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Introduction

In the present thesis we aim to establish a method of finite
element approximations on a Riemann surface. Our method matches
the abstract definition of Riemann surfaces, and also offer a
new technique of high practical use in numerical calculation not
only for the case of Riemann surfaces but also for the case of
plane domains. It is characteristic of our method that we adopt
ordinary triangular meshes and linear elements on a subregion of
every fixed parametric disk, and thus our approximating
differentials express singular property exactly near singularities.
Hence the approximations of high precision of differentials are
obtained. It should be noted that we do not adopt any so-called
refined or curvilinear mesh near singularities.

Let @Q be a closed Riemann surface or a subdomain of a Riemann
surface W whose closure § 1is a compact bordered subregion of W.
We choose a fixed finite collection & = {z = wj(p), p € Uj; Jj =
1,-++, m} of local parameters 2z = @j(p) and parametric disks Uj
so that @ c UjTl Uj' Chapter 1 is devoted to construction of a
triangulation K of @ with width h associated to ¢ (cf. § 1.2),
a normal subdivision of K (cf. § 1.3), and a naturalized
triangulation K' associated to K (c¢f. § 1.4). The triangulation K
of @ 1is constructed as the sum of subtriangulations Kj b
m) 1in such a way that IKJI c Uj’ each 2-simplex s of K belongs
to one and only one Kj’ each s € Kj is natural (see § 1.2) at most
except for the case when it has a common side with another s'€ Kk
(k # j), and the diameter of wj(s) is at most h for each s € Kj

(} = 1,«»+, m)., Let K. (j = 1,5+, o) be triansulations consisting



of all 2-simplices of Kj which are not minor or major, and all

naturalized simplices of Kj (see § 1.4). Then the triangulation K'
is defined as the sum of K3 & PEE SRS

In Chapter 2, we introduce and investigate two spaces A = A(K)
and A' = A'(K') of differentials: the comparable space A = A(K)
(with @) and the computable space A’ = A'(K'). The space A

consists of locally exact differentials oh such that for each

2-simplex s € Kj (@)= eSS e R co el etilan s ol o, are

constant on @J(s) except that ch is modified on all lunes of minor

or major simplices (see § 1.4 and § 2.1). To each oh € A, we
!

associate a differential oh = F(oh) on K’ whose coefficients are

constant on wj(s) for each 2—simblex S € K3 (= d,%+%, m}-and
which is equal to g, on 0 except for all lunes of K (cf. § 2.2).
The space A' consists of all oﬁ 5 F(oh) (oh € A). We shall

investigate estimates of differences of Dirichlet norms Hohﬂé and

2
'
"Gh"Kr

Let OB be a given closed differential on Q with finite norm, and

(see Lemma 2.2).

let FG be a set of all closed differentials which have finite norms
and satisfy same period conditions and boundary behaviors as 8.
Then there exists a unique harmonic differential ¢ which satisfies

the minimal property (see § 3.1):

loll = min lloll.
oere

The finite element approximations ¢h and mﬁ of ® are defined in
the spaces A and A' respectively (cf. § 3.2 and § 3.3 resp.). The

'
On
to error estimates of wh and 0y for ®, where

- 2 -

differential can be numerically calculated. Chapter 3 is devoted

e ~ ! 7
@y = F (wh). We



shall make use of Bramble and Zlamal's lemma (see Lemma 3.5). In
Theorems 3.1 and 3.2, we obtain error estimates:

2

2 and Hwh— wH2 N R ¥

¥, - ol? < ch

where C and C' are constants which depend only on the
differential © and the smallest value of interior angles of
triangles mj(s) for all 8 € K3 (1= 1,+++, m}. Further, in

Theorem 3.2, we obtain an estimate for Hm"zz

2 . :
lol® < ol 1% + e(o])

in a special case (see § 3.2), where e(wé) is a quantity of O(h2)
which can be numerically calculated.

In Chapter 4 we apply our results to numerical calculation of
periodicity moduli of closed and compact bordered Riemann surfaces,
and we shall show that calculation results for some concrete Riemann
surfaces of genus one are very good. Let {A, B} be a canonical
homology basis of @ such that A x B = 1. Then there exists a
unique system of harmonic differentials {¢, p, x, t} on §
satisfying some period and boundary conditions (see (4.1) ~ (4.4)).
The periodicity moduli Py and P, of Q with respect to A and
B respectively are determined by

- . e ol = ~ - R |
p, = fA *»d = [l 5 and p, = IB xp = [pll™ = 5
<l Il x Il

With respect to the problems of this type, there have been some
investigations by means of finite-difference method (Gaier [11],[12],
Mizumoto [14],[15],[16], Opfer [21],[22]).

Finally, in Chapter 5 we apply our results to numerical calculation

of the modulus of quadrilaterals. Let  be a simply-connected



subdomain of a Riemann surface whose closure Q 1is a compact
bordered subregion. We assume that the boundary 9Q of Q is a
piecewise analytic curve. We assign four points pl, p2, p3 and p4
on 9N (in positive orientation w.r.t. Q), and the two opposite arcs

¢, (fTrom p1 ) p2) anag ¢, (from p3 to ). Then we say that a

0 1 Py
quadrilateral Q with opposite sides o and ¢ is given.

We can conformally map the domain @ onto a rectangular domain
=1 | 0 Re w<l 0O.<Imw=<WM$} by a function w = f{p)
so that Pi» Pys Pg and p, are mapped to iM, 0, 1 and 1 + iM
respectively. Let @ be the differential in Tc(ﬁ) satisfying

8 =0" alonyg -ci e

0 and IY B =1 where ¥y 1is a path from

s

a point on ¢ Lo a point on” ¢ Then the modulus M(Q) = M

0 IS

of the quadrilateral Q 1is uniquely determined by Q, and is

given by

M(Q) = min loll?.
g€erlr

]
Next we assign the two opposite arcs 50 (from Py to p3) and El
(from Py (0] pl) on 8Q. Then a quadrilateral Q with the
opposite sides ¢ and ¢ is defined. We can easily see that M(Q)

0 il
= 1/M(Q). By making use of this relation Gaier [11] presented a

method to obtain upper and lower bounds for the modulus M(Q) in the
case of some restricted domain Q (e.g. a lattice domain, etc.) by
the finite difference approximation which originates from Opfer [21],
[22]. We shall present a method to obtain good upper and lower

bounds for M(Q) by our finite element approximation even in the case
of a domain @ with curvilinear boundary arcs, and with inner and

corner singularities of high order. It should be noted that the

- 4 -



approximating differentials satisfy the boundary conditions exactly
in: alil cases ol Chapters. 4 and. 5.

Our treatment at critical points of a Riemann surface is closely
related to that at boundary singularities on a plane (cf. Akin [2],
Babugka £33, Babuska and Rosenzweig [4], Babugka, Szaboand Katz [5].
Barnhill and Whiteman [6], Blackburn (7], Craig, Zhu and Zienkiewicz
8], OGpferiand Puri S 231, Riwvara [241], Schatz and Wahlbin [25],
[26], Thatcher [29], Tsamasphyros [30], Weisel [31], Whiteman and

Alin 1821, and Yserentant [831d).



Chapter 1. Triangulation.

§ 1.1. Collection ® of local parameters. Let Q be a closed

Riemann surface or a subdomain of a Riemann surface W whose closure

Q 1is a compact bordered subregion of W. In the latter case, we
assume that the boundary 9Q consists of a finite number of analytic

arcs meeting at vertices G = A, 9«3 @), and there exist

Pk

parametric disks Vk (kk = 1,+2+, %) “with the centers pﬁ and local

parameters z = wk(p) by which Vk N Q§ are mapped onto sectors
WPl rk} Mo s Rar e 2 s Bk} (0 < Bk SRR, Bk # n). For conformity,
if Q 1s a closed Riemann surface, then we interpret that Q = W.

Let {Cl' CZ' CS’ C4} be a partition to four parts of the

boundary 92 such that each Cj B = Ly =efers d)s gL At S eof boundary
components of 9 and C4 consists at most one boundary component.
We assign 2n points Dy tabs p2n (i 2= 49 on C4 (in the positive

orientation with respect to Q).

By & = {z = wj(p), Uj; j=1,+-++, m} we denote a finite
coldllection of liocal parametels  Z = wj(p) (g = s 2on DS e tnd
parametric disks Uj (g =0k % w5 ) onl W whii el satisfies the

following conditions ( i )~(iv):

( i1 ) By the mapping 2z = @j(p) -3 1y vak. b, Uj is mapped
onEosaNdaisie” [SlzH: < pj.
% = . m
0§l is covered b T i ;
(ii) Q ¥ J}J=l

(Gt @ 1R Uj N Uk # ¢, then there exists a constant L ( >1 )
such that for the mapping ¢ = f(z) = wkomgl(z), I/h % 42 ¢2)) < I
on s U Y [L .

wJ( 1 k)

Let Py (k = 2n + 1, -+, v) be the all vertices of 8 which



' 2
are defined as points of {pk}li=l = {pk}kzl'

(iv) Each Uj (I = T ST YR e fona s g Lail e Re el o als pk Uk =

1, @+, v} rand if € Uj then wj(pk) =

Pk

N R i A R 2 (- L R i | Uj does not contain any Py (I =,

+, v), then wj(Uj e ike g thalf dislk fElizdh pj} s S 1 e )
P e, e S eset ey wj(bj NR) idis a
seetor » {ilizl] = pj} BGOSR SR % aj} (< aj < 2i).

T Uj contains some

TIn the latter' icase of «( v ) and the case of Py - R T
i & y p ¢ i —
il P, € Cl’ or p, & Cl and aJ > n/2, then by the mapping ¢
(wj(p))n/aj, Uj N Q is mapped onto a half disk {lgl < pg/aj} N
LEm a8 B 20, In this case we define anew 2z = wj(p) and pj by g
(@j(p))n/aj and pjn/aj respectively. Further, in the case where
Uj contains some pk (k=B A aas, 2n)s S itiicnvby: the mapping € =
(wj(p))n/zaj, Uj N Q 1is mapped onto a sector {lgl| < pjn/Zaj} N
{0 < arg ¢ < n/2}. In this case we define anew 2z = wj(p) and pj
oy (@j(p))n/zaj and on/2aj respectively. Then, in the case
that Uj contains some Py (o= B, i, ) sgheé local ‘parameter 'z

wj(p) is no longer conformal at the center of Uj except for the

case when Uj contains some pk ARl T S ST 8 ahd aj = e

§ 1.2. Triangulation K associated to ®. For the collection

® of local parameters and parametric disks defined in § 1.1,
and for a sufficiently small positive number h, we construct
a triangulation K = Kh of Q which satisfies the following

conditions ( i )~( v ). This is called a triangulation of Q0 with

width h associated to .

