1	Spatial and temporal variations and factors controlling the concentrations of
2	hydrogen peroxide and organic peroxides in rivers
3	by
4	Khan M. G. Mostofa ^{1,2} and Hiroshi Sakugawa ^{2*}
5	¹ State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry,
6	Chinese Academy of Sciences, Guiyang, 550002, PR China.
7	² Graduate School of Biosphere Science, Department of Environmental Dynamics and
8	Management, Hiroshima University, 1-7-1, Kagamiyama, Higashi-Hiroshima 739-8521,
9	Japan.
10	*Address for correspondence:
11	<i>Tel.</i> + <i>Fax</i> : +81-824-24-6504
12	E-mail: <u>hsakuga@hiroshima-u.ac.jp</u> (or <u>mostofa@vip.gyig.ac.cn</u> :KMG Mostofa)
13	
14	
15	
16	
17	
18	Environmental context. Hydrogen peroxide (H ₂ O ₂) and organic peroxides (ROOH) are
19	ubiquitously present in natural waters and primarily essential for a number of redox
20	reactions. This study examined the effects of various dissolved organic substances on
21	the formation of H_2O_2 and ROOH and their relationships with water quality parameters
22	in two Japanese rivers. This study suggests that fulvic acid is primarily responsible for
23	production of H ₂ O ₂ and ROOH in river waters.
24	
25	

26 Abstract

27 Hydrogen peroxide (H₂O₂) and organic peroxides (ROOH) were examined in water 28 samples collected from the upstream and downstream sites of two Japanese rivers (the 29 Kurose and the Ohta). H₂O₂ concentrations during monthly measurements varied 6-213 30 nM in the Kurose river and 33-188 nM in the Ohta river. ROOH varied 0-73 nM in the 31 Kurose river and 1-80 nM in the Ohta. Concentrations of peroxides were higher during 32 the summer months as compared to those in winter. H_2O_2 concentrations correlated well 33 with the measured content of dissolved organic carbon and/or fluorescence intensity of 34 the fluorescent dissolved organic matter (FDOM) in the water from these rivers, 35 suggesting that the dissolved organic matter and FDOM are the major sources of H_2O_2 . 36 Further characterization of FDOM components by 3-D excitation emission matrix 37 spectroscopy indicated that fulvic acid is a dominant source of H₂O₂ in river waters, 38 which accounted for 23-70% of H₂O₂ production in the Ohta river, 25-61% in the 39 upstream and 28-63% in the downstream waters of the Kurose river, respectively. 40 Fluorescent whitening agents and its photoproduct (4-Biphenyl carboxaldehyde) 41 together contributed 3-7% of H₂O₂ production in the downstream waters of the Kurose 42 river. Tryptophan-like substances were a minor source of H_2O_2 (<1%) in both rivers. An 43 increase in the H₂O₂ concentration was observed in the diurnal samples collected at 44 noon compared to the samples collected during the period before sunrise and after 45 sunset, thus indicating that H_2O_2 was produced photochemically. This study 46 demonstrates that H₂O₂ is produced mainly from the photodegradation of FDOMs, such 47 as fulvic acid, whereas the production mechanism of ROOH needs further clarifications. 48 Additional Keywords: Hydrogen peroxide; organic peroxides; dissolved organic 49 carbon; fluorescent dissolved organic matter; upstream and downstream rivers.

50 Introduction

H₂O₂ is frequently present in natural waters and is an indicator of photochemical^[1,2] and biological^[3,4] processes of aquatic matters. Surface concentrations of H₂O₂ typically varies in natural waters from 20-320 nM in rivers^[5,6], 10-800 nM in lakes^[3,5,7], 0-1700 nM in coastal waters^[1,8,9], and 10-300 in oligotrophic waters^[1,10]. It has been reported that H₂O₂ may be produced as a final product through a chain reaction of chromophoric or colored dissolved organic matter (CDOM) with dissolved oxygen under natural sunlight (eqs 1-4)^[1,11-13].

58

50	$DOM + hv \longrightarrow DOM^*$	(1)
39	$DOM^* + O_2 \longrightarrow DOM^{+} + O_2^{-}$	(2)
60	$O_2 \cdot - + H^+ \longrightarrow HO_2 + O_2 \cdot - \longrightarrow HO_2$	$O_2^- + O_2$ (3)
61	$HO_2^- + O_2 + H_2O \longrightarrow H_2O_2 + O_2$	(4)

62

Humic substances (fulvic and humic acids), CDOM or FDOM are primarily susceptible
to photochemical absorption of photons from natural sunlight.

65 A few studies have previously conducted by our group and others to detect organic 66 peroxides (ROOH) in natural waters. Their concentrations were determined to vary from 33 to 200 nM in water samples from six rivers in Hiroshima prefecture^[6] and from 67 1 to 389 nM in seawater^[2,6,9]. Determinations of the concentrations of ROOH and H_2O_2 68 69 may be crucial for improving the understanding of the photochemical processes 70 occurring in the water, particularly in freshwater ecosystems. Previous work revealed 71 that ROOH may be formed (eqs 5-10) by the photodegradation of DOM (FDOM or CDOM) following the formation of H_2O_2 in the aquatic environment ^[14-16]. 72 73

	H ₂ O ₂ +	- hv	\rightarrow	2 · OH	(5)
75	DOM ⁺ +	+ •OH	\rightarrow	$R'/RO_2' + products$	(6)
76	R• +	- O ₂	\rightarrow	RO ₂ ·	(7)
10	RO ₂ • +	⊦ H ⁺	\rightarrow	ROOH	(8)
77	RO ₂ • +	- R•	\rightarrow	ROOR	(9)
78	RO ₂ • +	⊦ RO ₂ •	→	ROOR + O ₂	(10)

79 First, the photodecomposition of H_2O_2 may generate OH (eq 5), which subsequently oxidizes DOM⁺ to form an organic radical R[•] and/or an organo peroxide radical RO₂[•] 80 (eq 6). Secondly, organic radical (\mathbf{R}) may react with molecular O_2 to form the organo 81 peroxide radical (RO₂^{\cdot}) (eq 7). RO₂^{\cdot} may then combine with a proton (H⁺) to form 82 83 ROOH in natural waters (eq 8). Organic radicals (R' and RO₂') can rapidly associate 84 with each other (eq 9) and organo peroxide radicals can combine (eq 10) to terminate 85 the chain reactions. Terminated reactions (eqs 9-10) are competitive with reactions in eqs 7-8, which lead to complicated reaction kinetics ^[16]. 86

87 Production of ROOH could be a marker of microbial changes in bulk DOM under dark conditions ^[9,17]. It can be noted that chromophores in CDOM or fluorophores in 88 89 FDOM are considered to be equivalent components with respect to photosensitization due to solar radiation ^[12,18,19]. However, the fluorophores in FDOM are clearly 90 91 distinguishable by their excitation-emission (Ex/Em) wavelengths in fluorescence spectra ^[20-22], whilst it is not possible to identify chromophores in CDOM in absorption 92 93 spectra^[19,23]. The excitation emission matrix spectroscopy (EEMS) of samples collected 94 from freshwater has identified three characteristic peaks, indicating the presence of 95 fulvic acid-like substances (peak C), fluorescent whitening agents (FWAs) (peak W),

and tryptophan-like substances (peak T) $^{[20,24,25]}$. The fluorescence peak positions are at 96 97 Ex/Em = 325-340/450-475 nm for standard fulvic acid (peak C), 350/436 nm for standard distyryl biphenyl, DSBP (peak W), 335-355/438-449 nm for standard 98 99 diaminostilbene type, DAS1 (peak W), 275-280/342-356 nm for standard tryptophan, 100 and 305/410 nm for 4-biphenyl carboxaldehyde, 4BCA (this study) in aqueous solutions^[19,22,24]. The components of FWAs (DSBP and DAS1) are frequently detected 101 102 in water samples from other rivers in Japan, USA, and Europe^[24]. It has been revealed that fulvic acid is the dominant fraction (40-80%) in riverine DOM^[26], as well as the 103 fulvic acid along with FWAs is photochemically reactive^[24,27,28]. Therefore, these 104 105 substances can play a significant role in the production of peroxides in aquatic 106 environments.

107 DOM in the upstream has some unique properties having dominant presence of fulvic acid due to its distinguishable source of origin, such as the forest or swamp 108 ecosystems^[24,26]. Conversely, the origins of DOM in the downstream are of different 109 110 sources, namely mixtures of the upstream waters with effluents from various 111 anthropogenic sources, such as habitations, agriculture, and industry, which depend on the surrounding environments along the banks of the river^[22,26]. Our previous study on 112 113 water samples from the Ohta and the Kurose rivers has shown that fulvic acid-like 114 substances are dominant in the upstream waters of both rivers and in the downstream of 115 the Ohta river, while the downstream of Kurose river are characterized by the presence of FWAs^[24]. Due to characteristic differences of DOM composition and sources in 116 117 upstream and downstream, it is of interest to examine the H₂O₂ and ROOH 118 concentrations, their sources, and the causes of the variations in the upstream and downstream rivers. Moreover, H_2O_2 and its precursor superoxide (O_2) can be both an 119

120 oxidant and a reductant and is therefore potentially important for a number of redox 121 reactions in natural waters^[29-31]. Despite the important role that H_2O_2 and ROOH may 122 play in the dynamics of DOM in aquatic environments, but the researchers did not 123 investigate to show what fractions of DOM are susceptible to photochemical production 124 of peroxides in aquatic ecosystems. Previous studies often examined the spatial and 125 temporal distributions of H_2O_2 concentrations, and rarely examined the distributions of 126 ROOH in natural waters.

127 This study uses a synoptic-sampling approach to examine relationships between 128 DOM, inorganic anions and other water quality parameters and the concentrations of 129 H₂O₂ and ROOH in two Japanese rivers. DOMs in river waters have various sources, 130 ranging from natural forest and wetland sources to anthropogenic sources. This 131 difference in DOM sources allows investigating the effect of DOM type, measured by 132 fluorescence, on the peroxide formation. Water sampling was conducted at a number of 133 upstream and downstream sites at monthly intervals over the course of two years. A 134 combination of sampling and laboratory experiments were performed to examine the 135 role of light in the variation in peroxide concentrations. This work included diurnal 136 sampling in the rivers and laboratory incubations of water samples in order to examine 137 the effect of various light conditions on the peroxide production with standard DOM 138 components.

