
Volume Rendering using Grid Computing for Large-Scale Volume Data

Kunihiko Nishihashi, Toru Higaki, Kenji Okabe, Bisser Raytchev, Toru Tamaki, Kazufumi Kaneda
Graduate School of Engineering, Hiroshima University, Hiroshima, Japan

{nissin, higa, okabe, bisser, tamaki, kin}@eml.hiroshima-u.ac.jp

Abstract

In this paper, we propose a volume rendering method
using grid computing for large-scale volume data. Grid
computing is attractive because medical institutions and
research facilities often have a large number of idle comput-
ers. A large-scale volume data is divided into sub-volumes
and the sub-volumes are rendered using grid computing.
When using grid computing, different computers rarely have
the same processor speeds. Thus the return order of re-
sults rarely matches the sending order. However order is
vital when combining results to create a final image. Job-
Scheduling is important in grid computing for volume ren-
dering, so we use an obstacle-flag which changes priorities
dynamically to manage sub-volume results. Obstacle-Flags
manage visibility of each sub-volume when line of sight
from the view point is obscured by other sub-volumes. The
proposed Dynamic Job-Scheduling based on visibility sub-
stantially increases efficiency. Our Dynamic Job-Scheduling
method was implemented on our university’s campus grid
and we conducted comparative experiments, which showed
that the proposed method provides significant improvements
in efficiency for large-scale volume rendering.

1. Introduction

This paper proposes the use of grid computing for direct
volume rendering. There are two types of direct volume ren-
dering: ray casting [1] and splatting [2]. The computational
cost for both methods depends on the size of volume data,
computational time increasing proportional to three times
the cube of the size.
• •Several methods have been proposed to reduce the com-
putational time: visibility sorting [3], [4], slicing a volume
into planes [5], use of GPU [3], [4], [5], cluster computing
[6], [7], [8], [9], [10], [11], [12], and grid computing
[13], [14], [15], [16]. Here, we focus our attention on grid
computing because of the availability of idle resources in
many medical institutions and hospitals.
• •In distributed computing for volume rendering, the vol-
ume data is divided and each piece is rendered individually,
then the results are returned to a central manager where they
are combined to create the final image. When results are
combined, each result has a level of opacity which ultimately

affects the final results of any given section. Thus sub-
volumes can only be rendered when the line of sight from
the screen is not occluded by other sub-volumes.
Furthermore, the order in which data is send to the agent
computers must be considered carefully. Previously, the
order of sending data was based on a z-value, and was
determined by the sub-volumes’ distance from the screen.
In grid computing, computing resources often change sig-
nificantly in short periods of time, thus making sequential
job-scheduling unsuitable. In our method each sub-volume
receives an obstacle-flag, which is dynamically updated,
and is used to determine a sub-volume’s current visibility.
The processing order can be determined based on current
visibility values rather than initial values, thus improving
efficiency.
• •In Section 2, we cover related work, and Section 3
covers the general method of volume rendering using grid
computing and disadvantages of sequential job-scheduling.
In Section 4, we describe the Dynamic Job-Scheduling and
the details of the proposed method. In Section 5, we review
and evaluate our results, and we conclude in Section 6.

2. Related Work

Volume rendering has been around for a notable amount of
time as a method for rendering and thus has received many
various improvements over time, many of which recently
are performed on GPUs, as in the following. In [3] a
hardware assisted visibility sorting algorithm is implemented
and operates both in object-space and image-space, primarily
making use of GPU based calculations. [4] makes use of pre-
sorting primitives in object-space using a list for each axis,
then combining the lists using graphics hardware through
converting each list into a texture. [5] uses the GPU to create
texture slices which are grouped to form a texture slab. The
method relies on hardware z-occlusion culling and hardware
occlusion queries to accelerate ray traversals.
• •Other non-GPU based improvements have also been made
including [10] which achieves real time volume rendering
of a 10243 volume data at 1.5 frames/sec through lowering
communications at image compositing and balancing the
load among processors in a computing cluster. Later in
[9] early ray termination was enabled where agents were
allowed to avoid rendering invisible objects, which led to

