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Abstract We propose a novel representation of SO(3) pose in 3 degrees-of-freedom (DOF)
for view-based pose estimation. First we show that a conventional representation of pose in 1
DOF is a Fourier basis, and extend the observation to 2 DOF with spherical harmonics. Then
we represent 3 DOF pose with spherical functions that are continuous orthonormal basis on
SO(3), and give transformations from the spherical functions representation to a quaternion
and a rotation matrix.

1 Introduction

What is a pose? It is an important question for
estimating parameters of poses. In computer vision
with three-dimensional geometry, a rotation matrix
R, that transforms the world coordinate system to
a camera or object coordinate system, is called a
pose of a camera or an object.

To see a pose for estimation, we focus on a
method for global appearance-based (view-based)
pose estimation. It can be seen as regression
that learns relations between images (views or ap-
pearances) and pose parameters. A training set
{pj ,xj}j=1,2,... is given where pj is a parameter
vector of a pose and xj is an image vector corre-
sponding to the pose. In training phase, the rela-
tion pj = f(xj) between them is learned. In test
phase, a pose p of a test image x is estimated as
p = f(x).

In this paper, we propose a novel representation
of a pose of an object under a 3 degrees-of-freedom
(DOF) rotation, that is, a rotation in SO(3). There
have not been any considerations on a representa-
tion of a pose p for pose estimation, whereas many
estimation methods f have been studied. However,
we have to carefully choose an appropriate pose rep-
resentation because of problems specific to 3 DOF
pose estimation.

There are three types of rotations specified by
DOF (see Fig. 1). In 1 DOF rotation, an object
rotates about an axis by an angle θ1 ∈ [0, 2π) that
can be uniquely determined by the angle between
a point on a unit circle S1 = {p ∈ R2 | ||p|| = 1}
and the reference point (θ1 = 0). In 2 DOF, an ob-
ject rotates about two axes with angles θ1, θ2 such
as azimuth, zenith, or elevation. These angles are

Fig. 1: 1,2,3 DOF rotations

uniquely determined by a point on a unit sphere
S2 = {p ∈ R3 | ||p|| = 1}. In 3 DOF, an object ro-
tates about three orthogonal axes (e.g., x, y, z) by
angles θx, θy, θz which are called roll–pitch–yow or
Euler angles [1]. Because of their ambiguity [2], a 3
DOF pose is uniquely determined by a 3 × 3 rota-
tion matrix R with its reference, an identity matrix
I. R is an element of the special orthogonal group
SO(3) = {R ∈ R3×3 | RRT = RTR = I, det(R) =
1}.
Previous works on 1 DOF pose estimation have

focused mainly on an estimation method f which
relates an image x and a pose p: linear methods
[3, 4, 5], kernel or non-linear methods [6, 7, 8, 9],
non-function procedure [10]. These works do not
pay any attention on whether a pose representation
is appropriate or not.

We focus on an appropriate representation of
3 DOF pose for linear pose estimation meth-
ods. Separating pose representation from estima-
tion methodology enables us to apply the represen-
tation to any estimation method.

The organization of the paper is as follows. In
section 2 and 3, we discuss requirements for repre-
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sentations for 1 DOF and 2 DOF pose estimations.
Then, we propose new representations for 3 DOF
pose in section 4. In section 5, we show experimen-
tal results of pose estimation.

2 1 DOF pose representation

2.1 Previous representation

Here we review a representation used by works on
1 DOF pose estimation [3, 8, 9, 7, 6, 4]. In train-
ing phase, images xj ∈ RN of an object rotating
about an axis and corresponding angles θ1j ∈ [0, 2π)
are given. A pose is represented by a vector pj =

(cos θ1j , sin θ1j)
T ∈ R2 such that the following con-

straint is satisfied:

(p1,p2, . . . ,pn) = F (x1,x2, . . . ,xn), (1)

where a matrix F ∈ R2×N is estimated.
In test phase, the pose of a given image x is es-

timated as Fx = p̂ = (p̂1, p̂2)
T , then the angle is

retrieved as θ̂1 = tan−1 p̂2

p̂1
even if p̂ may not be on

a unit circle. In practice, atan2() is used.
By observing the representation above, we claim

that any pose representation should have two prop-
erties: continuity and bijection.