139 Experimental methods

140 Site Description

141 The samples of the river water were collected from the upstream and the downstream

142 areas in the Ohta river (6 sites: OR1–OR6) and the Kurose river (6 sites: KR1–KR6)

143 located in Hiroshima prefecture, Japan (34°26' N, 132°28' E) in the summer (26 and 27

144 June) and the winter (18 and 20 December) of 2002 (Fig. A1). Water samples were also 145 collected monthly during the period of May 2002 to April 2003 from 2 sites in the Ohta 146 river and 4 sites in the Kurose river. On all the days when sampling took place, the 147 weather conditions were good and sunny with no rainfall that could potentially affect 148 the results. The 103 km long Ohta river is very wide, and fluxes of water are supposed 149 to occur mostly due to water flow from the Chugoku Mountains (up to 1350m 150 elevations) situated along the entire river side. Conversely, the 43 km Kurose river is 151 narrow and short. The middle sections of the Kurose river, where the city of 152 Higashi-Hiroshima is situated, are highly polluted due to the fluxes of household and 153 sewage effluents from the densely populated city areas. The water at the upstream (sites 154 KR1, KR2, and OR1) originates from the mountains, and the surrounding regions are 155 densely covered by forests (coniferous, deciduous or mixed-type) and are thus free of 156 pollution. The description of the two rivers and each sampling site provided elsewhere^[24]. 157

158 Sampling

To understand the type of DOM fractions that are susceptible to production of H_2O_2 and 159 160 ROOH in rivers in general, photoexperiments using a solar simulator were conducted 161 using water samples from two upstream sites (KR1 and KR2) and two downstream sites 162 (KR5 and KR6) in the Kurose river. Samples were collected on May 12, 2004 and 163 August 26, 2004. The same photoexperiments using samples from the Ohta river were 164 conducted collecting samples from two upstream areas (OR1 and OR2) and two 165 downstream sites (OR5 and OR6) on August 10, 2004. Samples were collected 166 throughout the day beginning before sunrise (5:30 JST, Japan standard time) until after 167 sunset (7:00 JST) from upstream site KR2 of the Kurose river on August 21, 2003 and

168	downstream site KR4 on September 26, 2003 to clarify the photochemical processes of
169	DOM in water from these rivers by day-time sunlight irradiation. The day-time water
170	samplings included eight samples from each site. The weather was clear throughout the
171	day on September 26, but was cloudy on August 21 with a shower at around 14:30
172	(about 10 minutes in duration). To measure H_2O_2 and ROOH concentration, samples
173	were filtered at the sampling site using an Ekicrodisc 25 mm syringe filter with a 0.45
174	μ m HT-Tuffryn Membrane (PALL, Gelman Laboratory). Samples were stored in capped
175	30 ml brown glass bottles under ice and measured within 6 hours and under such
176	conditions measurements of H_2O_2 are effective in natural waters ^[8] . Polycarbonate
177	bottles (1 liter) were used to collect the samples for measurements of the other
178	parameters. The collected samples were then filtered using combusted 0.50 μ m glass
179	fiber filters (type GF/F) within 5 h of collection. For measurements of EEM properties,
180	duplicate filtered samples of 6 ml each were aliquoted into 10 ml brown bottles. Glass
181	bottles were sealed using a Teflon coated butyl-rubber stopper and an aluminum cap.
182	They were then stored in a refrigerator and analyzed within three days. All
183	polycarbonate and brown glass bottles were cleaned before use with alkaline medium,
184	acid medium followed by tap water, de-ionized water and finally MQ water (TOC,
185	Millipore). The glass bottles were heated at 450 °C for two hours to remove any organic
186	substances from the glass surface.
187	Analytical methods
188	H_2O_2 was measured with a fluorometric method using a flow injection analyzer (auto
189	sampler: TOSOH, model AS8020; plunger pump: Sanuki Ind. Co., model 4P2U-4016;
190	fluorescence detector: Shimadzu: RF-10AXL, recorder: Shimadzu: C-R5A

191 Chromatopac) developed and described elsewhere ^[8]. In summary, 1 ml sample was first

192	treated with catalase (20 μ l 500 unit ml ⁻¹) for six minutes that is used as a blank and
193	correspondingly 1 ml of a sample replacing catalase with 20 μ l MQ water was
194	performed for getting the signal from H ₂ O ₂ . The reactions were stopped using
195	peroxidase mixed <i>p</i> -hydroxy phenyl acetic acid (PHPAA). The difference in the
196	fluorescence values (Excitation/Emission = 320/400 nm) between samples treated with
197	catalase and without the enzyme provided the estimate of H_2O_2 concentrations. The
198	concentrations of the standards for H_2O_2 determinations used were 0, 100, 200, 300, 500
199	and 1000 nM and calibration curve was linear over the entire range. The $\rm H_2O_2$
200	concentrations were measured in triplicate, and were averaged for each sample.
201	ROOH was measured using the same procedure ^[32] as that employed for
202	measuring H_2O_2 ^[8] . In this measurement, 50000 units ml ⁻¹ of the catalase solution was
203	used to decompose nearly all of the ROOH in water samples from these rivers during a
204	six minute reaction providing only the signal of the background DOM or water
205	fluorescence. The difference between the fluorescence measurements using 500 and
206	50000 units ml ⁻¹ of catalase gave an estimate of the ROOH concentrations in samples
207	analyzed. The concentrations of the standards for ROOH determinations used were 0,
208	100, 200, 300, 500 and 1000 nM of peracetic acid solution. The peroxide concentrations
209	were measured in triplicate, and were averaged for each sample. We note that the
210	concentrations of H_2O_2 and ROOH detected in water from these rivers are very low,
211	particularly during the winter period, sometimes falling under the detection limit (a few
212	nM) of the analytical method employed in this study. We also note that the
213	concentration of the ROOH as defined in this study refers to the total concentration of
214	all organic hydroperoxides present in water samples and no information on individual
215	organic hydroperoxides can be obtained from the analytical values.

Considering the volume of the manuscript, we have-been-discussed in details
about chemicals; experimental design; analytical methods such as DOC, EEMS and
others; H₂O₂ photoproduction rates and source contribution; statistical analysis; and
parallel factor (PARAFAC) modeling as well as few Tables (Tables A1-A2) and Figures
(Figs. A1-A4) in Accessory Publication.

221

224

222 Results and discussion

223 Spatial and temporal variations in HOOH and ROOH concentrations

and varied from 6 to 33 nM during monthly measurements (mean 16±8 nM, n=12) at site KR1 and from 16 to 68 nM (mean 30±16 nM, n=12) at site KR2 (Fig. 1a). Similar H_2O_2 concentrations were found at sites KR3 and KR4 (18 to 49 nM, n=4). Slightly higher H_2O_2 concentrations ranging from 9 to 142 nM (mean 62±46 nM, n=12) and from 33 to 213 nM (mean 108±50 nM, n=12) were detected at sites KR5 and KR6,

H₂O₂ concentrations in water samples from the upstream of the Kurose river were low

230 respectively. The results demonstrated that H₂O₂ concentrations are largely varied

between upstream and downstream, as well as are gradually increased during

transportation of waters from upstream to downstream locations in Kurose river,

233 particularly during the summer period (Table A1). H₂O₂ concentrations in the Ohta

upstream and midstream waters varied from 33 to 108 nM (n=8) at sites OR1-OR4.

235 H_2O_2 in the Ohta downstream varied from 40 to 154 nM (mean 105±43 nM, n=12) at

site OR5 and from 38 to 171 nM (mean 102±49 nM, n=12) at site OR6. In the Ohta

237 river spatial variation of the H_2O_2 concentration were not significant.

The concentrations of ROOH during monthly readings varied from 9 to 73 nM
(mean 31±20 nM) at site KR1 and from 11 to 65 nM (mean 28±15 nM) at site KR2 in

240 the Kurose river (Fig. 1b). The concentrations of ROOH in the Kurose midstream water 241 varied from 9 to 66 nM (n=4) at sites KR3 and KR4. ROOH concentrations were low at 242 site KR5, ranging from 0 to 39 nM (mean 12±14 nM), and at site KR6 where the ROOH 243 concentrations ranged from 0 to 67 nM (mean 24±19 nM) than Kurose upstream. The 244 concentrations of ROOH during monthly reading varied in the Ohta downstream from 1 245 to 61 nM (mean 28±19 nM) at site OR5 and from 3 to 80 nM (mean 30±25 nM) at site 246 OR6. These results showed that ROOH concentration was almost identical in water 247 samples collected from the upstream and downstream in the both rivers except the site 248 KR5 in Kurose River.

249 The seasonal variations in peroxide concentrations in the Kurose and the Ohta rivers are depicted in Fig. 1. The results showed that the concentration of H₂O₂ was 250 251 sometimes lower during the winter season in both rivers and the differences between the 252 H₂O₂ concentrations in winter and during other seasons were statistically significant. 253 Similarly, the concentrations of ROOH were significantly higher during summer months 254 than during other seasons. These results suggest that the concentrations of both H_2O_2 255 and ROOH may display a similar seasonal trend; their concentrations are higher in 256 summer and lower in winter. Sunlight intensity effects on H₂O₂ production during the 257 summer and winter period can be understood from the significant relationship between H_2O_2 concentrations and solar intensity estimated in MJm⁻²h⁻¹ (r²=0.80, P<0.01, n=32) 258 or water temperature ($r^2=0.80$, P<0.01, n=32) in Ohta river (Fig. A2). 259

260

261 DOM and its optical properties

262 The DOC concentrations during monthly readings were low (43–146 μ MC) in the

263 upstream (sites KR1 and KR2) of the Kurose river. The DOC concentrations gradually

264	increased at the downstream locations to 123-154 μ M C at sites KR3 and KR4, and
265	were found to be significantly higher (130–383 μ M C) at sites KR5 and KR6,
266	suggesting that organic matter loading greatly increased at the mid- and downstream
267	locations. The variations were not as significant in the Ohta river, where DOC
268	concentration in water samples was low (59–67 μM C) at the upstream (sites OR1 and
269	OR2) and then gradually increased to 67-109 μM C at OR3 and OR4, and to 40-164 μM
270	C at OR5 and OR6. The organic matter pollution at the Kurose downstream is mostly
271	due to the input of untreated and partly treated sewerage effluents from the city of
272	Higashi-Hiroshima situated along the Kurose river ^{[24].}
273	The EEM spectra of DOM of water samples from the two rivers generally
274	exhibited some of the three characteristic peaks such as Peak C at Ex/Em =
275	305-335/426-487 nm in samples from sites KR1 and KR2 and OR1-OR6, Peak W at
276	Ex/Em = 340-350/427-450 nm in samples from sites KR5 and KR6, and Peak T at
277	Ex/Em = 275-285/321-368 nm in all samples from both rivers (Table A1). The peaks C,
278	W and T were identified by comparing their Ex/Em ratios with the Ex/Em ratios of the
279	standards: SRFA (315-340/442-475 nm), FWAs such as DAS1 (345-350/436-449 nm)
280	and DSBP (350/433-437 nm), and tryptophan (275-280/351-355 nm), as well as by
281	comparing their short-term (5 to 30 minutes) photo-irradiated fluorescence properties
282	with those of the standard compounds ^[24] . PARAFAC analysis on EEM spectra typically
283	identified the two components, indicating the occurrence of fulvic acid in all samples
284	from the two river, and FWAs in the downstream waters of the Kurose river (Fig. 3).
285	Moreover, PARAFAC model was not capable of identifying the tryptophan-like
286	components in riverine samples due to its low fluorescence intensity. The fluorescence

287	of peak W in the downstream samples of Kurose river was significantly higher (224-666
288	QSU at KR5 and KR6) than the fluorescence of peak C in the upstream samples of the
289	Kurose river (27-68 QSU at KR1 and KR2) and in the six sampling sites of the Ohta
290	river (39-101 QSU at six sites) (Table A1). These results indicate that the fulvic
291	acid-like substances (Peak C) were dominant in the upstream of the Kurose river and all
292	the water samples from the Ohta river, whilst FWAs (Peak W), an indicator of
293	anthropogenic organic pollution, were mainly present in the downstream of the Kurose
294	river. Tryptophan-like substances (Peak T) was detected in the EEM spectra of all water
295	samples collected from both rivers. Photoirradiation of the standard DSBP solution
296	showed a characteristic peak at $Ex/Em = 305/410$ nm (Fig. A3), indicating the presence
297	of 4-biphenyl carboxaldehyde (4BCA), a photodegradation product of DSBP. This
298	compound has been identified by comparison with fluorescence properties of a standard
299	4BCA solution, and other spectroscopic data ^[33] . It indicates that the photo-degradation
300	products of FWAs, as well as FWAs themselves, may play an important role in the
301	DOM dynamics in the rivers.

