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Abstract. In this paper, a new algorithm for solving cross-coupled sign-indefinite algebraic Ric-
cati equations (CSARESs) for weakly coupled large-scale systems is proposed. It is shown that since
the proposed algorithm is based on the Newton’s method, the quadratic convergence is attained.
Moreover, the local uniqueness of the convergence solutions for the CSAREs is investigated. Fi-
nally, in order to overcome the computation of large and sparse matrix related to the Newton’s
method, the fixed point algorithm and the alternating direction implicit (ADI) method are com-
bined.
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1 Introduction

The robust equilibria in indefinite linear quadratic differential games under the dis-
turbance input affecting the systems have been discussed in [1]. It is well known
that in order to obtain the equilibrium strategy, the cross-coupled sign-indefinite
algebraic Riccati equations (CSAREs) must be solved. In [2], the numerical algo-
rithm that is based on the calculation of the eigenstructure for solving the soft-
constrained Nash equilibria has been developed. However, the scalar case has only
been considered. Moreover, the convergence rate is unclear. On the other hand, the
Newton-type algorithm for solving the CSAREs seems to be reliable. However, it
is well-known that if the initial conditions are not chosen adequately, the algorithm
may not converge because the Newton’s method guarantees the local convergence.

The control problems of weakly coupled large-scale systems have been studied
by several researchers (see [1-10] and references therein). In particular, the Nash
games for such systems have been investigated via the Lyapunov iterations [8, 9].
However, the convergence speed is slow because the Lyapunov iterations have linear
convergence. Moreover, the uniqueness of the convergence solutions for the CSAREs
have not been discussed so far.

This paper investigates the numerical algorithm for solving the CSAREs of
weakly coupled large-scale systems. The main contribution is to propose a new
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algorithm that is based on the Newton’s method. After deriving the asymptotic
structure of the CSAREs and taking into account such structure, the initial condi-
tion of the Newton’s method is given. As a result, it is shown that the new algorithm
has a quadratic convergence property even if the CSAREs has the sign-indefinite
quadratic term [8, 9]. Additionally, the existence and the local uniqueness of the
solutions is proved via the Newton-Kantorovich theorem. As another important fea-
tures, in order to overcome the computation of large and sparse matrix that arises
in the Newton’s method, the fixed point algorithm [7] and the alternating direction
implicit (ADI) method [13, 14] are combined. Finally, in order to demonstrate the
efficiency of the algorithm, a computational example is included.

Notation: The notations used in this paper are fairly standard. The superscript T
denotes the matrix transpose. I, denotes the n x n identity matrix. block diag
denotes the block diagonal matrix. || - | denotes its Euclidean norm for a matrix.
® denotes the Kronecker product. d;; denotes the Kronecker delta. vecM denotes
the column vector of the matrix M. The space of R*-valued functions that are
quadratically integrable on (0, oo) is denoted by L5(0, oo).

2 Problem Formulation

Consider the weakly coupled large-scale linear systems with N-players

N

=1, j#i
N N
+e > Byjuy(t) + Eqwi(t) + e Y Eyjw;(t),
=1, j#i =1, j#i
z;(0) =2y, i=1, ..,N, (1)
where x; € R™, i =1, ..., N represent ¢-th state vectors. u; € R™, i=1, ... ,N
represent i-th control inputs. w; € R¥, ¢ = 1, ... , N represent i-th disturbance

vectors. € denotes a small positive weak coupling parameter which connect the
other subsystems.
Let us introduce the partitioned matrices

[ A Ay oo AN ] el =% By,
Aoy Agp -+ edan gl =% By,
Ae = . . ; Bia = )
| cAn1 €An2 - Ann el =i By,
Eq eEBi -+ eBn
eByy  Eyp -+ eBon
Ea = . . . .
| €En1 eEn2 -+ ENN |

By using above relations, the system (1) can be changed as

N
i(t) = Acx(t) + Z Bi.ui(t) + Eow(t), (2)



where
. . N
z(t):=[ z1(0)T - an@®T |7 €R”, n= Zni,
A
U)(t) = [ 'lUl(t)T . U}N(t)T ]T S Rk, k= Zkz

The cost performance for each strategy subset is defined by
Ji(ula -, UN, W, CE(O))
_ / [ ()Quear (1) + T (6) Rigus 1)
0

N
Y uf () Rijus(t) — w” (8)Viw(t) |dt, (3)
j=1, j#i

where

Qe = eQh, el702Q,, .- eQian c gAxn

eQhn Qb o TN Qin

Rii = RE >0 € R™iXmi, R;j = RZ;. >0eR™XM,

Vi, = block diag ( p= 0=V, ... pm(0)yy ) >0 e RFXE,

i, =1, .. ,N.

