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We carried out low- and high-velocity friction tests on fault rock samples from shallow 

boreholes on the Taiwan Chelungpu fault and measured their fluid transport properties 

under high pressure with the objective of explaining the different seismic behavior in 

northern and southern sections of the fault during the 1999 Chi-chi earthquake. Our 

results of low-velocity friction tests demonstrate that fault gouge from the southern 

section of the fault exhibits velocity-weakening frictional behavior, whereas gouge from 

the northern section exhibits velocity-strengthening friction.  Friction in the northern 

gouge decreased strongly with increasing wetness, whereas friction in southern gouge 

samples was not affected by wetness. A rapid reduction of friction was observed 

immediately after the onset of slip in high-velocity friction tests. The results of 

high-velocity friction tests were similar for all fault gouge samples tested, though 

permeability in the northern fault zone was lower than that in the south. Numerical 

modeling indicated that thermal pressurization in the northern fault zone promoted 

stress reduction and fault instability during slip, whereas it did not in the south. This 

contrasting seismic behavior between north and south is caused mainly by differences in 

fluid transport properties of the slip zones. More efficient thermal pressurization in the 

north explains the large slip displacement there. The results of our low-velocity friction 



tests are consistent with nucleation of the Chi-Chi earthquake in the south and 

propagation of the rupture from south to north. 
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1. Introduction 

The rupture along the 100-km-long Chelungpu fault in the western Taiwan basin 

during the 1999 Chi-Chi earthquake (Mw 7.6) was unusual in that there was 

considerable difference in slip behavior between the southern and northern parts of the 

fault. Strong motion records and co-seismic GPS measurements revealed a low 

acceleration and large slip displacement along the northern part of the fault on the 

surface (up to 9.8 m horizontally, 5.6 m vertically), and a high acceleration and small 

slip displacement (3.5 m horizontally, 4 m vertically) along the southern part [Lee et al., 

2002; Ma et al., 2003]. The largest accelerations, some greater than 1g, were in the 

southern part of the fault, where the rupture initiated, and they decreased to about 0.5g 

toward the northern part of the fault [Shin and Teng, 2001]. The largest slip velocities of 

up to 3.0 m/s were observed in the northern section of the Chelungpu fault. Inversion 

analysis using teleseismic data indicated that there was a large reduction in dynamic 

stress associated with the large amount of slip on the northern section of the fault [Ma et 

al., 2000]. Two shallow boreholes were drilled into the fault at a northern site 



(Fengyuan) and a southern site (Nantou) to investigate the factors controlling the 

north–south contrast of seismic slip behavior (Figure 1, 2) [Tanaka et al., 2002; Tanaka 

et al., 2006a]. At the northern site (total depth 455 m), three major fault zones that are 

candidate faults for slip during the 1999 Chi-Chi earthquake are developed within the 

Kueichulin Formation and Chinshui Shale at 224.55–224.80 m, 328.55–330.00 m, and 

416.00–417.90 m. (FZ-A, FZ-B, FZ-C in Figure 2). One of the candidate horizons (330 

m depth) is at the base of a thick fracture zone (285–330 m depth) in the Kueichulin 

Formation, where the fault zone consists of thick fault breccias and a very thin (7 mm 

thickness), clay-rich gouge layer. Within the fault gouge layer, preferred alignments of 

phyllosilicate minerals associated with grain-size fining were observed, though there 

was little microstructural evidence of frictional melting [Tanaka et al., 2006a]. In 

contrast, a possible slip horizon observed in the southern borehole (total depth 211 m) 

lies at 175–177 m depth beneath a thick foliated fault breccia zone (154–177 m) 

between the Chinshui Shale and the Toukoshan Formation (Figure 1d, FZ-D in Figure 

2 ). The possible center of the fault zone consists of ultracataclasite with some 

pseudotachylyte [Otsuki and Monzawa, 2001], and the ultracataclasite indicates a thin 

(up to 0.5 mm) and localized shear zone. The other possible slip zone in the southern 

borehole is within a brown and gray clay layer lies at 179.9 m to 183.2 m (Hashimoto et 
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al., 2007), though the shear localization was not recognized. A part of the fault zone 