978-1-4244-3701-6/09/$25.00 ©2009 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hiroshima University Institutional Repository

https://core.ac.uk/display/222944149?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

5 frames per sec volume rendering. In [8] the method
of early ray termination was improved upon and offered
better performance for not only dense objects but transparent
objects as well. In [7] a parallel shear-warp algorithm was
proposed and several good results were demonstrated. In
[6] was proposed a distribution manager for volume data
to reduce the required memory. They applied the method
to rendering high-resolution volume data, and showed the
reduction of data storage as well. In [11] a parallel image
compositing algorithm called Schedules Linear Image Com-
positing (SLIC) was presented and its performance on a PC
cluster was shown. In the SLIC method, each processor’s
compositing load becomes less view dependent because
image space partitioning for compositing tasks is crucial to
load balancing and only the pixels in the overlapping areas
need to be sent to the processors responsible for compositing
the corresponding areas. This method can achieve interactive
rendering for images at resolution up to 1024 • •1024 pixels.
The ParVox system [12] is a parallel volume rendering
system that is capable of visualizing large volume datasets.
In it, a splatting-based rendering algorithm with both object
space and image space decomposition was designed and
implemented.
• •Volume visualization on the grid has been discussed
in several articles. Grid computing is a promising tech-
nique when projecting a large-scale volume data, which
exceeds the resources of most common PCs [13]. A method
for enabling progressive volume visualization of data on
the computing grid was proposed in [14]. They devel-
oped visibility-driven compression scheme based on wavelet
encoding to alleviate the network bandwidth problem. A
network protocol to accelerate network throughput of grid-
based distributed visualizations was also developed in [15].
These approaches mainly focus on network communication
in grid computing environment.
• •In this paper, we focus on job-scheduling of volume
rendering in grid computing. In [16] a distributed rendering
system was developed, but this system is simply a process
of decentralization. The method is not suitable for volume
rendering, since it cannot handle opacities and efficient job-
scheduling is not taken into account.

3. Volume Rendering using Grid Computing

In grid computing volume rendering, large-scale volume
data is divided into smaller sub-volumes and sent to various
computers (agents). Each sub-volume is processed and the
result is returned to the central manager where the final
image is combined. Figure 1 shows a simple diagram of
this process.

The order in which the results are combined is extremely
important and care must be taken. Two methods exist
for combining the results, back-to-front and front-to-back.
Both methods determine their order based on the distance

Figure 1. System Configuration

of the sub-volume from the screen. We use front-to-back
processing so that if a section of the image has an overall
opacity of one, then sections further away can be ignored
since their results will not be visible.
• •Using grid computing, the result of each agent is used
in the same manner as splatting in volume rendering, where
highly visible sub-volumes are processed first. A common
problem which affects grid computing is that agents almost
always have different computing capabilities. In addition,
people are free to use the agents which drastically reduces
their resources to spend on calculating rendering data.

3.1. Dividing a Volume

Various methods for dividing sub-volumes exist. In [5]
planes at specified distances from the camera are sliced
to define the sub-volumes. In [10] volume data is divided
along the axes to create sub-cubes and in [17] an octree
structure is used to divide sub-volumes. These dividing
methods have two good aspects: one is that renderings can
be done efficiently and another is that the required amounts
of memory can be quite small. However in the case of the
octree the central manager has to make many calculations
and the order of combining the results is often complex. In
the case of plane slicing the order of combining sub-volumes
is very rigid, which doesn’t lend these methods to work well
with grid computing.
• •In this research we divide the volume data into equally
sized cubic sub-volumes, so that we may place the screen at
any location and calculate the processing order, as opposed
to using the plane slicing method which doesn’t allow for
such flexibility. Dividing the data in this way allows easy
implementation of obstacle-flags for efficiently determining
job-scheduling.
• •In Figure 2, a sub-volumes’ level of visibility is shown by
its color, so when results are combined, sub-volumes with
the same color can be processed in any order. Being able to
process the results in a more flexible manner is especially
beneficial in grid computing. In the next section we address
the details of job-scheduling.

