r.t. norm, we can verify that $\phi_{h, L}^{\prime}, \rho_{h, L}^{\prime}, \chi_{h, L}^{\prime}$ and $\tau_{h, L}^{\prime}$ are the restrictions of $\phi_{h}^{\prime}, \rho_{h}^{\prime}, x_{h}^{\prime}$ and τ_{h}^{\prime} to L^{\prime} respectively, and $\left\|\phi_{\mathrm{h}}^{\prime}\right\|_{\mathrm{K}^{\prime}}^{2}=4\left\|\phi_{\mathrm{h}, \mathrm{L}}^{\prime}\right\|_{\mathrm{L}^{\prime}}^{2}, \quad\left\|\rho_{\mathrm{h}}^{\prime}\right\|_{\mathrm{K}^{\prime}}^{2}=4\left\|\rho_{\mathrm{h}, \mathrm{L}}^{\prime}\right\|_{\mathrm{L}^{\prime}}^{2}, \quad\left\|x_{\mathrm{h}}^{\prime}\right\|_{\mathrm{K}^{\prime}}^{2}=4 \| x_{\mathrm{h}, \mathrm{L}^{\prime} \|_{\mathrm{L}}}^{2}$, and $\left\|\tau_{h}^{\prime}\right\|_{K^{\prime}}^{2}=4\left\|\tau_{h, L}^{\prime}\right\|_{L}^{2}$. Consequently, to attain our aim it is sufficient to make numerical calculations of $\phi_{h, L}^{\prime}, \rho_{h, L}^{\prime}, x_{h, L}^{\prime}$ and $\tau_{h, L}^{\prime}$.

The exact values of the periodicity moduli p_{1} and p_{2} can be calculated by the following procedure.

Let \tilde{c}_{0} and \tilde{c}_{1} be the boundary parts of the upper half ellipse domain D defined by

$$
\begin{aligned}
\tilde{c}_{0}= & \{z \mid 3 \leqq \operatorname{Re} z \leqq 4, \operatorname{Im} z=0\} \cup \\
& \left\{z=x+i y \left\lvert\, \frac{x^{2}}{16}+\frac{y^{2}}{15}=1\right., y \leqq 0\right\}
\end{aligned}
$$

and

$$
\tilde{c}_{1}=\{\mathrm{z} \mid-1 \leqq \operatorname{Re} \mathrm{z} \leqq 1, \operatorname{Im} z=0\}
$$

Let Δ be the rectangular domain

$$
\Delta=\{W \mid 0<\operatorname{Re} W<1, \quad 0<\operatorname{Im} W<\tau\}
$$

and let γ_{0} and γ_{1} be the boundary parts of Δ defined by

$$
\gamma_{0}=\{W \mid 0 \leqq \operatorname{Im} W \leqq \tau, \quad \operatorname{Re} W=0\}
$$

and

$$
\gamma_{1}=\{W \mid 0 \leqq \operatorname{Im} W \leqq \tau, \quad \operatorname{Re} W=1\}
$$

If D is conformally mapped onto Δ so that \tilde{c}_{0} and \tilde{c}_{1} are mapped onto γ_{0} and γ_{1} respectively, then the periodicity moduli
p_{1} is equal to τ. The conformal map $W=f(z): D \rightarrow \Delta$ is constructed by the composition of the following mappings:
(i)

$$
w=\frac{2}{\cosh ^{-1} 4} \cdot \cosh ^{-1} z-1
$$

(ii) $\zeta=\operatorname{sn}(K(k) \cdot w)$, where $\frac{K^{\prime}(k)}{K(k)}=\frac{2 \pi}{\cosh ^{-1} 4}$;
(iii) $\frac{Z-Z_{1}}{Z-Z_{2}} \cdot \frac{Z_{3}-Z_{2}}{Z_{3}-Z_{1}}=\frac{\zeta-\zeta_{1}}{\zeta-\zeta_{2}} \cdot \frac{\zeta_{3}-\zeta_{2}}{\xi_{3}-\zeta_{1}}$,
where $\xi_{j}=\operatorname{sn}\left(K(k) \cdot w_{j}\right) \quad(j=1,2,3,4)$ with $w_{1}=$
$-1+i\left(2 \pi / \cosh ^{-1} 4\right), w_{2}=-1, \quad w_{3}=2 \cosh ^{-1} 3 / \cosh ^{-1} 4-1$, $w_{4}=1+i\left(2 \pi / \cosh ^{-1} 4\right), \quad$ and $Z_{1}=-1 / k, Z_{2}=-1, \quad Z_{3}=1$, $Z_{4}=1 / k$ with $k=(\sqrt{1 / c}-\sqrt{1 / c-1})^{2}, \quad c=\left(\left(\xi_{4}-\xi_{1}\right) /\left(\xi_{4}-\xi_{2}\right)\right)$. $\left(\left(\zeta_{3}-\zeta_{2}\right) /\left(\zeta_{3}-\zeta_{1}\right)\right)$;
(iv) $W=-\frac{1}{2}\left(\frac{1}{K(k)} \int_{0}^{Z} \frac{d z}{\sqrt{\left(1-Z^{2}\right)\left(1-k^{2} z^{2}\right)}}-\left(1+i \frac{K^{\prime}(k)}{K(k)}\right)\right)$. Then we see that

$$
p_{1}=\tau=\frac{K^{\prime}(K)}{2 K(K)}
$$

Next, let \tilde{c}_{0}^{\prime} and \tilde{c}_{1}^{\prime} be the boundary parts of D given by

$$
\tilde{c}_{0}^{\prime}=\{z \mid 1 \leqq \operatorname{Re} z \leqq 3, \operatorname{Im} z=0\}
$$

and

$$
\begin{aligned}
\tilde{c}_{1}^{\prime}= & \left\{z=x+i y \left\lvert\, \frac{x^{2}}{16}+\frac{y^{2}}{15}=1\right., \quad y \leqq 0\right\} \\
& \cup\{z \mid-4 \leqq \operatorname{Re} z \leqq-1, \text { Am } z=0\}
\end{aligned}
$$

Let Δ, γ_{0} and γ_{1} be as above. If the domain D is conformally mapped onto the domain Δ so that \tilde{c}_{0}^{\prime} and \tilde{c}_{1}^{\prime} are mapped onto
γ_{0} and γ_{1} respectively, then the periodicity moduli p_{2} is equal to τ. The conformal map $W=f(p): D \rightarrow \Delta$ is constructed similarly to the case of periodicity moduli p_{1}.

Tables 2 and 3 show the exact values of the periodicity moduli p_{1} and p_{2}, and the values of our finite element approximations. Furthermore, computation results for the normal subdivision K^{1} of the present K are shown. It can be said that the both of upper and lower bounds of p_{1} and p_{2} are close to the exact values.