(175.3–175.9 m, 176.8–177.3 m) was not recovered in the southern borehole, therefore 

the other slip candidates might be within the missing portions. Structural analysis [Yue 

et al., 2005] suggests that this structural and lithologic contrast between northern and 

southern slip zones is preserved to at least 3 km depth. Therefore, the differences in the 

texture and other physical characteristics of the faulted rocks of the northern and 

southern boreholes may have influenced frictional and transport properties (permeability, 

porosity, and specific storage) and would thus account for the differences in slip 

behavior.  
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Temperature measurements in the shallow boreholes [Tanaka et al., 2002, 2006a] were 

slightly anomalous in the possible slip zones (Figure 2). Tanaka et al. [2006a] proposed 

that they could be explained by very low friction (coefficient of friction from 0.05 to 

0.12). Kano et al. [2006] conducted similar temperature measurements at 1200 m depth 

in a deeper northern borehole that was drilled as part of the Taiwan Chelungpu Fault 

Drilling Project (TCDP) and also concluded that very low friction slip might have 

occurred during the 1999 Chi-Chi earthquake. However, neither of these studies 

presented friction data from laboratory tests on recovered samples to verify their 

assertions of low-friction slip. 



In laboratory tests, Di Toro et al. [2004] showed that friction at high velocities, 

approaching seismic velocity, is very different from conventional low-velocity friction 

that obeys the rate and state friction low [Dietrich, 1978, 1979]. In some cases, the 

difference is attributed to rapid heating to the melting point within fault zones during 

high-velocity slip [Tsutsumi and Shimamoto, 1997; Hirose and Shimamoto, 2005]. In 

addition, such a temperature rise can cause chemical reactions within the slip zone that 

may be associated with fault weakening [Han et al., 2007]. Hirono et al. [2006, 2008] 

reported evidence of chemical reactions as a result of frictional heating in the 

Chelungpu fault, but did not identify melt structures. 
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Transport properties within a fault zone also have an important influence on dynamic 

slip motion. Increased pore pressure induced by frictional heating (“thermal 

pressurization” hereafter) can cause fault weakening [Sibson, 1973]. Transport 

properties can vary by several orders of magnitude for different rock types [Neuzil, 

1994]; therefore, the thermal pressurization mechanism is probably controlled primarily 

by transport properties rather than thermal conditions. Recent studies [Wibberley, 2002; 

Noda and Shimamoto, 2005; Wibberley and Shimamoto, 2005] have reported that fault 

rocks can potentially cause thermal pressurization when hydraulic diffusivity in the fault 

zone is low and the width of the slip zone is very thin. 



In this study, we measured the frictional properties of fault gouge samples from the 

shallow northern and southern boreholes, and from outcropping fault gouge from the 

Shuangtung fault, at low and high rates of strain. Transport properties of the fault rocks 

and surrounding host rocks from the northern and southern boreholes were measured 

under high pressure. We used measured frictional and transport properties as inputs in a 

numerical model of thermal pore fluid pressurization.. Finally, we discuss the 

contrasting seismic slip behavior during the 1999 Chi-Chi earthquake on the basis of 

our laboratory data and numerical modeling results. 
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2. Experimental Methods 

2.1. Samples  

For friction tests, we used dark gray ultracataclasite from 176.8 m depth in the 

southern borehole, and samples from a 10-cm-thick, clay-rich fault gouge from 286 m 

depth in the northern borehole. We also used fault gouge from 330 m depth for 

high-velocity friction test. The fault zone at 286 m depth in the northern borehole may 

not be within the candidate slip zone for the 1999 Chi-Chi earthquake, though the fault 

zone is within the thick fracture zone (285–330 m depth) where the positive thermal 

anomaly was observed. However, we consider it to be analogous to the slip zone 



because of the relatively large proportion of clay minerals, which may have developed 

as a result of shear deformation, and because the host rocks for these fault gouge 

samples were within the Kueichulin Formation, as is the case for the candidate slip zone 

(FZ-B and FZ-C).  
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Crushed gouge samples of grain size <0.12 mm were used for friction tests. The fault 

gouge from 286 m depth in the northern borehole contains much smectite, as well as 

illite and kaolinite, as determined by x-ray diffraction (XRD) (Figure 3a). Black 

cataclasite from the southern fault consists mainly of quartz with a lower clay mineral 

content than the northern borehole.  

