共沸蒸留塔の特性

吉 田 英 人*,頼 実 正 弘*

ベンゼン, エタノール, 水系に対する共沸蒸留計算を緩和法を用いて行い, 種々の操作条件に対して分離数および 熱力学的効率の両面から最適操作条件を検討した。気液モル流量比に関しては第1塔は 1.3 以下, 第2塔は 1.2 以 下が望ましい。また塔内圧力が上昇すると, エタノールと水の分離が悪くなり, 分離数および熱力学的効率が低下す る。さらにベンゼン相と水相の分離を良くするために, デカンターに水を供給した場合, エタノールと水の分離は良 くなるが, リボイラー部での必要熱量が増加すること等の新しい知見を得た。

1. 緒 言

デカンターを用いて共沸混合物を分離する共沸蒸留塔の特性 に関する検討は、従来より行われているが省エネルギーの観点 から見た特性は完全に解明されていないのが現状である。

頼実ら^{8)~10}は I.P.A., 水, ペンゼン系における最小還流比 およびピンチポイントに関して検討しており, 一方石川ら³⁾ は 緩和法を用いて共沸蒸留計算を行っている。 また山田ら^{6),7)}, 平田ら²⁾ は共沸蒸留に関する詳細な解説を行っている。

本報ではペンゼン,エタノール,水系に対する共沸蒸留計算 を緩和法を用いて行い,第1塔,第2塔の気液モル流量比,原 料供給温度,塔内圧力の変化が新しく定義した分離数および熱 力学的効率に及ぼす影響について検討した。

さらにベンゼン相と水相との分離を良くするために,デカン ターに水を供給した場合の特性に関して調べ若干の興味ある新 しい知見を得たので報告する。

2. 計算方法

ここではベンゼン,エタノール,水系に対する共沸蒸留塔に ついて緩和法^{11),12)}を用いて計算した。

Fig. 1 Schematic Drawing of Azeotropic Distillation Column

* 広島大学工学部第 3 類(化学系)(724 東広島市西条町大 字下見) Fig. 1 は共沸蒸留システムであり、 F_1 よりエタノールと水 の共沸組成の原料が入り、第1塔缶出液Wでエタノールが第2 塔缶出液 WW で水が回収される。デカンター部では水相を第 2塔へまたベンゼン相を第1塔へ帰すのが望ましいが、物質収 支の関係上、両相を流量 F_2 、 FF_2 で第1塔および第2塔の塔頂 段へそれぞれ帰した。即ち還流比 R1 および 第2塔缶出流量 WW が規定されると Eq. (1)より F_2 が定まるがデカンター 部でのベンゼン相の量が少ない場合は水相の一部も第1塔へ帰 すことになる。また第2塔に関しデカンターでの水相が少ない 場合はベンゼン相の一部も第2塔へ帰して計算した。またデカ ンターへの供給水量を TTT、第1塔および第2塔の 段数を N1、N2として示してある。また還流比 R1 は次式を用いて計 算した。

 $R1 = F_2/WW$ (1) 気液流量の計算に際し熱収支を考慮して計算を行い,さらに気 液平衡の計算には 2 液相を形成するために,NRTL 式⁵⁾を用 いて計算した。

Fig. 2 はベンゼン, エタノール, 水系における $T = 25^{\circ}$ C の 条件下での 2 液相形成領域および液・液平衡のタイラインの計 算結果である。

なお使用した物性値¹⁾ および計算条件を **Table 1** に示す。 計算した緩和法の詳細およびフローチャートは文献(11)を参照 されたい。また収束判定条件として次式を用いた。