Table 2 Periodicity moduli p_{1} of example 2 (compact bordered Riemann surface)

| Exact |
| :--- | :--- |
| value |$\quad \mathrm{p}_{1}=\int_{\mathrm{A}} * \phi=1.539330$

Finite element approximations	Original triangulation ($\mathrm{h}=0.138840$)						
	Upper bound	$\begin{aligned} & \left\\|\phi_{h}^{\prime}\right\\|^{2}+\varepsilon\left(\phi_{h}^{\prime}\right) \\ & =1.540588+0.572262 \times 10^{-4} \\ & =1.540645 \quad(0.00132) \end{aligned}$	$\begin{aligned} & \left\\|\phi_{h}^{\prime}-\hat{\phi}^{\prime}\right\\| \\ & =1.15335 \times 10^{-2} \end{aligned}$				
	Lower bound	$\begin{aligned} & \frac{1}{\left\\|\tau_{h}^{\prime}\right\\|^{2}+\varepsilon\left(\tau_{h}^{\prime}\right)} \\ & =\frac{1}{0.649700+0.225117 \times 10^{-3}} \\ & =1.538639 \quad(-0.00069) \end{aligned}$	$\begin{aligned} & \left\\|\tau_{h}^{\prime}-\hat{\tau}^{\prime}\right\\| \\ & =3.74131 \times 10^{-3} \end{aligned}$				
	Normal subdivision ($\mathrm{h}=0.069420$)						
	Upper bound	$\begin{aligned} & \left\\|\phi_{h}^{\prime}\right\\|^{2}+\varepsilon\left(\phi_{h}^{\prime}\right) \\ & =1.539652+0.142916 \times 10^{-4} \\ & =1.539666 \quad(0.00034) \end{aligned}$	$\begin{aligned} & \left\\|\phi_{h}^{\prime}-\hat{\phi}^{\prime}\right\\| \\ & =5.89447 \times 10^{-3} \end{aligned}$				
	Lower bound	$\begin{aligned} & \frac{1}{\left\\|\tau_{h}^{\prime}\right\\|^{2}+\varepsilon\left(\tau_{h}^{\prime}\right)} \\ & =\frac{1}{0.649652+0.558093 \times 10^{-4}} \\ & =1.539153 \quad(-0.00018) \end{aligned}$	$\begin{aligned} & \left\\|\tau_{h}^{\prime}-\hat{\tau}^{\prime}\right\\| \\ & =1.09209 \times 10^{-3} \end{aligned}$				

(): Deviation from exact value.

Table 3 Periodicity moduli p_{2} of example 2 (compact bordered Riemann surface)

Exact value	$\mathrm{p}_{2}=\int_{\mathrm{B}} * \rho=1.839350$						
Finite element approxi- mations	Original triangulation ($\mathrm{h}=0.138840$)						
	Upper bound	$\begin{aligned} & \left\\|\rho_{h}^{\prime}\right\\|^{2}+\varepsilon\left(\rho_{h}^{\prime}\right) \\ & =1.841976+0.351532 \times 10^{-3} \\ & =1.842328 \quad(0.00298) \end{aligned}$	$\begin{aligned} & \left\\|\rho_{h}^{\prime}-\hat{\rho}^{\prime}\right\\| \\ & =7.65797 \times 10^{-3} \end{aligned}$				
	Lower bound	$\begin{aligned} & \frac{1}{\left\\|x_{h}^{\prime}\right\\|^{2}+\varepsilon\left(x_{h}^{\prime}\right)} \\ & =\frac{1}{0.544588+0.145580 \times 10^{-3}} \\ & =1.835760 \quad(-0.00359) \end{aligned}$	$\begin{aligned} & \left\\|x_{h}^{\prime}-\hat{x}^{\prime}\right\\| \\ & =5.22574 \times 10^{-3} \end{aligned}$				
		Normal subdivision ($\mathrm{h}=0$.					
	Upper bound	$\begin{aligned} & \left\\|\rho_{h}^{\prime}\right\\|^{2}+\varepsilon\left(\rho_{h}^{\prime}\right) \\ & =1.840016+0.875764 \times 10^{-4} \\ & =1.840104 \quad(0.00075) \end{aligned}$	$\begin{aligned} & \left\\|\rho_{h}^{\prime}-\hat{\rho}^{\prime}\right\\| \\ & =2.28613 \times 10^{-3} \end{aligned}$				
	Lower bound	$\begin{aligned} & \frac{1}{\left\\|x_{h}^{\prime}\right\\|^{2}+\varepsilon\left(x_{h}^{\prime}\right)} \\ & =\frac{1}{0.543904+0.361871 \times 10^{-4}} \\ & =1.838437 \quad(-0.00091) \end{aligned}$	$\begin{aligned} & \left\\|x_{h}^{\prime}-\hat{x}^{\prime}\right\\| \\ & =1.73332 \times 10^{-3} \end{aligned}$				

(): Deviation from exact value.

Chapter 5. Determination of the modulus of quadrilaterals.

\S ㄷ. $\underline{1}$ Quadrilateral on a Riemann surface. Let Ω be a simplyconnected subdomain of a Riemann surface W whose closure $\bar{\Omega}$ is a compact bordered subregion. We consider the case of $\mathrm{C}_{1}=\mathrm{C}_{2}=$ $C_{3}=\phi, \quad C_{4}=\partial \Omega$ and $n=2$ for the notations defined in § 1.1. We assume that $\partial \Omega$ satisfies the conditions in § 1.1. And thus four points p_{1}, p_{2}, p_{3} and p_{4} on $\partial \Omega$, and the two opposite arcs $c_{0}=\gamma_{1}^{4}$ (from p_{1} to p_{2}) and $c_{1}=\gamma_{3}^{4}$ (from p_{3} to p_{4}) are assigned. Then we say that a quadrilateral Q with opposite sides c_{0} and c_{1} is given.
$\S \underline{5} \cdot \underline{2}$. Formulation of problems. We can conformally map the domain Ω defined in $\S 5.1$ onto a rectangular domain

$$
\mathrm{R}=\{\mathrm{w} \mid 0<\operatorname{Re} \mathrm{w}<1,0<\operatorname{Im} \mathrm{w}<\mathrm{M}\}
$$

by a function $w=f(p)$ so that p_{1}, p_{2}, p_{3} and p_{4} are mapped to $i M, 0,1$ and $1+i M$ respectively. Then the modulus of the quadrilateral Q :

$$
M(Q)=M
$$

is uniquely determined by Q. Our aim is to determine $M(Q)$ by finite element method.

Now we assign the two opposite $\operatorname{arcs} \tilde{c}_{0}$ (from p_{2} to p_{3}) and \tilde{c}_{1} (from p_{4} to p_{1}) on $\partial \Omega$. Then a quadrilateral \widetilde{Q} with opposite sides \tilde{c}_{0} and \tilde{c}_{1} is defined. We see that the domain Ω can be conformally mapped onto a rectangular domain

$$
\tilde{\mathrm{R}}=\{\mathrm{w} \mid 0<\operatorname{Re} \mathrm{w}<1,0<\operatorname{Im} \mathrm{w}<1 / \mathrm{M}\}
$$

by a function $w=\tilde{f}(p)$ so that p_{2}, p_{3}, p_{4} and p_{1} are mapped to i/m, 0,1 and $1+i / M$ respectively. Hence
(5.1) $\quad M(\widetilde{Q})=\frac{1}{M(Q)}$.