( 1 ) The points pl, Lo pv are carriers of some O-simplices



O .
(i) K ds Ghe sumrofusubtriangulations Kl’ SIS Km o LR

such that each 2-simplex of K belongs to one and only one Kj

(] = 1;,+++, M}, and the carrier I|Is| .of each 2-simplex s .of Kj
is contained in Uj'
If a L-simplex .e '€ Kj does not belong to another Kk (K = 1),

or a 1l-simplex e belongs to Kj N Kk (j # k) and the mapping
mkowgl is an affine transformation, then e is said to be linear.
If each edge of a 2-simplex s € Kj is linear and wj(s) is an

ordinary triangle,. then s |18 caliled a natural simplex.

(iii) Each 2-simplex s € Kj which has not a common edge with
any 2-simplex of another Kk (k = j), 1s a natural simplex.

A 2-simplex of K which has a common edge with a 2-simplex

K
s € Kj (j # k), is said to be an adjoint (simplex) of s and is
denoted by s’

(iv) For each palr of a Z2-simplex .S € Kj and its adjoint
s' € Kk with a common edge e, either one of the following three
casc (s Sanl) e Shr i S feaiEn e RS

(a) Both s and s' are natural simplices.

(O mj(s) is a curvilinear triangle such that wj(e) is a
SICEH Il ScOnCaAwe. arne Wity His @j(s), wk(s') is an ordinary

triangle, and all edges of s and s’ except for e are linear

ot Figaa)

wj(e)

Fig. 1 Minor simplex s and its adjoint s'



Then s 18 called a minor simpleX. The case where s' is a minor

simplex and s 1is its adjoint may also occur.

k52 wj(s) is a curvilinear triangle such that @j(e) e o
strictly Cconvex arc w.r.t. wj(s), @k(s') is an ordinary triangle,
and all edges of s and s' except for e are linear (cf. Fig.2).

=G
<pJ e)

\

Fig. 2 Major simplex s and its adjoint g

Then s is called a major simplex. The case where s' is a major

simplex and s 1is its adjoint may also occur.

If s is a minor or major simplex of Kj’ then it is assumed

that J8'l c U, Tor its adjoint '

J

( v ) For each 2-simplex s € Kj @ =8 s e, d(@j(s)) < e
where throughout the present paper we denote the diameter of a region
G by d(G).

Next, we assume that for the fixed ® the class of the
" triangulations K = Kh satisfies the following conditions ( i') and
T A

( i') For each j =1,-++, m the union of carriers of all minor
and major simplices of Kj’ and all their adjoints is contained in a
closed subset Rj of U, N which is independent of the individual

3
triangulation K.



(ii') The number N of minor and major simplices of K
satisfies the inequality:

it
L it N < M'—H—,

where M 1s a constant which is independent of the individual

triangulation K.

§ 1.3. Normal subdivision of triangulation K. For a
triangulation K = Kh of Q with width h associated to o
YRR S 1o 2
we can construct a subdivision et =K , called the normal
subdivisien of K = Kh by the following procedure:
s K1 is the sum of the subtriangulations Ki, sl o Ké which

are the subdivisions of K Km respectively which are defined

Wk

dnsbher Gollllowline (G a R Jeiddc)
Eamy S| ssave Kj s a¥ P=simplex witieh is' nolt miner orimajors,

then s 1is subdivided to four 2-simplices s

1
of K. that : g :
j SO a @J(sl) wJ

congruent ordinary Ttrianglhes. as imn Fig,3.

o 53 and 54

) are mutually

g 3

(52), wj(s3) and cpj(s4

a = ¢J(a) (a: simplex)

Fig. 3 Normal subdivision of 2-simplex
which is not minor or major

_lo-



(it P 8 ekl 5 4E Kj and s' € Kk be a minor (or major) simplex

1 e2 and e8 be edges of s such

that e, is the common edge of s and s . We subdivide the

and i&s adjoint, 'and let e

1g7 €gp @nd e,,,

i

edges €y 82 an e to two edges and e

3 o5

and e and e respectively so that wk(ell) and mk(e

31 32

@j(eZl) and @j(ezz), and wj(eSl) and @J(e32) have the same

length respectively. Then we subdivide the simplex s to two minor

{1

(or major resp.) simplices S, and So of K§ and, two natural
: : ‘ 1k

simplices Sq and Sy of Kj so that €11 €19- 621, €50 €34

and e are edges of s S and ssandets, "Rdg 24000 Herewwe anote

32 it 2 3

that such a subdivision is always possible if h 1is sufficiently

small.

(a: simplex)

Fig. 4 Normal subdivision of minor and major simplices

We can easily see that the normal subdivision Kl = Z?=1K§ TSl vk
triangulation of @ with width h/2 + O(h2) assealdted te b et -

SBER0 Y

8§ 1.4. Naturalized triangulation. For each minor (or major)

simplex s € Kj we define the naturalized simplex ks of s as the

_.ll_



\

2-simplex such that |s| c I4sl (lksl| c Is] resp.) and wj(ts)
is the ordinary triangle which has two common sides with @j(s).

Further we define a 2-simplex bp4Ld = bd(s) (#¢& = $&(s) resp.) with

two edges whose carrier is the closed region |4sl-Is|l (Isl|-1Its]

resp.). b{&(s) (#&(s) resp.) 1is called the deficient (excessive

respidr Jiihe e GaeaE

Each triple of a minor (or major) simplex s € Kj’ 108 adjoint

s' € Kk and its deficient lune b{ (excessive lune §¢ resp.)

is denoted by (s, s!', bé) ((s, 8', $&) resp.),; and is called

a triple for a minor (major resp.) simplex s or for a deficient

(excessive resp.) lune b¢ (€ resp.) (ef. Fig.5), where it is

always assumed that |bél c Is'| for each (s, s', bé).

(p‘j h &) ‘Pj QG ED)

V

Fig, & Triple for a minor simplex (s, s"', bl) and
triple for a major simplex (s, s', #¢)
For simplicity of notation, we also denote bpié = bé(s) or
#¢ = $8(s) by ¢ = {(s). If a minor or major simplex s is in K

J’

‘o

then we say that = {(s) is a lune'of Kj and write { € Kj‘

Now we shall define the naturalized triangulation K' associated

First, K& (j = 1,--+, m) are defined as triangulations such

= 12 -



that the collection of all 2-simplices of K& eonslsts of all
2-simplices of Kj which are not minor or major, and of all
naturalized simplices of minor and major ones of Kj' Then the
triangulation K' is defined as the sum of K& Eie= e Tt F

We should note that K’ is no longer a triangulation of @, and

alsp is meot 2n erdinary Ttriangnlatlon:

§ 1.5. Parametrization of lunar domains. Let 1fs, 84 &Y ba 80
arbitrary triple for a deficient or excessive lune {, and let el
and e, be two edges of £  such that Iell & gsll . Eurtherh let
(L) z' = (1 - t)z, + tz, 0 2P &% L)
and
(1.3) i e t)il i t§2 € S -
be parameter representations of the oriented segments o¢.(-e.) and

J 2
wk(el) respectively. The representation (1.3) induces a parameter

representation of the curve wj(el):

(T Rt AR TR X T 2 A,
where z = g(g) = wjowil(g). By (1.2) and (1.4) we obtain a

parameter representation of the lunar domain wj({):

I

(.5 2 2it, ) = (1 = ©)g' « gz

S A R t)zl+tz ) + tg((1 - t)g, +tg

.
(Dt 1, g vl



§ 1.6. Area of lune.

LEMMAN &l e iss Y e Jbe @t itriipike treor an. arbl trary:

deficient or excessive lune <{. Then, the estimate

P l +
(1.6)  Ale (0 5 5 oh)))

holds., where throughout the present paper we denote the area of
a region G by A(G), 2z = g(g) = wj°w&l(§). hl = d(e.(<£))

eiargl e is one of the vertices of the lunar domain Ly -

) “x
PROOF. Here we shall preserve the notations in § 1.5. By

Taylor's expansion we have

" = ! =] + l " o 2.2 +
(R 2" -z, = ¢ (Sl)(éz §l)t 5 & (El)(éz §l) i
fors chenpointEs -z o (.. 29 on wj(el), and
(1.8 Z - %y 0= t(zz— Zl)
= J - + 1 on - 2 .
= (§l)(§2 §l)t 5 & (§l)(§2 §l) G

for the point =z oif (il 2R Ear wj(—ez), where we assume that the
Brianpgulateieon K 98 S¢ chosen thal @k(el) is contained in a

disk V centered at &, such that w;l(V) c Uj nC,. By (1.7)

and (1.8) we find that the equality

3

; 2 wid s 1) By

(§2- S 5

TN
(1.9) z Z £,

]

~g"(§l) + O((;z- &

"

holde for the point 2 of (1:2) on w,l-e

j 2) and the point Z

o Rl ¥ I Hs cpj(el

Mmee 1ty = gl b, 1/Ig'(§1)l + 0(h

) with common t.

l)), the equality (1.9)

implies



2

¢1.10) Iz = 2" < ( 5| * O(hl)J.
g' (&)
Therefore we obtain the estimates
A(e.(8)) £ lz,- 2,1+ max |z'- z"|
J £ L Geted
b et )
g'(él)

_15_



Chapter 2. Spaces of differentials.

§ 2.1. Subspace A of I Let Fg = rg(ﬁ) be the set of all
0

locally exact differentials o in the class C on § with the

finite Dirichlet norm

Ion? = lon? = IQ oG < @,

where by *0 we denote the conjugate differential of o¢. Let

rc = rc(ﬁ) be the completion of rg. We should note that in

Chapter V of Ahlfors and Sario [1], rc is defined as the completion

s 0 e
of FC = FC RIS

We define a subspace A = A(K) of FC as the space of

differentials oh which satisfy the following conditions ( i )~(iv):

() oh e T

e

11 If s € Kj (j=1,-++,m) 1is a natural simplex, then

K= aodx + body on wj(s) (z = x + 1iy),
where aO and b0 are constants.

(iii) Let (s, s', b&¢) be a triple for a minor simplex s,
and let el and e2 be two edges of bé& such that —el cds,
Then

oh = aodx + body on wj(s),
< aod& + Bodn on wk(s ey wk(bz),

and oh is a harmonic differential in b¢ which satisfies the

boundary conditions

P aodx + body along mj(el)

and



ok an ag Qﬂ]
o [“o = * Bo 5§de y (“o oy © Py gy)9¥ elode wiley),
where ao. bo. ao and BO are constants, and
t.= Tl{2) = wk°wj_l(2) [ % e RN, B el Ry
(iv) Let (s, s', #§¢) be a triple for a major simplex s,
and let e, and e, be two edges of #{& such that e, =S,
Then
4 / : hv ’
chL aodx + body on wJ( S)
'
o8 = aodﬁ + BOdn on @k(s o

and oh is a harmonic differential in #{ which satisfies the

boundary conditions

qQ
Il

aodx + body along mj(ez)

and

o9& an & __)
h (“o == © 4y ax)dx . (ao 5 + Po By 9y along wile ),

where ao. bO’ ao and BO are constants, and & = € + in 1is as

Q
1]

R B L5 1 )
We note that oh € A 1is generally discontinuous on each edge

of 2-simplices of K.

§ 2.2. Space A'. Let K' Dbe the naturalized triangulation

associated to K. For each differential Gh € A, we define the

differential ch on K' associated to g, as the differential

oﬁ which satisfies the following conditions ( i )~(iv):
( 1 ) For esach 2~simplex s € K3 (j = 1,+++, m)
oh = aodx + body on wj(s),



where a and bO are constants.