Figure 2. Visibility of Sub-Volumes

3.2. Disadvantages of Sequential Job-Scheduling

In volume rendering the object to render is transparent
so much care must be taken when creating the order of
combining the results. It is necessary to combine the re-
sults based on the level of visibility (from the screen) for
each sub-volume. Each sub-volume has a relationship with
neighboring sub-volumes based on their line of sight with
the viewpoint, i.e. whether a sub-volume’s line of sight to the
camera is obscured by a neighboring sub-volume or not. The
order in which sub-volumes are sent to agent computers is
determined by the sub-volume’s initial level of visibility. A
sub-volume’s visibility is determined from both the screen’s
location and its relation with neighboring sub-volumes.
• •If the order of processing is determined by the initial
values of visibility for each sub-volume (we call this or-
dering, sequential job-scheduling), there is a problem for
volume rendering based on grid computing. To simplify the
explanation in this section we will only consider the two
dimensional case. In Figure 3(a) visibility is determined
by view direction which sets high visibility to sub-volumes
which are close to the screen. In Figure 3(b) sub-volumes 4
and 8 have been combined in the results, so sub-volume 12
becomes ready to be combined. However sub-volume 12 is
not send-able as a result of sequential job-scheduling. The
reason sub-volume 12 cannot be sent is because sequential
job-scheduling only uses the initial visibility values for
assigning order. Thus in sequential job-scheduling, sub-
volume 12 is not sent to an agent until sub-volume 3 has
been combined into the result. Of course this limits the
efficiency of grid computing. By implementing a dynamic
method for defining the sending order, this problem can be
alleviated.

To solve the problems with sequential job-scheduling, we
propose to dynamically update the visibility parameter of
the sub-volumes as they are rendered. To handle dynamic
management of sub-volumes we propose using an obstacle-
flag, which we cover in the next section.

(a) (b)

Figure 3. Sequential Job-Scheduling

4. Dynamic Job-Scheduling

When rendering results are combined the visibility pa-
rameter of sub-volumes change which affects sub-volumes’
combinability. When a sub-volume is not obscured by any
neighboring sub-volumes, then that sub-volume becomes
combinable. By using obstacle-flags we maintain visibility
relationships which enable us to dynamically manage job-
scheduling.

4.1. The Obstacle-Flag

Obstacle-flags manage relationships between sub-
volumes, specifically whether a sub-volume is obscured
from the other sub-volumes. Naturally, some sub-volumes
are obscured by other sub-volumes and do not have line of
sight to the screen, however as the view direction changes
so do the relationships of which sub-volumes obscure
which.
• •In the two dimensional case, we have a 4 bit obstacle-flag,
which defines in which directions, a neighboring sub-volume
has obscuring sub-volumes. Each bit corresponds to a single
direction, and we are only interested in the bits which
represent directions that could contain obscuring sub-
volumes. We ignore the case where sub-volumes lie further
away, we only care about the neighboring sub-volumes.
• •The maximum number of obscuring sub-volumes is two.
If a sub-volume’s obstacle-flag is all zeroes, this means that
there are no obscuring sub-volumes and that sub-volume is
combinable. All sub-volumes have an obstacle-flag.
• •Figure 4 shows the related obstacle-flags for the example
sub-volume and view-directions. In the case of sub-volume
3, the right and lower directions contain obscuring sub-
volumes so those values are set to 1.
• •An obstacle-flag has three meaningful states, which is
determined by the number of 1’s in the 4 bit obstacle-flag.
An obstacle-flag can have zero, one or two 1’s. The
number of 1’s in the obstacle-flag is the obscure count. In
Figure 4 the obscure count for sub-volume 2 is zero, for
sub-volume 1 is one, and for sub-volume 3 is two. In the
three dimensional case the obstacle-flag has 6 bits and the
obscure count has a maximum value three.