We characterize $M(Q)$ by a minimal property.
Let $\gamma(\tilde{\gamma})$ be a curve which connects a point on $c_{0}\left(\tilde{c}_{0}\right)$ to a point on $c_{1}\left(\tilde{c}_{1}\right)$. Let $\{\Theta, \widetilde{\Theta}\}$ be a system of differentials in $\Gamma_{\mathrm{c}}(\bar{\Omega})$ satisfying the conditions

$$
\begin{array}{ll}
\Theta=0 & \text { along } \\
c_{0} \cup c_{1}, \\
\widetilde{\Theta}=0 & \text { along } \\
\tilde{c}_{0} \cup \tilde{c}_{1}, \\
\int_{\gamma} \Theta=\int_{\tilde{\gamma}} \widetilde{\Theta}=1 .
\end{array}
$$

Let $\psi(\tilde{\psi})$ be the harmonic solution in $\Gamma_{\Theta}\left(\Gamma_{\widetilde{\Theta}}\right)$. Then $\psi(\tilde{\psi})$ satisfies the condition $* \psi=0(* \tilde{\psi}=0)$ along $\partial \Omega-c_{0} \cup c_{1}$ $\left(\partial \Omega-\tilde{c}_{0} \cup \tilde{c}_{1}\right)$. We can easily see that $\psi=\mathrm{d}(\operatorname{Re} f) \quad(\Psi=\mathrm{d}(\operatorname{Re} \tilde{f}))$. Then by Lemma 3.1 the equalities

$$
\begin{align*}
& M(Q)=\|\psi\|^{2}=\min _{\sigma \in \Gamma_{\Theta}}\|\sigma\|^{2}, \tag{5.2}\\
& M(\widetilde{Q})=\|\Psi\|^{2}=\min _{\sigma \in \Gamma_{\widetilde{\Theta}}}\|\sigma\|^{2} \tag{5.3}
\end{align*}
$$

hold.
Let $\Lambda_{\psi}(K)$ be the subspace of $\Lambda(K)$ which consists of the differentials σ_{h} in $\Lambda(K)$ satisfying the conditions

$$
\begin{array}{ll}
\sigma_{h}=0 & \text { along } c_{0} \cup c_{1} \\
\int_{\gamma} \sigma_{h}=1 &
\end{array}
$$

and let $\Lambda_{\psi}^{\prime}\left(K^{\prime}\right)=\left\{\sigma_{h}^{\prime}=F\left(\sigma_{h}\right), \quad \sigma_{h} \in \Lambda_{\psi}(K)\right\}$. Further $\Lambda_{\tilde{\psi}}(K)$ be the
subspace of $\Lambda(K)$ which consists of the differentials σ_{h} in $\Lambda(K)$ satisfying the conditions

$$
\begin{array}{lll}
\sigma_{h}=0 & \text { along } \quad \tilde{c}_{0} \cup \tilde{c}_{1}, \\
\int_{\tilde{\gamma}} \sigma_{h}=1 &
\end{array}
$$

and let $\Lambda_{\tilde{\Psi}^{\prime}}\left(K^{\prime}\right)=\left\{\sigma_{h}^{\prime}=F\left(\sigma_{h}\right), \quad \sigma_{h} \in \Lambda_{\tilde{\psi}}(K)\right\}$.
Let ψ_{h}^{\prime} and $\tilde{\psi}_{h}^{\prime}$ be the finite element approximations of ψ and $\tilde{\psi}$ in the space $\Lambda_{\psi}^{\prime}\left(K^{\prime}\right)$ and $\Lambda_{\psi}^{\prime}\left(K^{\prime}\right)$ respectively. Then by (ii) of Theorem 3.2 we have the estimates

$$
\begin{equation*}
\|\psi\|^{2} \leqq\left\|\psi_{h}^{\prime}\right\|^{2}+\varepsilon\left(\psi_{h}^{\prime}\right) \tag{5.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\tilde{\psi}\|^{2} \leqq\left\|\tilde{\psi}_{h}^{\prime}\right\|^{2}+\varepsilon\left(\tilde{\psi}_{h}^{\prime}\right) \tag{5.5}
\end{equation*}
$$

By (5.1)~(5.5) we have upper and lower bounds for the modulus $M(Q)$:

$$
\begin{equation*}
\frac{1}{\left\|\tilde{\psi}_{h}^{\prime}\right\|^{2}+\varepsilon\left(\tilde{\psi}_{h}^{\prime}\right)} \leqq M(Q) \leqq\left\|\psi_{h}^{\prime}\right\|^{2}+\varepsilon\left(\psi_{h}^{\prime}\right) \tag{5.6}
\end{equation*}
$$

§ $\underline{5} \cdot \underline{3}$. Numerical example $\underline{3}$ (the case of Gaier's example [11]).
Let Ω be the simply-connected domain on the z-plane defined by

$$
\begin{aligned}
\Omega= & \{z \mid 0<x<1,0<y<1\} \\
& -\left\{z \left\lvert\, \frac{1}{2} \leqq x<1\right., \frac{1}{2} \leqq y<1\right\},
\end{aligned}
$$

and let c_{0} and c_{1} be the boundary parts of Ω defined by

$$
\begin{aligned}
c_{0}= & \left\{z \left\lvert\, 0 \leqq x \leqq \frac{1}{2}\right., y=0\right\} \cup\{z \mid x=0,0 \leqq y \leqq 1\} \\
& \cup\left\{z \left\lvert\, 0 \leqq x \leqq \frac{1}{2}\right., y=1\right\}
\end{aligned}
$$

and

$$
c_{1}=\left\{z \quad \left\lvert\, \frac{1}{2} \leqq x \leqq 1\right., \quad y=\frac{1}{2}\right\}
$$

respectively, where $z=x+i y$. Let Q be the quadrilateral with the two opposite sides c_{0} and c_{1} (cf. Fig. 12). We aim to obtain

Fig. 12 Numerical example 3 (the example of Gaier)
good upper and lower approximate values of the modulus of Q.
We construct a triangulation of the closed region $\bar{\Omega}$ as in Fig. 13. The closed regions G_{2} and G_{3} are mapped onto the regions G_{2}^{*} and G_{3}^{*} respectively by the local parameters $\zeta=\varphi_{2}(z)$ $=\mathrm{a} \sqrt{\mathrm{z}-1 / 2}$ and $\xi=\varphi_{3}(\mathrm{z})=\mathrm{b} \sqrt[3]{\mathrm{z-(1+i)/2}} \quad(\mathrm{a}=1$ and $b=e^{-\pi i / 6}$) respectively, where a and b are so determined that $|d \xi / d z|=1$ on $|z-1 / 2|=1 / 4$ and $|z-(1+i) / 2|=$ $1 / \sqrt{27}$ respectively. We construct ordinary triangulations K_{2}^{*} and K_{3}^{*} of G_{2}^{*} and G_{3}^{*} as in Fig. 13 respectively. By K_{2} and K_{3} we denote the image triangulations of K_{2}^{*} and K_{3}^{*} by the

mappings φ_{2}^{-1} and φ_{3}^{-1} respectively. The triangulation K_{1} of the region $G_{1}=\overline{\Omega-\left(G_{2} \cup G_{3}\right)}$ in Fig. 13 is so constructed that each 2 -simplex s of K_{1} is natural or minor according as $|s| \cap\left|K_{2}+K_{3}\right|=\phi$ or $|s| \cap\left|K_{2}+K_{3}\right| \neq \phi$, where if some intersection is a point then it is interpreted to be vacuous, and the local parameter $\varphi_{1}(z)$ of K_{1} is the identity mapping $\varphi_{1}(\mathrm{z}) \equiv \mathrm{z}$.