T i) I s € K 'is a natural simplex, then

gy = 9y aae i
g1ty I Vs ww, B is a triple for a minor simplex s,
then
2 U ! L P
oy oy on |s| Is’ | el
(iv) If (s, s', $&) 1s a triple for a major simplex s,
then
i b U 5
oy Iy on Ih4s]| [Ein

We should note that the differential 05 is defined just twice

on each deficient lune P&, while it is never defined on any

excessive lune #¢. In the former case, for each triple (s, s', b¢&)
we shall denote the differential oh on WHs € K3 and s' € Kk
by Gh,hs and oh,s' respectively.

The space of all differentials 05 associated to o, € A 1is

h

denoted by A = A CK) . Let oﬁ and xh be two differentials
r . ’ ’ L ' o

of A. Then the inner product (oh, xh) of ch and Xh is

defined by

(o) xh) = (90, xp )k

g f oy *X, ,
seK’ | s | L
and the norm llo, Il of o, is defined by

h h



Iloh" = ”oh"Kr - \/(Ohv oh)K'-
We see that oh = F(ah) defines a one-to-one mapping of A
onto A'.
§ 2.3. Finite element interpolations. Let ¢ be an element of

I . We define the finite element interpolation g of o in the
0

space A as the differential uniquely determined by the following
conditions s 4 ) and ((1d9:

(i) o € A;

i, For each l-simplex e € K,

J’ea:jeo.

§ 2.4. Harmonic differentials on a lune.

LEMMA 2.1. Let £ = {(s) be'a deflicientror excessive lune of
Kj’ let el and e2 be two edges of ¢, and let Gl and 02
be exact differentials in the class CO on <{ which satisfy the

condition

E g =alh o
,el 1 e2 2

Further, let x be the differential harmonic in ¢ and continuous

on ¢ which satisfies the boundary conditions

£ 365 along ey Cilms i des 520

1) We shall use the common notations ( , ) and | I for both

inner products and both norms of differentials of the spaces A

and LAl



Then the inequalities

2
ffwj(e) max{ (a; %0, %) (ay

: 2
(2.1) nxni *b, ) dxdy

I

2 2
< HolH{ + H02H£

hold, where

HX”% = j gq XRX, BLC.,
C lLl
and
= & ]
ol = aldx + bldy and 02 azdx + b2dy on wJ(L).
PROOF. By making use of the parameter representation (1.5) of

the lunar domain @j({), we define a differential ¢ on { by
-1 ~ ) -1 -1
aowj (z) = (1 r)olowj 2] o+ tozowj {20
lzr= gt} € wj(t))-

We note that o¢ satisfies the same boundary conditions as X

o ¥ JLtE. Since x 1is harmonic in £, the inequality

2 2
(2. %) "XH{ < HOH{

holds. Further, the inequalities

2 2 2 ) 22
(-21,°3) HGH£ < If@j(ﬁ)((l - t)Jal +bl + tJaZ +b2 ] dxdy

Ifwj({)max{(al +b1 ), (322+b22)}dxdy

A

hold. The inequalities (2.2) and (2.3) imply the inequality (2.1).

W)
(1)
(9]

Difference of norms of o, and oy .

LEMMA 2.2, " Let oh be an arbitrary differential of the space



A and let @l = Flg
( i ) The inequalities

% £ 1el1® + "2 e

I
h § £ €K

2

h h

i 1 ) 2
= Hor'lll2 d = A(w.(ﬁt))~(I Iezoh) (1 + xh)

= €K.
J=1 fL j
hold, where e, is the edge of #& such that @j(ez) is -a
segment, 2 is the length of @j(ez) and k¥ 1is a constant which
depends only on the transformations 7)) = ka@El(z).
W,
e 2 ) 2 ) 2
(25:5¢) e SR - S AasiT - O o R ook da atli 3
h h b LeK Ii =T e R aaspy
m
= oy Il® + = X {A(wj(bt))'(ag + bo)
j=1 b{eKj
¢ ACe (b)) (of + 80) ),
where for each triple (s, s', pf) the notations in (iii) of § 2.1

are preserved.

PROOF. ( i ) By Lemma 2.1 we see that for each triple (s, s', b¢)

2 e o 5

2 ' 2
(2.6) "Oh"b{ -4 "oh,ts"b{ uoh,s.nb{.

Hence the first inequality of (2.4) is obtained.
Let (s, s', $¢) be a triple for an excessive lune §{. We
preserve the notations in (iv) of § 2.1. We shall prove the

inequality

5 1 T
(207 "Ohuﬁt = A(wj(ﬂ{))'(I Iezah) (1 + xh),

from which the second inequality of (2.4) follows.



By y and & we denote the arguments of the oriented segments

@_(—ez) and wk(el) respectively. By making use of the parameter
J

representation (1.5) of the lunar domain wj(ﬁi), we define a

dittferential “a on #& by

(2.8) g =Ya dx + b d¥
= (1 - r)(aocos Y + bosin v Ceos yidxs + (sin pdy)
+ t(aocos B Bosin S) ¢
J& 98 i an N g4y
-[(cos 6)( o= dx + oy dy ) s 6)( ax dx et 3y dy jj

(7, & et T € cpj(ﬁ{)).

We note that o satisfies the same boundary conditions as oh

on J(#f). Hence

{2.9) [¥es < lall

2 2 2
hIIH < A(@J(ﬁt)) max (a Al

2
. £ A
2 (gl
wJ(ﬁ)
since oh i's harmeonic im- .

From the equation (2.8) it follows that

(M) max (az + b2) = max{(aocos Y + bosin ?)2,
wj(ﬁi)
(¢,cos & + B.sin 6)2 max If'(z)lz}.
0 0
@.(f#e)
J
Further we note that
(2801R 1) B elons g ol i f T
T 0 o —e2 h
and
) 1 : 1
g4 o s '
( ) &,Ccos & + 6051n 5 g fel oy . I—e oy
2
where



t2 130 = f@j(ez) fdz | and = f@j(el) S A e |

By making use of the power series expansion of f' around

a vertex z1 of the lunar domain wj(ﬁﬁ), we see that

(2.14) max 1£'(z)1% < 1£' ()17 (1 + k;h)
@.(4L)
J
and
(2.15) bz (£ (z)1 - Kyh) fwj(ez)ldz| = A(1£(2,)] - k,h)

1 K2 > 0% tdependiing eondky on £. ‘Then the

eshinaktefl (2N tallllows  firoms (28I (2, B5). T

with ‘eonstants ¥

(1) Y Ehet inegual ity (2.5) 1s obvieus from the defimitiocn

of oﬁ.



Chapter 3. Finite element approximations.

8 3.1. Formulation of problems. Iy s yi (e =R Sl S
the boundary components of C2. Let vé (k =1, <<+, 2n) be the
arcs on C, from P, to Pp., Rl Lo " v A0 Porap ® pl) and
let Ca = ZE:l Y;k—l’ s Zﬁ=l ng’ where {pk}izl are the
assigned 2n points on C, defined in § 1.1.

Let @6 be a differential in FC which satisfies the following

CONdABHRanS (8 0™ e et amrd (a0 s

1

s R L i Uj N C, # ¢, then 90@3 is harmonic on a neighborhood

ik

ST ST SR
of ¢J( 3 l)

(i) 8@ = 0 along 62 U C4;

(iii) @ 1is exact on a neighborhood of each boundary component of

C3, where the conditions ( i ), (ii) and (iii) may be ignored if

N = ¢.

By Te we denote the subspace of FC consisting of all differentials

o for which there exists a function v on § such that

dv = 8 - ¢ on Q,
V= s0) on Cl U C4,
2
Vv = const. on Yk (Ke & dldnswre. 4 Rt

By ®© we denote the harmonic differential in re uniquely

determined by the conditions

(3.1) Jz*m=0 (e 2 i
Yk

and

B £ o r

( ) * (@ 0 along c3 U c4.



The differential @ can be constructed by the following procedure.
Let x be the harmonic component of @ 1in the orthogonal
decomposition of FC (cf. Chapter V of Ahlfors and Sario [1]), and
lJet u be the solution of the boundary value problem:

u 1is a harmonic function on Q,

'
u = 0 on Cl U C4,
2
u = const on ¥
f , *du = f o A R bl
Yk Yk
and
i {4
*du = #*x along C3 ] C4.
Then, o = x - du. We note that the differential ® 1is harmonic

on the closure ﬁ.l)

LEMMA 3.1. The harmonic differential © satisfies the minimal

property

(st loll = min lloll.
oere

In the equality (3.3), the minimum of the right hand side is

attained if and only if o = o.

PROOF . For each o € Te there exists a function Vv such that

l dv = 0 - o,
| - i
84 | Ve =) on C1 U C4,
A SN OB TS, on yﬁ G N AR

Brem eS8 08, 2) and (St Ayt follows that

1) It is sufficient for our purpose that o is of the eclass Cl

on the closure Q and hence we can weaken the assumption ( i ) for 8.
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(3.5 (0 - 0, ©) = ISQ V*©

K
= I‘ V¥ o+ o I V*p + f V¥ + fcr Ve + I n Ve = 0,
Gy k=1 Y92 Pg 4 C

where
& Tos = (o, t)Q = IQ o*T.
The equality (3.5) implies that
9
1el? = lel? + lo - ol? 2 lal?.

Tm the last inequality, the equality holds if and only if ¢ = .

The unique harmonic differential « 1in FG is called the

harmonic solution in re.
Our aim is to obtain finite element approximations of ® 1in

the spaces A and A', and error estimates between them and o.

8§ 3.2. Finite element approximation wh in A. Let 8 be the

finite element interpolation of 6 1in the space A. By Ae we

denote the subspace of A consisting of all differentials o € A

for which there exists a function v on @ such that

Az r= @ = oh,
= !
v = 0 on Cl U C4,
2
= N E OIS T on vy (e =Mt SRR

By wh we denote the differential of Ae such that

(3.6) I i = min lop .

ohEAe

h



We call wh the finite element approximation of ® 1in the

space A.

Next, we consider the special case where the differential

©@ satisfies the condition:

8 =0 along Cl‘
We denote such a differential 6 by GO. Since Ae = rG :
we see that

P Toll < My I

LEMMA 3.2. ( i ) In the case of general 6, the equality

(3.8) Hwh - ol = oméi "oh - ol
h~"'8
holds, where the minimum is attained if and only if oy = wh.
(ii) In the case of 8 = GO, the equality
(3.9) ey, - ol® = 1% - lel?
holds.