The state weight matrices @);. is symmetric and assumed to be sign-indefinite [1].
Furthermore, it should be noted that u denotes a small positive parameter which
is the same order for the parameter €. That is, the following assumption is made.

Assumption 1 The ratio of the small positive parameters € and p is bounded by
some positive constants k.

0<k:=

k g<oo. (4)

For the matrices A, B, i =1, ..., N, the set Fy is defined by
N
Fn = {(Fls, vy Fne) | Ac + ZBjEFjE is stable.}.

Jj=1

The soft-constrained Nash equilibrium strategy pair (Fy., ... , Fyx.) is defined as
satisfying the following conditions [1].

Ji(Fy., ... F., 2(0))
< Ji(Ff., .., Fiq., Fie, Fipqoy oo, Fe, 2(0)), i=1, .. N, (5)



where

Ji(Fie, ..., Fne, 2(0)) := sup  Ji(Fle, .., Fne, w, 2(0)),
wGLg(O, o)

Ji(F157 7FN57 w, SC(O))
o N
:/ {xT(t)[QieﬂLFiZRnFier#Z FiRijFicla(t) —w” (t)Viw(t) | dt,
0 =1, j#i
for all 2(0) and for all (Fy., ..., Fn) that satisfy
(Fl*sv re Fi*flsv -Fisv Fiils’ ey Fltfs) € fN'

It should be noted that the following assumption guarantees the existence of the
admissible strategy.

Assumption 2 Each player uses the linear feedback strategy u;(t) = K;cx(t), i =
1, ... N such that the closed-loop system is asymptotically stable for sufficiently
small parameters € and p.

Obviously, this assumption is made in order to obtain a stable system. Using the
fact studied by [1], the soft-constrained feedback Nash equilibrium is given below.

Lemma 1 Assume that there exist N real symmetric matrices P;. and W, such
that

gi(Plsa aPNs)

T
N N
= P | Ac _Z Sjera + | A _Z Sjsta Pic + P, Sic Pic
j=1 j=1
N
+u Z Pj.Sije Pje + Pic M;), Pic + Qi = 0, (6)
=1, j#i
where Sic := BieR;;' BE, Sije := Bj-R,;'Ri;R;;' BL., My, := E.V;'EL.
N N
A, — Z SjePje + M;, Py is stable fori=1, ... ,N, A, — ZSjEPjE 1s stable,
j=1 j=1
N N r
Wie AE _Z Sjepje + Ae _Z SjEPjE Wis - WiESiEWiE
=1, j#i =1, j#i
N
+u Z PjcSije Pie + Qi > 0. (7)
=1, j#i

Define the N-tuple (FY., ... ,F}_.) by
uj(t) == Fix(t) = —R;;' BLP,.a(t), i=1, ... ,N. (8)

Then, (Fy., ..., F\.) € Fn and this N-tuple is a soft-constrained Nash equilib-
rium. Furthermore, J;(Fi., ..., Ff_., x(0)) = z(0)” P,.z(0).



It should be noted that if Q;c > 0 and S;;c > 0 for all : =1, ... , N, the matrix
inequality (7) is trivially satisfied with W;. = 0 [1]. Then, only the CSAREs (6)
should be solved.

In the following analysis, the basic assumption is needed.

Assumption 3 The triples (A, B, VQu), @ = 1, ... ,N are stabilizable and
detectable.