Let ψ and $\tilde{\psi}$ be the differentials on the present Ω defined in $\S 5.2$, and let ψ_{h}^{\prime} and Ψ_{h}^{\prime} be the finite element approximations of ψ and ψ respectively in the classes $\Lambda_{\psi}^{\prime}\left(K^{\prime}\right)=\left\{\sigma_{h}^{\prime}=F\left(\sigma_{h}\right)\right.$, $\left.\sigma_{\mathrm{h}} \in \Lambda_{\psi}(\mathrm{K})\right\}$ and $\Lambda_{\Psi^{\prime}}^{\prime}\left(\mathrm{K}^{\prime}\right)=\left\{\sigma_{\mathrm{h}}^{\prime}=\mathrm{F}\left(\sigma_{\mathrm{h}}\right), \sigma_{\mathrm{h}} \in \Lambda_{\Psi^{\prime}}(\mathrm{K})\right\}$ respectively, where K^{\prime} is the naturalized triangulation associated to the present K. To attain our aim it is sufficient to make numerical calculations of ψ_{h}^{\prime} and $\tilde{\psi}_{h}^{\prime}$ (cf. Mizumoto and Hara [17], [18] for the calculation method).

Table 4 shows the exact value of the modulus $M(Q)$ (see Gaier [11] for the calculation method), Gaier's computation results and the values of our finite element approximations. Furthermore, computation results for the normal subdivision K^{1} (see Fig. 14) of the present K are shown. We note that $\varepsilon\left(\psi_{h}^{\prime}\right)=\varepsilon\left(\tilde{\psi}_{h}^{\prime}\right)=0$ in the present example. It can be said that the both of upper and lower bounds of $M(Q)$ by our method are much closer to the exact value than those by Gaier.

Table 4 Modulus $M(Q)$ of example 3
(the example of Gaier [11])

| Exact value | | $M(Q)=\\|\psi\\|^{2}=1.279262$ | | | |
|---|---|---|---|---|---|---|---|
| Gaier's
 computation
 results
 (Gaier[11]) | | | $\begin{array}{r} (0.21509) \\ (-0.18383) \end{array}$ |
| | | $\begin{array}{l\|l} \mathrm{h}=2^{-7} \quad & \text { Upper bound }=1.32659 \\ \text { Lower bound }=1.23368 \end{array}$ | $\begin{aligned} & (0.04733) \\ & (-0.04558) \end{aligned}$ |
| Original triangulation $\left(\mathrm{h}=2^{-4}\right)$ | | | |
| our
 computa-
 tion
 results | Upper
 bound | $\begin{aligned} & \left\\|\psi_{h}^{\prime}\right\\|^{2}+\varepsilon\left(\psi_{h}^{\prime}\right) \\ & =1.28396+0 \\ & =1.28396 \quad(0.00470) \end{aligned}$ | $\begin{aligned} & \left\\|\psi_{h}^{\prime}-\hat{\psi}^{\prime}\right\\| \\ & =1.28545 \times 10^{-2} \end{aligned}$ |
| | Lower
 bound | $\begin{aligned} & \frac{1}{\left\\|\Psi_{h}^{\prime}\right\\|^{2}+\varepsilon\left(\tilde{\Psi}_{h}^{\prime}\right)} \\ & =\frac{1}{0.783599+0} \\ & =1.27616 \quad(-0.00310) \end{aligned}$ | $\begin{aligned} & \left\\|\tilde{\psi}_{h}^{\prime}-\hat{\widetilde{\psi}}^{\prime}\right\\| \\ & =7.25518 \times 10^{-3} \end{aligned}$ |
| | Normal subdivision $\left(\mathrm{h}=2^{-5}\right)$ | | |
| | Upper bound | $\begin{aligned} & \left\\|\psi_{h}^{\prime}\right\\|^{2}+\varepsilon\left(\psi_{h}^{\prime}\right) \\ & =1.28046+0 \\ & =1.28046 \quad(0.00120) \end{aligned}$ | $\begin{aligned} & \left\\|\psi_{h}^{\prime}-\hat{\psi}^{\prime}\right\\| \\ & =3.89364 \times 10^{-3} \end{aligned}$ |
| | Lower
 bound | $\begin{aligned} & \frac{1}{\left\\|\widetilde{\psi}_{h}^{\prime}\right\\|^{2}+\varepsilon\left(\tilde{\psi}_{h}^{\prime}\right)} \\ & =\frac{1}{0.782185+0} \\ & =1.27847 \quad(-0.00079) \end{aligned}$ | $\begin{aligned} & \left\\|\tilde{\psi}_{h}^{\prime}-\hat{\widetilde{\psi}}^{\prime}\right\\| \\ & =2.18573 \times 10^{-3} \end{aligned}$ |

§ $\underline{5} \cdot \underline{4}$. Numerical example $\underline{4}$ (the case of a Riemann surface). Let $D_{1}=\{z| | z \mid<\infty\}-\{z \mid 0 \leqq x<\infty, y=0\}$ and c_{0} be the upper boundary part of D_{1} lying on $\{z \mid 1 \leqq x<\infty, y=0\}$, where $z=$ $x+i y . \operatorname{Let} D_{2}=\{z| | z \mid<1\}-\{z \mid 0 \leqq x<1, y=0\}$ and let c_{1} be the boundary part of D_{2} defined by $c_{1}=\{z| | z \mid=1$, $y \geqq 0\}$. Let Ω be the simply-connected covering surface obtained by connecting D_{1} and D_{2} crosswise along the segment $\{z \quad 10 \leqq x$ $<1, y=0\}(c f$. Fig. 15). Let Q be the quadrilateral with the
D_{1}

Fig. 15 Numerical example 4 (the case of a Riemann surface)
opposite sides c_{0} and C_{1}. By symmetricity of Q we immediately see that $M(Q)=1$. We aim to obtain good upper and lower approximate values of $M(Q)$. The present example is one which exhibits remarkable validity of our method. Namely, it is shown that an unbounded covering surface over the z-plane with many inner and corner singularities of high order, and with a curvilinear boundary is dealt
with by our local treatment method without use of any global conformal mapping.

