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Abstract. In this paper, a new algorithm for solving cross-coupled sign-indefinite algebraic Ric-

cati equations (CSAREs) for weakly coupled large-scale systems is proposed. It is shown that since

the proposed algorithm is based on the Newton’s method, the quadratic convergence is attained.

Moreover, the local uniqueness of the convergence solutions for the CSAREs is investigated. Fi-

nally, in order to overcome the computation of large and sparse matrix related to the Newton’s

method, the fixed point algorithm and the alternating direction implicit (ADI) method are com-

bined.
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1 Introduction

The robust equilibria in indefinite linear quadratic differential games under the dis-
turbance input affecting the systems have been discussed in [1]. It is well known
that in order to obtain the equilibrium strategy, the cross-coupled sign-indefinite
algebraic Riccati equations (CSAREs) must be solved. In [2], the numerical algo-
rithm that is based on the calculation of the eigenstructure for solving the soft-
constrained Nash equilibria has been developed. However, the scalar case has only
been considered. Moreover, the convergence rate is unclear. On the other hand, the
Newton-type algorithm for solving the CSAREs seems to be reliable. However, it
is well-known that if the initial conditions are not chosen adequately, the algorithm
may not converge because the Newton’s method guarantees the local convergence.

The control problems of weakly coupled large-scale systems have been studied
by several researchers (see [1-10] and references therein). In particular, the Nash
games for such systems have been investigated via the Lyapunov iterations [8, 9].
However, the convergence speed is slow because the Lyapunov iterations have linear
convergence. Moreover, the uniqueness of the convergence solutions for the CSAREs
have not been discussed so far.

This paper investigates the numerical algorithm for solving the CSAREs of
weakly coupled large-scale systems. The main contribution is to propose a new
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algorithm that is based on the Newton’s method. After deriving the asymptotic
structure of the CSAREs and taking into account such structure, the initial condi-
tion of the Newton’s method is given. As a result, it is shown that the new algorithm
has a quadratic convergence property even if the CSAREs has the sign-indefinite
quadratic term [8, 9]. Additionally, the existence and the local uniqueness of the
solutions is proved via the Newton-Kantorovich theorem. As another important fea-
tures, in order to overcome the computation of large and sparse matrix that arises
in the Newton’s method, the fixed point algorithm [7] and the alternating direction
implicit (ADI) method [13, 14] are combined. Finally, in order to demonstrate the
efficiency of the algorithm, a computational example is included.
Notation: The notations used in this paper are fairly standard. The superscript T
denotes the matrix transpose. In denotes the n × n identity matrix. block diag
denotes the block diagonal matrix. || · || denotes its Euclidean norm for a matrix.
⊗ denotes the Kronecker product. δij denotes the Kronecker delta. vecM denotes
the column vector of the matrix M . The space of Rk-valued functions that are
quadratically integrable on (0, ∞) is denoted by Lk

2(0, ∞).

2 Problem Formulation

Consider the weakly coupled large-scale linear systems with N -players

ẋi(t) = Aiixi(t) + Biiui(t) + ε
N∑

j=1, j 6=i

Aijxj(t)

+ε
N∑

j=1, j 6=i

Bijuj(t) + Eiiwi(t) + ε
N∑

j=1, j 6=i

Eijwj(t),

xi(0) = x0
i , i = 1, ... , N, (1)

where xi ∈ Rni , i = 1, ... , N represent i-th state vectors. ui ∈ Rmi , i = 1, ... , N
represent i-th control inputs. wi ∈ Rki , i = 1, ... , N represent i-th disturbance
vectors. ε denotes a small positive weak coupling parameter which connect the
other subsystems.

Let us introduce the partitioned matrices

Aε :=


A11 εA12 · · · εA1N

εA21 A22 · · · εA2N

...
...

. . .
...

εAN1 εAN2 · · · ANN

 , Biε :=


ε1−δ1iB1i

ε1−δ2iB2i

...
ε1−δNiBNi

 ,

Eε :=


E11 εE12 · · · εE1N

εE21 E22 · · · εE2N

...
...

. . .
...

εEN1 εEN2 · · · ENN

 .

By using above relations, the system (1) can be changed as

ẋ(t) = Aεx(t) +
N∑

i=1

Biεui(t) + Eεw(t), (2)
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where

x(t) :=
[

x1(t)T · · · xN (t)T
]T ∈ Rn̄, n̄ :=

N∑
i=1

ni,

w(t) :=
[

w1(t)T · · · wN (t)T
]T ∈ Rk̄, k̄ :=

N∑
i=1

ki.