Transport properties of the host and fault rocks in the northern and southern shallow 

boreholes were measured. In the north, host rock is sandstone and siltstone composed 

mostly of quartz, feldspar, calcite, and clay minerals (illite, smectite, and muscovite). In 

the south, the footwall of the Chelungpu fault is Toukoshan Formation, and is composed 

mainly of conglomerate with a clayey to silty matrix. Even though we were unable to 

recover complete sections through the fault zones in both shallow boreholes, we 

consider that the transport properties we measured covered a representative sample of 

host and fault rocks. 

 



2.2. Low-velocity Friction Tests 145 
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We performed shearing experiments by placing two layers of gouge between gabbro 

blocks in a double-direct shear apparatus (Figure 3c) to measure conventional low 

frictional properties [Kawamoto and Shimamoto, 1998]. In this experiment, we used 1.5 

to 2 g of crushed gouge, corresponding to a thickness of about 1 mm, for each layer. 

Three stainless steel blocks completed the apparatus; the center block was placed on top 

of the central gabbro block and the other blocks were placed adjacent to the gabbro 

blocks on each side. Typically, experiments were performed until the total displacement 

reached the limit of the apparatus (20 mm). Experiments were performed at room 

temperature under “dry” (room humidity; typically 40%–60% relative humidity [RH]) 

or “wet” (100% RH) conditions. The gouge layers were saturated with distilled water 

after the apparatus was set up to achieve 100% RH in the gouge layer. 

Before the vertical piston (the stainless steel block on top) was moved to apply shear 

force, a normal stress of about 1.5 times the target normal stress was applied to the 

sample. The shear load was then cycled two or three times at a constant velocity of 1 to 

5 μm/s (Figure 3b). This load cycle helps to localize shear and results in steady-state 

friction being reached with less net displacement than if the test is conducted without 

shear load cycles [Frye and Marone, 2002]. After steady-state friction was achieved, 
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velocity-stepping experiments were performed. Then, a slide-hold-slide test was 

performed until the limit of displacement (20 mm) was reached. Typically, we 

performed two series of velocity-stepping tests, with the velocity changing rapidly by 1 

order of magnitude at each velocity step change (i.e., one series of velocity step changes 

was 0.15 →1.5 →15 →150→15 →1.5 →0.15 μm/s). To achieve a new steady-state 

condition in response to each velocity step change, 0.5 to 1 mm of slip was required. 

The friction coefficient is determined from the ratio of shear stress to normal stress. 

The steady-state velocity dependence, or friction rate dependence, (a – b), is a key 

parameter of fault dynamics. The parameter (a – b) is evaluated from the imposed 

velocity step test results by the following equation: 

 μss V( )− μss V ∗( )= a − b( )ln V
V ∗
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where μss(V*) is the steady-state friction coefficient at a prescribed speed V*, and μss(V) 

is the steady-state friction coefficient at a velocity V imposed by a step change in 

sliding speed. If the material is velocity-strengthening, then (a – b) > 0, and the system 

is intrinsically stable. If the material is velocity-weakening, then (a – b) < 0, and the 

fault may exhibit unstable behavior. In the stable regime, rupture nucleation and 

propagation are inhibited. An earthquake can propagate in both cases, but rupture 

nucleation occurs only in an unstable field, which requires velocity-weakening friction 



(Rice and Ruina, 1983).  181 
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2.3. High-velocity Friction Tests 

We performed high-velocity friction tests on gouge samples (from the same sources as 

those used for the low-velocity tests) using the high-speed rotary-shear testing apparatus 

of Shimamoto and Tsutsumi [1994] and the methodology of Mizoguchi et al. [2007]. A 

1-g sample of gouge was placed between a pair of calcite-cemented quartz-rich 

sandstone cylinders (0.2 mm average grain size, 10% porosity, 10-17 m2 permeability) of 

about 25 mm diameter, of which the rough end surfaces had been smoothed by grinding 

with #80 silicon carbide powder (Fig. 3d). A gouge layer about 1 mm thick was sheared 

by rotating one of the cylinders. A Teflon sleeve was used to cover the simulated fault 

plane so that the gouge was confined between the sandstone surfaces during shearing. 