PROOF . @5 SRR Shy- asmetfhod similar to (3:5)s it Hs shown

that

(e ees) (o, T as wh) = () for each R € A@.
By (3.6), standard arguments imply that

(3.11) (Wh, T wh) =0 for each g, € AG'

From 3L 10 and® @21y 1t Pollows Ghat

i,

2 2 2
lo - oh” =k -~ wh" + Hoh - wh" 2 lo

¥y

In the last inequality, the equality holds if and oy sk Oh = ¢h'



(1) NSimce /\8 &ul s s UboLh wh and o are elements of r8

0 GO 0

Hemee, bX L355) o, wh - ) = 0" and thus
TR L T LA PT e
From (3.11) the following lemma immediately follows.
LEMMA 3.3. In the case of general 8, the equality
(3.12)  llay - 0% = o l® - vy

holds for each oh € AG'

§ 3.3. Finite element approximation ey in A'. Let Ag =
' ! . y ! . .
{oh | Ty F F(oh), Y € AG}' By 0, Wwe denote the differential
of Aé such that
(85139 HwhH = o@éﬁluohﬂ.
h~"8

We call mﬂ the finite element approximation of « in the

space A'.

LEMMA 3.4. The equality

(3.14) le! - o' 12 -

Mo R AL
4 R AN o) |

h
holds for each Gh € AG'
EROOES. " Byed llethod tsimiflar “Tedthetproet oftits3 11y, 1t .18

shown that the equality
FRRI5) bty mr ] 5. )1 =0

holds for each oh = Aé. This implies (3.14).



4. Lemma of Bramble and Zlamal. The following lemma is due to

§

J.H. Bramble and M. Zlamal (cf. [9]).

([9%)

LEMMA 3.5. Let A be a closed triangle on the z-plane (z =

5

x + iy) with d(A) £ h, let v be a function of the class B
defined on A such that v = 0 at each vertex of A. Then, the

inequality
vy 2 v\ 2
win (16 - B)Iee
2

“ 2 2
= h S = + dxdy
sin29 a 8X2 9x9y 8y2

holds, where B 1is an absolute constant and 8 1is the smallest

interior angle of the triangle A.

§ 3.5. Pointwise estimate.

LEMMA 3.86. Let A be a closed curvilinear triangle on the z-plane

(z = x + iy) with d(A) £ h which is the image of some 2-simplex

s € Kj Gl = Hegsrs" s nani)y IV Stme= mj(p), and let ov be 'a function of
the class CZ defined on A such that v = 0 at each vertex of A.
Then,
51 155
x|’ |9y
2 2 2
e g e (2] - 23] - (230 - o

on A, where 6 1is the smallest interior angle of the ordinary
triangle which has common vertices with A, and k 1is a constant

which depends only on f(z) = wkowgl(z).

PROOF. (Cf. Theorem 3.1 of Strang and Fix [27].) Let ZO =

- 29 -



X0

and let k = x - X5 and "W =Y S Yo Here we choose the point

so that for each z € A the segment between ZO and z 18

contained in A.

By Taylor's theorem we have that

izl = Plz)l » ©lz),
where

P(z) = v(zy) + [k vt g—yj v(z,) .,
(3.17)  r(z) = =y [k vt g_y)z v(z')

with some point z' on the segment between zO and =z. First,

from (3.17) the estimate

+ iyo be a fixed point and z = x + iy an arbitrary point in

z

0

2 P S
(3.18) ja g0 —%— max[lé—%l ZIngyI |§—%|) (z € A)
Z€EA ' OX Ay
immediately follows. Let =z, (j =1, 2, 3) be the vertices of A.

Then, by the assumption of the lemma

(82195 v(zj) = P(zj) + r(zj) = 0 G il 2, Sl

Sinée. B{z) Lsa limear function ©f % and ¥, ‘by 3.19) we

have the expression

(3.203 P(z) = —r(zl)¢l(z) - r(22)¢2(z) - r(23)¢3(z).
where ¢j (j =1, 2, 3) are linear functions of x and y such that
¢j(zk) = éjk L3 2w 1, 2, 58

with Kronecker's symbol Bjk' (3.18) and (3.20) imply the

estimate

P AP Sl
P ib 2 5
Sael] == i ey et facH
( ) Iax' = Ir(zl)||ax | it lr(z2)||8x | ps Ir(zS)llax |



o 2 AP .
< 5 h” max [}8 | * Zlaxayl = g‘j’ max |ax "
ZEA X Ay T3

Here we can easily verify that

O¢
x| =

o TIP3 o
= (J

(8..22) 0

where h1 is the diameter of the ordinary triangle which has common

vertices with A. From (3.21) and (3.22) it follows that

2
gi = 3h'sii 0 gzz (lg;%' . 'axayl + ‘g;%‘j(l + kh).

(3.23)

By Taylor's theorem we have that

av(z,)
av(z) i 0 L3 ( _a__ a__ @_ "
5x  ~ T ox Figpt = ay) ax viz")
with some point z" on the'segment between zZ, and: =z.9¥Since
av(zo)/ax = SP(ZO)/SX and
, 2 2
iz, 18 9 )8 " ( Qv ”v )
k== ¢+ { 2=|5= v(2"}| & hmax | |—=| * |g===l1.
l[ Fabre SRS I FEA |8x2| axayl

by (3.23) we obtain the estimate

2 2 2
av(z) 4h (la VI °v l |8 Vl)
< — max —| + 2|¥=——| + |—=||(1 + xh).
X sin 6 ZEA aXZ X3y 9 2
v

Analogously the estimate for Iayl is obtained.

§ 3.6. Smoothness of o on Q.

~1
9 Then wowj

(J =1,+++, m) are of the class Cl on wj(Uj N Q) respectively.

LEMMA 3.7. Let ® be the harmonic solution in T

PROOF . ( 1 ) The case where Uj contains some pk il I e = ais s,



Let us assume that Uj contains Pq- The other cases are
also similar. Then, wj(pl) =0, <,oJ.(Uj o0 = {izl = pj} A
{0 £ arg z £ n/2}, and there exists a harmoni ¢ function 1 oh
Uj n § such that o = du,
(3.24) uc@gl =0 on 4z 'Imz =9, 0 g Re z £ pj}
and
(82257 2. uowfl = 0] on. {z | Re z =4, 0 < Im z < p.}t,

an g i

where by 8/dn we denote the inner normal derivative. By (3.24) and
(3.25) we see that uowgl can be harmonically continued to @j(tj) =
{1z}, = pj} and thus especially is of the class c? on qu.(Uj o B

(ii) The case whe

re mj(Uj IS = B AT pj} A S e S aj}

and aj <t T/ 2
There exXists 4An anglytic function: '§F “on Uj N Q@ such that
dil{Re. [y = o “Lat. o be the funetion defimen om F = ¥ WSt o1 0N
n/o, oy aj/n
{ e < pj J} by g(&) = fomj (e el Sinter Re a'= const. or
/.
TG = const. «on SImsg =05 milsln= pj J}, g 1is analytic on
the closure D. Then
dfowfl(z) /o, n/o . -1
J = g-‘3(2 LT A J
dz (4 S
J
and
2 =1
d-Feol (z) g, A5 o 2 2(n/a.-1)
J o PR (n_) " J
dz? de? &5
T/ O n/o,.-2
dg Jy. n_ (& J
"’d—(Z )I(F_ljz
3, J

on mj(Uj N Q). Hence, aj S 2 DT esi LAt dzfocpgl(z)/dz2

32



= i 11 .
is continuous on wJ(UJ Nn Q) and thus uowj = Re fowj is of

the class c? on @j(tj n Q).

(iii) The cases except ( i ) and T
Since uow31 = const., auowgl/an =0 or u°w31 is harmonic on
- 1
T = = O y . U. N aQ . ¢, ue .
qoj(bj N aN) {1zl < pj} N {Im z 1 OF wJ( 1 ) wJ

is harmonic on @j(Uj nQ.

§ 3.7. Approximation by wh.

THEOREM 31 lwilets i be the {harmenie solutien in| F defined in

8
§ 3.1 and let wh be the finite element approximation of « 1in the

space A. Then,
(3.26) oy, - ol
2 m 2 2 = 2
B = [l (B &) &)« &) )
£ B X ) 5 '+ + dxdy
sinZo j=1 wJ(Kj) X 9y ax dy
m 2 2 2 g
~cn?z omax ((B3)- (B2) - B) - B)))
J=1 @ (Ry) i ¥

where B and C are constants independent of the triangulation K
and the differential 6, 6 1is the smallest value of interior

angles of all triangles wi(s) (s € K&: g = L, vy I
Q)= A dx Hhdy on mj(Ujﬁ Q) (j =1,--+, m),

by wj(Kj) we denote the image set by wj of the carrier of KS,
-+, m) are the closed subsets of an Q0 defined

in € 1) of & 1.2,

PROOF.  FirsE, by € 1 ) of Lemma 3.2,



(3.27) Iy, - ol < lo - ol.

Hence it is sufficient to estimate llo - oll.
We have
m
(3.28) 16 - wllé - T I b - el
j=1 se€K,
J
Here we note that wowgl (= st rmn s fEsof the class C1 on
wj(Ujm Q). Then, by Lemma 3.5,
(3.29) 16 - oll?
s 2 2 2
s 2 n? [, () B« &)+ B) Jows
sin~ @ wj r Y ¥
for each natural simplex s of Kj' For simplicity, we denote
the right hand side of (8.29) by I[@j(s)].
For a triple (s, s', ¢) for a minor simplex s, we denote the

" " 9 ' ' ' A i
differential o on Hs € Kj and. &' e Kk by mhs and @

respectively. Then, by Lemma 2.1

o 2 Ny 21 V| 2
(3809 T - mﬂ{ = "wbs wH{ + sty = wH{.
This inequality and Lemma 3.5 imply that

A = A5y & B 2
(3.31) lo - wHS+S- < "wbs thS it Hosy — wHS,

< I[@J(ES)] + I[wk(s")].

Let (s, s', &) be a triple for a major simplex s. Then,

by Lemma 3.5

(3.32) 16 - ol < Tlo (k)] + 1a - ol
and
(3.33) 13 - o2, < Ile(s")].



Let

W = aodx + body on wj(hs), and

o % !

© aod% + Bodn on @k(s ¥os
where ao, bO’ ao and 60 are constants. Then we define
differentials GS and GS,+{ on s and s'+ ¢ respectively by

B, P aodx + body on mj(s), and

A o '

ms.+{ = aodi + Bodn on @k(s i o

Then, by Lemma 2.1

A 2 A 2 A 2
3 84h) o - wH{ < Hms = wH{ & stv+{ - w”t.

Further, by Lemma 3.6

(3.35) IIGS r mll%
£ Al(p,.(L))- 32h" - max [IQE REE- T QE’+‘§E|J2(1 + xh)?
i J sin“@ wj(s) ox Y ax ay
and
A =
8 86 lw ¢ mH{
32h2 At At B B 2
_s_A(wk(t)) 5 max (la—&+ﬁ+—g+—ﬁlj (1 + kh

whered o = o ds w b-dn on » ge (Sh % and Mol suptdE o B dn. en
wk(s'+ il
BV I(8.27)~(3.86) . DLemmaussil and sl ) Gthe esStimates (3.26) i

obtained.
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§ 3.8. Approximation by Oy -

THEOREM 3. 2. (i) Let © be the harmonic solution in Fe

defined in § 3.1, let 0L be the finite element approximation

of © in the space A' and let 0y e F-l(wﬁ). Then
(3.37) lo, - ol
2 m 2 2 2 2
i ades Dl R EITET Sl a
sin“e j=1 Y9 P L8, Y
m 2 2 2 2
«~B'n® T max ((82)7.(82)7.(32)% (52)))
j=1 ¢.(R,) . .
J J
m
19 C'h2 Z max (az+ bz),
J=1 wj(Rj)

where A', B' and C' are constants independent of the
triangulation K and the differential 6, and other notations
are the same as in Theorem 3.1.