Figure 4. Obstacle-Flag

4.2. Visibility of Sub-Volumes Based on Obstacle-
Flags

To determine visibility of sub-volumes dynamically, we
propose a method that determines the visibility of sub-
volumes based on obstacle-flags. In the case of sequential
job-scheduling the sending process will wait for prior results
to be combined thus making the process inefficient. However
by using obstacle-flags we are able to continuously observe
the obscuring volumes, so we can dynamically monitor sub-
volumes’ visibility.
• •Figure 5 shows the visibility of sub-volumes based on
obstacle-flags. In the proposed method we use the obscure
count to determine the level of visibility of a sub-volume.
In Figure 5 we can see the new visibility levels of the sub-
volumes from the case in Figure 3 used in the previous
method. As you can see sub-volumes 7 and 12 have different
values in the proposed method, when compared to those in
Figure 3.

Figure 5. Visibility of Sub-Volumes Based on Obstacle-
Flags

4.3. Dynamic Job-Scheduling using Obstacle-Flags

In this section, we propose the Dynamic Job-Scheduling
method using obstacle-flags. In Figure 6, sub-volumes 4 and
8 have already been rendered and combined. After a result
is returned from an agent, sub-volumes’ obstacle-flags are
updated and new combinability values are assigned. From
there new visibility levels are determined which then allows
new sub-volumes to be sent to the agents for rendering.
Thus, sub-volumes 3, 7 and 12 have their obstacle-flags
updated. In the case of sequential job-scheduling sub-volume

Figure 6. Dynamic Job-Scheduling using Obstacle-Flag

Figure 7. Volume Rendering Procedure

12 would be combinable but would not be sendable because
the visibility of sub-volume 12 would not be updated and
thus still be considered obscured. Thus it would be necessary
to wait for sub-volume 3 to be combined before being sent
to an agent.
• •However when using obstacle-flags, we can see that sub-
volume 12 has a obscure count of zero, meaning it is not
obscured and it can be sent to an agent for rendering.
When combining results and using obstacle-flags, we can
dynamically manage obscuring relationships between sub-
volumes, thus avoiding unnecessary waiting periods.
• •After a sub-volume is combined with the result, that sub-
volume’s remaining neighbors have their obstacle-flags up-
dated. To determine the remaining neighboring sub-volumes,
we use a simple method based on the grid structure and view
direction.

Here we give some details of our implementation of the
Dynamic Job-Scheduling using obstacle-flags. First, we gen-
erate obstacle-flags for each sub-volume. Next, we determine
which sub-volumes have zero bits in the obstacle-flag. If a
sub-volume has zero bits in the obstacle-flag we add it to the
processing list and the central manager. If a sub-volume is in
the processing list, it is currently being rendered. Once a sub-
volume’s result is returned and combined into the final result,
it is removed from the processing list and the neighboring
sub-volumes’ obstacle-flags are updated (see Figure 7).

Only combinable sub-volumes are sent to agents. If non-
combinable sub-volumes were sent, it would be necessary
to store their results in memory on the central manager until
they became combinable. With wider ranges of computing

Figure 8. EH Implementation Procedure

powers and more sub-volumes the probability of needlessly
using memory increases. Next we discuss how to best utilize
our agents.

4.4. Improving Agent Utilization by Exception
Handling

To improve efficiency, partially-occluded sub-volumes can
also be sent to an agent if available. The sub-volumes have
three states: not occluded (the obscure count is 0), partially-
occluded (the obscure count is 1), and fully-occluded (the
obscure count is 2). If there are no sub-volumes whose
obscure count is 0, partially-occluded volumes are made to
be ready to send (See Figure 8). The system waits for results
to be combined, if there are neither partially-occluded nor
non-occluded volumes. Results are not combined unless all
bits in the obstacle-flag are zero. This procedure we call
Exception Handling (EH). It can minimize waiting time and
memory use, while maximizing agent utilization.

5. Experiments

5.1. Simulation Verification

Through simulation we verified the proposed method’s
effectiveness. As shown in Table 1, we used 12 agents
with three types of computing powers. Computing powers
were low, medium and high where rendering results required
1000sec., 500sec. and 250sec. respectively. Next, we set four
agents to each computing power. Result composition, job
ordering and data transfer were all completed instantly. Our
volume data consisted of 100 sub-volumes.