Fig. 2 L-L Equilibrium Calculation for Benzene-Ethanol-Water System

昭和 57 年 5 月 13 日受理

Calculation Cond	litions					
	q-va Feed	lue 1 : molar composition	r rate F_1 : a : Benzen	=1, W=0.89, ne 0.001, Ethan	WW=0.11 nol 0.890, Water 0.1	109
Physical Properti	es Benzen	e(1)-Ethanc	ol (2) – Wat	er (3)		
Constants of	NRTL I	Eq.				
$\begin{array}{l} A_{11}\!=\!0.0,\ A_{12}\!=\!1096.899,\ A_{13}\!=\!2213.355\\ A_{21}\!=\!282.332,\ A_{22}\!=\!0.0,\ A_{23}\!=\!-86.763\\ A_{31}\!=\!3820.954,\ A_{32}\!=\!1289.908,\ A_{33}\!=\!0.0 \end{array}$				$\begin{array}{l} \alpha_{11} = 1.0, \ \alpha_{12} = 0.295, \ \alpha_{13} = 0.267 \\ \alpha_{21} = 0.295, \ \alpha_{22} = 1.0, \ \alpha_{23} = 0.270 \\ \alpha_{31} = 0.267, \ \alpha_{32} = 0.270, \ \alpha_{33} = 1.0 \end{array}$		67 70 .0
Antoine's Constants				Boiling Point		Heat of Vaporization
A _i		B _i	Ci	$T_B(^{\circ}\mathrm{C})$		λ_i (cal/gmol)
Benzene Ethanol Water	6.90565 8.04494 7.96681	5 1211.03 1554.30 1668.21	220.79 222.65 228.00	80.15 78.35 100.00		7352.0 9260.0 9717.0
Co	nstants fo	or the Equat	ion C _{PV}	$= \alpha + \beta T + \gamma T^2$	2	$Q = \langle a_1 a_2 a_1 K \rangle$
		α		β	r	$G_{PL}(cal/gmol K)$
Benzene Ethanol Water		-8.101 2.153 7.701	1 5 4	$.133 \times 10^{-1}$ $.113 \times 10^{-2}$ $.595 \times 10^{-4}$	$\begin{array}{ c c c c } & -7.206 \times 10^{-5} \\ & -2.004 \times 10^{-5} \\ & 2.521 \times 10^{-6} \end{array}$	31.58 26.55 18.03

$$\frac{\sum_{j} F_{j} Z_{ij} - \sum_{j} (U_{j} x_{ij}^{(n)} + W_{j} y_{ij}^{(n)})}{\sum_{j} F_{j} Z_{ij}} \bigg| < \varepsilon_{1} = 10^{-2},$$

$$\sum_{i} \sum_{j} \bigg(\frac{x_{ij}^{(n+1)} - x_{ij}^{(n)}}{x_{ij}^{(n+1)}} \bigg)^{2} < \varepsilon_{2} = 10^{-4}$$
(2)

計算には l ジョブ当 たり日立 HITACM-200 H で約 2 分程度 を要した。

3. 計算結果および考察

本報では計算結果を整理し、考察する際の基準として次の式 で定義される分離数および熱力学的効率を使用した。分離数 *S* は Eq. (3) で定義される¹²。

$$S = \frac{W \cdot x_{W,Et}}{F_1 \cdot x_{F_1,Et}} + \frac{WW \cdot x_{WW,H_2O}}{F_1 \cdot x_{F_1,H_2O}}$$
(3)

上式より原料中の水およびエタノールが完全に分離されると, 分離数は2となり S は2成分の分離程度を表すパラメーター とみなすことができる。

次に熱力学的効率 η4) は次式より計算した。

$$\eta = \frac{(-W_{rev})}{(-W_1)} \tag{4}$$

ただし Eq. (4) で $(-W_{rev})$ は蒸留塔を 定圧分離装置とみな し、外界温度 T_0 から装置へ供給すべき最小理論仕事である。

$$(-W_{rev}) = RT_{0}\sum_{i} \left[W \cdot x_{W,i} \ln \frac{x_{W,i} \gamma_{W,i}}{x_{F_{1}i} \gamma_{F_{1}i}} + WW \cdot x_{WW,i} \ln \frac{x_{WW,i} \gamma_{WW,i}}{x_{F_{1}i} \gamma_{F_{1}i}} \right]$$
(5)

上式で外界温度 T_0 として 25° C を使用した。また x, γ はそ れぞれ液相モル分率および液相活量係数を示す。

次に Eq. (4) で $(-W_1)$ は実際に蒸留塔に加えた熱の有効仕 事を表しており、Eq. (6) で表現される。

$$(-W_{1}) = q_{B1} \left(1 - \frac{T_{0}}{T1(N1)} \right) + q_{B2} \left(1 - \frac{T_{0}}{T2(N2)} \right)$$

Fig. 3 Effect on Separation Number and Thermodynamic Efficiency of Liquid to Vapor Flow Rate Ratio of First Column

$$-q_{c}\left(1-\frac{T_{0}}{T(1)}\right) \tag{6}$$

ただし上式で q_{B1} , q_{B2} , q_C は第1塔,第2塔のリボイラー供給 熱量およびコンデンサー部除去熱量を表し、T1(N1), T2(N2), T(1)は第1塔,第2塔リボイラー部およびコンデンサ ー部での温度(K)を示す。