The cost performance for each strategy subset is defined by

Ji(u1, ... , uN , w, x(0))

=
∫ ∞

0

[
xT (t)Qiεx(t) + uT

i (t)Riiui(t)

+µ
N∑

j=1, j 6=i

uT
j (t)Rijuj(t) − wT (t)Viµw(t)

]
dt, (3)

where

Qiε =


ε1−δi1Qi1 εQi12 · · · εQi1N

εQT
i12 ε1−δi2Qi2 · · · εQi2N

...
...

. . .
...

εQT
i1N εQT

i2N · · · ε1−δiN QiN

 ∈ Rn̄×n̄,

Rii = RT
ii > 0 ∈ Rmi×mi , Rij = RT

ij ≥ 0 ∈ Rmj×mj ,

Viµ = block diag
(

µ−(1−δi1)Vi1 · · · µ−(1−δiN )ViN

)
≥ 0 ∈ Rk̄×k̄,

i, j = 1, ... , N.

The state weight matrices Qiε is symmetric and assumed to be sign-indefinite [1].
Furthermore, it should be noted that µ denotes a small positive parameter which
is the same order for the parameter ε. That is, the following assumption is made.

Assumption 1 The ratio of the small positive parameters ε and µ is bounded by
some positive constants k̃.

0 < k̃ :=
µ

ε
< ∞. (4)

For the matrices Aε, Biε, i = 1, ... , N , the set FN is defined by

FN :=

{
(F1ε, ... , FNε) | Aε +

N∑
j=1

BjεFjε is stable.

}
.

The soft-constrained Nash equilibrium strategy pair (F ∗
1ε, ... , F ∗

Nε) is defined as
satisfying the following conditions [1].

J̄i(F ∗
1ε, ... , F ∗

Nε, x(0))
≤ J̄i(F ∗

1ε, ... , F ∗
i−1ε, Fiε, F ∗

i+1ε, ... , F ∗
Nε, x(0)), i = 1, ... , N, (5)
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where

J̄i(F1ε, ... , FNε, x(0)) := sup
w∈Lk̄

2 (0, ∞)

Ji(F1ε, ... , FNε, w, x(0)),

Ji(F1ε, ... , FNε, w, x(0))

=
∫ ∞

0

[
xT (t)[Qiε+FT

iεRiiFiε + µ

N∑
j=1, j 6=i

FT
jεRijFjε]x(t)−wT (t)Viµw(t)

]
dt,

for all x(0) and for all (F1ε, ... , FNε) that satisfy

(F ∗
1ε, ... , F ∗

i−1ε, Fiε, F ∗
i+1ε, ... , F ∗

Nε) ∈ FN .

It should be noted that the following assumption guarantees the existence of the
admissible strategy.

Assumption 2 Each player uses the linear feedback strategy ui(t) = Kiεx(t), i =
1, ... , N such that the closed-loop system is asymptotically stable for sufficiently
small parameters ε and µ.

Obviously, this assumption is made in order to obtain a stable system. Using the
fact studied by [1], the soft-constrained feedback Nash equilibrium is given below.

Lemma 1 Assume that there exist N real symmetric matrices Piε and Wiε, such
that

Gi(P1ε, ... , PNε)

:= Piε

Aε −
N∑

j=1

SjεPjε

 +

Aε −
N∑

j=1

SjεPjε

T

Piε + PiεSiεPiε

+µ
N∑

j=1, j 6=i

PjεSijεPjε + PiεMiµPiε + Qiε = 0, (6)

where Siε := BiεR
−1
ii BT

iε, Sijε := BjεR
−1
jj RijR

−1
jj BT

jε, Miµ := EεV
−1
iµ ET

ε .

Aε −
N∑

j=1

SjεPjε + MiµPiε is stable for i = 1, ... , N , Aε −
N∑

j=1

SjεPjε is stable,

Wiε

Aε −
N∑

j=1, j 6=i

SjεPjε

 +

Aε −
N∑

j=1, j 6=i

SjεPjε

T

Wiε − WiεSiεWiε

+µ

N∑
j=1, j 6=i

PjεSijεPjε + Qiε ≥ 0. (7)

Define the N -tuple (F ∗
1ε, ... , F ∗

Nε) by

u∗
i (t) := F ∗

iεx(t) = −R−1
ii BT

iεPiεx(t), i = 1, ... , N. (8)

Then, (F ∗
1ε, ... , F ∗

Nε) ∈ FN and this N -tuple is a soft-constrained Nash equilib-
rium. Furthermore, J̄i(F ∗

1ε, ... , F ∗
Nε, x(0)) = x(0)T Piεx(0).
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It should be noted that if Qiε ≥ 0 and Sijε ≥ 0 for all i = 1, ... , N , the matrix
inequality (7) is trivially satisfied with Wiε = 0 [1]. Then, only the CSAREs (6)
should be solved.