The samples were dried in an oven at 80 °C before the experiment to eliminate the pore 

water within samples, though they were exposed to a humid environment during the 

experiment. For all tests, we used a constant rotational speed of 1200 rpm and constant 

normal stress from 0.6 to 0.9 MPa. Slip rate varies within the apparatus as a function of 

distance from the center of the axis of rotation; slip displacement and slip rate are zero 

at the center of the sample and largest at the edge of the sample. For our test conditions, 



slip velocity was 1.96 m/s at the edge of the sample. When we define an equivalent slip 

velocity, Veq, such that a total friction work on a fault area S is described as τ·V
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[Shimamoto and Tsutsumi, 1994] where we assume that shear stress τ is constant over 

the fault surface, Veq was 1.06 m/s for our tests. 

 

2.4. Transport Property Measurements 

We measured the fluid transport properties of permeability, porosity, and specific 

storage of host rock and fault rock samples from the northern and southern shallow 

borehole sites. The methodologies of the transport property measurements are described 

in Tanikawa et al. [in press]. All samples for laboratory tests were cut and cored to 

cylindrical shapes that were 5 to 40 mm long and 20 mm in diameter. All experiments 

were performed in high-pressure apparatus at Kyoto University at room temperature 

under uniform (isostatic) confining pressure. All hydraulic properties were measured by 

using nitrogen gas as the pore fluid. Before testing, the samples were dried at 80 °C in 

an oven for a week to eliminate pore water without removing structural water adsorbed 

to clay mineral surfaces. We confined the samples using several polyolefin shrinkable 

jackets. 

Permeability was measured by the steady-state gas flow method [Wu et al., 1998] and 



the pore pressure oscillation method [Kranz et al., 1990; Fisher and Paterson, 1992]. In 

the steady-state gas flow method, a differential pore pressure at a value between 0.2 and 

2 MPa was applied across the sample and the pore pressure of downstream end was kept 

at a constant value of 0.1 MPa. In the oscillation method, we applied pore pressure of 20 

MPa. The Klinkenberg effect [Wu et al., 1998; Tanikawa and Shimamoto, 2008], which 

enhances gas permeability, may cause significant error in the conversion of gas 

permeability to water permeability, especially when gas permeability is measured at low 

pore pressure in low-permeability rocks. This phenomenon is attributed by ‘‘slip flow’’ 

between gas molecules and solid walls. Therefore, we transformed the measured gas 

permeability by the steady-state gas flow method to water permeability by using the 

Klinkenberg equation: 
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where kw is the (intrinsic) permeability to water and b is the Klinkenberg factor, which 

depends on the pore structure of the medium and the temperature of the gas. 

Permeabilities of most of the core samples we used satisfied the Klinkenberg equation. 

Porosity changes in response to confining pressure changes were determined by the 

gas expansion method [Scheidegger, 1974; Wibberley, 2002]. In this method, the 

volume of the saturated gas in pore spaces of the sample is measured by using the 



isothermal (Boyle-Mariotte) gas equations.  235 
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We calculated the drained pore compressibility from the results of the porosity test, 

and used this value for evaluation of specific storage [Wibberly, 2002]. The specific 

storage can also be evaluated by the pore pressure oscillation method, although the 

specific storage values thus obtained may contain significant errors, and vary by up to 

two orders of magnitude [Takahashi and Kaneko, 2003]. Therefore, only permeability 

was evaluated by the pore pressure-oscillation technique. 