3 Asymptotic Structure of the CSAREs

Firstly, in order to obtain the strategy, the asymptotic structure of the CSAREs (6)
is established. Since A, Sic, Sije and M;, include the term of the small parameters
e and p, the solution P;. of the CSAREs (6), if it exists, must contain these pa-
rameters. Moreover, it should be noted that two parameters ¢ and p are the same
magnitude such that Assumption 2.1 holds. Taking these facts into account, the
solution P;. of the CSAREs (6) with the following structure is considered [4, 8, 9].

e TPy ePjia e ePiun
T 1-5;
ePl, gl=%2py ... ePan A
Py = . . . . eR .
T T 1—8:in P
ePjin ePpy - e7UNPy

Substituting the matrices A., S, Sije, Miu, Qic and Pi. into the CSAREs (6),
letting ¢ = 0 and p = 0, and partitioning the CSAREs (6), the following reduced-
order algebraic Riccati equations (AREs) are obtained, where P;;, i =1, ... , N be
the 0-order solutions of the CSAREs (6) as e = u = 0.

PyiAii + Al Py — Pyy(Sis — M) Pii + Qi = 0, 9)

where S;; 1= BiiRi_ilBiTi and M;; := Euvu_lEsz
In order to guarantee the existence of a positive semidefinite stabilizing solution
of the ARE (9), the following condition is assumed.

Assumption 4 The ARE (9) has a positive semidefinite stabilizing solution such
that A“ - S”.P“ is stable.

The asymptotic expansion of the CSAREs (6) at ¢ = u = 0 is described by the
following lemma.

Lemma 2 Under Assumptions 2.1-2.3, 3.1, there exist the small constants o* and
p* such that for alle € (0, 0*) and u € (0, p*), the CSAREs (6) admits a unique
positive semidefinite solution Pt that can be written as

P, = Pz*a = Pz + O(E)
=block diag ( 0 -~ P; --- 0)+0(e). (10)
Proof: The proof can be derived by using the implicit function theorem [7] for the

CSARESs (6). Using the implicit function theorem, it can be shown that there exists
a neighbourhood of ¢ = = 0 and a unique function P, := P; + O(e). It should



be noted that under Assumption 3.1, since the solution of the reduced-order ARE
(9) is unique (see e.g. Theorem 13.5 of [11]), P; is a unique solution. Therefore, the
CSARESs (6) has a unique positive semidefinite solution Pt under the sufficiently

1€
small parameters € and pu. ]

4 Newton’s method for Solving CSAREs

In order to obtain the solution of CSAREs (6), the following useful algorithm is
given. Consider the following iterative algorithm.

N
P (Y5 n)
j=1

T

N
+ | Ae — Z SJ'EPJ‘(:) + Miupi(sk) Pz’(skH)
j=1

N N
-3 PEVg PP - N pPs Pty
j=1, j#i j=1, j#i
N N
ey Z P]'(f+1)sijep_]'(:) tu Z Pj(:)sijspj(elc+1)
J=1, j#i j=1, j#i
N N
+ > PPs.PY+ Y pPs PP
j=1, j#i j=1, j#i

N
k k k k
+ID7,(5)SIEP'L(E) —H Z P]’(E)Sijfpj(s)

=1, j#i
~POMu PP + Qi =0, k=0, 1, .., (11a)
ePy: gl=depi® ... ¢P,
Pl(gk) — 1.12 i2 1.2N (11b)
€ P¢(1kjirT ep, i(zkzsz SRI-ai ‘Pi(II\CI)
with the initial conditions
P — B, = block diag (0 --- P; --- 0). (12)

The algorithm (11a) can be constructed by setting Pi(:H) = Pi(ek) + APi(Ek) and
neglecting O(A?) term. The following theorem indicates that the algorithm (11a)
is Newton’s method.

Theorem 1 Suppose that there exist a solution to the CSAREs (6). It can be
obtained by performing the algorithm (11) which is equal to the Newton’s method.



Proof: Taking the vec-operator transformation on both sides of (11a) and G; =

gi(Pff), ,P](\Z) = 0 and subtracting these equations, it is easy to verify the
following equation.
VecPl(f 1) VecPl(f )
o= | Ve )
VecP](\f;rl) VecP](\fE)
vecgl(Pl(f)7 ,P](\;?)
X : ) (13)
vecgN(Pl(:), ,PZ(\Z))
where
A([vecG1]T, ..., [vecGn]T)T
VG(Piey .o , Pne) = , G = ) e .
(b Ne) d([vecPy T, ..., [vecPy<]T) G:=6(G, -, o)
This is the desired result. |

The following theorem indicates that the proposed algorithm (11) which is based
on the Newton’s method attains the quadratic convergence.