302

303 *Light intensity factor for* H_2O_2 *production*

304 Concentrations of H₂O₂ in the upstream waters (site KR2) gradually increased from 9

305 (5:30 JST, Japan standard time) to 43 nM (12:00 JST) during the period before sunrise

- 306 to noon and then gradually decreased to 9 nM (19:00 JST) after sunset (Fig. 2). In the
- 307 downstream waters (site KR6), the concentrations of H₂O₂ also gradually increased
- 308 from 4 (5:30 JST) to 69 nM (13:00-14:00 JST) and then decreased to 20 nM (19:00

309 JST) after sunset (Table A2). These results suggested that light intensity is an important

310 factor in the generation of H₂O₂ in these rivers. We note that, although data of water

311	flow rate (WFR) was only available from the downstream site (site KR6), almost no
312	fluctuation of WFR during the study period was observed, e.g. 2.2 m ³ s ⁻¹ during the
313	peak H_2O_2 production from 11:00 JST to 19:00 JST and slightly higher WFR from 2.5
314	to $3.0 \text{ m}^3 \text{ s}^{-1}$ was detected in the morning from 5:30 to 10:00 JST. Thus, the diurnal
315	change in the concentration of H_2O_2 observed was not due to change in WFR. The
316	magnitude of the diurnal variations comparing the H ₂ O ₂ concentration before sunrise
317	was about 35 nM (79% higher) in the upstream waters and 65 nM (94% higher) in the
318	downstream waters. A decrease in the fluorescence of FWAs (maximum 28% decrease
319	as compared to the sample collected before sunrise) occurred in the mid-day samples in
320	the downstream waters ^[24] . However, almost no change in the fluorescence intensity of
321	fulvic acid-like substances was observed in the upstream waters. The difference may be
322	due to the photo-resistant nature of fulvic acid-like substances, which are relatively slow
323	to photodegradation, judging by the photoirradiation experiments using standard DOM
324	samples, and FWAs, which are rapidly photodegraded ^[24] . Rapid decay of H_2O_2 (within
325	several hours) in natural waters has been shown to occur by biological processes ^[1,4,7] .
326	Moreover, apparent low concentrations (nM levels) of peroxides in the water from these
327	rivers, in spite of large supply of anthropogenic DOM, are thought to be caused by rapid
328	microbial decay of peroxides that was beyond the scope for this study. Therefore, more
329	efforts are needed to examine the dynamics of production of peroxides and
330	decomposition processes of the peroxides in the water from these rivers.
331	
332	Peroxides production related to factors of DOM sources
333	Variations observed in the concentrations of H ₂ O ₂ in water samples from upstream and

downstream of the two rivers studied (Fig. 1a) can be explained by photo-induced

335	productions of H_2O_2 from river (Fig. 4a-b) and standard samples (Fig. 5a). In the case of
336	both rivers, the concentration of H_2O_2 gradually increased with increase in the length of
337	the irradiation period (Figs. 4 a-b). Higher H ₂ O ₂ concentrations observed in the
338	downstream waters of the Kurose river were likely caused by higher photoproduction
339	rates of H_2O_2 from various DOM components that are more predominant in the
340	downstream waters of the Kurose river as compared to the upstream waters of the
341	Kurose and the entire Ohta river. Photo irradiation experiments showed that production
342	rates of H ₂ O ₂ were high for various standard FDOM compounds, such as SRFA, DSBP,
343	SRHA, tryptophan and so on (Table 1). The concentration of H_2O_2 gradually increased
344	with increase in the length of the irradiation period when various standard FDOM
345	substances were used in the experiment (Fig. 5a). Fulvic acid-like substances were
346	dominant in our study sites and humic acid-like substances were not found at all (Fig.
347	3) ^[24] . Photo experiments conducted using an aromatic amino acid, tryptophan, indicated
348	that tryptophan show a significantly high H_2O_2 production potential (Table 1). The
349	production of H_2O_2 obtained from the irradiation of standard tryptophan and DSBP (Fig.
350	5a) were similar to the values reported elsewhere ^[34] . Other aromatic amino acids, such
351	as tyrosine and phenylalanine, showed similar production potentials of H_2O_2 . We,
352	however, note that tryptophan-like compounds were the only amino acid compounds
353	detected in the rivers studied, apparently due to much higher fluorescence of
354	tryptophan-like compounds (5016 QSU mg ⁻¹) than other aromatic amino acids studied
355	(13-41 QSU mg ⁻¹) (Table 1).
356	ROOH concentrations in the rivers studied were very low compared to the H_2O_2

357 concentration (Figs. A5c-d). However, we observed that ROOH, as well as H_2O_2 , were

358	more abundant in downstream water samples from the Kurose river than in any other
359	samples we analyzed. These results suggest that quantity of DOM is also an important
360	factor in the production of ROOH in water from these rivers. Production of ROOH
361	using standard DOM samples was examined by photo irradiation experiments (Fig. 5b).
362	Unlike uniform generation of H_2O_2 in these standard samples, which followed a regular
363	trend of increasing concentration with increase in the length of the irradiation, the
364	concentration of the produced ROOH was very low and fluctuated heavily without any
365	observable trends. This may be due to the inherently unstable chemical nature of ROOH,
366	which are sensitive to acid, alkali, redox and light in aqueous solutions.
367	The correlation study between hydrogen peroxide and DOC concentrations
368	showed a good correlation between the concentration of H_2O_2 and DOC (r ² =0.65,
369	P<0.01) in the waters of the Kurose river, whilst no such relation was found in the
370	samples collected from the Ohta river (Table 2). This can be understood with relatively
371	large production of photo-induced H_2O_2 in Kurose river, particularly at sites KR5 and
372	KR6 than Ohta river (Figs. A5a-b) and is subjected to be caused by various DOC
373	subgroups present in Kurose river that might be photochemically more potential. The
374	concentrations of ROOH did not show any correlation with the concentration of DOC in
375	either the Kurose or the Ohta rivers. The fluorescence intensity of fulvic acid-like (peak
376	C), FWAs (peak W), and tryptophan-like (peak T) substances were detected in water
377	samples collected from both the Kurose and the Ohta rivers (Table A1). The relationship
378	between H_2O_2 and fluorescence of various FDOM showed that H_2O_2 concentrations
379	correlated well with the measured fluorescence intensity of peak C in water samples
380	from the Ohta river ($r^2=0.64$, P<0.01), whereas, in samples from the Kurose river, the
381	fluorescence intensity of combined peaks C + W correlated with the concentration of

 H_2O_2 (r²=0.61, P<0.01) (Table 2). This suggests that fulvic acid-like component (and 382 383 plus fluorescent whitening agent) may be a major source of H₂O₂ production in rivers. 384 This is typically resulted due to predominant presence of fulvic acid (40-80% of total DOM) in rivers^[22,26] and its relatively high production rate of H_2O_2 (69 × 10⁻¹² Ms⁻¹, 385 386 Table 1). The concentration of H₂O₂ correlated well with the fluorescence of peak T observed in water samples from the Ohta river ($r^2=0.62$, P<0.05), but such a correlation 387 388 was not observed in water samples from the Kurose river. 389 The concentrations of ROOH correlated with the measured fluorescence intensity of peak C in water samples from the Ohta river ($r^2=0.62$, P<0.01), but a similar 390 391 relationship was not found between the observed fluorescence of the combined peaks C 392 + W in the waters of the Kurose river (Table 2). The concentrations of ROOH did not 393 correlate with the fluorescence of peak T in the samples from the Ohta river, but 394 correlated inversely in the Kurose river. These results suggest that the fulvic acid-like 395 (peak C) and tryptophan-like (peak T) substances may control the concentrations of 396 peroxides in the Ohta river, whilst concentrations of peroxides in the water from the 397 Kurose river are controlled by fulvic acid-like (peak C) and FWAs (peak W) substances, 398 but tryptophan-like substances (peak T) have a mixed relation on the concentrations of 399 peroxides.

400

401 Peroxides production related to factors of water quality parameters

402 The water quality parameters, such as pH, water temperature, solar intensity, content of 403 the inorganic anions (NO₂⁻ and NO₃⁻) and total iron (total Fe and Fe²⁺) contents greatly 404 varied in the two rivers (Table A1). The concentrations of the inorganic anions, such as 405 NO₂⁻ and NO₃⁻ and total Fe varied significantly at various sites of collection, exhibiting

406 higher concentrations in the polluted downstream of the Kurose river and lower 407 concentrations at the upstream of the Kurose as well as in the Ohta river. The correlation 408 between the concentration of peroxides and solar intensity showed that both H₂O₂ and 409 ROOH are strongly affected by solar intensity in the waters of the Ohta river (Fig. A2), 410 but are only slightly correlated in samples collected from the Kurose river. This suggests the photochemistry as a major source of H₂O₂ and ROOH in Ohta river, and there is 411 412 some organic substances, plausibly fulvic acid that is present in relatively similar 413 amounts in all water samples from the Ohta. The measured water temperature 414 significantly affected the concentrations of H₂O₂ and ROOH in water samples collected from both rivers. The concentration of NO₂ was well correlated with concentrations of 415 416 both H₂O₂ and ROOH in water samples from the Kurose river. The concentration of NO₃ was partly correlated with the concentration of H₂O₂ in the Kurose river but no 417 418 correlation was observed in water samples from the Ohta river. These results indicate 419 that NO₂⁻ and NO₃⁻ may be involved in H₂O₂ and ROOH production in Kurose river. 420 Photoirradiation experiments on aqueous solutions of NO₂⁻ demonstrated that NO₂⁻ is 421 susceptible to production of H_2O_2 during the irradiation period (Fig. A4). It can be proposed that photo-induced generation of O⁻ from both NO₂⁻ and NO₃^{-[35]}, the most 422 423 potential mechanism for production of 'OH ($O^- + H_2O \rightarrow OH + OH^-$), may likely 424 susceptible to accelerate simultaneously the high production of H₂O₂ through 425 production of hydroxyl radicals ('OH and OH⁻) in aqueous media. This should be the focus for potential further study. 426 427 The concentrations of H₂O₂ and ROOH were not correlated with total dissolved Fe

and Fe^{2+} concentrations studied, suggesting that Fenton reaction (H₂O₂ + Fe²⁺ \rightarrow Fe³⁺ 428 + 'OH + OH') or photo Fenton reaction may not be an important factor in the generation 429 430 of peroxides in water samples studied. No clear evidence has been produced for involvement of total Fe and Fe^{2+} in production of H_2O_2 in field observations and this 431 432 should be the focus for further research. While, the concentrations of ROOH were well 433 correlated with the concentrations of H₂O₂ in water samples from the Ohta river, no 434 such relationship was observed in the samples from the Kurose river. These results 435 suggest that H₂O₂ and ROOH may originate from the same sources or be generated by 436 similar production mechanisms in the waters of the Ohta river, but that such similarity 437 in the origin of the two types of peroxide does not occur in the Kurose river.

438

439

440 Relative contributions of various classes of DOM to H₂O₂ production

The sources of H₂O₂ in the upstream and downstream waters in both rivers were 441 442 estimated using the EEM data and summarized in Table 3. PARAFAC model was 443 applied to isolate the overlapping of various peaks of DOM compositions at the same 444 peak positions in EEM spectra in both river waters (Fig. 3). This result showed that two 445 components (fulvic acid and FWAs) were identified in the downstream waters of the 446 Kurose river (sites KR5 and KR6) and one component (fulvic acid) was often detected 447 in all other sampling sites in both rivers. Contribution percentage demonstrated that the 448 major sources of H₂O₂ are the fulvic acid-like substances present in the waters of the 449 Ohta river (23-70%) and in the upstream (25-61%) as well as downstream (28-63%) of the Kurose river (Table 3). It is generally considered that the humic substances (fulvic 450

451	and humic acids) act as a photosensitizer that are responsible for production of $\mathrm{H_2O_2}$ in
452	natural waters ^[1,8,11] . This study firstly estimated the contribution of fulvic acid in H_2O_2
453	production in rivers that may pave the way to examine $\mathrm{H_2O_2}$ contributions from various
454	DOM fractions in a variety of natural waters. Tryptophan-like substances are a minor
455	source of H_2O_2 (~1%) in both rivers. Even though the FWAs (DAS+DSBP) were
456	dominant FDOMs in the downstream waters of the Kurose, their contribution to the
457	H_2O_2 production was only minor at 1–2%. Contribution percentage of fulvic acid was
458	significantly higher (62-63%) in summer (August) samples collected from the
459	downstream waters of Kurose river (sites KR5 and KR6) than in spring (May) samples
460	(28-37%) (Table 3). This is likely to be caused as a result of relatively large in fulvic
461	acid-like fluorescence intensity observed in summer (225-228 QSU) than in spring
462	samples (128-144 QSU) (Table 3). Unknown sources of H_2O_2 (other than fulvic
463	acid-like and tryptophan-like substances, and FWAs) accounted for $37-72\%$ of H_2O_2 in
464	the upstream waters of the Kurose (sites KR1 and KR2), 51-77% at the upstream areas
465	of the Ohta (sites OR1 and OR2), 29-32% at the downstream sites of the Ohta (sites
466	OR5 and OR6), and 33-64% at the downstream sites of the Kurose (sites KR5 and
467	KR6). The unknown sources of H_2O_2 may be other fluorescent and non-fluorescent
468	substances including humic acid that can originate from forests ecosystem in the
469	upstream regions of a river and various anthropogenic sources affecting the downstream
470	regions ^[33] (Fig. A3). Although, this study did not identify the humic acid using
471	PARAFAC model presumably due to its low concentration, but it is reported that the
472	ratio of fulvic acid to humic acid in DOM is generally 9:1 for waters having low DOC
473	concentration and it decreases to 4:1 or less for waters having high DOC ^[21,26] . This