We construct a triangulation of the bordered region $\bar{\Omega}$ as in Figs. 16 and 17. In Fig. 16 , the closed regions $G_{1} \cup G_{2} \cup \cdots \cup G_{5}$, $G_{6} \cup G_{7}$ and G_{9} are mapped onto the regions $G_{1}^{*} \cup G_{2}^{*} \cup \ldots \cup G_{5}^{*}$. $G_{6}^{*} \cup G_{7}^{*}$ and G_{9}^{*} respectively by the mappings $\xi=\varphi_{1}(z)=(1 / 4)$. $\log z, \zeta=\varphi_{6}(z)=1 / z$ and $\zeta=\varphi_{9}(z)=\sqrt{z}$ respectively. Further, the regions $G_{3}^{*}, G_{4}^{*}, G_{5}^{*}$ and G_{7}^{*} are mapped onto the regions $G_{3}^{* *}$, $\mathrm{G}_{4}^{* *}, \mathrm{G}_{5}^{* *}$ and $\mathrm{G}_{7}^{* *}$ respectively by the mappings $\mathrm{Z}=\psi_{3}(\xi)=\sqrt[3]{\xi}, \quad Z=$ $\psi_{4}(\xi)=e^{-\pi i / 6} \cdot \sqrt[3]{\xi-\pi i / 2}, \quad Z=\psi_{5}(\xi)=e^{-\pi i / 4} \cdot \sqrt{\xi-3 \pi i / 4} \quad$ and $\quad Z=$ $\psi_{7}(\xi)=\sqrt{2} \sqrt[4]{\xi}$ respectively. Let $\varphi_{3}(z)=\psi_{3} \circ \varphi_{1}(z), \quad \varphi_{4}(z)=$ $\psi_{4}{ }^{\circ} \varphi_{1}(z), \quad \varphi_{5}(z)=\psi_{5} \circ \varphi_{1}(z)$ and $\varphi_{7}(z)=\psi_{7}{ }^{\circ} \varphi_{6}(z)$. We note that $\left|\frac{\mathrm{d} \varphi}{\mathrm{d}} 1\right|=1 \quad$ on $\quad|z|=\frac{1}{4}, \quad\left|\frac{\mathrm{~d} \psi}{\mathrm{~d} \xi}\right|=1 \quad$ on $\quad|\xi|=\frac{1}{\sqrt{27}}, \quad\left|\frac{\mathrm{~d} \psi}{\mathrm{~d} \xi}\right|=1$ on $\left|\xi-\frac{\pi i}{2}\right|=\frac{1}{\sqrt{27}}, \quad\left|\frac{\mathrm{~d} \psi}{\mathrm{~d} \xi}\right|=1 \quad$ on $\quad\left|\xi-\frac{3 \pi i}{4}\right|=\frac{1}{4}, \quad\left|\frac{\mathrm{~d}\left(\varphi_{6} \circ \varphi_{1}^{-1}\right)}{\mathrm{d} \xi}\right|=1$ on $\operatorname{Re} \xi=\frac{1}{4} \log 4, \quad\left|\frac{\mathrm{~d} \psi}{\mathrm{~d} \xi}\right|=1 \quad$ on $\quad|\xi|=\frac{1}{4} \quad$ and $\quad\left|\frac{\mathrm{d} \varphi}{\mathrm{dz}}\right|=1$ on $|z|=\frac{1}{4}$. We construct ordinary triangulations $K_{3}^{* *}, K_{4}^{* *}, K_{5}^{* *}, K_{7}^{* *}$ and K_{9}^{*} of $\mathrm{G}_{3}^{* *}, \mathrm{G}_{4}^{* *}, \mathrm{G}_{5}^{* *}, \mathrm{G}_{7}^{* *}$ and G_{9}^{*} as in Fig. 17 respectively. By $K_{3}, K_{4}, K_{5}, K_{7}$ and K_{9} we denote the image triangulations of $\mathrm{K}_{3}^{* *}, \mathrm{~K}_{4}^{* *}, \mathrm{~K}_{5}^{* *}, \mathrm{~K}_{7}^{* *}$ and K_{9}^{*} by the mappings $\varphi_{3}^{-1}, \varphi_{4}^{-1}, \varphi_{5}^{-1}, \varphi_{7}^{-1}$ and φ_{9}^{-1} respectively, and the local parameters of $K_{3}, K_{4}, K_{5}, K_{7}$ and K_{9} are $Z=\varphi_{3}(z), Z=\varphi_{4}(z), Z=\varphi_{5}(z)$, $Z=\varphi_{7}(z)$ and $\zeta=\varphi_{9}(z)$ respectively. The triangulations K_{1} and K_{2} of G_{1} and G_{2} respectively in $F i g$. 17 are so constructed that each 2-simplex s of K_{1} and K_{2} is natural or minor according as $|s| \cap\left|K_{3}+K_{4}+K_{5}\right|=\phi$ or $|s| \cap \mid K_{3}+K_{4}+$

$\mathrm{K}_{5} \mathrm{I} \neq \phi$, where the local parameter of $\mathrm{K}_{1}+\mathrm{K}_{2}$ is $\zeta=\varphi_{1}(\mathrm{z})$. Also the triangulation K_{6} of G_{6} is so constructed that each 2-simplex s of K_{6} is natural, minor or major according as $|s| \cap\left|K_{1}+K_{7}\right|=\phi$. $|s| \cap\left|K_{7}\right| \neq \phi$ or $|s| \cap\left|K_{1}\right| \neq \phi$, where the local parameter of K_{6} is $\xi=\varphi_{6}(z)$. Further, the triangulation K_{8} of G_{8} is so constructed that each 2-simplex s of K_{8} is natural, minor or major according as $|\mathrm{s}| \cap\left|K_{1}+\mathrm{K}_{2}+\mathrm{K}_{9}\right|=$ ϕ. $|s| \cap\left|K_{9}\right| \neq \phi$ or $|s| \cap\left|K_{1}+K_{2}\right| \neq \phi$, where the local parameter of K_{8} is the identity mapping $\varphi_{8}(\mathrm{z}) \equiv \mathrm{z}$.

Let ψ and $\tilde{\psi}$ be the differentials on the present Ω defined in $\S 5.2$, and let ψ_{h}^{\prime} and Ψ_{h}^{\prime} be the finite element approximations of ψ and $\tilde{\psi}$ respectively in the classes $\Lambda_{\psi}^{\prime}\left(K^{\prime}\right)$ and $\Lambda_{\Psi^{\prime}}\left(K^{\prime}\right)$ respectively, where K^{\prime} is the naturalized triangulation associated to the present K. To attain our aim it is sufficient to make numerical calculations of ψ_{h}^{\prime} and $\tilde{\psi}_{h}^{\prime}$.