3.1 第1塔の気液モル流量比の影響

Fig. 3 は第1 塔の気液モル流量比 (L/V) の変化が分離数お よび熱力学的効率に及ぼす影響を計算したものであり,計算条 件としてデカンター部温度 $TOO=25^{\circ}$ C,全圧 1 atm,第2 塔 の (L/V)₂=1.25 のものである。第1 塔は全体的にみて回収部 (L>V) の働きをしていると考えられる。これより (L/V) が 1.3 以下が望ましくこの値より大きくなると分離数および熱力 学的効率が低下するといえる。この熱力学的効率が低下するの は 第1 塔のリボイラー 部熱負荷 が 増加するためであり,また

石油学会誌 J. Japan Petrol. Inst., Vol. 26, No. 2, 1983

Fig. 4 Relation between Mole Fraction of Bottom Liquid and Liquid to Vapor Flow Rate Ratio of First Column

Fig. 5 Relation between Reboiler Duty and Liquid to Vapor Flow Rate Ratio of First Column

 $(L/V)_1$ が大の領域で分離数が低下 するのは第1塔の還流液量 が多くなり、その際にデカンター部の上相および下相を第1塔 へ帰しているため、ベンゼン相中にエタノール、水がかなり同 伴したことによると考えられる。なお熱力学的効率の最大値は $\eta \simeq 0.07$ 程度であることがわかる。

Fig. 4 は第1塔缶出液側 Wのエタノール組成および第2塔 缶出液側 WWの水組成と,第1塔の気液モル流量比の関係を 示したものである。これより (L/V)の増加と共にエタノール と水の分離が悪くなり、特に (L/V)が 1.3以上では第2塔缶 出液 WW中の水のモル分率が低下するといえる。

Fig. 5 は原料 1 gmol 当たりに対して 第1 塔と 第2 塔のリ ボイラー部必要加熱量と第1 塔の気液モル流量比の関係を示し たものである。これより $(L/V)_1$ が増加するとリボイラー部の 必要加熱量は低下することがわかる。よって $(L/V)_1$ を増加さ すと、リボイラー 部必要熱量は 減少するが、Fig. 3 より分離 数および熱力学的効率の両者が低下するといえる。よって第1 塔の気液モル流量比としては 1.3 以下が望ましい。

3.2 第2塔の気液モル流量比の影響

Fig. 6 は第2塔での気液モル流量比 (*L*/*V*)₂ の変化が分離 数および熱力学的効率に及ぼす影響を調べたものである。計算

Fig. 6 Effect on Separation Number and Thermodynamic Efficiency of Liquid to Vapor Flow Rate Ratio of Second Column

Fig. 7 Relation between Mole Fraction of Bottom Liquid and Liquid to Vapor Flow Rate Ratio of Second Column

Fig. 8 Relation between Reboiler Duty and Liquid to Vapor Flow Rate Ratio of Second Column

条件としてデカンター部温度 TOO = 25°C, 塔内圧力 l atm, 還流比 R1 = 25,第1塔,第2塔の段数として 30段,10段とし た場合である。これより分離数は $(L/V)_2$ の増大と共に低下 し、一方熱力学的効率は漸次増加するといえる。よって第2塔

Fig. 10 V-L Calculation for Ethanol-Water System

の $(L/V)_2$ は 1.2 程度が望ましいといえる。

(L/V)2の増加と共に分離数が低下するのは, 第2塔の還流 液量が多くなると,デカンター部の上下相を第2塔へ供給する 様になるため,水相中にベンゼン,エタノールがかなり同伴し たことによると考えられる。

Fig. 7 は第1塔缶出液側Wの エタノール組成 および第2塔 缶出液側WWの水組成と,第2塔の気液モル流量比の関係を示 したものである。これより第2塔も主に回収塔の作用 (L > V) をしているといえ, (L/V)₂ の増加と 共にエタノールと水の分 離が悪くなる。

Fig. 8 は原料 1 gmol 当たりに対して 第1 塔と 第2 塔のリ ボイラー部必要加熱量と第2 塔の気液モル流量比の関係を示し たものである。これより $(L/V)_2$ が増加するとリボイラー部の 必要加熱量は低下することがわかる。よって $(L/V)_2$ を増加さ すと、リボイラー 部必要熱量は 減少するが、**Fig. 6** より分離 数は低下するといえる。よって **Figs. 6**, **7**, **8** より、第2 塔の 気液モル流量比としては、1.2 以下が望ましい。

3·3 原料供給温度の影響

Fig. 9 は第1塔への原料供給温度 T_F が変わった場合に分離数および熱力学的効率がどうなるかを計算したものである。 計算条件として デカンター部温度 25°C, 塔圧 1 atm, 還流比 25, 第2塔の気液モル流量比として 1.25 とした場合である。 これより供給液が沸点の場合,熱力学的効率および分離数が高 くなるといえる。