In the following analysis, the basic assumption is needed.

Assumption 3 The triples (Aii, Bii,
√

Qii), i = 1, ... , N are stabilizable and
detectable.

3 Asymptotic Structure of the CSAREs

Firstly, in order to obtain the strategy, the asymptotic structure of the CSAREs (6)
is established. Since Aε, Siε, Sijε and Miµ include the term of the small parameters
ε and µ, the solution Piε of the CSAREs (6), if it exists, must contain these pa-
rameters. Moreover, it should be noted that two parameters ε and µ are the same
magnitude such that Assumption 2.1 holds. Taking these facts into account, the
solution Piε of the CSAREs (6) with the following structure is considered [4, 8, 9].

Piε :=


ε1−δi1Pi1 εPi12 · · · εPi1N

εPT
i12 ε1−δi2Pi2 · · · εPi2N

...
...

. . .
...

εPT
i1N εPT

i2N · · · ε1−δiN PiN

 ∈ Rn̄×n̄.

Substituting the matrices Aε, Siε, Sijε, Miµ, Qiε and Piε into the CSAREs (6),
letting ε = 0 and µ = 0, and partitioning the CSAREs (6), the following reduced-
order algebraic Riccati equations (AREs) are obtained, where P̄ii, i = 1, ... , N be
the 0-order solutions of the CSAREs (6) as ε = µ = 0.

P̄iiAii + AT
iiP̄ii − P̄ii(Sii − Mii)P̄ii + Qii = 0, (9)

where Sii := BiiR
−1
ii BT

ii and Mii := EiiV
−1
ii ET

ii .
In order to guarantee the existence of a positive semidefinite stabilizing solution

of the ARE (9), the following condition is assumed.

Assumption 4 The ARE (9) has a positive semidefinite stabilizing solution such
that Aii − SiiP̄ii is stable.

The asymptotic expansion of the CSAREs (6) at ε = µ = 0 is described by the
following lemma.

Lemma 2 Under Assumptions 2.1-2.3, 3.1, there exist the small constants σ∗ and
ρ∗ such that for all ε ∈ (0, σ∗) and µ ∈ (0, ρ∗), the CSAREs (6) admits a unique
positive semidefinite solution P ∗

iε that can be written as

Piε := P ∗
iε = P̄i + O(ε)

= block diag
(

0 · · · P̄ii · · · 0
)

+ O(ε). (10)

Proof: The proof can be derived by using the implicit function theorem [7] for the
CSAREs (6). Using the implicit function theorem, it can be shown that there exists
a neighbourhood of ε = µ = 0 and a unique function Piε := P̄i + O(ε). It should
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be noted that under Assumption 3.1, since the solution of the reduced-order ARE
(9) is unique (see e.g. Theorem 13.5 of [11]), P̄i is a unique solution. Therefore, the
CSAREs (6) has a unique positive semidefinite solution P ∗

iε under the sufficiently
small parameters ε and µ.

4 Newton’s method for Solving CSAREs

In order to obtain the solution of CSAREs (6), the following useful algorithm is
given. Consider the following iterative algorithm.

P
(k+1)
iε

Aε −
N∑

j=1

SjεP
(k)
jε + MiµP

(k)
iε


+

Aε −
N∑

j=1

SjεP
(k)
jε + MiµP

(k)
iε

T

P
(k+1)
iε

−
N∑

j=1, j 6=i

P
(k+1)
jε SjεP

(k)
iε −

N∑
j=1, j 6=i

P
(k)
iε SjεP

(k+1)
jε

+µ
N∑

j=1, j 6=i

P
(k+1)
jε SijεP

(k)
jε + µ

N∑
j=1, j 6=i

P
(k)
jε SijεP

(k+1)
jε

+
N∑

j=1, j 6=i

P
(k)
jε SjεP

(k)
iε +

N∑
j=1, j 6=i

P
(k)
iε SjεP

(k)
jε

+P
(k)
iε SiεP

(k)
iε − µ

N∑
j=1, j 6=i

P
(k)
jε SijεP

(k)
jε

−P
(k)
iε MiµP

(k)
iε + Qiε = 0, k = 0, 1, ... , (11a)

P
(k)
iε :=


ε1−δi1P

(k)
i1 εP

(k)
i12 · · · εP

(k)
i1N

εP
(k)T
i12 ε1−δi2P

(k)
i2 · · · εP

(k)
i2N

...
...