474	suggests that humic acid may also contribute a little to H_2O_2 production in rivers. In
475	addition, the EEM of 2-sulfonic acid benzaldehyde (2SAB), a photoproduct of the
476	FWAs-DSBP ^[33] , showed no significant fluorescence properties, but its H ₂ O ₂ production
477	rate was 37×10^{-12} M s ⁻¹ , estimated by the photochemical degradation of 2SAB using a
478	solar simulator (Table 1). To identify various sources of H_2O_2 in the downstream waters
479	of the Kurose, we conducted the photo irradiation experiments on DSBP using a solar
480	simulator. The EEM data of DSBP showed the appearance of three characteristic
481	fluorescence peaks at Ex/Em=305/408 nm, 260/317 nm and 260-265/366-367 nm (after
482	20 h, Fig. A3b), along with concomitant disappearance of the DSBP peak (0 h, Fig.
483	A3a). The fluorescence peak at Ex/Em=305/408 nm was identified to be 4-biphenyl
484	carboxaldehyde (4BCA), which has a fluorescence peak at Ex/Em=305/410 nm. 4BCA
485	was previously identified as a degradation product of DSBP by a HPLC/DAD
486	method ^[33] . The production rate of H_2O_2 estimated from the photo experiments using a
487	4BCA standard was 34×10^{-12} M s ⁻¹ and 2–5% of contribution to total H ₂ O ₂ production
488	in the downstream waters of the Kurose river (Table 3).
489	

490 **Conclusions**

In this study, variations in the concentrations of peroxides in the Kurose river and
the Ohta river were shown to result from differences in quantity and optical nature of
DOM and also change in water quality parameters. The results are summarized below:
Spatial distribution of H₂O₂ showed low concentrations in the upstream waters
and high concentrations in the downstream waters in both rivers while the
concentration of ROOH was almost identical at the upstream and downstream

497 sites.

498	•	A clear diurnal variation in the H_2O_2 concentration, which follows variations in
499		the solar radiation, was found at the study sites of the Kurose river. This
500		indicated that photo-production of H ₂ O ₂ occurs rapidly under natural solar
501		irradiation of the water from the Kurose and the Ohta rivers.
502	•	The concentrations of the ROOH did not show any correlation with the
503		concentrations of DOC in either the Kurose or the Ohta rivers. The
504		concentrations of the ROOH were only correlated with the concentration of the
505		fulvic acid-like substances in the waters of Ohta river. This suggests that
506		concentrations of ROOH in these rivers are only partly controlled by the
507		quantity and optical nature of DOM and that other parameters, such as water
508		temperature and solar intensity, have more influence on the concentration of the
509		organic peroxides in the water.
510		
511		
512		
513		
514		
515		
516		
517		
518		
519		
520		
521	Ack	knowledgements

522	We are grateful to Ms. Honda for her assistance during the sampling and
523	experimental analysis. We wish to thank to Drs. K. Takeda, N. Nakatani, T. Nehira,
524	Ms. K. Uobe, Mrs. T. Matsuda, K. Tanaka, H. Shindo, S. Makino, K. Tahara, H.
525	Kondo, and J. Hata for their assistance during the sampling, experimental analysis
526	and manuscript preparation. A part of this paper was presented on the 13th Annual
527	V.M. Goldschmidt Conference, Kurashiki, Japan, 2003. We thank Cong-Qiang Liu,
528	State Key Laboratory of Environmental Research, Institute of Geochemistry, Chinese
529	Academy of Sciences, China for his assistance and inspiration during this research
530	study. This study was also supported by the Grant-in-Aid for Scientific Research (B),
531	MEXT (18310010).
532	
533 F	References
534	[1] L. E. Richard, B. M. Peake, S. A. Rusak, W. J. Cooper, D. J. Burritt, Environ. Chem.
534 535	[1] L. E. Richard, B. M. Peake, S. A. Rusak, W. J. Cooper, D. J. Burritt, <i>Environ. Chem.</i> 2007 , 4, 49-54.
534 535 536	 L. E. Richard, B. M. Peake, S. A. Rusak, W. J. Cooper, D. J. Burritt, <i>Environ. Chem.</i> 2007, 4, 49-54. L. J. A. Gerringa, M. J. A. Rjkenberg, K. R. Timmermans, A. G. J. Buma, <i>J. Sea Res.</i>
534 535 536 537	 [1] L. E. Richard, B. M. Peake, S. A. Rusak, W. J. Cooper, D. J. Burritt, <i>Environ. Chem.</i> 2007, 4, 49-54. [2] L. J. A. Gerringa, M. J. A. Rjkenberg, K. R. Timmermans, A. G. J. Buma, <i>J. Sea Res.</i> 2004, 51, 3-10.
534 535 536 537 538	 [1] L. E. Richard, B. M. Peake, S. A. Rusak, W. J. Cooper, D. J. Burritt, <i>Environ. Chem.</i> 2007, 4, 49-54. [2] L. J. A. Gerringa, M. J. A. Rjkenberg, K. R. Timmermans, A. G. J. Buma, <i>J. Sea Res.</i> 2004, 51, 3-10. [3] W. J Cooper, D. R. S. Lean, <i>Encyclopedia of Earth System.</i> 1992, 2, 527-535.
534 535 536 537 538 539	 [1] L. E. Richard, B. M. Peake, S. A. Rusak, W. J. Cooper, D. J. Burritt, <i>Environ. Chem.</i> 2007, 4, 49-54. [2] L. J. A. Gerringa, M. J. A. Rjkenberg, K. R. Timmermans, A. G. J. Buma, <i>J. Sea Res.</i> 2004, 51, 3-10. [3] W. J Cooper, D. R. S. Lean, <i>Encyclopedia of Earth System.</i> 1992, 2, 527-535. [4] R. G. Petasne, R. G. Zika, <i>Mar. Chem.</i> 1997, 56, 215-225.
534 535 536 537 538 539 540	 [1] L. E. Richard, B. M. Peake, S. A. Rusak, W. J. Cooper, D. J. Burritt, <i>Environ. Chem.</i> 2007, 4, 49-54. [2] L. J. A. Gerringa, M. J. A. Rjkenberg, K. R. Timmermans, A. G. J. Buma, <i>J. Sea Res.</i> 2004, 51, 3-10. [3] W. J Cooper, D. R. S. Lean, <i>Encyclopedia of Earth System.</i> 1992, 2, 527-535. [4] R. G. Petasne, R. G. Zika, <i>Mar. Chem.</i> 1997, 56, 215-225. [5] Cooper, W. J.; Zika, R. G. Photochemical formation of hydrogen peroxide in surface and
534 535 536 537 538 539 540 541	 [1] L. E. Richard, B. M. Peake, S. A. Rusak, W. J. Cooper, D. J. Burritt, <i>Environ. Chem.</i> 2007, 4, 49-54. [2] L. J. A. Gerringa, M. J. A. Rjkenberg, K. R. Timmermans, A. G. J. Buma, <i>J. Sea Res.</i> 2004, 51, 3-10. [3] W. J Cooper, D. R. S. Lean, <i>Encyclopedia of Earth System.</i> 1992, 2, 527-535. [4] R. G. Petasne, R. G. Zika, <i>Mar. Chem.</i> 1997, 56, 215-225. [5] Cooper, W. J.; Zika, R. G. Photochemical formation of hydrogen peroxide in surface and ground waters exposed to sunlight. <i>Science</i> 1983, 220, 711-712.
534 535 536 537 538 539 540 541 542	 [1] L. E. Richard, B. M. Peake, S. A. Rusak, W. J. Cooper, D. J. Burritt, <i>Environ. Chem.</i> 2007, 4, 49-54. [2] L. J. A. Gerringa, M. J. A. Rjkenberg, K. R. Timmermans, A. G. J. Buma, <i>J. Sea Res.</i> 2004, 51, 3-10. [3] W. J Cooper, D. R. S. Lean, <i>Encyclopedia of Earth System.</i> 1992, 2, 527-535. [4] R. G. Petasne, R. G. Zika, <i>Mar. Chem.</i> 1997, 56, 215-225. [5] Cooper, W. J.; Zika, R. G. Photochemical formation of hydrogen peroxide in surface and ground waters exposed to sunlight. <i>Science</i> 1983, 220, 711-712. [6] H. Sakugawa, T. Yamashita, H. Kwai, N. Masuda, N. Hashimoto, S. Makino, N.
534 535 536 537 538 539 540 541 542 543	 [1] L. E. Richard, B. M. Peake, S. A. Rusak, W. J. Cooper, D. J. Burritt, <i>Environ. Chem.</i> 2007, 4, 49-54. [2] L. J. A. Gerringa, M. J. A. Rjkenberg, K. R. Timmermans, A. G. J. Buma, <i>J. Sea Res.</i> 2004, 51, 3-10. [3] W. J Cooper, D. R. S. Lean, <i>Encyclopedia of Earth System.</i> 1992, 2, 527-535. [4] R. G. Petasne, R. G. Zika, <i>Mar. Chem.</i> 1997, 56, 215-225. [5] Cooper, W. J.; Zika, R. G. Photochemical formation of hydrogen peroxide in surface and ground waters exposed to sunlight. <i>Science</i> 1983, 220, 711-712. [6] H. Sakugawa, T. Yamashita, H. Kwai, N. Masuda, N. Hashimoto, S. Makino, N. Nakatani, K. Takeda, <i>Geochemistry</i> 2006, 40, 47-63.
534 535 536 537 538 539 540 541 542 543 544	 [1] L. E. Richard, B. M. Peake, S. A. Rusak, W. J. Cooper, D. J. Burritt, <i>Environ. Chem.</i> 2007, 4, 49-54. [2] L. J. A. Gerringa, M. J. A. Rjkenberg, K. R. Timmermans, A. G. J. Buma, <i>J. Sea Res.</i> 2004, 51, 3-10. [3] W. J Cooper, D. R. S. Lean, <i>Encyclopedia of Earth System.</i> 1992, 2, 527-535. [4] R. G. Petasne, R. G. Zika, <i>Mar. Chem.</i> 1997, 56, 215-225. [5] Cooper, W. J.; Zika, R. G. Photochemical formation of hydrogen peroxide in surface and ground waters exposed to sunlight. <i>Science</i> 1983, 220, 711-712. [6] H. Sakugawa, T. Yamashita, H. Kwai, N. Masuda, N. Hashimoto, S. Makino, N. Nakatani, K. Takeda, <i>Geochemistry</i> 2006, 40, 47-63. [7] W. J. Cooper, D. R. S. Lean, <i>Environ. Sci. Technol.</i> 1989, 23, 1425-1428.
534 535 536 537 538 539 540 541 542 543 544 545	 [1] L. E. Richard, B. M. Peake, S. A. Rusak, W. J. Cooper, D. J. Burritt, <i>Environ. Chem.</i> 2007, 4, 49-54. [2] L. J. A. Gerringa, M. J. A. Rjkenberg, K. R. Timmermans, A. G. J. Buma, <i>J. Sea Res.</i> 2004, 51, 3-10. [3] W. J Cooper, D. R. S. Lean, <i>Encyclopedia of Earth System.</i> 1992, 2, 527-535. [4] R. G. Petasne, R. G. Zika, <i>Mar. Chem.</i> 1997, 56, 215-225. [5] Cooper, W. J.; Zika, R. G. Photochemical formation of hydrogen peroxide in surface and ground waters exposed to sunlight. <i>Science</i> 1983, 220, 711-712. [6] H. Sakugawa, T. Yamashita, H. Kwai, N. Masuda, N. Hashimoto, S. Makino, N. Nakatani, K. Takeda, <i>Geochemistry</i> 2006, 40, 47-63. [7] W. J. Cooper, D. R. S. Lean, <i>Environ. Sci. Technol.</i> 1989, 23, 1425-1428. [8] K. Fujiwara, T. Ushiroda, K. Takeda, Y. Kumamoto, H. Tsubota, <i>Geochem. J.</i> 1993, 27,
534 535 536 537 538 539 540 541 542 543 544 545 546	 [1] L. E. Richard, B. M. Peake, S. A. Rusak, W. J. Cooper, D. J. Burritt, <i>Environ. Chem.</i> 2007, 4, 49-54. [2] L. J. A. Gerringa, M. J. A. Rjkenberg, K. R. Timmermans, A. G. J. Buma, <i>J. Sea Res.</i> 2004, 51, 3-10. [3] W. J Cooper, D. R. S. Lean, <i>Encyclopedia of Earth System.</i> 1992, 2, 527-535. [4] R. G. Petasne, R. G. Zika, <i>Mar. Chem.</i> 1997, 56, 215-225. [5] Cooper, W. J.; Zika, R. G. Photochemical formation of hydrogen peroxide in surface and ground waters exposed to sunlight. <i>Science</i> 1983, 220, 711-712. [6] H. Sakugawa, T. Yamashita, H. Kwai, N. Masuda, N. Hashimoto, S. Makino, N. Nakatani, K. Takeda, <i>Geochemistry</i> 2006, 40, 47-63. [7] W. J. Cooper, D. R. S. Lean, <i>Environ. Sci. Technol.</i> 1989, 23, 1425-1428. [8] K. Fujiwara, T. Ushiroda, K. Takeda, Y. Kumamoto, H. Tsubota, <i>Geochem. J.</i> 1993, 27, 103-115.
534 535 536 537 538 539 540 541 542 543 544 545 546 547	 [1] L. E. Richard, B. M. Peake, S. A. Rusak, W. J. Cooper, D. J. Burritt, <i>Environ. Chem.</i> 2007, 4, 49-54. [2] L. J. A. Gerringa, M. J. A. Rjkenberg, K. R. Timmermans, A. G. J. Buma, <i>J. Sea Res.</i> 2004, 51, 3-10. [3] W. J Cooper, D. R. S. Lean, <i>Encyclopedia of Earth System.</i> 1992, 2, 527-535. [4] R. G. Petasne, R. G. Zika, <i>Mar. Chem.</i> 1997, 56, 215-225. [5] Cooper, W. J.; Zika, R. G. Photochemical formation of hydrogen peroxide in surface and ground waters exposed to sunlight. <i>Science</i> 1983, 220, 711-712. [6] H. Sakugawa, T. Yamashita, H. Kwai, N. Masuda, N. Hashimoto, S. Makino, N. Nakatani, K. Takeda, <i>Geochemistry</i> 2006, 40, 47-63. [7] W. J. Cooper, D. R. S. Lean, <i>Environ. Sci. Technol.</i> 1989, 23, 1425-1428. [8] K. Fujiwara, T. Ushiroda, K. Takeda, Y. Kumamoto, H. Tsubota, <i>Geochem. J.</i> 1993, 27, 103-115. [9] H. Sakugawa, A. Takami, H. Kawai, K. Takeda, K. Fujiwara, S. Hirata, in <i>Dynamics and</i>
534 535 536 537 538 539 540 541 542 543 544 545 546 546 547 548	 [1] L. E. Richard, B. M. Peake, S. A. Rusak, W. J. Cooper, D. J. Burritt, <i>Environ. Chem.</i> 2007, 4, 49-54. [2] L. J. A. Gerringa, M. J. A. Rjkenberg, K. R. Timmermans, A. G. J. Buma, <i>J. Sea Res.</i> 2004, 51, 3-10. [3] W. J Cooper, D. R. S. Lean, <i>Encyclopedia of Earth System.</i> 1992, 2, 527-535. [4] R. G. Petasne, R. G. Zika, <i>Mar. Chem.</i> 1997, 56, 215-225. [5] Cooper, W. J.; Zika, R. G. Photochemical formation of hydrogen peroxide in surface and ground waters exposed to sunlight. <i>Science</i> 1983, 220, 711-712. [6] H. Sakugawa, T. Yamashita, H. Kwai, N. Masuda, N. Hashimoto, S. Makino, N. Nakatani, K. Takeda, <i>Geochemistry</i> 2006, 40, 47-63. [7] W. J. Cooper, D. R. S. Lean, <i>Environ. Sci. Technol.</i> 1989, 23, 1425-1428. [8] K. Fujiwara, T. Ushiroda, K. Takeda, Y. Kumamoto, H. Tsubota, <i>Geochem. J.</i> 1993, 27, 103-115. [9] H. Sakugawa, A. Takami, H. Kawai, K. Takeda, K. Fujiwara, S. Hirata, in <i>Dynamics and Characterization of Marine Organic Matter.</i> (Eds N. Handa, E. Tanoue, T. Hama) 2000,
534 535 536 537 538 539 540 541 542 543 544 545 546 545 546 547 548 549	 [1] L. E. Richard, B. M. Peake, S. A. Rusak, W. J. Cooper, D. J. Burritt, <i>Environ. Chem.</i> 2007, 4, 49-54. [2] L. J. A. Gerringa, M. J. A. Rjkenberg, K. R. Timmermans, A. G. J. Buma, <i>J. Sea Res.</i> 2004, 51, 3-10. [3] W. J Cooper, D. R. S. Lean, <i>Encyclopedia of Earth System.</i> 1992, 2, 527-535. [4] R. G. Petasne, R. G. Zika, <i>Mar. Chem.</i> 1997, 56, 215-225. [5] Cooper, W. J.; Zika, R. G. Photochemical formation of hydrogen peroxide in surface and ground waters exposed to sunlight. <i>Science</i> 1983, 220, 711-712. [6] H. Sakugawa, T. Yamashita, H. Kwai, N. Masuda, N. Hashimoto, S. Makino, N. Nakatani, K. Takeda, <i>Geochemistry</i> 2006, 40, 47-63. [7] W. J. Cooper, D. R. S. Lean, <i>Environ. Sci. Technol.</i> 1989, 23, 1425-1428. [8] K. Fujiwara, T. Ushiroda, K. Takeda, Y. Kumamoto, H. Tsubota, <i>Geochem. J.</i> 1993, 27, 103-115. [9] H. Sakugawa, A. Takami, H. Kawai, K. Takeda, K. Fujiwara, S. Hirata, in <i>Dynamics and Characterization of Marine Organic Matter.</i> (Eds N. Handa, E. Tanoue, T. Hama) 2000, TERRAPUB/Kluwer, Tokyo.