Now the differential $\psi=d u$ is obtained by the following procedure. Let Δ be the rectangular domain

$$
\Delta=\{W \mid 0<\operatorname{Re} W<1,0<\operatorname{Im} W<1\}
$$

and let γ_{0} and γ_{1} be the boundary parts of Δ defined by

$$
\gamma_{0}=\{W \mid 0 \leqq \operatorname{Im} W \leqq 1, \quad \operatorname{Re} W=0\}
$$

and

$$
\gamma_{1}=\{W \mid 0 \leqq \operatorname{Im} W \leqq 1, \quad \operatorname{Re} W=1\}
$$

The conformal map $W=f(p)$ such that Ω is conformally mapped onto Δ so that c_{0} and c_{1} are mapped onto γ_{0} and γ_{1} respectively, is constructed by the composition of the following mappings, and then $u=\operatorname{Re} f(p)$:
(i) $w=\sqrt{z}$;
(ii) $\zeta=\left(\frac{w-1}{w+1}\right)^{2 / 3}$;
(iii) $\frac{Z-Z_{1}}{Z-Z_{2}} \cdot \frac{Z_{3}-Z_{2}}{Z_{3}-Z_{1}}=\frac{\xi-\xi_{1}}{\xi-\xi_{2}} \cdot \frac{\xi_{3}-\xi_{2}}{\xi_{3}-\xi_{1}}$,
where $\xi_{1}=0, \quad \xi_{2}=-1, \quad \xi_{3}=1, \quad Z_{1}=1, \quad Z_{2}=-1$ and $Z_{3}=1 / \mathrm{k}$ with $1 / \mathrm{k}=3+2 \sqrt{2}$;

$$
\text { (iv) } \quad W=-\frac{1}{2 K}\left(\int_{0}^{Z} \frac{d z}{\sqrt{\left(1-z^{2}\right)\left(1-k^{2} z^{2}\right)}}-\left(K+i K^{\prime}\right)\right) \text {, }
$$

where $K=K(k)$ and $K^{\prime}=K^{\prime}(k)$ are the complete elliptic integrals.

Table 5 shows the values of our finite element approximations. Furthermore, computation results for the normal subdivision K^{1} of the present K are shown. It can be said that the both of upper and lower bounds of $M(Q)$ are close to the exact values.

Table 5 Modulus $M(Q)$ of example 4
(the case of a Riemann surface)

| Exact value | $M(Q)=\\|\psi\\|^{2}=1.0$ | | | | |
|---|---|---|---|---|---|---|---|
| Finite element approximations | Original triangulation ($\mathrm{h}=0.141421$) | | |
| | Upper
 bound | $\begin{aligned} & \left\\|\psi_{h}^{\prime}\right\\|^{2}+\varepsilon\left(\psi_{h}^{\prime}\right) \\ & =1.00484+0.103287 \times 10^{-2} \\ & =1.00587 \quad(0.00587) \end{aligned}$ | $\begin{aligned} & \left\\|\psi_{\mathrm{h}}^{\prime}-\hat{\psi}^{\prime}\right\\| \\ & =1.88104 \times 10^{-2} \end{aligned}$ |
| | Lower
 bound | $\begin{aligned} & \frac{1}{\left\\|\Psi_{h}^{\prime}\right\\|^{2}+\varepsilon\left(\Psi_{h}^{\prime}\right)} \\ & =\frac{1}{1.00484+0.103287 \times 10^{-2}} \\ & =0.994164 \quad(-0.005836) \end{aligned}$ | $\begin{aligned} & \left\\|\tilde{\psi}_{h}^{\prime}-\hat{\Psi}^{\prime}\right\\| \\ & =1.88102 \times 10^{-2} \end{aligned}$ |
| | Normal subdivision ($\mathrm{h}=0.0707107$) | | |
| | Upper
 bound | $\begin{aligned} & \left\\|\psi_{h}^{\prime}\right\\|^{2}+\varepsilon\left(\psi_{h}^{\prime}\right) \\ & =1.00128+0.255952 \times 10^{-3} \\ & =1.00154 \quad(0.00154) \end{aligned}$ | $\begin{aligned} & \left\\|\psi_{h}^{\prime}-\hat{\psi}^{\prime}\right\\| \\ & =5.84884 \times 10^{-3} \end{aligned}$ |
| | Lower
 bound | $\begin{aligned} & \frac{1}{\left\\|\tilde{\Psi}_{h}^{\prime}\right\\|^{2}+\varepsilon\left(\tilde{\Psi}_{h}^{\prime}\right)} \\ & =\frac{1}{1.00128+0.255957 \times 10^{-3}} \\ & =0.998466 \quad(-0.001534) \end{aligned}$ | $\begin{aligned} & \left\\|\tilde{\psi}_{h}^{\prime}-\hat{\Psi}^{\prime}\right\\| \\ & =5.85420 \times 10^{-3} \end{aligned}$ |

() : Deviation from exact value.
$\S \underline{5} \cdot \underline{5}$. Numerical example $\underline{5}$ (the case of an unbounded domain; $c f$. example 1). Let $\Omega=\{z \mid y>0\}$, and let c_{0} and c_{1} be the boundary parts of Ω defined by $c_{0}=\{z \mid-3 \leqq x \leqq-1, y=0\}$ and $c_{1}=\{z \mid 1 \leqq x \leq 3, y=0\}$ respectively, where $z=x+i y$. Let Q be the quadrilateral with the two opposite sides c_{0} and c_{1} (cf. Fig. 18). We obtain good upper and lower approximate values of the modulus of Q. See example 1 for the details. Table 6 shows

Q

Fig. 18 Numerical example 5 (the case of an unbounded domain)
the exact value of the modulus $M(Q)$ which can be calculated by making use of a complete elliptic integral, and the values of our finite element approximations.

| Tabl
 Exact
 value | $M(Q)=\\|\psi\\|^{2}=0.781701$ | | | | |
|---|---|---|---|---|---|---|---|
| Finite
 element
 approxi-
 mations | Original triangulation ($\mathrm{h}=0.213758$) | | |
| | Upper bound | $\begin{aligned} & \left\\|\psi_{h}^{\prime}\right\\|^{2}+\varepsilon\left(\psi_{h}^{\prime}\right) \\ & =0.782184+0.429347 \times 10^{-3} \\ & =0.782613 \quad(0.000912) \end{aligned}$ | $\begin{aligned} & \left\\|\psi_{h}^{\prime}-\hat{\psi}^{\prime}\right\\| \\ & =3.76256 \times 10^{-3} \end{aligned}$ |
| | Lower
 bound | $\begin{aligned} & \frac{1}{\left\\|\Psi_{h}^{\prime}\right\\|^{2}+\varepsilon\left(\Psi_{h}^{\prime}\right)} \\ & =\frac{1}{1.280878+0.150405 \times 10^{-5}} \\ & =0.780714 \quad(-0.000987) \end{aligned}$ | $\begin{aligned} & \left\\|\tilde{\psi}_{h}^{\prime}-\hat{\Psi}^{\prime}\right\\| \\ & =6.14254 \times 10^{-3} \end{aligned}$ |
| | Normal subdivision ($\mathrm{h}=0.106879$) | | |
| | Upper
 bound | $\begin{aligned} & \left\\|\psi_{h}^{\prime}\right\\|^{2}+\varepsilon\left(\psi_{h}^{\prime}\right) \\ & =0.781968+0.107413 \times 10^{-3} \\ & =0.782075 \quad(0.000374) \end{aligned}$ | $\begin{aligned} & \left\\|\psi_{h}^{\prime}-\hat{\psi}^{\prime}\right\\| \\ & =1.12050 \times 10^{-3} \end{aligned}$ |
| | Lower
 bound | $\begin{aligned} & \frac{1}{\left\\|\tilde{\psi}_{h}^{\prime}\right\\|^{2}+\varepsilon\left(\tilde{\psi}_{h}^{\prime}\right)} \\ & =\frac{1}{1.279506+0.381486 \times 10^{-6}} \\ & =0.781551 \quad(-0.000150) \end{aligned}$ | $\begin{aligned} & \left\\|\tilde{\psi}_{h}^{\prime}-\hat{\tilde{\psi}}^{\prime}\right\\| \\ & =1.83821 \times 10^{-3} \end{aligned}$ |