Theorem 2 Under Assumptions 2.1-2.3, 3.1, there exist the small constants ¢ and

p such that for alle € (0, 7), < o* and u € (0, p), p < p*, the iterative algorithm

(11) converges to the exact solution of P with the rate of the quadratic convergence,
N

where PZ-(:) is positive semidefinite matriz and As — Z SjEPj(f) + MWPZ-(Ek) is sta-
j=1

ble. Moreover, the convergence solutions attain a local unique solution P of the

CSAREs (6) in the neighborhood of the initial condition PZ-EO) = P,. That is, the
following conditions are satisfied.

k‘ * k
1P — Pr) = 0, (14a)

N
Red | A — Y 85 P + M, P | <0, k=0, 1, ... (14b)

j=1

In order to prove the theorem, the following fact must be needed.

Newton-Kantorovich theorem [12] : Assume that F': R™ — R™ is differen-
tiable on a convex set D. Suppose that the inverse of map F exists and moreover it
is differentiable on set D and that |F'(x)—F'(y)| < v|x—y| for allx, y € D. Sup-
pose that there is an x° € D such that |F'(x°)7Y| < 8, |F'(x°)"1F(x°)| < n and
1—+v1-20

By

Then Newton iterations x*+1 = x*¥ — F/(x*)=1F(x¥), k=0, 1, ---, are well de-
fined and converge to a solution x* of F(x) =0 in S. Moreover, the solution x* is

1++/1—20
By

0 := Byn < 1/2. Assume that S == { x: |x—x"|<t*}C D, t*=

unique in SN D, where S :={x: |x—x°|<t}cD, =
2k

20
estimate is given by |x* — x*| < 29)° = 21*k(29)2k*177, k=01, ..
Y

and error



Proof: The proof is given directly by applying the Newton-Kantorovich theorem
[12] for the CSAREs (6). It is immediately obtained from the CSAREs (6) that
there exists a positive scalar  such that for any P2 and P2

va(Plas> ’P](i/'s) - vg(PIbE’ ’P]Iifa)”
< A|([vecP]”, .. [veePR]") = ([vecPr]", ..., [veePR.] )] (15)

Moreover, it is easy to verify that

Jitle=0 -+ Jin|e=o0 Dy--- 0
J= : : =l - (16)
Inile=o -+ Innle=o 0 ---Dy
where
ovecgG;

Jij = D4 = block diag(Dn DNN)»

dlvecP;]T’
D;; := D}; ® I, + I, ® D;, Di; := Ai; — (Si; — My;) Pi.

Thus, since J is nonsingular under Assumption 3.1, for small € and p,

vg((PY, .. PO =vVG(P, .. ,Py) =3+ 0()

is also nonsingular. Therefore, there exists 3 such that 3 = [[VG(P;, ..., Py)] 7}
On the other hand, since |G(Py, ... ,Py)| = O(e), there exists n such that n =
I[VG(Py, ... ,Py)] 7Y - |G(Py, ... ,PNn)| = O(g). Thus, there exists § such that
6 = Bny < 27! because = O(e). Finally, the Newton-Kantorovich theorem
results in the desired results (14).

Second, the local uniqueness of the solution is discussed. Now, let us define

1
"= —ﬂ[l —v1—=20]. Clearly, S={ P. : |Pic— PZ-(EO) | <t* }1isin the convex set
Y

D. In the sequel, since | P;c — Pl-(so) | = O(g) holds for a small ¢, the local uniqueness
of P* is guaranteed in the neighbourhood of € = u = 0 for a subset S by applying

1€
the Newton-Kantorovich theorem. [ |

5 A Numerical Algorithm for Solving the Large-
Scale Lyapunov Equations (CLALES)

When the cross-coupled large-scale algebraic Lyapunov equations (11a) is solved,
the existence of the cross-coupled term

N N
k+1 k k k+1
- Z Pj(s )Sjepi(s) - Z I)z(s )Sjﬁpj(s )
Jj=1, j#i Jj=1, j#i

N N
k+1 k k k+1
+u Z .P](E )S”gpj(g) + u Z Pj(s)SijEPj(e )
Jj=1, j#i j=1, j#i



in CLALEs (11a) makes it difficult to solve this equation directly due to the large
N

dimension as N x 7 larger than the dimensions n := Z n;. Thus, in order to avoid
i=1

the cross-coupled term, a new decoupling algorithm that is based on the fixed point

algorithm [7] is established. Taking into account the fact that SjEPZ-(:) =0(e), i # 7,

let us consider CLALEs (17) in its general form.