Fig. 11 Effect of Pressure on Separation Efficiency and Thermodynamic Efficiency

Fig. 12 Relation between Mole Fraction of Bottom Liquid and Water Feed Rate to the Decanter

なお T_F が低いとき熱力学的効率が低いのは、原料液を気化 さすに必要な熱量が、第1塔リボイラー部に余分にかかるため と考えられる。

3·4 塔内圧力の影響

次に塔内圧力が上昇した場合の影響について検討した。

Fig. 10 はエタノール,水系の気液平衡の圧力依存性を調べたものである。全圧は 1~6 atm まで変化させ,液相活量係数の計算にはウィルソン式を用いた。これより,全圧が増加すると,若干ではあるが,気相エタノールの濃度yが低下することがわかる。

Fig. 11 は分離数*S*および熱力学的効率 η が塔内圧力によっ てどう変化するかを調べたものである。

計算条件として 還流比 25, 第2塔の気液モル流量比, $(L/V)_2=1.25$, デカンター部の温度 25°C の場合である。これ より高圧になると分離数および熱力学的効率が低下することが わかる。これは、Fig. 10 で示したように、塔内圧力の上昇と 共にエタノールと水の分離が悪くなることによるものと考えら れる。

3.5 デカンターに水を供給した場合

次にデカンター部での水相とベンゼン相との分離を良くさせ る目的で,デカンターに水を供給した場合に,エタノールと水 の分離がどうなるかを検討した。

Fig. 12 は第1塔缶出液のエタノール,第2塔缶出液の水の 組成とデカンターへの供給水量 *TTT* との関係を示したもの

Fig. 13 Relation between Reboiler Duty and Water Feed Rate to the Decanter

Fig. 14 Relation between Ethanol Loss For the Second Column and Water Feed Rate to the Decanter

である。計算条件としてデカンター部温度 25°C,第1塔,第 2塔の段数として 30 段,10 段,第1塔と第2塔の気液モル流 量比 1.35,1.25 とした場合である。これよりデカンター部へ の供給水量が増すと,第1塔缶出液中のエタノールの液組成は ほぼ一定値を示すが,第2塔缶出液中の水の液組成が高くなる ことがわかる。

Fig. 13 は Fig. 12 の計算条件において,第1塔と第2塔の リボイラー熱負荷がどうなるかを示したものである。これより デカンターへの供給水量が増加すると,リボイラー負荷が幾分 増加することがわかる。Fig. 14 は第2塔缶出液中のエタノー ル損失割合とデカンターへの供給水量の関係を示したものであ り,デカンターへの供給水量が増すと第2塔のエタノール損失 割合が少しずつ増加するといえる。なおエタノール損失割合は 本計算条件下において0.017~0.02程度となることがわかる。 よってデカンターに水を供給すると,エタノール損失割合は増 良くなるが,必要熱負荷および第2塔エタノール損失割合は増 加することになる。