. . .
...

εP
(k)T
i1N εP

(k)T
i2N · · · ε1−δiN P

(k)
iN

 . (11b)

with the initial conditions

P
(0)
iε = P̄i = block diag

(
0 · · · P̄ii · · · 0

)
. (12)

The algorithm (11a) can be constructed by setting P
(k+1)
iε = P

(k)
iε + ∆P

(k)
iε and

neglecting O(∆2) term. The following theorem indicates that the algorithm (11a)
is Newton’s method.

Theorem 1 Suppose that there exist a solution to the CSAREs (6). It can be
obtained by performing the algorithm (11) which is equal to the Newton’s method.
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Proof: Taking the vec-operator transformation on both sides of (11a) and Gi =
Gi(P

(k)
1ε , ... , P

(k)
Nε ) = 0 and subtracting these equations, it is easy to verify the

following equation.
vecP (k+1)

1ε
...

vecP (k+1)
Nε

 =


vecP (k)

1ε
...

vecP (k)
Nε

 − [∇G(P (k)
1ε , ... , P

(k)
Nε )]−1

×


vecG1(P

(k)
1ε , ... , P

(k)
Nε )

...
vecGN (P (k)

1ε , ... , P
(k)
Nε )

 , (13)

where

∇G(P1ε, ... , PNε) =
∂([vecG1]T , ... , [vecGN ]T )T

∂([vecP1ε]T , ... , [vecPNε]T )
, G := G(G1, ... ,GN ).

This is the desired result.
The following theorem indicates that the proposed algorithm (11) which is based

on the Newton’s method attains the quadratic convergence.

Theorem 2 Under Assumptions 2.1-2.3, 3.1, there exist the small constants σ̄ and
ρ̄ such that for all ε ∈ (0, σ̄), σ̄ ≤ σ∗ and µ ∈ (0, ρ̄), ρ̄ ≤ ρ∗, the iterative algorithm
(11) converges to the exact solution of P ∗

iε with the rate of the quadratic convergence,

where P
(k)
iε is positive semidefinite matrix and Aε −

N∑
j=1

SjεP
(k)
jε + MiµP

(k)
iε is sta-

ble. Moreover, the convergence solutions attain a local unique solution P ∗
iε of the

CSAREs (6) in the neighborhood of the initial condition P
(0)
iε = P̄i. That is, the

following conditions are satisfied.

||P (k)
iε − P ∗

iε|| = O(ε2k

), (14a)

Reλ

Aε −
N∑

j=1

SjεP
(k)
jε + MiµP

(k)
iε

 < 0, k = 0, 1, ... . (14b)

In order to prove the theorem, the following fact must be needed.
Newton-Kantorovich theorem [12] : Assume that F : Rn → Rn is differen-

tiable on a convex set D. Suppose that the inverse of map F exists and moreover it
is differentiable on set D and that ||F ′(x)−F ′(y)|| ≤ γ||x−y|| for all x, y ∈ D. Sup-
pose that there is an x0 ∈ D such that ||F ′(x0)−1|| ≤ β, ||F ′(x0)−1F (x0)|| ≤ η and

θ := βγη < 1/2. Assume that S := { x : ||x − x0|| ≤ t∗ } ⊂ D, t∗ =
1 −

√
1 − 2θ

βγ
.

Then Newton iterations xk+1 = xk − F ′(xk)−1F (xk), k = 0, 1, · · ·, are well de-
fined and converge to a solution x∗ of F (x) = 0 in S. Moreover, the solution x∗ is

unique in S̃ ∩D, where S̃ := { x : ||x−x0|| ≤ t̃ } ⊂ D, t̃ =
1 +

√
1 − 2θ

βγ
and error

estimate is given by ||x∗ − xk|| ≤ (2θ)2
k

2kβγ
= 21−k(2θ)2

k−1η, k = 0, 1, ....
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Proof: The proof is given directly by applying the Newton-Kantorovich theorem
[12] for the CSAREs (6). It is immediately obtained from the CSAREs (6) that
there exists a positive scalar γ such that for any P a

iε and P b
iε

||∇G(P a
1ε, ... , P a

Nε) −∇G(P b
1ε, ... , P b

Nε)||
≤ γ||([vecP a

1ε]
T , ... , [vecP a

Nε]
T )−([vecP b

1ε]
T , ... , [vecP b

Nε]
T )||. (15)

Moreover, it is easy to verify that

J=

 J11|ε=0 · · · J1N |ε=0

...
. . .