 

3. Results 

3.1. Low-velocity Friction 

The low-velocity friction response we observed was, in general, similar to that 

reported by previous works [e.g., Dieterich, 1979; Marone, 1998], though the friction 

coefficient and velocity dependence differed among gouges. Steady-state friction was 

achieved within 5 mm of slip distance, although in some experiments where we did not 

carry out cyclic shear loading at the beginning of the run (samples BAF057 and 

BAF062) friction increased slightly with increasing displacement (Figure 4a). Values of 

the friction coefficient for the dry northern fault gouge were twice those of wet gouge, 

indicating greater friction under dry than under wet conditions. In the gouge from the 



southern borehole, friction did not differ between dry and wet gouges even at different 

normal stress values (Figure 4b). Values of the steady-state friction coefficients in all 

tests were around 0.7. Notably, no displacement hardening was observed in any of the 

tests on the gouges. The friction coefficient of wet gouge also showed normal stress 

dependence, increasing as the applied normal stress was increased. 
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The northern fault gouge in most tests showed a positive velocity dependence of 

steady-state friction (Figure 4c). In contrast, the southern fault gouge showed 

velocity-weakening behavior (Figure 4d). We observed no remarkable relationship 

between velocity and the velocity dependence of steady-state friction. However, we 

observed a slight decrease in the velocity dependence of friction with increasing 

velocity for the northern fault gouge. Previous reports indicated a transition from 

velocity-strengthening to velocity weakening behavior [Beeler et al., 1996; Mair and 

Marone, 1999], though we did not observe such a transition. 

 

3.2. High-velocity Friction 

In high-velocity friction tests, friction increased rapidly at the beginning of slip for all 

fault gouge samples, and then decreased gradually to a stable level. Peak values of the 

coefficient of friction were in the range of about 0.8 to 1.2, followed by a decrease to 



stable values between 0.2 and 0.3 (Figure 5). In most of the tests, values of the friction 

coefficients approached stable levels after 5 to 10 m of slip displacement. These 

frictional behaviors are similar to results obtained in previous high-velocity friction 

experiments for TCDP core samples and Nojima fault gouges associated with the 1995 

Kobe earthquake [Tanikawa et al., 2007; Mizoguchi et al., 2007]. Both peak friction and 

steady-state friction decreased with increasing normal stress for the southern fault gouge. 

The amount of slip displacement that was necessary to achieve stable friction also 

decreased with increasing normal stress. 
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3.3. Permeability and Permeability Distribution 

Cyclic effective pressure tests were performed on all host rock and fault rock 

specimens from the two shallow boreholes. Confining pressure was first increased from 

0 to 200 MPa, and then decreased to 5 MPa. The results obtained for all of the transport 

property measurements are listed in Table 2 (only pressing path from 10 to 60 MPa is 

listed). In the northern core samples, initial permeability at 5 MPa ranged from 10-13 to 

10-16 m2, and permeability decreased as effective pressure increased (Figure 6a). The 

pressure sensitivity of permeability varied considerably among specimens. The 

permeable sandstones in Kueichulin Formation (NSA3- NSA5) showed very little 



sensitivity to effective pressure, and permeability decreased by less than one order of 

magnitude from the initial permeability, even at 200 MPa of effective pressure. In the 

other samples, permeability decreased by three to four orders of magnitude at the 

maximum effective pressure. The permeability of fault rocks (Fault gouge, Fault 

breccia) and siltstones decreased with depth. For all samples, the permeability change 

during unloading was much smaller than that during loading, and increased slightly at 

low effective pressure. Initial permeability was not fully recovered during unloading, 

even at the lowest effective pressure. The cyclic behavior of permeability in southern 

core samples (Figure 6b) was similar to that of the northern core samples. Gravels in the 

Toukoshan Formation showed higher permeability than fault rocks of Chinshui Shale 

origin. The lowest permeability was observed in fault breccias of Chinshui Shale at 

156.5 m depth (SFF2), where it reached almost 10

289 

290 

291 

292 

293 

294 

295 

296 

297 

298 

299 

300 

301 

302 

303 

304 

305 

306 

-20 m2. 