2.2 Continuity

The angle θ1 is never used to represent a 1 DOF
pose because the angle have discontinuity at 2π.
It is well known that we can assume that images

belonging to a training class can be approximated
by a linear combination of eigenvectors in the class.
Because an eigenspace spanned by eigenvectors are
contained by a space spanned by training images
of the class, we can approximate an image x by a
linear combination of training samples:

x ∼= b1x1 + b2x2 + · · ·+ bnxn. (2)

On the other hand, the pose pj of a training image
xj is mapped by a linear function (matrix) F to the
pose pj

pj
∼= Fxj . (3)

Therefore, we have the following equation:

p = Fx = b1Fx1 + b2Fx2 + · · ·+ bnFxn (4)
∼= b1p1 + b2p2 + · · ·+ bnpn, (5)

which means that the estimated pose p is also a
linear combination of poses pj of training images.
o
A problem happens if a pose representation has

discontinuity. For example, poses 0, 5, . . . , 300, 350

◦ are learned with the angle θ1. Then, an estimate
of a pose for 355◦ might be a linear combination
of 350◦ and 0◦ , which results in 175◦ . The same
problem occurs even for kernel based methods [7].

Therefore, each parameter in a representation p
is required to be (at least C1) continuous with pose.

2.3 Bijection

Second property is bijection: the mapping between
an image x and a pose p should be a one-to-one
and onto mapping.

Pose estimation can not be performed with a non-
bijective representation. If an image x has two pose
representations p1 and p2, no linear mapping F sat-
isfies both Fx = p1 and Fx = p2.

The relation between cos, sin and a point on a
unit circle is bijective. However, the angle θ1 is not
because θ1 and θ1 + 2nπ (n ∈ Z) indicate the same
pose.

2.4 Representing pose by Fourier basis

According to the discussion above, we have the fol-
lowing statement: a pose of 1 DOF is represented
by periodical C1-continuous functions C1(S1) de-
fined on a unit circle S1.

Candidates of such functions are the complex
Fourier basis, C∞-continuous periodic functions de-
fined on S1:

Yℓ1 = e−ℓ1θ1i, ℓ1 ∈ Z, i =
√
−1, (6)

which can approximate any functions in C∞(S1).

Therefore, the representation (cos θ1j , sin θ1j)
T

can be regard as the real and imaginary parts of
the lowest frequency Y±1 = e±θ1i.

3 2 DOF pose representation

Now we consider a pose representation of 2 DOF
in the same manner: use the lowest frequency func-
tion for expanding a periodic continuous function
C∞(S2) defined on a sphere S2.

Spherical harmonics [11, 12, 13, 14] is well known
as a basis for continuous functions on a sphere:

Yℓ1,ℓ2 =
√

bℓ1,ℓ2 P ℓ2
ℓ1
(cos θ1) e

−ℓ2θ2i, ℓ1, ℓ2 ∈ Z,
(7)

where θ1 ∈ [0, π), θ2 ∈ [0, 2π). ℓ1 ≥ |ℓ2|, P ℓ2
ℓ1

are as-
sociated Legendre polynomials, and bℓ1,ℓ2 are coef-
ficients. Note that we omit parameters of functions
(θ1, θ2) for simplicity.
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The lowest frequency functions are

Y1,0 =
√
3 cos θ1, (8)

Y1,±1 = −
√

3

2
sin θ1e

∓θ2i, (9)

and inversely angles are calculated as:

θ2 = tan−1

(
−(Y1,−1 − Y1,1)/i

−(Y1,−1 + Y1,1)

)
, (10)

θ1 = tan−1

(
(Y1,−1 − Y1,1)/(−

√
2 i sin θ2)

Y1,0

)
.