...
JN1|ε=0 · · · JNN |ε=0

=

 DA · · · 0
...

. . .
...

0 · · · DA

 , (16)

where

Jij =
∂vecGi

∂[vecPjε]T
, DA = block diag

(
D11 · · · DNN

)
,

Dii := DT
ii ⊗ Ini + Ini ⊗ DT

ii , Dii := Aii − (Sii − Mii)P̄ii.

Thus, since J is nonsingular under Assumption 3.1, for small ε and µ,

∇G(P (0)
1ε , ... , P

(0)
Nε ) = ∇G(P̄1, ... , P̄N ) = J + O(ε)

is also nonsingular. Therefore, there exists β such that β = ||[∇G(P̄1, ... , P̄N )]−1||.
On the other hand, since ||G(P̄1, ... , P̄N )|| = O(ε), there exists η such that η =
||[∇G(P̄1, ... , P̄N )]−1|| · ||G(P̄1, ... , P̄N )|| = O(ε). Thus, there exists θ such that
θ = βηγ < 2−1 because η = O(ε). Finally, the Newton-Kantorovich theorem
results in the desired results (14).

Second, the local uniqueness of the solution is discussed. Now, let us define

t∗ ≡ 1
γβ

[1 −
√

1 − 2θ]. Clearly, S ≡ { Piε : ||Piε −P
(0)
iε || ≤ t∗ } is in the convex set

D. In the sequel, since ||Piε −P
(0)
iε || = O(ε) holds for a small ε, the local uniqueness

of P ∗
iε is guaranteed in the neighbourhood of ε = µ = 0 for a subset S by applying

the Newton-Kantorovich theorem.

5 A Numerical Algorithm for Solving the Large-
Scale Lyapunov Equations (CLALEs)

When the cross-coupled large-scale algebraic Lyapunov equations (11a) is solved,
the existence of the cross-coupled term

−
N∑

j=1, j 6=i

P
(k+1)
jε SjεP

(k)
iε −

N∑
j=1, j 6=i

P
(k)
iε SjεP

(k+1)
jε

+µ

N∑
j=1, j 6=i

P
(k+1)
jε SijεP

(k)
jε + µ

N∑
j=1, j 6=i

P
(k)
jε SijεP

(k+1)
jε
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in CLALEs (11a) makes it difficult to solve this equation directly due to the large

dimension as N × n̄ larger than the dimensions n̄ :=
N∑

i=1

ni. Thus, in order to avoid

the cross-coupled term, a new decoupling algorithm that is based on the fixed point
algorithm [7] is established. Taking into account the fact that SjεP

(k)
iε = O(ε), i 6= j,

let us consider CLALEs (17) in its general form.

XiεΛiε + ΛT
iεXiε + ε

N∑
j=1, j 6=i

(XjεΦjε + ΦT
jεXjε) + Uiε = 0, i = 1, ... , N, (17)

where

Xiε :=


ε1−δi1Xi1 εXi12 · · · εXi1N

εXT
i12 ε1−δi2Xi2 · · · εXi2N

...
...

. . .
...

εXT
i1N εXT

i2N · · · ε1−δiN XiN

 ,

Λiε :=


Λi1 εΛi12 · · · εΛi1N

εΛi21 Λi2 · · · εΛi2N

...
...

. . .
...

εΛiN1 εΛiN2 · · · ΛiN

 ,

Φiε :=


Φi1 εΦi12 · · · εΦi1N

εΦi21 Φi2 · · · εΦi2N

...
...

. . .
...

εΦiN1 εΦiN2 · · · ΦiN

 ,

Uiε :=


ε1−δi1Ui1 εUi12 · · · εUi1N

εUT
i12 ε1−δi2Ui2 · · · εUi2N

...
...

. . .
...

εUT
i1N εUT

i2N · · · ε1−δiN UiN

 .

It should be noted that

P
(k+1)
iε ⇒ Xiε, P

(k+1)
jε ⇒ Xjε, Aε −

N∑
j=1

SjεP
(k)
jε + MiµP

(k)
iε ⇒ Λiε,

−SjεP
(k)
iε + µSijεP

(k)
jε ⇒ εΦjε,

N∑
j=1, j 6=i

P
(k)
iε SjεP

(k)
jε +

N∑
j=1, j 6=i

P
(k)
jε SjεP

(k)
iε + P

(k)
iε SiεP

(k)
iε

−µ
N∑

j=1, j 6=i

P
(k)
jε SijεP

(k)
jε + Qiε ⇒ Uiε,

where ⇒ represents the replacement.
Without loss of generality, the following condition is assumed for CLALEs (17).