- [11] C. A. Moore, C. T. Farmer, R. G. Zika, J. Geophys. Res. 1993, 98(C2),
 2289-2298.
- 553 [12] D. W. O'Sullivan, P. J. Neale, R. B. Coffin, T. J. Boyd, C. L. Osburn, *Mar.*554 *Chem.* 2005, 97, 14-33.
- 555 [13] R. G. Petasne, R. G. Zika, *Nature* **1987**, 325, 516-518.
- 556 [14] H. Sakugawa, I. R. Kaplan, W. Tsai, Y. Cohen, *Environ. Sci. Technol.* 1990, 24,
- 557 1452-1462.
- 558 [15] J. Perkowski, L. Kos, *Fibres Textile Eastern Europe* **2002**, 8, 78-81.
- 559 [16 J. Perkowski, W. Jóźwiak, L. Kos, P. Stajszczyk, P. *Fibres Textile Eastern Europe* 2006,
 560 14, 114-119.
- [17] H. Sakugawa, T. Yamashita, K. Fujiwara, in *Global Fluxes of Carbon and Its Related Substances in the Coastal Sea-Ocean-Atmosphere System* (Eds S. Tsunogai, K. Iseki, I.
 Koike, T. Oba) 1995, M & J International, Tokyo.
- 564 [18] N. Senesi, Anal. Chim. Acta **1990**, 232, 77-106.
- 565 [19] P. G. Coble, *Chem. Rev.* **2007**, 107, 402-418.
- 566 [20] P. G. Coble, *Mar. Chem.* **1996**, 52, 325–336.
- 567 [21] K. M. G. Mostofa, T. Yoshioka, E. Konohira, E. Tanoue, E. *Water Air Soil Pollut*. 2007,
 568 184, 157-176
- [22] K. M. G. Mostofa, F. C. Wu, T. Yoshioka, H. Sakugawa, E. Tanoue, in *Natural Organic Matter and its Significance in the Environment*. (Eds F. C. Wu, B. Xing) 2009, Science Press, Beijing.
- 572 [23] A. V. Vähätalo, R. G. Wetzel, *Mar. Chem.* 2004, 89, 313-326.
- 573 [24] K. M. G. Mostofa, Y. Honda, H. Sakugawa, *Geochem. J.* 2005, 39, 257-271.
- 574 [25] C. A. Stedmon, D. N. Thomas, M. Granskog, H. Kaartokallio, S. Papaditriou, H. Kuosa,
 575 *Environ. Sci. Technol.* 2007, 41, 7273-7279.
- 576 [26] R. L. Malcolm, in Humic Substances in Soil, Sediment, and Water: Geochemistry,
- 577 Isolation and Characterization. (Eds G. R. Aiken, D. M. McKnight, R. L. Wershaw, P.
- 578 MacCarthy) **1985**, Wiley, New York.
- 579 [27] M. A. Moran, W. M. Jr Sheldon, R. G. Zepp, *Limnol. Oceanogr.* 2000, 45, 1254-1264.
- 580 [28] K. M. G. Mostofa, T. Yoshioka, E. Konohira, E. Tanoue, *Geochem. J.* 2007, 41, 323-331.
- 581 [29] J. W. Moffett, R. G. Zika, *Environ. Sci. Technol.* **1987**, 21, 804-810.
- 582 [30] J. Jeong, J. Yoon, *Water Res.* 2005, 39, 2893-2900.
- 583 [31] J. W. Moffett, R. G. Zika, in *Photochemistry of Environmental Aquatic Systems*.
- 584 (Eds R. G. Zika, W. J. Cooper) 1987, ACS Sym. Ser. 327, Am. Chem Soc., 585 Washington D. C.

586	[32] H. Sakugawa, A. Takami, H. Kawai, K. Takeda, K. Fujiwara, S. Hirata, In
587	Dynamics and Characterization of Marine Organic Matter. (Eds N. Handa, E.
588	Tanoue, T. Hama) 2000, TERRAPUB/Kluwer, Tokyo.
589	[33] J. B. Kramer, S. Canonica, J. Hoigne, J. Kaschig, Environ. Sci. Technol. 1996, 30,
590	2227-2234.
591	[34) K. R. Millington, G. Maurdev, J. Photochem. Photobiol. A: Chem. 2004, 165, 177-185.
592	[35] J. Mack, J. R. Bolton, J. Photochem. Photobiol. A: Chem. 1999, 128, 1-13.
593	
594	
595	
596	
597	
598	
599	
600	
601	
602	
603	
604	
605	
606	
607	
608	
609	

Table 1. The production rates of H_2O_2 estimated as a result of photo irradiation on various standard substances (1 mg L⁻¹) and their corresponding dissolved organic carbon (DOC)

Samples	Production rate [#]	DOC	FI
	H_2O_2		
	$\times 10^{-12} ({\rm Ms}^{-1})$	(µM C)	(QSU)
Suwannee River Fulvic Acid (SRFA)	69	49	65
Suwannee River Humic Acid (SRHA)	179	49	22
Tryptophan	155	69	5016
Tyrosine	73	33	13
phenylalanine	4.4	47	41
DAS1	46	38	1454
DSBP	244	34	75200
Phenol	27	21	5150
4-Biphenyl carboxaldehyde (4BCA)	34	74	735
2-Sulfonic acid benzaldehyde (2SAB)	37	80	NFP

concentrations as well as fluorescence intensity (FI) in aqueous solutions.

[#] production rate calculated for initial 60 min irradiation period and normalized to sunlight intensity (noon time) at the Campus of Hiroshima University, Japan. NFP: No fluorescence properties.