(11)

Therefore, we can use Y = (Y1,0, Y1,1, Y1,−1)
T ∈

C∞(S2)3 as a 2 DOF pose representation because
they are all continuous on a sphere.
A representation of 2 DOF pose usually used is

p = (θ1, θ2)
T . This is not continuous at poles of

a sphere and not appropriate as a pose representa-
tion. However, no problem have reported yet be-
cause the discontinuity has been ignored in experi-
ments in small range of pose variation.

4 A new 3 DOF pose representation
with spherical functions

In this section, we propose a new representation of 3
DOF pose by using continuous functions on SO(3)
to uniquely determine a pose.

4.1 Other representations of 3 DOF pose

There are several common representations of 3 DOF
pose, but they do not satisfy the requirements; con-
tinuity and bijection.
Euler angles or fixed angles (roll–pitch–yaw) [1]

have singularities and therefore not continuous.
Moreover, they are not bijection because of the gim-
bal lock problem: angles suddenly change as a pose
changes smoothly.
In angle–axis or Exponential map [15, 16], a rota-

tion axis is represented by two opposite directions.
Therefore it is not bijective. Also a rotation angle
is not continuous.
Unit quaternions are continuous, but not bijec-

tion because q and −q represent the same pose.
Unit quaternions have been used for robot control,
pose interpolation [17, 18] in CG [2, 19, 20], or 3D
registration [21]. Unit quaternions are useful be-
cause of its continuity, however, bijection is also
necessary for pose estimation. Unfortunately, unit
quaternions are not bijective.
A 3×3 rotation matrix satisfies the requirements.

R is continuous and bijective because SO(3) is a
smooth closed manifold. But usually it is not used
for pose interpolation.

4.2 Pose representation by spherical func-
tions

Here we use spherical functions for a pose rep-
resentation. Spherical functions [22] Yℓ1,...,ℓn are
orthonormal C∞-continuous basis functions on a
hyper-sphere Sn. For n = 1 they are the complex
Fourier basis Yℓ1 and for n = 2 the spherical har-
monics Yℓ1,ℓ2 .

Spherical functions on S3 are as follows:

Yℓ1,ℓ2,ℓ3 =
√

bℓ1,ℓ2,ℓ3C
1,ℓ2
ℓ1

(cos θ1)P
ℓ3
ℓ2
(cos θ2)e

−ℓ3θ3i,

(12)

where C1,ℓ2
ℓ1

are associated Gegenbauer functions.

However, S3 is a double-covering of SO(3) [15,
p.41], and these are not appropriate to our case.

Now we propose a representation using the lowest
frequency functions of spherical functions Y2ℓ1,ℓ2,ℓ3

on SO(3) [22]. Those corresponding to the lowest
frequency (2ℓ1 = 2) are the following 9 functions:

Y2,0,0 = 1 + 2 cos 2θ1 (13)

Y2,1,0 =
√
24 sin θ1 cos θ1 cos θ2 (14)

Y2,1,±1 = −2
√
3 sin θ1 cos θ1 sin θ2e

∓θ3i (15)

Y2,2,0 =
√
2 sin2 θ1(3 cos

2 θ2 − 1) (16)

Y2,2,±1 = −2
√
3 sin2 θ1 sin θ2 cos θ2e

∓θ3i (17)

Y2,2,±2 =
√
3 sin2 θ1 sin

2 θ2e
∓2θ3i (18)

For simplicity, we modify the functions as follows:

Y0 = 4cos θ1
2 − 1 (19)

Y1 = cos θ1 sin θ1 cos θ2 (20)

Y2 = cos θ1 sin θ1 sin θ2 cos θ3 (21)

Y3 = cos θ1 sin θ1 sin θ2 sin θ3 (22)