Assumption 5 Λi1, ... ,ΛiN , i = 1, ... , N are stable.
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The algorithm (18) for solving CLALEs (17) is given as follows:

X
(n+1)
iε Λiε + ΛT

iεX
(n+1)
iε + ε

N∑
j=1, j 6=i

(X(n)
jε Φjε + ΦT

jεX
(n)
jε ) + Uiε = 0, (18)

i = 1, ... , N, n = 0, 1, ... ,

where X
(0)
iε = 0, i = 1, ... , N .

It should be noted that the numerical algorithm (18) can be carried out inde-
pendently for each solution. The following theorem indicates the convergence of
algorithm (18).

Theorem 3 Under Assumptions 5.1, there exists the small constant σ̃ such that
for all ε ∈ (0, σ̃), the fixed point algorithm (18) converges to an exact solution Xiε

with a linear convergence.

Proof: The CLALEs (17) can be changed as follows.

Λ(ε)


vecX(n+1)

1ε

vecX(n+1)
2ε
...

vecX(n+1)
Nε

 = −ε


0 Φ2ε · · · ΦNε

Φ1ε 0 · · · ΦNε

...
...

. . .
...

Φ1ε Φ2ε · · · 0




vecX(n)
1ε

vecX(n)
2ε

...
vecX(n)

Nε

 −


vecU1ε

vecU2ε

...
vecUNε

 ,(19)

where Λ(ε) := block diag
[

Λ1ε Λ2ε · · · ΛNε

]
, Λiε := ΛT

iε ⊗ In̄ + In̄ ⊗ ΛT
iε,

and Φiε := ΦT
iε ⊗ In̄ + In̄ ⊗ ΦT

iε.
Since Assumption 5.1 holds, for sufficient small ε there exists [Λ(ε)]−1 because

lim
ε→+0

Λ(ε) = block diag
[

Λ1 Λ2 · · · ΛN

]
, (20)

where Λi := Λiε|ε=0.
Therefore, it is easy to verify that there exists the small constant σ̃ such that

for all ε ∈ (0, σ̃),

ε||[Λ(ε)]−1||

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣


0 Φ2ε · · · ΦNε

Φ1ε 0 · · · ΦNε

...
...

. . .
...

Φ1ε Φ2ε · · · 0


∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣ < 1. (21)

Finally, using the fixed point theorem, it can be shown that the algorithm (18)
attains the linear convergence.

When each algebraic Lyapunov equation (ALE) (18) is solved, the dimension

of the workspace as n̄ :=
N∑

i=1

ni larger than the dimensions ni is needed. Thus, in

order to reduce the dimension of the workspace, a new algorithm for solving the
ALE (18) which is based on the alternating direction implicit (ADI) method [13, 14]
is established. Let us consider the following ALE (22), in a general form of the ALE
(18).

XεΨε + ΨT
ε Xε + Uε = 0. (22)
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In particular, the following special matrices Xε, Ψε and Uε which are related to the
CLALEs (17) are considered because the other case i = 2, ... , N can be changed
into the similar form by using the similarity transformation Ti, where

Xε := T −1
i X

(n+1)
iε Ti, Ψε := T −1

i ΛiεTi,

Uε := T −1
i

ε
N∑

j=1, j 6=i

(X(n)
jε Φjε + ΦT

jεX
(n)
jε ) + Uiε

 Ti,

Ti :=



0 ... Ini ... 0
... block diag(1 ... 1)

...
. . .

...
Ini ... 0 ... 0
...

. . .
... block diag(1 ... 1)

...
0 ... 0 ... InN

 ,

Xε :=


X11 εX12 · · · εX1N

εX T
12 εX22 · · · εX2N

...
...

. . .
...

εX T
1N εX T

2N · · · εXNN

 :=
[

X11 εX1f

εX T
1f εXf

]
,

Ψε :=


Ψ11 εΨ12 · · · εΨ1N

εΨ21 Ψ22 · · · εΨ2N

...
...

. . .
...

εΨN1 εΨN2 · · · ΨNN

 :=
[

Ψ11 εΨ1f

εΨf1 Ψf

]
,

Uε :=


U11 εU12 · · · εU1N

εUT
12 εU22 · · · εU2N

...
...

. . .
...

εUT
1N εUT

2N · · · εUNN

 :=
[

U11 εU1f

εUT
1f εUf

]
.

In order to guarantee the existence of the solution and the convergence of the
algorithm, another assumption is needed.

Assumption 6 Ψ11, ... , ΨNN are stable.

As a result, the ALE (22) can be changed as follows by partitioning.