	H ₂ O	2	ROOH			
Coefficients	r	P-value	r	P-value		
Parameters						
		Kurose River:				
SI	0.33	<0.05 (n=52)	0.33	<0.05 (n=48)		
WT	0.58	<0.01 (n=52)	0.43	<0.01 (n=48)		
DOC	0.65	<0.01 (n=48)	0.00	NS (n=44)		
Peaks $(C + W)$	0.61	<0.01 (n=51)	-0.27	NS (n=47)		
Peat T	0.14	NS (n=17)	-0.51	<0.05 (n=17)		
NO ₃	0.60	<0.01 (n=38)	-0.28	NS (n=34)		
NO ₂	0.65	<0.01 (n=18)	0.82	<0.01 (n=16)		
Fe ²⁺	0.11	NS (n=25)	-0.31	NS (n=25)		
total Fe	0.30	NS (n=37)	-0.52	<0.01 (n=33)		
pH	-0.09	NS (n=52)	-0.61	<0.01 (n=48)		
ROOH	0.16	NS (n=48)	1	1		
		Ohta River:				
SI	0.80	<0.01 (n=32)	0.61	<0.01 (n=30)		
WT	0.80	<0.01 (n=32)	0.72	<0.01 (n=30)		
DOC	0.00	NS (n=28)	-0.14	ns (n=26)		
Peak C	0.64	<0.01 (n=31)	0.62	<0.01 (n=30)		
Peat T	0.62	<0.05 (n=12)	0.43	NS (n=12)		
NO ₃	-0.24	NS (n=22)	-0.41	NS (n=20)		
NO ₂	ndc	ndc	ndc	ndc		
Fe ²⁺	-0.20	NS (n=16)	-0.05	NS (n=16)		
total Fe	0.35	NS (n=22)	0.31	20 (n=20)		
pH	-0.07	NS (n=32)	-0.22	NS (n=30)		
ROOH	0.74	<0.01 (n=30)	1	1		

Table 2. The Pearson correlation coefficients between the concentrations of peroxides (H_2O_2 and ROOH) and other water quality parameters studied in the Kurose and the Ohta river waters.

Statistical significance is reported as either NS (p>0.05, (0.05>p0.01, or (p<0.01). n=Number of monthly samples studied in river waters.

NS=Not significant, and (-) = negative corelation.

ndc= Below detection limit of concentration.

622 623 624

Table 3. Production rates of H₂O₂, DOC, fluorescence intensities (FI) of peaks (C, W and T) and 4-biphenyl carboxaldehyde(4BCA), estimated H₂O₂ production rates of fulvic acid (FA)-like components, FWAs, 4BCA and

explained in details in	Accessory Publica	ition.												
Samples	Production rate	DOC	FI^{*}			Estimated production rate of H2O2 from				Fi	Fi			
	of H_2O_2		Peak C and	Peak T	4BAC	FA-like	Tryptophan-like	FWAs-like		FA-like	Tryptophan-like	FWAs-like		Unknown
			$(Peak C) + (Peak W)^*$			components	compounds	(DAS1+DSBP)	4BAC	components	compounds	(DAS1+DSBP)	4BAC	
	$\times 10^{-12} (\text{Ms}^{-1})$	(µM C)	(QSU)				$\times 10^{-12} (Ms^{-1})$			(%))			
Kurose River														
Namitakiji (KR1)	100 - 248 (n=2)	111 - 152	58 - 59	33 - 34	NP	61 - 63	1.0 - 1.1	NP	NP	25 - 61	0.4 - 1.1	ND	ND	37 - 74
Shouri (KR2)	209 - 214 (n=2)	106 - 134	55 - 59	16 - 18	NP	58 - 63	0.5 - 0.6	NP	NP	28 - 29	0.2 - 0.3	ND	ND	71 - 72
Izumi (KR5)**	386 - 536 (n=2)	310 - 505	(144 - 228) + (218 - 593)*	119 - 146	288 - 377	152 - 241	3.7 - 4.5	7.2 - 9.4	10 - 27	28 - 62	0.8 - 1.0	1.0 - 2.0	3.0 - 5.0	33 - 64
Hinotsume (KR6)**	366 - 379 (n=2)	276 - 445	(128 - 225) + (199 - 381)*	124 - 135	272 - 278	136 - 238	3.8 - 4.2	6.2 - 6.3	9 - 17	37 - 63	1.0 - 1.1	1.0 - 2.0	2.0 - 5.0	33 - 55
Ohta River														
Miwaku (OR1)	211	101	46	12	NP	49	0.37	NP	NP	23	0.2	ND	ND	77
Shintagiri (OR2)	109	88	50	13	NP	53	0.40	NP	NP	49	0.4	ND	ND	51
Takase (OR5)	116	115	76	29	NP	80	0.90	NP	NP	70	0.8	ND	ND	29
Asa (OR6)	127	124	81	31	NP	86	0.96	NP	NP	67	0.8	ND	ND	32

tryptophan-like substances and their contribution percentages to the net H2O2 production rates in the Kurose and the Ohta river waters. Estimation of H2O2 photoproduction rates and source contribution has been

[#]Fluorescence intensity (Fl) determined at Ex/Em=320/450 nm for isolated FA-like component and 350/437 nm for FWAs-like component in riverine and standard samples using PARAFAC model.

* indicates the FI of peak W (FWAs-like components) in rivers, ** River waters only having both peak C (FA-like) and peak W (FWAs-like) components;

NP means no peak, and n = number of samples analyzed.

628 Figure captions

629 Fig. 1

630 Seasonal variations of the H_2O_2 (a) and ROOH (b) concentrations in the waters of

631 Kurose river and Ohta river in Hiroshima prefecture, Japan. The error bar indicates the

632 standard deviation of seasonal average value of peroxides. Mean values labeled with

633 different letters are significantly differed at p<0.05 (Fisher's LSD analysis).

634 Fig. 2

635 Diurnal variations of H_2O_2 concentrations in the upstream waters (site KR2) on August 636 21, 2003 and in the downstream waters (site KR6) on September 26, 2003, in the

637 Kurose river.

638 Fig. 3

639 Various fluorescent components of riverine samples and aqueous solutions of standard

640 substances identified using the PARAFAC model. The isolated components are a) fulvic

641 acid-like (one component, Site KR1), b) fluorescent whitening agents (FWAs)-like

642 (component 1, Site KR5), c) fulvic acid-like (component 2, Site KR5), d) fulvic

643 acid-like (one component, Site OR5), e) Standard Suwannee River Fulvic Acid (one

644 component), f) Standard DSBP (one component) and g) standard DAS1 (one

645 component).

646 Fig. 4

647 Production of H₂O₂ (Figs. a-b) and ROOH (Figs. c-d) due to solar irradiation on the

648 Kurose river waters (collected from sites KR1, KR2, KR5 and KR6) and the Ohta river

649 waters (sites OR1, OR2, OR5 and OR6) in photo experiments conducted using solar

650 simulator.

651 Fig. 5

652 Production of H₂O₂ (a) and ROOH (b) due to light irradiation on various standard

653 substances in photo experiments conducted using solar simulator.

654

817	Accessory publication									
818	Spatial and temporal variations and factors controlling the concentrations of									
819	hydrogen peroxide and organic peroxides in rivers									
820	$\mathbf{B}\mathbf{y}$									
821	Khan M. G. Mostofa ^{1,2} and Hiroshi Sakugawa ^{2*}									
822	¹ State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry,									
823	Chinese Academy of Sciences, Guiyang, 550002, PR China.									
824	² Graduate School of Biosphere Science, Department of Environmental Dynamics and									
825	Management, Hiroshima University, 1-7-1, Kagamiyama, Higashi-Hiroshima 739-8521,									
826	Japan.									
827	*Address for correspondence:									
828	<i>Tel.+Fax : +81-824-24-6504</i>									
829	E-mail: <u>hsakuga@hiroshima-u.ac.jp</u> (or <u>mostofa@vip.gyig.ac.cn</u> :KMG Mostofa)									
830	Accessory publication									
831	1. Experimental Section									
 832 833 834 835 836 837 838 839 840 	ChemicalsP 2Experimental designP 2Analytical methodsP 3H2O2 photoproduction rates and source contributionP 5Statistical analysisP 7PARAFAC modelingPFigure Captions and FiguresS8-S17TablesP18-P22									
841										
842	Chemicals									
843	To examine the peroxide production in water from these rivers, we used Suwannee									
844	River Fulvic Acid (SRFA) (ref. No 1S101H), Suwannee River Humic Acid (SRHA) (ref									
845	No 1S101F) (International Humic Substances Society, USA), tryptophan (Nakalai									
846	Tesque Inc., Kyoto, Japan), FWAs standards, such as distyryl biphenyl, DSBP:									
847	4,4'-bis[(2-sulfostyryl)biphenyl (Tinopal CBS-X, LOT: 112013R2EY) and									

848	diaminostilbene type, DAS1: 4,4'-bis[(4-anilino-6-morphilino-s-triazine-2-yl)amino]
849	2,2'-stilbenedisulfonate (Tinopal AMS-GX, LOT 001288BOEK), 2-sulfonic acid
850	benzaldehyde (2SAB) and 4-biphenyl carboxaldehyde (4BCA) (Kanto Chemicals
851	company, Japan). One mg L ⁻¹ of each standard solution was prepared by dissolving into
852	MQ water. 30 % H ₂ O ₂ (Wako Chemical Ltd, Japan) and peracetic acid (Aldrich, Japan)
853	were used as the standards for H_2O_2 and ROOH, respectively. Catalase and peroxidase
854	were purchased from Sigma, Japan. All the chemicals were of analytical grade.
855	

856 Experimental design

857 The irradiation experiment was conducted using a solar simulator (Oriel, Model 858 81160-1000) equipped with the 150 W Xenon lamp (Ozone free, Oriel Model 81160) 859 and special glass filters restricting the transmission of wavelengths below 300 nm. Few 860 experiments were conducted with the more intense radiation using the 300 W Xenon 861 lamp by replacing the previous one. The light intensity of the lamp was calculated by 862 measuring the degradation rate of a 8 µM standard 2-nitrobenzaldehyde (2-NB) solution 863 in a 60 ml quartz cell. The degradation rates of 2-NB for a Xenon lamp employed in this study were in the range of $0.00196-0.00214 \text{ s}^{-1}$ and $0.00331-0.00338 \text{ s}^{-1}$ whilst the 864 865 degradation rate for natural sunlight on 6 July 2004 at Hiroshima University Campus (at noon under clear sky conditions) was 0.00783 s⁻¹. To examine photoproduction potential 866 of H_2O_2 and ROOH, each FDOM standard solution (1, 3 or 5 mg L⁻¹ in Milli-O water) 867 868 and river samples were prepared for light irradiation experiments. The exposure time was 10 h for 1 mg L^{-1} samples and 1 h for 3 and 5 mg L^{-1} samples. All river samples 869 870 were pre-filtered and were exposed to total irradiation period of 10 h with aliquots taken 871 for peroxide determination at 0, 30, 60, 180, 360 and 600 minutes. The amounts of H_2O_2

and ROOH in the standard solutions and samples from the rivers were normalized as afunction of natural sunlight using the following equation (eq 5):

- 874
- 875

876 877

878 where $R_{(H2O2, I_s)}$ is the rate of H₂O₂ production corrected for the intensity of natural 879 sunlight (at noon under clear sky conditions on 6 July 2004 at Hiroshima University 880 Campus) in water samples from the river and standard DOM materials, $D_{(2-NB,I_s)}$ and 881 $D_{(2-NB,I_{xe})}$ are the degradation rates of 2-NB estimated using the intensity of natural 882 sunlight and the Xe lamp, respectively, and $R_{(H2O2,I_{xe})}$ is the observed H₂O₂ production 883 rate produced under the conditions of Xe lamp.