In addition, agents are regularly used by third parties
during which rendering is interrupted. If a job has been sent
and someone uses that agent, then rendering is temporary
stopped. When that agent becomes free again, rendering con-
tinues. Figure 9 shows the agent usage schedule. High means
an outside source used the agent, while low means the agent
is free to render sub-volumes. We set low spec machines to
have short interval interruptions, while high spec machine

Table 1. Simulation Environment
4 (Low-Spec)

Agents 4 (Middle-Spec PC)
4 (High-Spec)

Server Job order decision and Result
composition take 0 sec.

Network All transfer times are 0 sec.
Sub-Volumes 100 (regular grid)

Figure 9. Agent Usage Schedule

Table 2. Simulation Results
Dynamic Sequential

Job-Scheduling Job-Scheduling
Elapsed Time [sec.] 10,000 15,500

Agent Utilization [%] 54.2 38.4

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000 12000 14000 16000

R
en

de
rin

g
P

ro
gr

es
s

[%
]

Elapsed Time [sec.]

Sequential
Dynamic

Figure 10. Rendering Progress

had long interruptions. At any given time, always six agents
were available and six were being interrupted.
• •When comparing sequential job-scheduling to the Dy-
namic Job-Scheduling, the later sends jobs when agents are
free and have zero bits in the obstacle-flag, while sequential
job-scheduling also requires the previous sub-volumes to be
combined with the result.

Results. When using the Dynamic Job-Scheduling a 65
percent reduction in computational costs was achieved for

Table 3. Experimentation Environment
Number of Agents OS CPU Memory

34 Linux Xeon 3.06GHz 2GB
469 Pentium4 3.06GHz 990MB

Figure 11. Network Configuration

large-scale volume rendering. According to our simulation
results in Table 2, the Dynamic Job-Scheduling offers a sig-
nificant improvement in elapsed times and agent utilization.
In Figure 10, we can also see a more steeper rendering
progress compared to sequential job-scheduling.

5.2. Verification using Test Data

We performed experiments, using our university’s campus
grid [18]. The computer grid’s managing software is Condor
and other specifications are given in Table 3. After job-
scheduling is performed by the proposed method, each job is
submitted to the Central Manager of the Condor system, and
the Central Manager distributes jobs to agents sequentially.
• •Figure 11 shows the campus grid network diagram.
Between agents, the central manager, and NFS the network
speed is 4Gbps, while manager to client is 1 Gbps.
Table 4 shows three sets of parameters of the test data used.

Results. Figure 12 shows the elapsed times and Figure
13 shows the average number of agents utilized. Each
experiment was conducted five times and the median value
of the results was used. In Figure 12, the vertical axis is
elapsed time. The shorter the elapsed time, the better the
job-scheduling. In Figure 13, the vertical axis is the average
number of agents utilized. The larger the number of agents
utilized, the better the job-scheduling.
• •We can see that the Dynamic Job-Scheduling uses more
agents, showing the benefit of using the obstacle-flags.
However, elapsed time was improved only in the 64 sub-
volumes case and 512 sub-volumes with 40963 voxels case.

Table 4. Test Data Parameters
Resolution VD size Number of SV size Screen size

[voxel] [GB] Divisions [MB] [pixel]

20483 16 64 256 3000 • •3600512 32
40963 128 512 256 5800 • •7200

VD : Volume Data, SV : Sub-Volume

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

2048^3/64 2048^3/512 4096^3/512

E
la

ps
ed

 T
im

e
[s

ec
.]

Resolution [voxel]/Number of Divisions

Seq
Dyn
EH

Figure 12. Elapsed Times

 0

 10

 20

 30

 40

 50

2048^3/64 2048^3/512 4096^3/512

 A
ve

ra
ge

 N
um

be
r o

f A
ge

nt
s

U
til

iz
ed

Resolution [voxel]/Number of Divisions

Seq
Dyn
EH

Figure 13. Average Number of Agents Utilized

Generally, agents utilization was increased and elapsed
time was also improved. However, in the case of 20483/512
elapsed time was not improved. The reason for this is in
the setting of our grid computing system, in which Condor
allows only 1 job per second per person.
• •To summarize the results, the Dynamic Job-Scheduling
and the exception handling reduce elapsed time in the case
of 40963/512 and 20483/64. In both cases, the sub-volume
size is relatively large (see Table 4).