X11Ψ11 + ΨT
11X11 + ε2(X1fΨf1 + ΨT

f1X T
1f ) + U11 = 0, (23a)

XfΨf + ΨT
f Xf + ε(X T

1fΨ1f + ΨT
1fX1f ) + Uf = 0, (23b)

X11Ψ1f + X1fΨf + ΨT
11X1f + εΨT

f1Xf + U1f = 0. (23c)

Firstly, using the implicit function, the asymptotic structure of the ALE (23) is
established.

Lemma 3 Under Assumption 5.2, the ALE (23) has unique solutions X11, X1f and
Xf such that these matrices possess a power series expansion at ε = 0. That is,

X11 :=
∞∑

m=0

εmX (m)
11 , X1f :=

∞∑
m=0

εmX (m)
1f , Xf :=

∞∑
m=0

εmX (m)
f . (24)



12

Proof: It can be done by applying the implicit function theorem to the partitioned
ALE (23). To do so, it is enough to show that the corresponding Jacobian is
nonsingular at ε = 0. Since the detailed proof is the same as the proof that is given
by [8], it is omitted.

Secondly, the methodology for solving the ALE (23) for the matrix solutions
X11, X1f and Xf is given. Substituting the matrices X11, X1f and Xf into the
ALEs (23) and equating successively coefficients of equal powers of ε, the following
linear equations are obtained.

X (m+2)
11 Ψ11 + ΨT

11X
(m+2)
11 + X (m)

1f Ψf1 + ΨT
f1X

(m)T
1f = 0, (25a)

X (m+2)
f Ψf + ΨT

f X
(m+2)
f + X (m+1)T

1f Ψ1f + ΨT
1fX

(m+1)
1f = 0, (25b)

X (m+2)
1f Ψf + ΨT

11X
(m+2)
1f + X (m+2)

11 Ψ1f + ΨT
f1X

(m+1)
f = 0, (25c)

where

X (0)
11 Ψ11 + ΨT

11X
(0)
11 + U11 = 0, X (0)

f Ψf + ΨT
f X

(0)
f + Uf = 0,

X (0)
11 Ψ1f + X (0)

1f Ψf + ΨT
11X

(0)
1f + U1f = 0,

X (1)
11 = 0, X (1)

f Ψf + ΨT
f X

(1)
f + X (0)T

1f Ψ1f + ΨT
1fX

(0)
1f = 0,

X (1)
1f Ψf + ΨT

11X
(1)
1f + ΨT

f1X
(0)
f = 0.

It should be noted that the successive approximations (25) are independent of the
small parameter ε. Moreover, the approach used in this paper is quite different
because the proposed successive approximations (25) are based on not the existing
algorithm [9] but Maclaurin series expansions. Thus, the desired solutions with any
approximation are obtained by solving the linear equations directly.

Let us consider the following Sylvester’s equations (26), in a general form of the
ALEs (25b) and (25c)

AY + Y B = C, (26)

where the matrices A ∈ Rp×p, B ∈ Rq×q and C ∈ Rp×q are given, and the solution
matrix Y ∈ Rp×q is to be determined.

The ADI iterative method [13, 14] for the solution of (26) proceeds by strictly
alternating between the solution of the two equations

(A − δl+1Ip)Y2l+1 = Y2l(−B − δl+1Iq) + C, (27a)
Y2l+2(−B − τl+1Iq) = (A − τl+1Ip)Y2l+1 − C, (27b)

for l = 0, 1, 2, .... Here Y0 is a given initial approximate solution, and the δl and τl

are real or complex parameters chosen so that the computed approximate solutions
Yl converge rapidly to the solution Ŷ of the Sylvester equation (26) as l increases.

If the matrices A and B are dense, then the direct solution method by Golub
et al. [15] can be used. This method determines the real Schur factorization of A
and brings B into Hessenberg form by orthogonal similarity transformation [14].
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However, when the matrices A(= ΨT
f ) and B(= Ψf ) that appear in (25b) are large

and sparse, iterative solution technique has to be employed. In fact, it is clear that

Ψf =

 Ψ22 · · · εΨ2N

...
. . .

...
εΨN2 · · · ΨNN

 →

 Ψ22 · · · 0
...

. . .
...

0 · · · ΨNN

 , (ε → +0)

are large and sparse for sufficiently small ε. Thus, since the ADI iterative method
is an attractive technique in this case, such method will be used.

6 Computational Example

In order to demonstrate the efficiency of the proposed algorithm, a computational
example is given. The system matrices are given as follows.