(EE) L @O be the differential defined in § 3.2, let © be

the harmonic solution in re and let wﬂ be the finite element
0
approximation of ® in the space A'. Then the estimate
2 ) )
(32381 loll™ < Hth i 8(mh)

holds with

m
(3.39) S(wﬁ) 2R A(¢j(#£))'(
J=l ”LGKJ-

=

’

2
. )
-max[l, PJ;J © max lf'(Z)|2>

J
where el and e2 are the edges of #¢ such that wj(ez) is a
straight segment, X and u are the lengths of the segments

. -1
@j(ez) and wk(el) resp., and f(z) = wkowj (Z)s



PROOF . { G B Rt hobe: thak
(3.40) Moy - ol? 5 210, - ol + 20a, - ¥, 17,
Eron Lemmass2ml & S20 20 amd ‘388 A tand L (18 GBI NEGY Poll TowsH thiat
g 2 2
(3.41) Hmh = wh" = Hth - H¢hH
e s 2
< lo 1™ = Iy 1T + o, |l
h h §LeK h" 4¢
S N I S uwhu§{
#L{€K
i 2 . ,2
= 3 (A(w-(b{))'(ab +b6 ): Sy A(mk(bt))'(a
J=1 biek, J
= % 4.8
L 2z (A(w-(ﬁt))'(ao +bO Y * A(wk(ﬁé))'(a
J=1 pleK, J
where for each triple (s, s', bé) for bé € Kj
o ' !
¢h = aodx + body on @j(hs), and
' = ] ’ !
Wh = dodﬁ + Bodn on wk(s 29
for each triple (s, s', §&) for §¢ € Kj
@ = aodx + body on wj(hs), and
O = aod& + Bodn on wk(s )
= ] ] ' '
with constants any, bo, &0 BO, ay, bO’ o and BO.
In the inequality (3.41), we have
(#2427  Atodbdii-(a22 + pi%)
b o] 0 0
) éifj(b{)) o "2
A(wJ(S)) h's



A(wj(bé)) o 9
S W ("‘l’h = C'J"S + ”(.J”S)

Alo,(be)) " AR
<9 W ""&h = C:)”S + 2 /\(QDJ(bL)) max (a +4 ) g
L, wj(S)
Since we can easily verify that
hlz
A(wj(bS)) Pt sin 0 (h1 = d(wj(hS))).
by Lemma 1.1 we have
At e ) Alp.(bhE))
(3.43) N— - aheh :
A eIt AN ST R ()
J J J
el d
el )
= ; ERLOHh)
2 sin B g.(gl)Z

with the notations in Lemma 1.1. (RPN Sanids (03430 Smpilyr

i 2 2
(3.44) 2 A(wj(bt))'(aé + bé )
j=1 bteKj
m m
2
< sgg 5 PN = H¢h = m"s + i 3 A(p.(b&)) max (a2+ b2),

=1 bleK, J=1 beK, J @, (s)

where C 1is a constant depending only on the transformations of
local parameters. Since similar estimates for other terms of the
Elight hand side of (3.41%1) are obtained: from (8.41) it fellows that

12

(3.45)

Hwh wh

Ch 2 Ch Bl ?
&o2ras s = o8+ e Yy =l

o 2 2 2 2
FIN b3 (A(w.(t)) TITELS (S0t ) St A(@k({)) max (ot + B )),
: 5 )

j=1 CEKJ wj(s) ¢ (s)

where for each triple (s, s', &) for ¢ €K
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e
I

a dx b dy on wj(s), and
o = o d& + B dn on @k(s').
(3.40), (3.45), Theorem 3.1, Lemma 1.1 and (1.1) imply the
the estimate (3.37).
Reatatie ) (3.7) and Lemma 3.3 and the proof of Lemma 2.2( i ) imply
the inequalities

2
loll® < iy 17 < uwhu2

m 2
Pl 1 ,
sl e+ 2 '3 A(@.(u))(— m]
B J=1 fleK; J % fez h
- 2
‘max{l. LJLJ - max If'(Z)IZL.
# ©.(§¢) ’

§ 3.9. Estimate of lloy - o' ll.

COROLLARY 3.1. Let ® and mﬂ be the same as in Theorem 3.2,

© be the finite element interpolation of ® 1in the space A, and

Ny

0 = F(S). Then, the estimate

(3.486) oy, - o'l £ A"h

holds, where A" 1is a constant dependent only on ® and 8 in

Theorem 3.1.

PROOF. First, by Lemma 2.2(ii) and (3.43) we have

APy 2
£ i N
Hwh o

AL ) £ 2 ’ Ay 2
< llo, - ol + Z (lo - o, | + o R T |y
h b ek h,His st fes g S hd



e Ao, (h2)) o
S b= B1% 4 5 nE (——— lo, - ol
. B i .

A((pk(bﬁ)) » 10
-3 T Il - ol v]
A(wk(s F I~ A(wk(b{)) h S

m

D Ch - e A 5
£ lo, - ol + — b2 Iz (lo, - ol + llo, - wlZ,)
h sin @ e b{EKj h S h S
Ch 2
s 1+ gfﬁ—gj lo, - ol
Ch Z A2
o N2 (l e m) (”CJh - ol + o - ol™),
where C 1is the same constant as in (3.44). Then, the proof of

Theorem 3.1 and Theorem 3.2 imply (3.486).
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ghapter 4. Determination of Tthe penriodiety moduli of Riemann surfaces.

§ 4.1. Periodicity moduli of Riemann surfaces. Let Q be a

closed or compact bordered Riemann surface of genus 1 with no or one
boundary component. Let {A, B} be a canonical homology basis

of © such that A x B = 1. Then there exists a unique system of
harmonic differentials {¢, p, X, T} on Q satisfying the

period and boundary conditions:

(4.1) fetoam maamils e o2,
(4.2) [ar=famaa Jogo=s==0
(4.3) & = g2 ax 2w 0 along a9
and

e Joq @ - Ian o= [oo %= [op s <0,

where the conditions (4.3) and (4.4) may be ignored if 8f = ¢.
T 8R! = iy Sthen » D% pr and. p B it

We can easily see that

- I o2 - IA 2 iR s fB xp, and

l (P, p) = IB *P = IA *p = 0.

We call

p; = IA * and  p, = IB *p

periodicity moduli of Q with respect to A and B respectively,

which are the quantities determining the conformal structure

of Q. By (4.1)~(4.5) we see that
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sofe = *¢2 and X = *09
Il loll™
These relations imply that
¢ )
(4.8) p, = ) = 2 Bl A Mt et
1 2 2 2
<l Il
If 23Q = ¢, then
(4.7) py = Ie1? = Lo - =
ol 2

By making use of a relation analogous to (4.7) for the modulus
of quadrilaterals on the complex plane, Gaier [11l] presented a method
to obtain upper and lower bounds for the modulus by the finite

difference approximation.

8,, 85, 8,1

be a system of differentials in Tc(ﬁ) satisfying the period and

§ 4.2. Calculation of periodicity moduli. Let {8,

boundary conditions:

IB Fye = JB 5 Bl IA iy IA e o=

IA oy = fA M- IB e IB e T

Gl = 82 =0 along 09N,
and 83 and 84 are exact on a neighborhood of 23Q. Here we
interpret that dQ = C2 for el and 82. and df = C3 TOT 63

and 84 in the notations in § 3.1. We note that @l, 82. 83 and

84 satisfy the conditions for the differential @

we can easily see that ¢, p, x and <t are the harmonic solutions

g 1in S B.2. Then

respectively. Let ¢h, ok

5 R and T

10 el P R 9 g

il 2 2 4
be the finite element approximations of ¢, p, x and <t in the

!
; Xh and

o 2
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space A’ respectively. Then by (ii) of Theorem 3.2 and (4.8),

we obtain upper and lower bounds for Py shakel Whop &

V)

9
(4.8) - S Py, < 19017 + e(@)
Ief 1% + (<))
h h
and
(4.9) B <, s lopl% + o).
Ix) 15+ elxy)

AN RN =L ot ThelM b= i nd s = e and ihans (4. stsand - (4was
imply the inequalities
. 1 '

;
' $p, = = < %+ e(e)).
¥ ok i St i %

'
I ohl

§ 4.3. Numerical example 1 (the case of a closed Riemann surface).

Let @ be the two-sheeted covering surface with four branch points

z = =8, =1, 1, 3 over the extended z-plane. Then § 1is a eclosed
Riemann surface of genus one. A canonical homology basis {A, B}
of Q 1is chosen as in Fig.6. We aim to obtain good upper and lower

approximate values of the periodicity moduli p1 and Py ofis @

with respect to A and B respectively.

Fig. 6 Numerical example 1 (the case of a closed Riemann surface)



First, we construct a triangulation of the closed region:

D={z1 Izl £ /3, Rez 20, Imzz 0}
as in Fig.7. The closed regions 62 and G3 are mapped onto the
regions G; and G; resp. by the local parameters & = w2(z)
a/z - 1 and w = ®4(z) = b log z (a = 2(/3 - l)l/2 and™ B = /3)
respectively, where a and b are so determined that |[dg&/dzl| =1
and Ildw/dz|l =1 on Iz - 1l = /3 -1 and |zl = /3 respectively.
We construct ordinary triangulations K; and Kg of G; and
G; as in Flg.7T respectively. By K2 and K8 we denote the image
triangulations of K; and K; by the mappings wél and wél
respectively. The triangulation Kl of the region Gl =
i< (62 U GB) in Fig.7 1s so constructed that each 2-simplex s of
Kl is patural, minat.ok Majorl accordine as sl M IK2 + K3| =6 fi
sl N IK2| ORI S IKSI # ¢, where if some intersection

is a point then it is interpreted to be vacuous, and the local

_parameter wl(z) of K1 is the identity mapping wl(z) = z.

A triangulation L, of the region D, = 324 gl B 248, B 5 & W,

Im z 2 0} 1is defined by the reflection of the triangulation L

Kl + K2 + K8 with respect to the circle (2l = /3 lef. Big.8).

Next we define a triangulation L2 of the fourth quadrant by the

reflection of the triangulation L + L1 with respect to the real
axis and then a triangulation L3 of the left half-plane by the

petilection of T & Ll + L with respect to the imaginary axis.