§ $\underline{5} \cdot \underline{6}$. Numerical example $\underline{6}$ (the case of a curvilinear domain; cf. example 2). Let

$$
\Omega=\left\{z \left\lvert\, \frac{x^{2}}{16}+\frac{y^{2}}{15}<1\right., y>0\right\},
$$

and let c_{0} and c_{1} be the boundary parts of Ω defined by

$$
c_{0}=\{z \mid 3 \leqq x \leqq 4, y=0\} \cup\left\{z \left\lvert\, \frac{x^{2}}{16}+\frac{y^{2}}{15}=1\right., y \leqq 0\right\}
$$

and

$$
c_{1}=\{z \quad \mid-1 \leqq x \leqq 1, y=0\}
$$

respectively, where $z=x+i y$. Let Q be the quadrilateral with the opposite sides c_{0} and c_{1} (cf. Fig. 19).

Fig. 19 Numerical example 6 (the case of a curvilinear domain: quadrilateral Q)

Further, let c_{0}^{\prime} and c_{1}^{\prime} be the boundary parts of Ω defined by

$$
c_{0}^{\prime}=\{z \mid 1 \leqq x \leqq 3, y=0\}
$$

and

$$
c_{1}^{\prime}=\{z \mid-4 \leqq x \leqq-1, y=0\} \cup\left\{z \left\lvert\, \frac{x^{2}}{16}+\frac{y^{2}}{15}=1\right., y \geqq 0\right\}
$$

respectively, where $z=x+i y$. Let Q^{\prime} be the quadrilateral
with the opposite sides c_{0}^{\prime} and c_{1}^{\prime} (cf. Fig. 20).

Fig. 20 Numerical example 6 (the case of a curvilinear domain: quadrilateral Q^{\prime})

We obtain good upper and lower approximate values of the modulus of Q and Q^{\prime}. See example 2 for the details. Tables 7 and 8 show the exact values of the modulus $M(Q)$ and $M\left(Q^{\prime}\right)$ respectively (see example 2 for the calculation method) and the values of our finite element approximations.

Table 7 Modulus $M(Q)$ of example 6 (the case of a curvilinear domain)

| Exact value | $M(Q)=\\|\psi\\|^{2}=1.539330$ | | | | |
|---|---|---|---|---|---|---|---|
| | Original triangulation ($h=0.138840$) | | |
| | Upper
 bound | $\begin{aligned} & \left\\|\psi_{h}^{\prime}\right\\|^{2}+\varepsilon\left(\psi_{h}^{\prime}\right) \\ & =1.540588+0.572262 \times 10^{-4} \\ & =1.540645 \quad(0.00132) \end{aligned}$ | $\begin{aligned} & \left\\|\psi_{h}^{\prime}-\hat{\psi}^{\prime}\right\\| \\ & =1.15335 \times 10^{-2} \end{aligned}$ |
| Finite | Lower
 bound | $\begin{aligned} & \frac{1}{\left\\|\Psi_{h}^{\prime}\right\\|^{2}+\varepsilon\left(\Psi_{h}^{\prime}\right)} \\ & =\frac{1}{0.649700+0.225117 \times 10^{-3}} \\ & =1.538639 \quad(-0.00069) \end{aligned}$ | $\begin{aligned} & \left\\|\tilde{\Psi}_{h}^{\prime}-\hat{\Psi}^{\prime}\right\\| \\ & =3.74131 \times 10^{-3} \end{aligned}$ |
| | Normal subdivision ($\mathrm{h}=0.069420$) | | |
| mations | Upper bound | $\begin{aligned} & \left\\|\psi_{h}^{\prime}\right\\|^{2}+\varepsilon\left(\psi_{h}^{\prime}\right) \\ & =1.539652+0.142916 \times 10^{-4} \\ & =1.539666 \quad(0.00034) \end{aligned}$ | $\begin{aligned} & \left\\|\psi_{h}^{\prime}-\hat{\psi}^{\prime}\right\\| \\ & =5.89447 \times 10^{-3} \end{aligned}$ |
| | Lower bound | $\begin{aligned} & \frac{1}{\left\\|\tilde{\Psi}_{h}^{\prime}\right\\|^{2}+\varepsilon\left(\tilde{\Psi}_{h}^{\prime}\right)} \\ & =\frac{1}{0.649652+0.558093 \times 10^{-4}} \\ & =1.539153 \quad(-0.00018) \end{aligned}$ | $\begin{aligned} & \left\\|\tilde{\psi}_{h}^{\prime}-\hat{\tilde{\psi}}^{\prime}\right\\| \\ & =1.09209 \times 10^{-3} \end{aligned}$ |

(): Deviation from exact value.

Table 8 Modulus $M\left(Q^{\prime}\right)$ of example 6 (the case of a curvilinear domain)

| Exact value | $M\left(Q^{\prime}\right)=\\|\psi\\|^{2}=1.839350$ | | | | |
|---|---|---|---|---|---|---|---|
| | Original triangulation ($\mathrm{h}=0.138840$) | | |
| | Upper
 bound | $\begin{aligned} & \left\\|\psi_{h}^{\prime}\right\\|^{2}+\varepsilon\left(\psi_{h}^{\prime}\right) \\ & =1.841976+0.351532 \times 10^{-3} \\ & =1.842328 \quad(0.00298) \end{aligned}$ | $\begin{aligned} & \left\\|\psi_{h}^{\prime}-\hat{\psi}^{\prime}\right\\| \\ & =7.65797 \times 10^{-3} \end{aligned}$ |
| Finite | Lower bound | $\begin{aligned} & \frac{1}{\left\\|\Psi_{h}^{\prime}\right\\|^{2}+\varepsilon\left(\tilde{\Psi}_{h}^{\prime}\right)} \\ & =\frac{1}{0.544588+0.145580 \times 10^{-3}} \\ & =1.835760 \quad(-0.00359) \end{aligned}$ | $\begin{aligned} & \left\\|\tilde{\psi}_{\mathrm{h}}^{\prime}-\hat{\Psi}^{\prime}\right\\| \\ & =5.22574 \times 10^{-3} \end{aligned}$ |
| approxi- | Normal subdivision ($\mathrm{h}=0.069420$) | | |
| mations | Upper
 bound | $\begin{aligned} & \left\\|\psi_{h}^{\prime}\right\\|^{2}+\varepsilon\left(\psi_{h}^{\prime}\right) \\ & =1.840016+0.875764 \times 10^{-4} \\ & =1.840104 \quad(0.00075) \end{aligned}$ | $\begin{aligned} & \left\\|\psi_{h}^{\prime}-\hat{\psi}^{\prime}\right\\| \\ & =2.28613 \times 10^{-3} \end{aligned}$ |
| | Lower bound | $\begin{aligned} & \frac{1}{\left\\|\tilde{\psi}_{h}^{\prime}\right\\|^{2}+\varepsilon\left(\tilde{\Psi}_{h}^{\prime}\right)} \\ & =\frac{1}{0.543904+0.361871 \times 10^{-4}} \\ & =1.838437 \quad(-0.00091) \end{aligned}$ | $\begin{aligned} & \left\\|\tilde{\psi}_{h}^{\prime}-\hat{\Psi}^{\prime}\right\\| \\ & =1.73332 \times 10^{-3} \end{aligned}$ |