A11 =


0 1 −0.266 −0.009

−2.75 −2.78 −1.36 −0.037
0 0 0 1

−4.95 0 −55.5 −0.039

 ,

εA12 =


0.0024 0 −0.087 0.002
−0.185 0 1.11 −0.011

0 0 0 0
0.222 0 8.17 0.004

 ,

εA13 =


0.073 0 −0.25 0.003
−0.46 0 2.8 −0.02

0 0 0 0
0.924 0 17.5 0.02

 ,

εA21 =


0.021 0 0.121 0.003
−1.1 0 −1.62 −0.015

0 0 0 0
−2.43 0 1.37 −0.034

 ,

A22 =


−0.21 1 −1.6 −0.005
−1.9 −1.8 9.3 −0.12

0 0 0 1
−3.1 0 −56 0.032

 ,

εA23 =


0.06 0 0.46 0.002
−1 0 1.49 −0.04
0 0 0 0

0.12 0 29.8 −0.028

 ,

εA31 =


−0.002 0 0.83 0
−6.78 0 −10.1 0.09

0 0 0 0
−1.24 0 0.498 −0.017

 ,
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εA32 =


0.011 0 0.22 0
−2.1 0 1.7 −0.123

0 0 0 0
−0.07 0 6.38 −0.011

 ,

A33 =


−0.197 1 −1.2 −0.003
−54.5 −20 70.1 −2.37

0 0 0 1
−3.4 0 −21.0 −0.017

 ,

B11 =


0

36.1
0
0

 , B22 =


0

78.9
0
0

 , B33 =


0

1000
0
0

 , Bij = 0, i 6= j,

E11 =


0.1 0 0 0
0 0 0 0
0 0 0 0.1
0 0 0 0.1

 , E22 =


0 0 0 0

0.1 0 0 0
0 0 0 0.1
0 0 0 0.1

 ,

E33 =


0 0 0 0
0 0 0 0

0.1 0 0 0.1
0 0 0 0.1

 , Eij = 0, i 6= j,

Vii = diag
(

1 2 2 1
)
,

V1 = block diag
(

Vii µ−1I4 µ−1I4

)
,

V2 = block diag
(

µ−1I4 Vii µ−1I4

)
,

V3 = block diag
(

µ−1I4 µ−1I4 Vii

)
,

Q1 = block diag
(

0.5I4 O8×8

)
,

Q2 = block diag
(

O4×4 0.5I4 O4×4

)
,

Q3 = block diag
(

O8×8 0.5I4

)
,

R11 = R22 = R33 = 1, R12 = R13 = 0.2,

R23 = R21 = 0.3, R31 = R32 = 0.1.

The small parameters are chosen as ε = 0.01 and µ = 0.005. It should be noted that
the algorithm (11a) converges to the exact solution with accuracy of ||G(k)(ε)|| <
1.0e − 10 after three iterations, where

||G(k)(ε)|| :=
3∑

i=1

||Gi(P
(k)
1ε , P

(k)
2ε , P

(k)
3ε )||. (28)

In order to verify the exactitude of the solution, the remainder per iteration by
substituting P

(k)
iε into the CSAREs (6) is computed. In Table 1, the results of the

error ||G(k)(ε)|| per iterations are given for several values ε and µ = 0.5ε. As a result,
it can be seen that the algorithm (11a) has the quadratic convergence.
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Table 1: Error per iterations.

k ||G(k)(1.0e − 01)|| ||G(k)(1.0e − 02)|| ||G(k)(1.0e − 03)|| ||G(k)(1.0e − 04)||
0 3.5262 3.5262e − 01 3.5262e − 02 3.5262e − 03
1 6.1345e − 01 4.8088e − 03 4.8160e − 05 4.8188e − 07
2 3.0517e − 02 2.2293e − 06 2.2402e − 10 2.5366e − 12
3 1.8473e − 05 3.3376e − 11 1.0869e − 12
4 2.1005e − 11

7 Conclusions

In this paper, a new algorithm for solving the CSAREs for weakly coupled large-scale
systems has been proposed. Comparing with the existing result [8, 9], the considered
equation has the sign-indefinite quadratic term. It is noteworthy that although the
proposed design method is based on the Newton’s method, the convergence rate
has been newly proved as a quadratic convergence. Moreover, the local uniqueness
of the convergence solutions for the CSAREs have been proved for the first time
by using the Newton-Kantorovich theorem. As another important feature, in order
to overcome the computation of large and sparse matrix, the fixed point algorithm
and the ADI method have been combined. As a result, both fast convergence and
a reduced-order calculation are attained. Finally, the computational example has
shown the excellent results.
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