Y4 = sin2 θ1(3 cos
2 θ2 − 1) (23)

Y5 = sin2 θ1 cos θ2 sin θ2 cos θ3 (24)

Y6 = sin2 θ1 cos θ2 sin θ2 sin θ3 (25)

Y7 = sin2 θ1sin
2 θ2(cos

2 θ3 − sin2 θ3) (26)

Y8 = sin2 θ1sin
2 θ2 cos θ3 sin θ3 (27)

We call Y = (Y0, Y1, . . . , Y8)
T a spherical function

representation of pose.

4.3 Conversions to other representations

We give some conversions of the spherical function
representation to and from other representations.

A point q = (q1, q2, q3, q4)
T on a sphere S3 is

q = ( cos θ1, sin θ1 cos θ2

sin θ1 sin θ2 cos θ3, sin θ1 sin θ2 sin θ3)
T .

(28)
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By using the elements of q above, the spherical
function representation can be rewritten as follows:

Y = (4q21 − 1, q1q2, q1q3, q1q4, 3q22 − 1 + q21 ,

q2q3, q2q4, q23 − q24 , q3q4)
T ,

(29)

and inversely,

(q21 , q22 , q23 , q24) =
(
Y0+1

4 , Y0−4Y4−3
−12 ,

Y0+2Y4−6Y7−3
−12 , Y0+2Y4+6Y7−3

−12

)
.

(30)

Note that q21 + q22 + q23 + q24 = 1 is hold and it is
indeed a unit quaternion. Y corresponds to both q
and −q because signs are ignored.
Now, we define quaternion operations on points

on S3 and then identify q with a unit quaternion q.
This means that θ2, θ3 are angles of an axis, and θ1
is the angle about the axis of a rotation represented
by q.
A conversion between a unit quaternion q and a

rotation matrix Rq is well known [19]:

Rq =

 q21 + q22 − q23 − q24 2q2q3 − 2q1q4
2q2q3 + 2q1q4 q21 − q22 + q23 − q24
2q2q4 − 2q1q3 2q3q4 + 2q1q2

2q2q4 + 2q1q3
2q3q4 − 2q1q2

q21 − q22 − q23 + q24

 . (31)

Using this formula, the spherical function represen-
tation is converted to a rotation matrix as follows:

RY =

 Y0+2Y4

3 2Y5 − 2Y3 2Y6 + 2Y2

2Y5 + 2Y3
Y0−Y4+3Y7

3 2Y8 − 2Y1

2Y6 − 2Y2 2Y8 + 2Y1
Y0−Y4−3Y7

3

 .

(32)

5 Experimental results

We describe experimental results with images for
pose estimation by using the proposed spherical
function representation and the other (unit quater-
nions and a rotation matrix) representation.

5.1 Setup

We used Dwarf images [23] in which an object is
fixed at the center of a view hemisphere (see Fig.
2(a)) and cameras are placed at grids on the hemi-
sphere. The number of images is 2500 by varying
100 azimuth angles ϕx = 0 ∼ 360 ◦ and 25 eleva-
tion angles ϕy = 0 ∼ 90 ◦ by 3.6 ◦ . The reference

(a) (b)

Fig. 2: Dwarf images [23] used by experiments.
(a) Camera positions. (b) Correspondence between
Dwarf images and rotation axes.

camera position ϕx = ϕy = 0 ◦ corresponds to x0

in the figure.
30 images with ϕx = 0, 36, 72, . . . , 324 ◦ and ϕy =

0, 36, 72 ◦ are used for training. 2470 images are
used for testing: ϕx = 0, 3.6, 7.2, . . . ◦ and ϕy =
0, 3.6, 7.2, . . . ◦ , except 30 training images.