2

Consequently, a triangulation L4 of the extended z-plane is

defined by L4 = T, 4 Ll ok L2 ot L3. Theny ‘a toilangulation K of

the covering surface § 1is so constructed that the projection T of

K onto the extended z-plane is the triangulation L4. We see that



V4]

Ky (9

e

%
K3(G3

K3(G3)
AN
W= ws(z) = b log z
S IR
l
0 P ! 7
K2(G2)
§=<P2(z)=an—1
£y x;«;;)
K /
//‘
7
L of example 1

Fig: 7 ‘Triangulatien




T oT1duexs JO _q ¥ A ORI BIESURbGE 8 S
£ g/ I 0

¥ ﬁ
s /\\

[ 7

i

/ Ve

—



the triangulation K conforms to the definition in § 1.2. We

1 gl

denote the parts of T (D) and T (L) on the upper sheet of Q

by D and L again respectively.
Let ¢ = x and p = .t be the differentials on the present
Q defined in § 4.1, and let ¢h and ph

approximations of ¢ and p respectively in the space A'(K'),

be the finite element

where K' is the naturalized triangulation associated to the

present K.

Let A(L) be the space of differentials on D which are the
restrictions of those in A(K) to D. Let A¢(L) be the subspace
of A(L) which consists of the differentials Oe ¥ AL
satisfying the conditions:

o, =0 along «<4= {2 |1 0 I8 2z £ /3, Re z = 0},
o, =0 along ¢y = fz 1 2 & Be 2. /3, Im 2.5.0)}
and
I - W S
BND h 4 °
and let A¢(L A — {oh = F(oh), %Y € A¢(L)}. Further, let AD(L)

be the subspace of A(L) which consists of the differentials o

h

in A(L) satisfying the conditions:

e = 0 along cg =iz W0 o Reltzi g et I 7= Ok

g, = 0 along el = fz i dzl = 8, Vg 808 8 & —5—3

h 1 | > )
and

[ag By oopt

AnD R 4

vr='= e p ! 4
and let AD(L ) {of = Flop), oy € A (L)} By ¢h.L and p, , we



denote the differentials in A&(L') and A;(L’) respectively which
minimize norms "Oh”L'

by making use of the symmetricity of K', the period and boundary
¥

in A&(L’) and AE(L') respectively. Then,

é . n ] ’ ' ] . e | *
conditions of h' Dh, ¢h,L and ph,L’ and their minimality w.r.t.
norm, we can verify that ¢A L and pé [ are the restrictions of
! (] ' . ’ 2 L ' 2
¢, and py to L respectively, and I/l = 16 "¢h,L"L' and
o ) Z ) ! ] 1
"ph"K' = 16 "ph,L"L" Consequently, to attain our aim it is
sufficient to make numerical calculations of ¢h I and pﬂ .

(cf. Mizumoto and Hara [17],[18] for the calculation method).

We should note that the symmetricity of ¢ and p on § has not
been used and thus our method does not reject an application to the
differentials which do not have symmetricity on Q.

Table 1 shows the exact value of the periodicity moduli pl which
can be calculated by making use of a complete elliptic integral, and
the values of our finite element approximations. Furthermore,
computational results for the normal subdivision Kl (see Fig.9) of
the present K are shown. It can be said that the both of upper

and lower bounds of pl are close to the exact value.
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Table -,

Periodicity moduli pl o)

(closed Riemann surface)

f example 1

Exact Bt = f *p = 0.781701
1 A
value
Qrisinall Eriangulatiocon s(h = 0s213758)
N ' 2 ] ' Q)
Upper u¢hn + 8(¢h) H¢h - ¢
bound - 0.782184 + 0.429347 x 10 S - 3.76256 x 10°°
= 0.782613 (0.000912)
1
L owar upk'lu2 + e(p)) loy - B'1
G i - = 6.14254 x 10°°
1.280878 + 0.150405 x 10 °
Finite = 0.780714 (-0.000987)
element
- Normal subdivision (h = 0.106879)
approxi-
i [ 2 ] ’ 0
MATIONS | uypper | Mdp1% + (@) ey - &'
K 8
bound = 0.781968 + 0.107413 x 10 5 = 1.12050 x 10 °
= 0.782075 (0.000374)
1
famer lop 1% + e(op) loy - 8"
bound | = - - = 1.83821 x 10°°
1.279508 + 0.381488 x 10
= 0.781551 (-0.000150)

- B 1

Deviation from exact value.



8§ 4.4. Numerical example 2 (the case of a compact bordered Riemann

o

surface). Let Q be a two-sheeted compact bordered covering

surface with three branch points =z =ley 159088 “lover the edlipse:

I

3N
8N

|‘<

\ iy | 1§ *

™
1
i
1]
S
+
|><

= L.

2]
[
Ul

Then § 1is a compact bordered Riemann surface of genus one with
one boundary component. A canonical homology basis {A, B} of

N is chosen as in Fig.10. We aim to obtain good upper and lower

-1/15

Fig. 10 Numerical example 2
(the case of a compact bordered Riemann surface)




approximate values of the periodicity moduli Py and Py of
 with respect to A and B respectively.
First, we construct a triangulation of the upper half ellipse

D=En{z | Imz 2 0} as in Fig.11. The closed regions GQ, Gg,
%* * *
o GB’ G4 and

resp. by the local parameters & = wz(z) — W e o

& and G5 are mapped onto the regions G

¢ = w3(z) AAT ok g = w4(z) = bvze = "8 and

1 -1/4
5

cosh "z (a = 2/ and b = 2/ 851/4) respectively,

W= e b7 )
O
where a and b are so determined that ldg/dz| are equal to

|dw/dz | at =z = zo+ i (zO =t =] 1T ier 3) . "We eonstruct ordinary

, _ * * L * * . * * * *
triangulations K2’ K3. h4 and K5 of G2, G3, G4 and 65 as

in Fig.1l1l respectively. By K2, K3' K4 and K5 we denote the image
triangulations of K;, K;, KZ and K; by the mappings
w;l and wél respectively. The triangulation Kl of the region

Gl SR (G2 U G3 U G4 U GS) In sEre. 11 is ‘serconstructed sthait

each 2-simplex s Of Kl Is.matural, minor or major according as

i K4 i Ksl = ¢, Isl n |K2 iHREG

sl n IK, + K L Kyl =8

3 3

Gl I's 4l em |K5I # ¢, with the convention as in the previous section,

and the local parameter of Kl TG wl(z) = z.

A triangulation L, of the lower half ellipse 51=

En {z | Im z < 0} 1is definmed by the reflection of the triangulation

L= Kl + K2 + K3 + K4 - K5 with respect to the real axis and

a triangulation L2 of " MEr Siiswdeiiined. by L2 = L+ Ll' Then, a

triangulation K of the covering surface Q is so constructed
that the projection T of K onto the z-plane is the triangulation
L.. We see that the triangulation K conforms to the definition

)
in § 1.2. We denote the parts of T_l(ﬁ) and T_l(L) on the upper
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sheet of @ by D and L again respectively.

Let ¢, p, x and <t be the differentials on the present @

h

approximations of &, p, x and <t respectively in the space

defined in § 4.1, and let ¢ﬁ, pﬁ, xé and be the finite element
A'(K'), where K’ is the naturalized triangulation associated to
the present K.

Let A(L) be the space of differentials on D which are the

restrictions of those in A(K) to D. Let A

; i J4, (£
¢(L) Ap( ) AX( )
and At(L) be the subspaces of A(L) which consist of the
differentials Ohl’ o i and oh4 1t AL RS respectivelly
satisfiying the ‘conditions:

Oyg = Ps 0 along Cy = {7zl 8 & Re 7z < 4., Tz = 0},

B F ey = 0 along c, = iz i-1 s Re 2z £ 1, Im z = 0},

*
Tl 0 along Cy = i | e RIS S ER e T e = R 0
*
Do =y 5 = 0 along ¢, = {z |1-4 < Re z -1, Im z = 0},
)/ Xz V’2 \
Uhl = oh2 = 0 along ¢ = LZ = X iy 16 + Tg = Lo S O},
- O = I - TR

BND hli =~ JBnD n'g 2

and
6, Fe Wi e

AnD  “h2 T JAanD “ha4 2
Further, let A¢(L ) = {Ohl}, Ap(L ) = {Ghz}. AX(L % = {GhS} and
At(L = {oh4}, where ohj = F(ohj) (J = 1.2, 8, 4y, By ¢h.L’ SN

] ' . & q F e s [ T |

Xh,L and th‘L we denote the differentials of A¢(L by AO(L e AX(L )

and A;(L’) respectively which minimize norms in A&(L'), Ag(L').

A%(L') and A%(L') respectively. Then, by making use of the

symmetricity of K', the period and boundary conditions of ¢ﬁ- pﬁ,



Xy Ty ¢h,L' Py L' Xh oL and o and their minimality w.r.t.
HORRY, “We lean werify that ¢h,L' ph,L‘ Xh,L and th'L are the
restrictions of ¢A, pé, xﬁ and té to L' respectively, and
ot © : g e : 2 W e , 2
"¢h”K' = 4 ”¢h,L”L" thHKp = 4 ”ph,L”L" HthK; = ”Xh.L”L'
g i - ' 2 % o : .

and "th”K' = 4 "th,L"L" Consequently, to attain our aim it is

sufficient to make numerical calculations of ¢h L pﬁ L xh L

and th’L.

The exact values of the periodicity moduli pl and p2 can be

calculated by the following procedure.

Let EO and 51 be the boundary parts of the upper half

ellipse domain D defined by

50 = 7N (B R SR el a7 e el T ) = O ]
f; x2 52 )
et Al P R TR
and
o
31 = fz [ S=08s Rel 7 = 15 ITm 'zl = 0,

Let A be the rectangular domain
Fasle= e 1 TN O TS = S e T SR OF eyl R

and let Yo and Yy be the boundary parts of A defined by

P NL0F = IS Sy CRelilY =" 04

Yo

and

I

Y1 P 450 S T W Barios 1),

RS Do is icotdrmalliy mapped entos A" SO LAt EO and 51 are
mapped onto yO and ¥y respectively, then the periodicity moduli



Py is equal te oi The confoermal map W= filzy: D - A 1is

constructed by the composition of the following mappings:

(i) w o= ——-ETT—-Cosh_lz =
cash_—4
(1) & = sn{K(k) W), where LS.tX) _ _ 2r .
K(k) -1
cosn 4
OISl L T
A B N G R
where §j = sn(K(k)~wj) (M= 0T 25 S35 e wy o=
“1 + i(2n / cosh 1ay, R R WY S s F lmeh 4~ 3,
w, = 1+ i(2n / cosh™14), and o S TR M
el Lottty
- 71 ] - ,/ - - — —
Z4 Tl with &k A valfe LR, i ((§4 §l)/(§4 §2
FEIREE I T MR T
b e Sl ( 1 IZ dz X (1 2 4 K'(K))]
2 K 5 5 5 K(x)

Then we see that

Vi= BN SRe)’

Next, let Eé and c¢! Dbe the boundary parts of D given by

Eé =7z ‘1< e 2 £33, Ing'= 0}
and
j 0, :
Cl = 12 — 0 16 + 15 = 1 Py Of
[ 0 R g S 0 o B B o S i [ = B O

)2 A YO and Yl be as above. If the domain D 1is conformally

~

mapped onto the domain A so that cé and Ei are mapped onto



YO and Yl respectively, then the periodicity moduli p2 s
equal to <t. The conformal map W = E PRS2 =AY g constraciad
similarly to the case of periodicity moduli pl.