4. 結 言

ベンゼン,エタノール,水系に対する共沸蒸留計算を緩和法 を用いて行い,種々の操作条件について検討し次の結論を得 た。

(1) 第1塔の気液モル流量比に関しては (*L/V*) が 1.3 以下で, 第2塔に関しては (*L/V*) が 1.2 以下が望ましい。

(2) 第1塔の原料供給温度が沸点状態の場合,分離数および熱力学的効率が高くなる。

(3) 塔内圧力が上昇すると、エタノールと水の分離が悪くなり、分離数および熱力学的効率が低下する。

(4) ベンゼン相と水相の分離を良くするために、デカンターに水を供給した場合、エタノールと水の分離は良くなるが、 リボイラー部での必要熱量が増加する。

本研究の一部は昭和 57 年度 文部省科学研究費, 奨励研究 (A),課題番号 57750801 によった。ここに付記して謝意を表 します。

Nomenclature

A_{ij} ; parameter of NRTL Eq. (-)							
A_i , B_i , C_i ; Antoine's constant							
C_{PL} , C_{PV} ; heat capacity for liquid and vapor							
phase (cal/gmol K)							
F, FF; flow rate of first and second column (gmol/hr)							
L; liquid flow rate (gmol							
N1, N2; number of plate for first and second							
column ()							
q; q -value $(-)$							
q_{B_1}, q_{B_2} ; heat required in a reboiler for first and							
second column (cal/hr)							
q_C ; heat rejected in a condenser (cal/hr)							
R; gas constant (cal/gmol K)							
R1; reflux ratio ()							
S; Separation number defined by Eq. (3) (-)							
T_B ; boiling point (°C)							
T, T_0 ; temperature and surrounding temperature (K)							
TTT; water feed rate to decanter (gmol/hr)							
TOO; temperature in a decanter (°C)							
$T1^{(i)}$, $T2^{(i)}$; temperature of <i>i</i> th stage for first and							
second column (K)							
T(1); temperature in a condenser (K)							
U_j ; liquid side cut stream from stage j (gmol/hr)							
V; vapor flow rate (gmol/hr)							
W_j ; vapor side cut stream from stage j (gmol/hr)							
W, WW; bottom flow rate for first and second							
column (gmol/hr)							
$(-W_{rev})$, $(-W_1)$; reversible and actual work							
applied for the separation							
(cal/gmol)							
x_i ; liquid composition of the <i>i</i> th component $(-)$							
y_i ; vapor composition of the <i>i</i> th component $(-)$							
z_{ij} ; composition of the <i>i</i> th component of the							
feed stream entering stage j ()							
γ_i ; activity coefficient in liquid phase for the							
ith component (-)							
η ; thermodynamic efficiency calculated by Eq. (4) (-)							
λ_i ; heat of vaporization for <i>i</i> th component (cal/gmol)							
π ; total pressure (atm)							
α, β, γ ; constants for vapor heat capacity (-)							
Superscripts							
i=component number							
i=stage number							

F = refers to feed

References

- Gmehling, J., Onken, U., "Vapor-Liquid Equilibrium Data Collection, Chemistry Data Series", Vol. 1, Part1, 642 (1977), published by Dechema.
- 2) Hirata, M., "Saishin Jyouryu Kougaku", 35 (1971), Nikkankougyou.

- Ishikawa, T., Syouno, H., "Saikin no Kagaku Kougaku, Jyouryu Kougaku", 48 (1980).
- 4) Kojima, K., "Netsurikigaku", 268 (1968), Baifuukan.
- Renon, H., Prausnitz, J. M., Amer. Inst. Chem. Eng. J., 14, 135 (1968).
- 6) Yamada, I., Kagaku Kogaku, 26, (10), 11 (1960).
- 7) Yamada, I., Sugie, H., Ayabe, K., Kagaku Kogaku, 31, (4), 395 (1967).
- 8) Yorizane, M., Yosimura, S., Kagaku Kogaku, 32, (4),

382 (1968).

- 9) Yorizane, M., Yoshimura, S., Hase, S., Kagaku Kogaku,
 29, (4), 229 (1965).
- Yorizane, M., J. Japan Petrol. Inst., 7, (12), 851 (1964).
- Yorizane, M., Yoshida, H., Kawasaki, S., Nonot, S., J. Japan Petrol. Inst., 23, (3), 195 (1980).
- 12) Yoshida, H., Yamane, H., Yorizane, M., J. Japan Petrol. Inst., 24, (3), 173 (1981).

Summary

Characteristics of Azeotropic Distillation Column

.....

Hideto YOSHIDA* and Masahiro YORIZANE*

.....

The relaxation method was used for azeotropic distillation calculations. For the Benzene-Ethanol-Water system, various operating conditions were examined by use of thermodynamic efficiency and separation number.

For vapor-liquid calculations NRTL Eq. was used, and Eq. (3) was used for separation number calculations. Eqs. (4), (5), (6) were used for thermodynamic efficiency calculations. A schematic drawing of azeotropic distillation column is shown in **Fig. 1**. It was found from **Figs. 3, 4, 5** that the ratio of liquid to vapor flow rate for the first column should be less than 1.3. From **Figs. 6, 7, 8**, it was also found that the ratio of liquid to vapor flow rate for the second

* Faculty of Engineering, Hiroshima University (Saijyo, Shitami, Higashi-hiroshima 724) column should be less than 1.2. Fig. 9 shows that both the thermodynamic efficiency and separation number were maximized when the temperature of the feed was in the boiling condition. The maximum thermodynamic efficiency was about 0.07. Figs. 10, 11, indicated that as the pressure of the column decreased, the separation of ethanol and water improved. Fig. 11, showed that as the pressure increased, the thermodynamic efficiency decreased. Fig. 12 shows the relation between mole fraction of bottom liquid and water feed rate to the decanter. It indicated that as the water feed rate to the decanter increased, the separation of bottom liquid in the second column improved. But from Fig. 13, it was observed that the greater the water feed rate to the decanter was the greater the reboiler duty.

Keywords

Azeotrope, Benzene, Distillation, Ethanol, Thermodynamic efficiency