N
T T .
XisAia + AiaXiE + e Z (Xj5q>j5 —+ q)jstjE) —+ Uia = 07 1= 1, 7]\/v7 (17)
Jj=1, j#i
where
1=6i X X, o X,
€ il EA412 EAGIN
T 1—5,‘
6Xi12 g ’QXiQ e EXiQN
Xie == ’
T T 1-6;
eXin eXion - € NX,N
A eNjiz -+ elan
elNio1 Ao <o elon
AiE = . ’
| eMinvt €A - Ain
b,y e®iyn - edun
Qi1 Py - Py
(I)is = )
e®in1 ePino - DN
r 1—61'
e Uy eUsi2 e eUnn
eU. 61 6i2Ui2 €U12N
Uie :=
T T 1-6;
eUin eUipy -+ 79U

It should be noted that
PEY = X, PETY = X, AL Z Sie P + My P = A,

—SJSP(k) +pSi P = gcpjg,

Z PZ'(sk)SjeP(k + Z k) +P(k SzeP(k)
Jj=1, j#i Jj=1, j#i

N
—n Y PPSPY 4 Qi = U,
J=1, j#i

where = represents the replacement.
Without loss of generality, the following condition is assumed for CLALEs (17).

Assumption 5 A;y, ... ,Ajn,i=1, ... | N are stable.
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The algorithm (18) for solving CLALEs (17) is given as follows:

N
XTI N + AZXITY 16 Y (X0 + 01X 1) + Ui = 0, (18)
Jj=1, j#i
i=1,....N,n=0, 1, ...,

where Xi(:) =0,i=1, ...,N.

It should be noted that the numerical algorithm (18) can be carried out inde-
pendently for each solution. The following theorem indicates the convergence of
algorithm (18).

Theorem 3 Under Assumptions 5.1, there exists the small constant & such that
for alle € (0, &), the fived point algorithm (18) converges to an exact solution X;.
with a linear convergence.

Proof The CLALEs (17) can be changed as follows.

VeCXl(?“) 0 ®3 -+ Pn. Vechg) veclU.
vecXé?'H) P 0 - Pne VECXég) vecUs,

ON =€ . e  INCT)
VecX](\?EH) P P2 - O VecX](\Z) vecUpe

where A(e) := block diag [ A, Ay - Ape ], Aie = AL @I + I, ® AL,

and ®;. == 0L @ I, + I © L.
Since Assumption 5.1 holds, for sufficient small e there exists [A(g)]~! because

lim A(e) = block diag[ Ay Ay - Ayn ], (20)

Where Az = Aisle:O-
Therefore, it is easy to verify that there exists the small constant ¢ such that
for all € € (0, ),

0 @28 q’Ns
@ 0 - Ppe

ellA(e)] ] <1 (21)

q’la @25 0

Finally, using the fixed point theorem, it can be shown that the algorithm (18)
attains the linear convergence. |
When each algebraic Lyapunov equation (ALE) (18) is solved, the dimension

N

of the workspace as 7 := Z n; larger than the dimensions n; is needed. Thus, in
i=1

order to reduce the dimension of the workspace, a new algorithm for solving the

ALE (18) which is based on the alternating direction implicit (ADI) method [13, 14]

is established. Let us consider the following ALE (22), in a general form of the ALE

(18).