Tables 2 and 3 show the exact values of the periodielty moduli
and Py and the values of our finite element approximations.
Furthermore, computation results for the normal subdivision Kl
of the present K are shown. It can be said that the both of

upper and lower bounds of Py and p, are close to the exact

values.

Py



TBable -2

Periodicity medul i

Py

of example 2

(compact bordered Riemann surface)

Exact Py * IA *® = 1.539330
value
Original triangulation (h = 0.138840)
Upper 1 12 + (') Id, - &1
h h h
bound - 1.540588 + 0.572262 x 10 % - 1.15885 x 102
= 1.540645 (0.00132)
1
Lower Iep 1% + elx)) I, - <
R % 1 - - 3.74131 x 10 °
0.849700 + 0.225117 x 10
Finite = 1.538639 (-0.00089)
element
. Normal subdivision (h = 0.089420)
approxi-
mations | ynoer n¢ﬁn2 e (@) I, - &1
bound - 1.539652 + 0.142916 x 10 2 - 5.89447 x 10 °
= 1.539666 (0.00034)
it
e ; : e
Lower chH ‘2 S(th) ch — S
bound | = L — = 1.09209 x 1075
0.649652 + 0.558093 x 10
= 1.539153 (-0.00018)

): Deviation from exact value.



Table

3 Rer rodicdity modmi

Py

of example

(compact bordered Riemann surface)

9

“

Exact By = IB #»p = 1,838350
value .
Original triatnegulation (h =i 04 138840
' g2 ' ' )
Upper thﬂ i e(ph) Hoh =t -l
bound = 841976 + 0. S51B532" X 10_3 = FIBeTIT X 10_3
= 1.842328 (0.00298)
i |
] 2 ' ] Ny
Lower Mxhu + e(xh) Hxh =8 ol
pDE g < — - 5.22574 x 10 °
0L 544588 & 0 LA5580. 5 10
Finite SN IS S S IE ) (-0.00359)
element
. Normal subdivision (h = 0.069420)
approxi-
mations | ypper lop 1% + e(o)) o) - B'1
bound =i A8 A0 NG ¥ CRITIBIHE A 10_4 = 2.28613 10_3
= 1 .8401.04 (5. Q00OTS )
3[:
Lower Ix 1%+ e(x)) I, - X'
bound | = 3 — = 1,73882 % 10°°
0 543904 =+ ) Sl 8Ty . 10
= N8 FRELSHT (-0.00091)

— 8519

): Deviation from exact value.



Chapter 5. Determination of the modulus of gquadrilaterals.

§ 5.1. Quadrilateral on a Riemann surface. Let Q be a simply-

connected subdomain of a Riemann surface W whose closure Q 1is

a compact bordered subregion. We consider the case of C1 = C2 =

C3 = &, C4 =92 and n = 2 for the notations defined in § 1.1.

We assume that dQ satisfies the conditions in § 1.1. And thus

four points pl, pz, p3 and p4 on 97, and the two opposite arcs
. B T

Cy = Yl (from pl to p2) and c1 = YS (from Pqg to p4) are

assigned. Then we say that a quadrilateral Q with opposite sides

cO and cl is given.

8§ 5.2. Formulation of problems. We can conformally map the domain

Q defined in § 5.1 onto a rectangular domain
R=4{w ]| 0O<Rew<1l, 0 <Imw< M}

by a function

=
It

f(p) so that pl, p2, p3 and Py are mapped to
iM, 0, 1 and 1 + iM respectively. Then the modulus of the

quadrilateral Q:

M(Q) M

is uniquely determined by Q. Our aim is to determine M(Q) by

Y

finite element method.
Now we assign the two opposite arcs EO (from Py to p3) and

El (from P, to pl) on dQ. Then a quadrilateral Q with

opposite sides EO and 81 is defined. We see that the domain Q

can be conformally mapped onto a rectangular domain



K={w|] O0O<Rew<1, 0<Imw< 1/M}

by a function w = ?(p) so that Py. Pgs Py and Py are mapped to

i/M, 0, 1 and 1 + i/M respectively. Hence
(5.1) MEQ) = =r—.

We characterize M(Q) by a minimal property.

0 (co) TG &

). Let {8, 8} be a system of differentials in

Let vy (?) be a curve which connects a point on ¢

poilnlt on ¢ (cl

Fc(ﬁ) satisfying the conditions

B =0 along e U ¢

~

= 0 along c.uUc

9
f 8 = f~ g = 1.
¥ ¥

Let ¢ (&) be the harmonic solution in Fe (r@). Then ¢ ($)

satisfies the condition *¢ = 0 (*¢ = 0) along 3N - o U ¢y

0 U El). We can easily see that ¢ = d(Re f) ($ = d(Re 1)).

Then by Lemma 3.1 the equalities

~

(9Q - ¢

(5.2) M(Q) = 1912 = min lol?,
g€l
9
(5.3) M(3) = 1%12 = min lon?
o€l ~
3
hold.

Let A¢(K) be the subspace of A(K) which consists of the

differentials o in A(K) satisfying the conditions

o= ) along cO U Cl’

N
Q
=Y
]
H

gnd let AK') = {o = F(o,), o, € A¢(K)}. Further A&(K) be the



subspace of A(K) which consists of the differentials o

satisfying the conditions

Gh = 0 along CO V) Cl'
f oA —
¥ h
! ' - ! - o~
and let Ale (BI = {oh = F(oh), i € A¢(K)}.

Let ¢£ and $ﬂ be the finite element approximations of ¢ and
$ in the space A@(K') and A¢'(K') respectively. Then by (ii) of

Theorem 3.2 we have the estimates

(5.4) 117 < 11 v (e
and
(B8 1312 < 107 e(P) .

By (5.1)~(5.5) we have upper and lower bounds for the modulus M(Q):

1
1307 e (@)

(5.6) S MQ) s 1417+ e(d)).

§ 5.3. Numerical example 3 (the case of Gaier's example [11]).

Let Q be the simply-connected domain on the z-plane defined by

2l | Dxxcid . < v< 1}

i i i

= {z I 5 & KK K TR Y l},
and let o and ¢y be the boundary parts of Q defined by
Cy = {z LU S X x5 %. y = O} B3z | X = 8.0 £ 5 < 1)

U {z B % %. y = 1}

and
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respectively, where z

X 4+ 1lys Let @  be the quadrilateral vith

the two opposite sides Cy and ¢y (et Fige. '12) 4 "We adm" to ebbaln
] 1
1 = +
5 i
Q
1
CO L —§1+ii
1 1
B
Q
el
0 1 1
2

Fig. 12 Numerical example 3 (the example of Gaier)

good upper and lower approximate values of the modulus of Q.

We construct a triangulation of the closed region § as in

Fig, 18 & The closed regions 62 and G3 are mapped onto the
regions G; and G; respectively by the local parameters ¢ = wz(z)
=aJz-1/2 and § = 95(2) =b¥es (1 +1)/2 & =1 and

Dt = e_ni/6) respectively, where a and b are so determined

that |dz/dz| =1 o Jg - 1/2) = 1/4 amd |z - (1 % 1)/2| =

1//27 respectively. We construct ordinary triangulations K;

and K; of G; and Gg as in Fig. 13 respectively. By K2 and

K we denote the image triangulations of K; and K. by the

3 3



Xk
KB(GS)
1
bos
KB(GS)
£ = wa(z) = obis i V=GR 22
I + =4
T 1
2

Fig. 13 Triangulation of

example 3




! =l - .
mappings @2 and mgl respectively. The triangulation K

1,
of the region Gl = Q - (G2 U GS) im Fig. 13 1s. 80 constructed
that each 2-simplex s of K1 is natural or minor according as
Is] N IK2 + KBI =@ or. Isin IK2 + K3I # ¢, where if some

intersection is a point then it is interpreted to be vacuous,
and the local parameter wl(z) of Kl is the identity mapping
@l(z) = z.

Let ¢ and $ be the differentials on the present Q defined in
& 5.2, apd let ¢£ and $h be the finite element approximations
of ¢ and ¢ respectively in the classes A#(K’) & {oﬁ = F(oh),
o, € A¢(K)} and A$'(K') = {oﬁ oLy o, € A$(K)} respectively,
where K’ is the naturalized triangulation associated to the present
K. To attain our aim it is sufficient to make numerical calculations
of ¢£ and $ﬁ (cf. Mizumoto and Hara [17], [18] for the calculation
method) .

Table 4 shows the exact value of the modulus M(Q) (see Gaier
[11] for the calculation method), Gaier's computation results
and the values of our finite element approximations. Furthermore,
computation results for the normal subdivision Kl (see Fig. 14)
of the present K are shown. We note that 8(¢£) = 8($ﬁ) = 0
in the present example. It can be said that the both of
upper and lower bounds of M(Q) by our method are much closer

to the exact value than those by Gaier.
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/KS(GG)
/1
1
= +
5 i
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1
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ya
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K, G > Ky Gy
£ = <P2(z) = Az 172

)

Fig. 14 Normal subdivision

of example 3




Table 4 Modulus M(Q) of example 3
(the example of Gaier [11])

Exact value MQ) = H¢H2 = 1. 279262
Raidntg 0 2_4 Upper bound = 1.49435 (30 503
computation Lower bound = 1.09543 (-0.18383)
results
(Gaier[11]) 7 Upper bound = 1.32659 COORLTRIR)
e =
Lower bound = 1.23368 (-0.04558)
Original triangulation (h = 2—4)
U ' 2 ] ] fiey
pper H¢hH + 8(¢h) H¢h - ¢
bound = 128396 + =0 = St G X
= Sl 28396 (0.00470)
1 & o
Lower 1F 0%+ e @) R
se e B 1 = 7.25518 x
0.783599 + 0O
23 = 1.27618 (-0.00310)
computa-
tion Normal subdivision [h = Z-DJ
results
Upper I 1%+ e (4)) Iy - '
bound = NP8 g el () = 3.893884 X
=T 28046 OO0
L " A
' '
Lower "$£"2 + 8(&5) iy = 4
i ¥
bound = 0782185 + 0 =B B8 5TE X
= PR 34T (-0.00079)

( ): Deviation from exact value.



§ 5.4. Numerical example 4 (the case of a Riemann surface). Let

D, = 2.1 2l s o) - {Zz | 0 £ x <=, vy =0} and ¢, be the upper
boundary part of Dl v ibnioaveonsaelaz il i, a2 wac Bo sy B SO Sl e el sl S
X de e Let D2 = {md lgire ), -~ (el s l, v B} s8nd let
¢y be the boundary part of D2 defined by - g Py Lzl e Bl

y 2 0}. Let Q be the simply-connected covering surface obtained
by connecting Dl and D2 crosswise along the segment {z | 0 £ X
il Ve = 0ip e IBHisE RS 59t el SOL ibepathie - dilladisrlaitera L wasths the

.QOQOOOOOQO 000Q
XXXXXXXXXX XX XX

Fig. 15 Numerical example 4 (the case of a Riemann surface)

opposite sides o and Cq- By symmetricity of Q we immediately see
that M(Q) = 1. We aim to obtain good upper and lower approximate
values of M(Q). The present example is one which exhibits remarkable
validity of our method. Namely, it is shown that an unbounded

covering surface over the z-plane with many inner and corner

singularities of high order, and with a curvilinear boundary is dealt



with by our local treatment method without use of any global

conformal mapping.