() : Deviation from exact value.

References.

[1] Ahlfors, L.V. and L. Sario, Riemann surfaces. Princeton University Press, Princeton, 1960.
[2] Akin, J.E., Elements for the analysis of line singularities. J.R. Whiteman(ed.), The Mathematics of Finite Elements and Applications III, Academic Press, London (1979), 65-75.
[3] Babuška, I., The selfadaptive approach in the finite element method. J.R. Whiteman(ed.), The Mathematics of Finite Elements and Applications II, Academic Press, London (1976), 125-142.
[4] Babuška, I. and M.B. Rosenzweig, A finite element scheme for domains with corners. Numer. Math. $\underline{20}$ (1972), 1-21.
[5] Babuška, I., B.A. Szabo and I.N. Katz. The p-version of the finite element method. SIAM J. Numer. Anal. 18 (1981), 515-545.
[6] Barnhill, R.E. and J.R. Whiteman, Error analysis of finite element methods with triangles for elliptic boundary value problems. J.R. Whiteman(ed.), The Mathematics of Finite Elements and Applications, Academic Press, London (1973), 83-112.
[7] Blackburn, W.S., Calculation of stress intensity factors at crack tips using special finite elements. J.R. Whiteman(ed.), The Mathematics of Finite Elements and Applications, Academic Press, London (1973), 327-336.
[8] Bramble, J.H. and S.R. Hilbert, Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation. SIAM J. Numer. Anal. $\underline{7}$ (1970), 112-124.
[9] Bramble, J.H. and M. Zlámal, Triangular elememts in the finite element method. Math. Comp. 24 (1970), 809-820.
[10] Craig, A.W., J.Z. Zhu and O.C. Zienkiewicz, A-posteriori error estimation, adaptive mesh refinement and multigrid methods using hierarchical finite element bases. J.R. Whiteman(ed.), The Mathematics of Finite Elements and Applications V, Academic Press, London (1985), 587-594.
[11] Gaier, D., Ermittlung des konformen Moduls von Vierecken mit Differenzenmethoden. Numer. Math. 19 (1972), 179-194.
[12] Gaier, D., Numerical methods in conformal mapping. H. Werner et al.(ed.), Computational Aspects of Complex Analysis, D. Reidel, Dordrecht (1983), 51-78.
[13] Hara, H. and H. Mizumoto, Determination of the modulus of quadrilaterals by finite element methods. to appear in J. Math. Soc. Japan 42 (1990).
[14] Mizumoto, H., An application of Green's formula of a discrete function: Determination of periodicity moduli, I. Kōdai Math. Sem. Rep. 22 (1970), 231-243.
[15] Mizumoto, H., An application of Green's formula of a discrete function: Determination of periodicity moduli, II. Kōdai Math. Sem. Rep. 22 (1970), 244-249.
[16] Mizumoto, H., A finite-difference method on a Riemann surface. Hiroshima Math. J. $\underline{3}$ (1973), 277-332.
[17] Mizumoto, H. and H. Hara, Finite element method in engineering science: Theory (in Japanese). Morikita, Tokyo, 1983.
[18] Mizumoto, H. and H. Hara, Finite element method in engineering science: Programs (in Japanese). Morikita, Tokyo, 1983.
[19] Mizumoto, H. and H. Hara, Finite element approximations of harmonic differentials on a Riemann surface. Hiroshima Math. J.

18 (1988), 617-654.
[20] Morrey, C.B.Jr., Multiple integrals in the calculus of variations. Springer-Verlag, Berlin•Heidelberg•New York, 1966.
[21] Opfer, G., Untere, beliebig verbesserbare Schranken für den Modul eines zweifach zusammenhängenden Gebietes mit Hilfe von Differenzenverfahren. Dissertation, Hamburg (1967), 1-65.
[22] Opfer, G., Die Bestimmung des Moduls zweifach zusammenhängender Gebiete mit Hilfe von Differenzenverfahren. Arch. Rat. Mech. Anal. 32 (1969), 281-297.
[23] Opfer, G. and M.L. Puri, Complex planar splines. J. Approximation Theory, 31 (1981), 383-402.
[24] Rivara, M.C., Dynamic implementation of the h-version of the finite element method. J.R. Whiteman(ed.), The Mathematics of Finite Elements and Applications V, Academic Press, London (1985), 595-602.
[25] Schatz, A.H. and L.B. Wahlbin, Maximum norm estimates in the finite element method on plane polygonal domains, Part I. Math. Comp. 32 (1978), 73-109.
[26] Schatz, A.H. and L.B. Wahlbin, Maximum norm estimates in the finite element method on plane polygonal domains, Part II. Math. Comp. 33 (1979), 465-492.
[27] Springer, G., Introduction to Riemann surfaces. Addison-Wesley, Massachusetts, 1957, (Reprinted: Chelsea, New York, 1981).
[28] Strang, G. and G.J. Fix, An analysis of the finite element method. Prentice-Hall, Englewood Cliffs, 1973.
[29] Thatcher, R.W., The use of infinite grid refinements at singularities in the solution of Laplace's equation. Numer.

Math. 25 (1976), 163-178.
[30] Tsamasphyros, G., Singular element construction using a mapping technique. Int. J. Numer. Methods Eng. $\underline{24}$ (1987), 1305-1316.
[31] Weisel, J., Numerische Ermittlung quasikonformer Abbildungen mit finiten Elementen. Numer. Math. $\underline{35}$ (1980), 201-222.
[32] Whiteman, J.R. and J.E. Akin, Finite elements, sigularities and fracture. J.R. Whiteman(ed.), The Mathematics of Finite Elements and Applications III, Academic Press, London (1979), 35-54.
[33] Yserentant, H., On the multi-level spliting of finite element spaces. Numer. Math. $\underline{49}$ (1986), 379-412.
[34] Zienkiewicz, O.C., The finite element method. McGraw-Hill, London, 1977.