XV +0TX + U =0. (22)
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In particular, the following special matrices A, ¥, and U, which are related to the
CLALEs (17) are considered because the other case ¢ = 2, ... ;N can be changed
into the similar form by using the similarity transformation 7;, where

Xe = 271X7$;L+1)7;7 \IJE = 7;71‘/\1—57;7

N
U= |e Y (X0 + LX) + Ui | T,
Jj=1, j#u

+
0 I, 0
: block diag(1 ... 1)
T = | I, 0 0o |,
: : block diag(1...1) :
0 0 .
[ X e eXin |
X 5‘)(17; EXQQ EXQN Xll Ele
e B 6)(3} {:‘Xf
| eXy eXy EANN |
i \1’11 5\1112 6\IIIN |
eWa Wy eVan Uy elyy
Ve = : : : Tl evy U, |0
: : f1 f
L €\I/N1 E\IJNQ \IJNN |
U ez el N
U 82/{12; EUQQ EUQN ull d/{lf
€= : : : - d/{f} ey |-

T T
Uiy eUsn

eUnN

In order to guarantee the existence of the solution and the convergence of the
algorithm, another assumption is needed.

Assumption 6 ¥yq, ...

, Unn are stable.

As a result, the ALE (22) can be changed as follows by partitioning.

AUy + 9T X+ (XU + \I’%qu}) + U =0,
Xf\:[ff + \I’?Xf + 8(.)('17}\:[/110 + \If{f.)(lf) +Uf =0,
XWip+ XUy + U Xy + eV Xy +Unp = 0.

(23c¢)

Firstly, using the implicit function, the asymptotic structure of the ALE (23) is

established.

Lemma 3 Under Assumption 5.2, the ALE (23) has unique solutions X11, X1y and
X such that these matrices possess a power series expansion at € = 0. That is,

Xll = Z €mX1(In

m=0

o = m p(m
=Y emal,
m=0

=Y emam (24)
m=0
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Proof: It can be done by applying the implicit function theorem to the partitioned
ALE (23). To do so, it is enough to show that the corresponding Jacobian is
nonsingular at € = 0. Since the detailed proof is the same as the proof that is given
by [8], it is omitted. |

Secondly, the methodology for solving the ALE (23) for the matrix solutions
X, Xy and Xy is given. Substituting the matrices X1, X1y and Xy into the
ALEs (23) and equating successively coefficients of equal powers of €, the following
linear equations are obtained.

2w + o Y+ X + e a7 =0, (25a)
m+2) m+2 m+1)T (m+1

X" 4wt T e (7 =0, (25D)

X0 e A 7wy e a Y = o, (25¢)

where

X000+ 0 X9 4ty =0, XOw; 40T 4 up =0,
D0+ D0+ 9L XD + Uy =0,

=0 0w e 9 =
vy + v xfp v o

It should be noted that the successive approximations (25) are independent of the
small parameter . Moreover, the approach used in this paper is quite different
because the proposed successive approximations (25) are based on not the existing
algorithm [9] but Maclaurin series expansions. Thus, the desired solutions with any
approximation are obtained by solving the linear equations directly.

Let us consider the following Sylvester’s equations (26), in a general form of the
ALEs (25b) and (25c¢)

AY +YB =C, (26)

where the matrices A € RP*P, B € R?9*? and C € RP*? are given, and the solution
matrix Y € RP*9 is to be determined.

The ADI iterative method [13, 14] for the solution of (26) proceeds by strictly
alternating between the solution of the two equations

(A = 0i11p)Yar1 = Yo (=B = di4114) + C, (27a)
Yarp2(=B — mi41ly) = (A = Ti410p)Yore1 — C, (27b)
for 1 =0,1,2, .... Here Y} is a given initial approximate solution, and the §; and 7;

are real or complex parameters chosen so that the computed approximate solutions
Y; converge rapidly to the solution Y of the Sylvester equation (26) as [ increases.

If the matrices A and B are dense, then the direct solution method by Golub
et al. [15] can be used. This method determines the real Schur factorization of A
and brings B into Hessenberg form by orthogonal similarity transformation [14].
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However, when the matrices A(= \II}F) and B(= Uy) that appear in (25b) are large
and sparse, iterative solution technique has to be employed. In fact, it is clear that

\1122 E\IJQN \1122 0
Uy = Dot = ], (E—H40)

eWpno - WUpypy 0 - Uy

are large and sparse for sufficiently small e. Thus, since the ADI iterative method
is an attractive technique in this case, such method will be used.

6 Computational Example

In order to demonstrate the efficiency of the proposed algorithm, a computational
example is given. The system matrices are given as follows.