We construct a triangulation of the bordered region § as in

Figs. 16 and 17. 1In Fig. 16, the closed regions Gl V] G2 B R S A GS'
X * -

GS U G7 and G9 are mapped onto the regions Gl U G2 U U G

G; U G; and G; respectively by the mappings ¢ = wl(z) = (1/4) -

logz., £ = mg(z) = S ize Fanial G s wg(z) = /7 respectively. Further,

3 * * * - :
the regions G3, G4, G5 and G7 are mapped onto the regions G
* % * % %*

e h and G respectively by the mappings Z = wS(t) = ¥E, Z

5] 7
e MO YT T RIZZ, z = ¥ (8) = VA AT ERI/d and z -

v, (5)
Vo (8) =

|
)
]l

¥% respectively. Let w3(z) = W3°@l(z), @4(2) =

w4o@l(z), ws(z) = wsowl(z) and w7(z) = w70@6(z). We note
d d

y ¥

I =3 o gl = %. ld 3| RS ;%;' ’d 4|
d(w6°wil)

e

that I

'dw_

]
—
O
=

e
|
w
NN
I

on Re & = % 1oy v A

We construct ordlnary triangulations K**, T K5 R

)
* ¥ * % * % * % * e . -
of G3 ] G4 s G5 ; G7 and G9 UGS ST s Y

respectively. By KB’ K4. KS’ K7 and K9 we denote the image
* % * ¥ * *

triangulations of K;*, K4 : K5 : K7 and K; by the mappings

@él, @él, @:l, w;l and wél respectively, and the local parameters
9

dw 1
‘ S pdil oh R = Eind I———

of KB’ K4, KS' K7 and K9 are Z = ws(z), Z = m4(z), Z = @5(2),

Z. s w7(z) and & = wg(z) respectively. The triangulations
Kl and K2 of Gl and G2 respectiveldy 1n Fig. 49 are so
constructed that each 2-simplex s of Kl and K2 is. natural or

minor according as |[s| N IK3 + K4 -~ K5| = ¢ or Isl|l n IK3 + K4 +
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K5| # ¢, where the local parameter of K1 e K2 R @1(2)-

Also the triangulation KB of G6 is so constructed that each

2-simplex s of K6 is natural, minor or major according as

i | ey i i e K7| = ¢, sl o 1Kol = ¢ or Usl n |K,| = 9, where

1

the local parameter of K6 o w6(z). Further, the triangu-

latlion K8 of G8 is so constructed that each 2-simplex s of

h i

K8 is natural, minor or major according as |Is| n IKl + K, + Kgl =

2

@, Jesi G IKQI #Z ¢ or [s] n IKl + K2I # ¢, where the local

parameter of KS is the identity mapping @8(2) = Z.

Let ¢ and ¢ be the differentials on the present § defined in
§ 5.2, and let ¢ﬁ and &5 be the finite element approximations
of ¢ and ¢ respectively in the classes A@(K') and A$'(K')
respectively, where K’ is the naturalized triangulation
associated to the present K. To attain our aim it is sufficient
to make numerical calculations of ¢£ and $B.

Now the differential ¢ = du 1is obtained by the following
procedure. Let A be the rectangular domain

A= WSSO = SR e W< e 0 ST W < 0L

and let Yo and Y1 be the boundary parts of A defined by

Yy - {(W | 0O£ImWg1, Re W = 0}
and
e W 0 In Wi 1 Re W = 3
The conformal map W = f(p) such that Q 1is conformally mapped

OIEgs Ay "SosThiait CO and cl are mapped onto YO and Yl
respectively, is constructed by the composition of the following
mappings, and then u = Re f(p):

(1) w= /2



Tay
|
% o>
<
]
o
WV
e
w

(ii) w o+ ]
LT E ., B Rae . EOLIRH s, Ba €
&=~ 3%y Gy 7B € - %, &5 - &
where ;l — (0 ;2 & =23 §3 £ ¥ Zl = 1, 22 = 21 Asand 23 = 1/k
with 1/k = 3 + 2/2;
2
(iv) W= = L ( dzZ - (K + iK')J,
oh 0 2 7 e
VAl L= A T IO e
where K = K(k) and K' = K'(k) are the complete elliptic

integrals.

Table 5 shows the values of our finite element approximations.
Furthermore, computation results for the normal subdivision K1 Ol
the present K are shown. It can be said that the both of upper and

lower bounds of M(Q) are close to the exact values.
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all e 85

Modulus M(Q) of example 4
(the case of a Riemann surface)

Exact M(Q) = 412 = 1.0
value
Original triangulation (h = 0.141421)
Upper | ¢ % ¢ e(d)) oy - @0
bound - 1.00484 + 0.103287 x 10 2 - 1.88104 x 10 2
= 1.00587 (0.00587)
1 A u
Lower | I3 1% + &) A Sl
s 1 — - 1.88102 x 10 2
1.00484 + 0.103287 x 10
Finite = 0.9941864 (-0.005838)
element
¥ Normad subdisriston "(h' = 0 O7TCTI0T)
approxi-
mations | i er Iy 1%+ e (4)) Iy - @
Sound = 1.00128 + 0.255952 x 10 3 - 5.84884 x 10°°
= 1.00154 (0.00154)
l A
Lower H$ﬁ"2 - 8($£) H$ﬁ |
bound = _ -3 2 B e
1.00128 + 0.255957 x 10
= 0.99848686 (-0.001534)

- 74 -
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Deviation from exact value.



§ 5.5. Numerical example 5 (the case of an unbounded domain; cf.

example 1). Let Q = {z | y > 0}, and let oy and ¢y be the
boundary parts of § defined by Cy = {24 -3 xa -1, ¥y = 0} -@and
¢y = fz ol A & % g 3s 0 =il nogpeetivellvypwhene 2 =ess dy. Let

Q be the quadrilateral with the two opposite sides c and c
(cf. Fig. 18). We obtain good upper and lower approximate values

of the modulus of Q. See example 1 for the details. Table 6 shows

(&,
€o

1
VAR Y /AR /AN

Fig. 18 Numerical example 5 (the case of an unbounded domain)

the exact value of the modulus M(Q) which can be calculated
by making use of a complete elliptic integral, and the values of

our finite element approximations.



Table 6

Modulus M(Q) of example 5

(the case of an unbounded domain)

Exact M(Q) = lIl® = 0.781701
value
Original triangulation (h = 0.213758)
B ] 2 ' ] Nl
Upper u¢hn + 8(¢h) H¢h - ¢
bound - 0.782184 + 0.429347 x 10 ° = 3.762586 107"
= 0.782613 (0.000912)
1 A 2
Lower H&h”z + 8($ﬁ) "¢h -l
L L) L - - 6.14254 x 10 °
1.280878 + 0.150405 x 10
Finite = 0.780714 (-0.000987)
element
: Normal subdivision (h = 0.106879)
approxi-
mations | ypper | Mg{1% + e(4)) I - 3
bound = 0.781968 + 0.107413 x 10 S = 1.12050 ip 2
= 0.782075 (0.000374)
l A
Lower | I3 1% + e(®)) 1P, - F
bound | = L — = 1.83821 x 1075
1.279506 + 0.381486 x 10
= 0.781551 (-0.000150)

(A7

Deviation from exact value.



§ 5.6. Numerical example 6 (the case of a curvilinear domain; cf.

example 2). Let

NS

Q = {z EE +
L 16

|‘<

\
o] >0,
My

=
(o)}

and Let "¢ AN & be the boundary parts of @ defined by

0 1
2 2

G e il b BRG] f7 A A = OE

0 i L 16 1S A /
and

ey = 1z |0 =18 =% < G 7 = 0
respectively, where z = x + iy. Let Q be the quadrilateral
with the opposite sides y and ¢y et B d88ii.

i/15
C4
Q
o = cq 1 3 4

Fig. 19 Numerical example 6 (the case of a curvilinear domain:
gquadrilateral Q)

Further, det ¢ and c¢. be the boundary parts of @ defined by

0

I
5
N

=
I
~

IA
w

c y = 0}

and

¢y {z | -4

A
b
IA
|
}—A
e
"
=
Sy
——
N
I ]
+
l‘<
1l
}._I
]
1\
o}
s et

respectively, where z = x + iy. Let Q' be the quadrilateral



with the opposite sides cé and ¢y (it BB i, 200,

-4 -1 1 c(') 3 4
Fig. 20

Numerical example 6 (the case of a curvilinear domain:
quadrilateral Q')

We obtain good upper and lower approximate values of the modulus

o= 0 amd. Q. See example 2 for the details. Tables 7 and 8

show the exact values of the modulus M(Q) and M(Q') respectively

(see example 2 for the calculation method) and the values of

our finite element approximations.



Table 7

Modulus M(Q) of example 6
(the case of a curvilinear domain)

Exact M(Q) = 1412 = 1.539330
value
Original triansgulation (h = 0.138840)
] b2 ' ' N
Upper u¢hn + 8(¢h) H¢h . A
bound = a5 30588 & GLi5TR262 X 10_4 S Ha b e385 % 10_2
= 1.:940645 CoR DO
l ~
Lower H¢EH2 + 8($h) H$h - &
HOUHE | - - = 3.74131 x 1073
0649700 + B 225117 x 16
Finite = N5 88680 (-0.00069)
element
; Normal subdivision (h = 0.089420)
approxi-
matlons | ypper | M4L0% + e(4]) Iy - @
bound = 5898625 T 0., T42916" X 10_4 = B 89447 X 10—3
= 1 .538666 (0.00034)
Al %
Lowes 107+ @) 1 -
bound - . 3 = 1.09209 x 10 °
0.649652 + 0.5358098 x 160
= I r539ESS (-0.00018)
( ): Deviation from exact value.



Table 8

Modulus M(Q') of example 6

(the case of a curvilinear domain)

H¢u2 = 1.839350

Exact M(Q")
value
Original triangulation (h = 0.138840)
T [ 2 ' ' (2 4
Upper H¢hH % 8(¢h) H¢h - ¢
bound - 1.841976 + 0.351532 x 10 ° - 7.85797 x 10 °
= 1 842328 (0.00298)
l A
Lower H¢£H2 + 8(&5) H&E -
NG he = - - 5.22574 x 10°°
O G AES 80T S0 Tk 5 R (e T ()
Finite = 1.835760 (-0.00359)
element
: Normal subdivision (h = 0.089420)
approxi-
mationsg | ymper I 12+ e (4)) I, - &1
bound =il 84001 R RS TR X lO_4 = 2.28613 X 10_3
= 1.840104 (05 000D
l A~
Lower | 1317 + (@) 13 -
bound | = : - - 1.73332 x 10°3
BRSSOl O G R s R0
=l ekl (-0.00091)
( ): Deviation from exact wvalue.
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