884

885 Other Analytical methods

886 Dissolved organic carbon (DOC) concentration in water samples was measured 887 using a high temperature catalytic oxidation method (TOC 5000A, Shimadzu, Kyoto, 888 Japan). The standard potassium hydrogen phthalate was used as a reference organic 889 substance to determine DOC concentration. After removing dissolved inorganic carbon 890 (DIC) by bubbling pure air, 106 µl of each sample was injected into TOC analyzer. 891 DOC measurements were conducted for each sample 3 to 5 times under conditions of 892 <2% coefficient of variance or with the standard deviation being the area counted for 893 <200 (equivalent to 1.3 μ M C). Triplicate measurements were performed for each 894 sample. The three-dimensional (3-D) excitation emission matrix (EEM) spectra of water 895 samples were obtained using a fluorescence spectrophotometer (F-4500, Hitachi, Japan). 896 The EEM spectra were constructed by scanning emission spectra from 225 to 500 nm as 897 a function of excitation wavelength from 225 to 400 nm. Readings were collected at

898	intervals of 5 nm for excitation with 1 nm emission wavelengths using a scanning speed
899	of 1200 nm min ⁻¹ . The wavelength accuracy was within ± 2 nm. The fluorescence
900	spectra were measured in triplicate for each sample and were averaged. Fluorescence
901	readings (peaks C, W and T) were calibrated using the fluorescence intensity
902	(Ex/Em=350/450 nm) of a quinine sulphate standard. Quinine sulphate solution (4 μ g
903	L^{-1}) was prepared in 0.01 N H ₂ SO ₄ for fluorescence measurements. The fluorescence
904	intensity (FI) for 1 μ g L ⁻¹ of quinine sulphate solution was equal to 1 QSU (quinine
905	sulphate unit) in this study. The concentrations of the NO_3^- and NO_2^- ions were
906	determined using a suppressor type ion chromatograph with the column Ion Pac AS11
907	(Yokogawa Analytical Systems, IC-7000II and Dionex, DX500). Dissolved Fe(II) and
908	total Fe content were measured using the 1,10-phenanthroline method. In this method,
909	Fe (III) was estimated as the difference between Fe(II) and total Fe after reduction of
910	Fe(III) by 5% hydroxyl amine. Ferrous ammonium sulfate was used as a standard. The
911	river and standard samples were processed followed by the earlier method ^[1] . The
912	absorbance of the samples then measured at wavelength ranges of 450-550 nm using
913	UV-VIS Spectrophotometer (Shimadzu UV-2401, Shimadzu, Japan). The maximum
914	absorbance at a specific wavelength was used for determination of Fe(II) and total Fe
915	concentrations in samples. The pH was measured using a portable pH meter (Horiba,
916	Japan). The solar intensity (SI) was measured using a pyranometer (MS62, Eikoseiki
917	Inc., Japan) located on the roof of the Faculty of Integrated Arts and Science in
918	Hiroshima University (HU), in proximity to KR5 site. The data from this instrument
919	provided meteorological data for the Kurose river. SI data at Misasa Primary School,
920	Nishi-ku Hiroshima City (Air Pollution Monitoring Center, Hiroshima prefecture,
921	Japan), located close to OR6 site, was used for the Ohta river meteorological data.

923 H_2O_2 photoproduction rates and source contribution

924 The rate of production of H₂O₂ in irradiated standard DOM solution and in water 925 samples from the river was determined from the net production of H₂O₂ (final 926 concentration minus initial concentration) measured for the initial 60 minutes of the 927 irradiation period. The rate of generating H₂O₂ was then normalized to sunlight intensity 928 at noon under clear sky conditions on 6 July 2004 at Hiroshima University Campus^[2]. 929 The normalized rate of production of H₂O₂ of an identified fluorescent substance is 930 estimated on the basis of its fluorescence intensity observed in natural waters and can be 931 determined using the following equation:

932

933

where $R_{Fi(river)}$ is the normalized production rate of H₂O₂ of an identified fluorescent substance in natural waters, $FI_{Fi(river)}$ is the fluorescence intensity of the identified fluorescent substance in natural waters, FI_{RS} is the fluorescence intensity of the relevant standard substance in the aqueous solutions, and R_{RS} is the normalized production rate of H₂O₂ of the relevant standard substance in the aqueous solution. Finally, percentages of each identified fluorescent substance contributing to the rate of production of H₂O₂ are calculated using the following equation:

941

942

943

944 where $F_{i (river)}$ is the contribution percentage of the normalized net H₂O₂ production rate 945 in the water (%) for each identified fluorescent substance, $R_{Fi(river)}$ is the normalized H₂O₂ 946 production rate generated by each identified fluorescent substance in water from these rivers, and $R_{net(river)}$ is the normalized net H₂O₂ production rate of all FDOM in water from these rivers. The percent contributions of unknown sources of H₂O₂ in water samples from the river were estimated using a simple formula: $F_{unknown} = 100 - (F_{FA} + F_{Tryptophan} + F_{FWAs})$, where the sum of the normalized H₂O₂ production rate of FA-like substances, tryptophan-like substances and FWA-like substances is subtracted from the normalized net H₂O₂ production rate of 100%.

953

954 Statistical analysis

955 Statistical analysis of the data obtained for peroxide measurements and other relevant

analytical data was conducted using a SPSS program (SPSS Inc., U.S.A). Significances

957 of the differences in average values among seasonal peroxide concentrations were

evaluated by one-way ANOVA and Fisher's LSD analysis (P < 0.05). The Pearson

959 correlation coefficients between peroxides concentrations and other water quality

960 variables were estimated using the same program.

961

962 PARAFAC modeling

963 Recently, parallel factor (PARAFAC) analysis has effectively applied on EEM data to

⁹⁶⁴ isolate the different components of DOM compositions into the organic compounds^[3].

965 The PARAFAC model was performed in MATLAB using the "N-way toolbox for

966 MATLAB ver. 3.1" with methods described in earlier studies^[3]. The data EEMs of the

samples were modeled with excitation wavelength ranging from 220 to 380 nm by

968 every 5 nm and emission wavelength from 280 to 480 nm by every 1 nm in this study.

969 Milli-Q water blank was subtracted from every sample before running in the PARAFAC

970 model. PARAFAC is a three-way multivariate method that can be applied on EEM

971	mathematical data of DOM in natural waters or in a mixture of model organic
972	components in aqueous media, which is capable of the separation and quantification of
973	specific fluorescent components. PARAFAC can often identify the major fluorescent
974	components in DOM compositions, and it can not possible to isolate the minor
975	fluorescent components occurrence in DOM fractions in natural waters ^[3] .
976	
977	
978	
979	
980	
981	
982	
983	
984	
985	
986	
987	
988	
989	
990	
991	
992	
993	
994	

995 Figure Captions

996 Fig. A1

- 997 Water sampling sites in the Kurose river (sites KR1 to KR6) and the Ohta river (sites
- 998 OR1 to OR6) in Hiroshima prefecture, Japan. Oblique lined areas indicate urban areas,
- 999 Hiroshima or Higashi-Hiroshima.

1000 Fig. A2

- 1001 Relationship between hydrogen peroxide and solar intensity estimated as MJ $m^{-2} h^{-2}$
- 1002 (Fig. 3a) or water temperature (Fig. 3b) in the waters of Ohta river.
- 1003 Fig. A3
- 1004 The EEM of the standard DSBP before irradiation (a) and after 20-h irradiation using
- solar simulator (b). Fig. b shows a fluorescence peak for 4BCA-like substances and also
- 1006 unknown peaks in course of decomposition of DSBP.
- 1007 Fig. A4
- 1008 Production of H_2O_2 as a result of light irradiation on the aqueous solutions of NO_2^-
- 1009 using solar simulator.

Table A1. Monthly variations of pH, water temperature (WT), solar intensity (SI), dissolved organic carbon (DOC), fluorescence peak intensity (FI)

of fulvic acid-like substances (peak C), fluorescent whitening agents (peak W) and tryptophan-like substances (peak T), total Fe, Fe²⁺, NO₃⁻, NO₂⁻

H2O2 and ROOH at six smpling sites in the Kurose and the Ohta river waters in Hiroshima prefecture, Japan.

Sampling site	pН	WT	SI	DOC	FI		total Fe	Fe ²⁺	NO ₃	NO ₂	H ₂ O ₂	ROOH
and time					Peaks (C or W)	Peak T						
		ീ	$(MIm^{-2}h^{-1})$	$(\mathbf{u}\mathbf{M}\mathbf{C})$	(OSU)			ίuΜ			(nM)	
Namitakiji (KR1)		(0)	(1015111 11)	(µ111 C)	(Q50)			(µ111)			(1111)	
May 2002.	5.9	15.8	2.88	116±2.5	27	np	nd	nd	nd	nd	14±1.1	73±6.2
June 2002.	6.0	15.1	2.38	104±1.5	55	39	nd	nd	nd	nd	17±9.5	59±12.6
July 2002.	7.1	25.8	1.33	nd	68	67	nd	nd	nd	nd	21±4.2	44±8.4
August 2002.	7.4	25.4	1.12	146±3.9	55	np	54	nd	1.6	bd	33±9.8	nd
September 2002.	7.2	18.0	1.91	105±3.5	54	np	2	nd	8.8	bd	26±3.9	17±4.0
October 2002.	7.2	10.5	1.84	77±1.7	48	np	40	nd	5.5	bd	9±1.1	21±3.1
November 2002.	7.1	7.0	1.01	105±5.5	50	np	54	2.5	4.4	bd	6±0.6	25±2.0
December 2002.	6.9	6.0	0.76	87±6.4	52	np	20	0.2	6.4	bd	15±1.0	29±5.1
January 2003.	7.1	3.0	0.50	115±8.2	39	np	36	1.2	7.5	bd	11±0.5	9±1.0
February 2003.	7.3	5.6	1.01	47*	41	np	28	0.7	4.6	bd	9±1.1	20±5.8
March 2003.	7.0	8.7	1.91	51±3.9	51	np	8	2.8	14.2	bd	20±2.2	11±1.7
April 2003.	7.3	15.5	2.20	117±4.6	61	76	60	0.8	4.0	bd	16±4.9	30±12.6
December 2004.	8.0	9.0	0.53	nd	42	np	nd	nd	nd	bd	6±1.5	47±1.8
Mean	7.0	12.7±7.3	1.57±0.72	97±31	50±11	61±19	34±21	1±1	6±3		16±8	31±20
Shouriki (KR2)		12.7										
May 2002.	7.2	15.6	2.88	125±2.3	nd	np	nd	nd	nd	nd	29±1.6	41±1.8
June 2002.	7.1	16.1	2.38	88±5.9	59	np	nd	nd	nd	nd	68±9.0	65±5.3
July 2002.	7.1	22.3	1.33	nd	62	75	nd	nd	nd	nd	27±2.8	30±1.3
August 2002.	7.6	22.0	1.12	75±7.9	58	np	64	nd	7.4	bd	50±3.6	nd
September 2002.	7.3	19.0	1.91	66±2.0	45	np	20	nd	7.0	bd	37±1.4	19±0.6
October 2002.	7.7	11.5	1.84	124±2.5	39	np	48	nd	5.1	bd	19±1.6	17±2.4
November 2002.	7.7	7.5	1.01	146±2.6	44	34	48	2	4.3	bd	18 ± 6.1	26±3.1
December 2002.	7.1	5.8	0.76	78±25	43	np	nd	nd	5.1	bd	21±3.3	35±7.0
January 2003.	7.3	2.0	0.50	53	32	19	10	1.3	7.7	bd	16±1.5	11 ± 1.8
February 2003.	7.3	5.6	1.01	48±3	34	37	28	0.5	8.0	bd	21±7.7	26±7.1
March 2003.	7.2	8.9	1.91	43±3.9	40	np	40	3.2	8.7	bd	39±9.7	12±7.5
April 2003.	7.1	12.9	2.20	49±9.4	68	54	96.7	8.5	9.8	bd	19±3.4	22±10.9
December 2004.	7.5	9.0	0.53	nd	27	np	nd	nd	nd	bd	31±8.0	41±9.2
Mean	7.3	12.2±6.5	1.57 ± 0.72	81±36	48±12	44±22	44±28	3±3	7±2		30±16	28±15
Sasa (KR3)												
June 2002.	6.5	18.0	2.74	123±7.8	145	np	nd	nd	nd	nd	49±8.6	66±9.4
December 2002.	7.3	7.0	0.97	143±9.5	117	np	6	0.0	28.7	nd	18±3.7	15±5.4
Tokumasa (KR4)												
June 2002.	7.3	19.5	2.27	154±1.3	245	86	nd	nd	nd	nd	29±3.1	28±0.7
December 2002.	7.2	7.0	1.22	146±25.8	380	93	30	0.0	71.4	1.7	31±2.4	9±2.7
Izumi (KR5)		22.0	2.12	202.0.0	(00		,		1		142.20	2512.4
May 2002.	/.1	22.9	2.12	383±8.8	608	np	nd	na	nd	nd	142±2.0	25±2.4
June 2002.	/.1	18.0	2.27	344±3.6	581	np	nd	na	nd	nd	62±7.7	39±9.6
July 2002.	1.2	26.5	1.91	nd	666	np	nd	na	nd	nd	/6±6.6	32±11.1
August 2002.	7.6	27.2	0.94	349±0.7	659	np	1/6	nd	58./	5.1	$91\pm/.9$	nd
September 2002.	7.4	12.0	2.16	215 ± 2.1	606	207	88	na	107.4	8.0	135±4.2	/±1.2
October 2002.	7.7	13.8	2.00	209±10.0	494	np	80	na	84.5	0.1	//±1.2	1±1.0
November 2002.	/.4	8.2	1.3	244±0.0	548	182	180	3.2	131.9	4./	16±2.5	14 ± 1.1 2 \ 1 7
December 2002.	8.4	7.0	1.22	519	589	np	180	0	110.9	1.4	14±3.2	3±1.7
January 2003.	7.2	2.0	0.76	212±23.9	504	240	158	6.5	127.9	2.5	9±1.5	3*
February 2003.	1.2	/.5	1.08	191±19.1	469	229	156	5.8	112.4	5.5	10±7.4	0
March 2003.	1.2	12.8	2.41	212±23.1	487	np	140	1.3	63.5	5.6	$4/\pm 6.5$	3±2.7
April 2003.	1.3	16.4	5.15	238±4.1	454	np	210	4.7	/1.8	4.1	66±2.4	1±0.9
December 2004.	/.4	10.6	0.53	nd	263	np	120 - 51	5.2	07.20	4:0	$4/\pm 3.2$	5±3.5
wean	/.4	15.0±8.0	1.85±0.75	2/1±6/	555±73	215±25	139±51	S±3	97±28	4±2	62±46	12±14