0 1 —0.266 —0.009
Ay, — | T275 278 -136 —0.037
0 0 0 1 )
495 0  —555 —0.039
[ 0.0024 0 —0.087 0.002
AL | —018 0 111 —0011
e = 0 0 0 0 ’
| 0222 0 817  0.004
[ 0.073 0 —0.25 0.003
Ay | 046 0 28 —0.02
0 0 0 0 ’
| 0924 0 175 0.02
[ 0.021 0 0.121 0.003
Ao | “L1 0 —162 —0.015
£ = 0 0 0 0 ’
| 243 0 137 —0.034
021 1 —1.6 —0.005
Ay | 71O 1893 012
0 0 0 1 ’
-31 0 —56 0.032
[0.06 0 046 0.002
dy— | T1 0 149 004
0 0 0 0 ’
| 012 0 29.8 —0.028
[ —0.002 0 0.83 0
Ay = | 68 0 —101 009
0 0 0 0 :
| 124 0 0498 —0.017
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0.011 0 0.22 0
" 21 0 1.7 -0.123
£ = 0 0 0 0 ’

—0.07 0 6.38 —0.011

[ —0.197 1 —-1.2  —0.003
e | P45 20 701 —237
33 0 0 0

| -34 0 —21.0 —0017

) 0

36.1 78.9 .
By = , Bay = , B3z = , Bij =0, i #j,

0 0

0 0

(01 0 0 0] 0 00 0

0 00 0 01 0 0 0
EBu=1y9 00 01" 2|0 0 0 01|"

|0 0 0 0.1] 0 0 0 0.1

[0 0 0 0]

0 00 0 o
E33 == 01 0 0 0.1 3 EZJ :Oa ? #]7

0 0 0 0.1]

Vii:diag( 1 2 2 1 ),

Vi =block diag ( Vi; p Iy p 'l ),
V5 = block diag( /fll4 Vii M_1I4 ) ,
Vs =block diag ( =1y p 'y Vi),
)1 = block diag ( 0.5I4 Ogxs ) ,

Q- = block diag ( Osxs 0514 Osxa ),
Q)3 = block diag ( Ogxg 0.514 ) ,

Ri1 = Rog = R3g3 =1, Rio = R13=0.2,
Ros = Ryy = 0.3, Ray = Rap = 0.1.

The small parameters are chosen as € = 0.01 and p = 0.005. It should be noted that
the algorithm (11a) converges to the exact solution with accuracy of |G (g)| <
1.0e — 10 after three iterations, where

k
1G™(e) Zn@ . BP. PP (28)

In order to verify the exactitude of the solution, the remainder per iteration by
subst1tut1ng P( ) into the CSAREs (6) is computed. In Table 1, the results of the
error |G (g)| per iterations are given for several values € and p = 0.5¢. As a result,
it can be seen that the algorithm (11a) has the quadratic convergence.
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Table 1: Error per iterations.
1) (1.0e — 01)[[[G™)(1.0e — 02)[[[G™)(1.0e — 03) [ |G (1.0e — 04)]
3.5262 3.5262¢ — 01 3.5262¢ — 02 3.5262¢ — 03
6.1345¢ — 01 4.8088¢ — 03 4.8160e — 05 4.8188¢ — 07
3.0517¢ — 02 2.2293¢ — 06 2.2402¢ — 10 2.5366¢ — 12
1.8473¢ — 05 3.3376e — 11 1.0869¢ — 12
2.1005¢ — 11

= w N = ol

7 Conclusions

In this paper, a new algorithm for solving the CSAREs for weakly coupled large-scale
systems has been proposed. Comparing with the existing result [8, 9], the considered
equation has the sign-indefinite quadratic term. It is noteworthy that although the
proposed design method is based on the Newton’s method, the convergence rate
has been newly proved as a quadratic convergence. Moreover, the local uniqueness
of the convergence solutions for the CSAREs have been proved for the first time
by using the Newton-Kantorovich theorem. As another important feature, in order
to overcome the computation of large and sparse matrix, the fixed point algorithm
and the ADI method have been combined. As a result, both fast convergence and
a reduced-order calculation are attained. Finally, the computational example has
shown the excellent results.
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