5.2 Pose parameterization

We parameterized the pose as shown in Fig.
2(b). Instead of using the hemisphere, we can see
view changes as rotations of the object by angles
ϕx, ϕy, ϕz about x, y, z axes.
Then, we define a pose of an image xj by a unit

quaternion qj :

qxj = cos(ϕx
j /2) + sin(ϕx

j /2)(i+ 0j+ 0k)(33)

qyj = cos(ϕy
j/2) + sin(ϕy

j/2)(0i+ j+ 0k) (34)

qzj = cos(ϕz
j/2) + sin(ϕy

j/2)(0i+ 0j+ k) (35)

qj = qzj q
y
j q

x
j (36)

because a unit quaternion of a rotation by an angle
θ about an axis n = (n1, n2, n3)

T is given by[2]

q = cos(θ/2)+sin(θ/2)(n1i+n2j+n3k), ||n|| = 1.

(37)

5.3 Estimation method

We used the most simple one for estimation: a lin-
ear regression [3]. Training images xj and its cor-
responding poses Y j

Y = (Y 1,Y 2, . . . ,Y n), X = (x1,x2, . . . ,xn), (38)

are used to calculate a matrix F such that Y = FX
is satisfied: therefore, F = Y X+ = Y (XTX)−1XT

where X+ is the pseudo-inverse of X.
An estimate Ŷ of an image x is given by Ŷ = Fx.

5.4 Representations to compare

To compare the difference of estimates of different
representations, estimates of different representa-
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Table 1: RMSE for each representation
Rq̄ Rq̂ R̄ R̂ RŶ

RMSE 1.1514 1.0460 0.7414 0.7032 0.7032
std. 2.0635 1.2306 1.3812 0.7901 0.7901

tions were converted to rotation matrices as the fol-
lowing procedures.

• Train a spherical function representation Y j ∈
R9. An estimate Ŷ is converted to a rotation
matrix RŶ .

• Train a vector qj ∈ R4 of a unit quaternion qj .

An estimate q̂ is normalized as q̄ = q̂
||q̂|| , then

converted to a rotation matrix Rq̄.

• Train a vector Rj ∈ R9 with rearranged ele-

ments of a rotation matrix Rj . An estimate R̂

is rearranged again to a matrix R̂, then cor-
rected to a rotation matrix R̄ with the polar
decomposition.

5.5 Error evaluation

We evaluated the error of estimates by using root
mean square error (RMSE) with Frobenius norm
between a true rotation matrix Rtrue and an esti-
mated rotation matrix R:

||R−Rtrue||F =
√∑3

i=1

∑3
j=1(rij − rtrueij )2. (39)

RMSE was computed for 2470 test images.

5.6 Results

Table 1 shows RMSE of pose estimation with each
pose representation. RŶ is small, which shows the
proposed spherical representation is useful for this
application.
R̂ shows the result of a rotation matrix as rep-

resentation except the matrix correction, which
means that R̂ is not rotation. With the correction,
R̄ is a rotation but the error increases.
Note that R̂ and RŶ are identical because of the

linearity of the regression. Therefore, both can use
the same matrix correction to make them rotation
matrices.
Rq̄ shows the results of a unit quaternion. It

is a rotation matrix but the error is larger than
the other representations, as large as Rq̂ without
normalization.

6 Conclusions

We have proposed a new pose representation of 3
DOF rotation. The proposed spherical function

representation uses a continuous orthonormal basis
of functions on SO(3). We have shown the conver-
sions of the proposed representation to other rep-
resentations such as a unit quaternions and a rota-
tion matrix. In experiments, we have shown that
the proposed representation is identical to a rota-
tion matrix, and it is better than results of unit
quaternions.
Future work includes the extension to higher or-

der error analysis with the proposed representation.
Unlike a rotation matrix, spherical functions have
higher order (higher frequency) functions that are
not used here. Error functions defined on SO(3)
usually appear in many computer vision problems
such as 3D registration and multi-view geometry.
The proposed representation might have successful
applications as an analyzing tool of them.
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