Table A1. (Continued)

Sampling site	pН	WT	SI	DOC	FI		total Fe	Fe ²⁺	NO ₃ ⁻	NO ₂ ⁻	H_2O_2	ROOH
and time					Peak C or W	Peak T						
		(°C)	(MJm ⁻² h ⁻¹)	(µM C)	(QSU)		(µM)			(n		M)
Hinotsume (KR6)												
May 2002.	5.8	22.3	2.12	323±8.3	445	210	nd	nd	nd	nd	213±2.5	43±4.0
June 2002.	7.1	21.0	2.27	287±3.6	421	np	nd	nd	nd	nd	135±8.0	67±7.9
July 2002.	7.3	27.0	1.91	nd	431	np	nd	nd	nd	nd	152±5.5	25±13.3
August 2002.	7.3	27.4	0.94	348±15	659	np	130	nd	97.8	47.3	105 ± 4.0	nd
September 2002.	7.4	23.5	2.16	260±11.0	534	np	92	nd	128.8	57.3	149±4.1	29±2.0
October 2002.	7.9	15.0	2.66	273±5.3	500	np	74	nd	179.7	31.1	101±2.3	25±8.1
November 2002.	7.3	10.1	1.30	280±9.9	628	np	56	4.7	190.5	28.3	119 ± 2.2	37±2.7
December 2002.	7.5	7.5	1.22	225	515	np	34	1.8	189.6	13.4	83±2.2	8±4.7
January 2003.	7.5	4.0	0.76	255±6.0	491	303	122	1.7	139	18.0	33±0.7	10±1.1
February 2003.	7.3	8.8	1.08	130±7.4	421	np	126	0.7	149.4	4.4	64±5.2	0
March 2003.	7.5	12.2	2.41	265±18.8	410	np	90	2.3	102.4	9.0	51±4.4	11±7.9
April 2003.	7.5	17.5	3.13	146±4.1	310	175	136.7	0.2	75.3	5.3	91±3.9	11±15.4
December 2004.	7.2	10.5	0.48	nd	224	np	nd	nd	nd	nd	80±7.7	45±4.1
Mean	7.3	15.9±7.8	1.83±0.75	254±66	481±97	229±66	96±36	2±2	139±42	24±19	108±50	24±19
Miwaku (OR1)												
June 2002.	5.97	14.2	2.91	59±1.5	43	np	nd	nd	nd	nd	61±7.2	36±4.6
December 2002.	6.90	5.9	0.55	nd	39	np	30	0.0	3.5	bd	61±5.1	25±7.6
Shintagiri (OR2)												
June 2002.	6.53	18.0	3.35	67±1.7	51	np	nd	nd	nd	nd	108 ± 7.4	44±7.9
December 2002.	7.10	5.8	0.99	nd	36	15	16	2.0	17.7	bd	46±3.0	18±2.2
Doi (OR3)												
June 2002.	7.05	20.0	3.37	67±1.6	50	np	nd	nd	nd	nd	91±10.4	38±11.9
December 2002.	7.10	5.9	0.43	74±10.7	44	np	16	1.0	16.6	bd	33±2	17±3.1
Okawa (OR4)												
June 2002.	7.06	21.5	3.16	92±3.5	68	39	nd	nd	nd	nd	188±1.2	68±11.5
December 2002.	7.00	6.0	0.29	109 ± 11.2	59	30	22	0.7	26.1	bd	46±7.3	16±7.1
Takase (OR5)												
May 2002.	5.5	22.5	2.54	123±8.3	84	44	nd	nd	nd	nd	153±5.3	51±1.1
June 2002.	7.1	23.0	2.75	101 ± 1.1	101	np	nd	nd	nd	nd	142 ± 1.8	61±6.2
July 2002	7.2	24.8	3.19	nd	79	np	nd	nd	nd	nd	136 ± 10.2	40±9.8
August 2002	7.6	25.9	1.97	75±6.9	nd	np	76	nd	17.4	bd	135±6.2	nd
September 2002	7.6	22.2	2.62	82±4.8	64	39	nd	nd	19.8	bd	116±6.6	32±4.5
October 2002	7.3	15.0	2.31	164 ± 6.0	53	44	40	nd	23.3	bd	114 ± 1.3	19 ± 0.7
November 2002	7.6	89	1 69	104 ± 1.9	47	nn	40	3.5	17.7	bd	69±2.7	29±2.2
December 2002	73	73	0.24	117±6.9	64	np	24	0	27.3	bd	40 ± 2.7	9±3.5
January 2003	7	6.0	0.70	133	44	40	14	53	34.9	bd	51±0.5	25±5.3
February 2003	71	73	0.43	40 ± 6.0	44	nn	40	6.2	40.7	bd	50±7.7	23±1.9
March 2003	7.1	9.0	1.94	70±7.7	46	np	16	7.3	64.6	bd	89±5.9	2 ± 2.7
April 2003	7.5	15.0	2.84	64 ± 5.9	44	45	93 3	0.7	15.6	bd	144 ± 1.6	33±15.5
Mean	7.2	15.6 ± 7.7	1.94 ± 0.99	98±36	66±25	42 ± 3	38±30	4±3	29±16	ou	105 ± 43	28±19
Asa (OR6)	/.=	10:0-7:7	1.9 1-0.99	20-20	00-20	.2-5	50-50		2/-10		100-10	20-17
May 2002	6.6	20.8	2.54	137±15	75	nn	nd	nd	nd	nd	168±6.9	52±5.5
June 2002	7.1	21.0	2.75	94+1.2	82	nn	nd	nd	nd	nd	171+7.7	80+5.0
July 2002	73	25.6	3 19	nd	79	61	nd	nd	nd	nd	$1/1 \pm 7.7$ $1/1 \pm 7.7$	58+2.8
August 2002	7.5	25.0	1.97	75+6.9	69	nn	86	nd	23	bd	64+0.2	nd
September 2002	73	23.8	2.62	76±12.0	65	11p 15	10	nd	20 4	bd	136±0.6	20+1.6
October 2002	7.5	14.8	2.02	114+3.0	59	4J	10	nd	20.4	bd	87+3 1	29±1.0 8±3.2
November 2002.	2.7	14.0	2.31	83±4.0	39 17	11p 31	10	2.7	25.0	bd	80±11	0±3.2 36±3.2
December 2002.	07	9.0 7.0	0.24	05±4.0	47	51	34	2.7	20.0	bd	30 ± 1.1 38 ± 0.7	10±2.2
January 2002	72	6.0	0.24	110±13./	03	np	34 10	1.3	20.7	6-1	30±0./ 52±5.5	10=2.8
January 2003.	1.2	0.0	0.70	90	50	np	48	4.2	30.7	DO La	52±5.5	18±3.0
redruary 2003.	0.8	1.2	0.43	145	50	np	42	0./	30.8	Dd	55±/.8	8±3.0
March 2003.	1.5	9.2	1.94	66±3.6	45	np	8	2	20.3	bd	8/±2.1	3±2.7
April 2003.	/.4	14.6	2.84	45±0.8	/3	58	95.5	0	20.3	bd	121±2.5	31±13.7
Mean	7.3	15.4±7.6	1.94±0.99	95±31	63±13	49±14	41±31	2±1	26±6		102±49	30±25

- 1227

Table A2. Diurnal variations of pH, water temperature (WT), air temperature (AT), solar intensity (SI) and H₂O₂ in the

Sampling	Upstream waters (site KR2)					Downstream waters (site KR6)				
	pН	WT	AT	SI	H_2O_2	pН	WT	AT	SI	H_2O_2
		(°C)		(MJm ⁻²)	(nM)		(°C)		(MJm ⁻²)	(nM)
5:30 a.m.	7.0	19.2	22.5	0.00	9±1.3	7.1	19.5	18.5	0.00	4±1.3
8:00 a.m.	7.5	19.2	22.5	0.68	14±2.5	7.1	20.2	22	0.50	16±1.5
10:00 a.m.	7.4	20.0	24.8	2.09	23±1.9	7.0	22.0	19	2.16	31±4.5
11:00 a.m.	7.4	20.5	28.7	1.91	37±2.2	7.2	22.0	30.9	2.38	59±3.8
12:00 p.m.	7.4	20.8	28.5	2.74	43±4.1	7.1	23.0	30.5	2.52	63±3.1
13:00 p.m.	7.6	21.0	28.0	2.66	40±2.6	7.2	24.0	29.5	2.84	69±2.7
14:00 p.m.	7.5	21.0	28.0	1.80	34±4.5	7.2	24.5	29.5	2.63	69±5.5
15:00 p.m.	7.4	21.0	26.5	1.33	113±1.7	7.3	25.0	29	2.30	62±7.2
17:00 p.m.	7.5	21.0	26.5	1.30	27±2.6	7.3	24.5	27	1.04	62±12.5
19·00 n m	7 2	20.5	25.0	0.00	9+1.3	7 2	21.5	23.5	0.00	20+2.7

upstream and downstream waters of the Kurose river.

1265 1266	References Cited [1] Zuo, Y. Kinetics of photochemical/chemical cycling of iron coupled with organic
1267	substances in cloud and fog droplets. Geochim Cosmochem Acta 1995, 59,
1268	3123-3130.
1269	[2] Takeda, K.; Takedoi, H.; Yamaji, S.; Ohta, K.; Sakugawa, H. Determination of
1270	hydroxyl radical photoproduction rates in natural waters. Anal. Sci. 2004, 20,
1271	153-158.
1272	[3] Stedmon, C. A.; Markager, S.; Bro, R. Tracing dissolved organic matter in aquatic
1273	environments using a new approach to fluorescence spectroscopy. Mar. Chem.
1274	2003 , 82, 239-254.
1275 1276 1277	