The permeability distributions at depths of 1, 2, and 3 km around the possible slip 

zones in the north and south shallow boreholes (FZ-B and FZ-C, Figure 7) were 

constructed by assuming that pore pressure is hydrostatic at depth and by applying a 

constant bulk density of 2500 kg/m3. We assumed that the fault gouge at 305.5 m depth 

in the north borehole (NFG1) represents the gouge developed at 330 m depth in the 

same borehole. As we did not have the permeability data of the fault gouge at 330 m, we 



consider it to be analogous to that at 330m. As the relatively large proportions of clay 

minerals, which have developed as a result of shear deformation within the same thick 

fracture zone (285–330 m depth), are observed in the fault gouge at 305.5 m depth, we 

consider it to be analogous to that at 330m. In the northern shallow borehole, the 

permeability variation around the fault zone at 330 m depth, which possibly represents 

the 1999 Chi-Chi earthquake slip zone, is relatively small and varies within the range of 

one order of magnitude. The permeability around the southern fault zone is higher than 

that around the northern fault zone. Permeability in the footwall (Toukoshan Formation) 

is higher than that of the hanging wall, and the difference between footwall and hanging 

wall permeabilities is more than one order of magnitude (Figure 7b). Even though we 

lacked permeability data for the slip zone in the southern borehole, we considered that 

the permeability of the fault breccia at 173.5 m (SFF3) is representative of the 

permeability of the slip zone. 
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3.4. Porosity and Specific Storage 

In core samples from the northern borehole, initial porosity ranged between 8% and 

48%. As effective pressure increased to the maximum level tested, porosity decreased 

by 7% to 20% (Figure 8a). For all samples, the rate of porosity decrease became lower 



as effective pressure increased. Porosity partially recovered during unloading, but did 

not return to its initial value; this is similar to the pressure sensitive behavior of 

permeability discussed above. The porosity change was largest in the fault gouge at 305 

m depth (NFG5) and smallest in the siltstone at 402.5 m depth (NSI5). The relationships 

of porosity to effective pressure for the southern borehole samples (Figure 8b) were 

similar to those of the northern borehole. 
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Initial values of specific storage in samples from the northern borehole ranged from 

10-8 to 10-9 Pa-1; and decreased rapidly by one order of magnitude with increasing 

effective pressure in most samples (Figure 8c). The pressure sensitivity of specific 

storage decreased as effective pressure increased and the shape of the curves was 

similar for all samples. The siltstone showed the smallest value of specific storage. This 

was around 10-10 Pa-1 at 200 MPa of effective pressure and was smaller than that of the 

other rocks. The relationships of specific storage to effective pressure for the southern 

core samples (Figure 8d) were similar to those of the northern borehole. 

 

4. Thermal Pressurization Analysis 

4.1 Numerical Modeling Parameters 

We used the experimental data from the above investigations of frictional and transport 
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properties for our thermal pressurization analysis. The mathematical model we used was 

based on those of previous studies [Lachenbruch, 1980; Noda and Shimamoto, 2005], 

which assume that one-dimensional diffusion of heat and fluid occurs normal to the 

fault plane. Temperature change is given by the sum of a heat production term and a 

heat transfer term [Lachenbruch, 1980] as follows: 
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where t is time, x is distance normal to the fault from the center of the deformation zone, 

T is temperature rise, κ is thermal conductivity, ρ is bulk density, c is specific heat, and 

A is frictional heat generation per unit volume. All frictional work is assumed to convert 

to heat. The heat production rate A is given by 

 
W
VτA = ,     (4) 353 
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)

where V is relative slip velocity during fault motion, W is width of the deformation zone, 

and τ is shear stress that can be described as  

 ( PpPcd −= μτ ,    (5) 356 
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where µd is the dynamic friction coefficient, Pc is confining pressure, and Pp is pore 

pressure. Normal stress is assumed to be the same as overburden pressure. The change 

in pore pressure depends on the temperature change and Darcian fluid flux as follows:  
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where γ is water expansibility, Ss is specific storage, k is permeability, η is water 

viscosity, and Φ is porosity. The physical and thermal properties we used for the 

numerical modeling are listed in Table 1. Thermal properties are from Tanaka et al. 

[2006a, 2006b], who measured thermal properties of the Chelungpu fault zone in the 

northern shallow borehole and the deep TCDP borehole. We assumed a thermal 

diffusivity of 1 × 10
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-6 m2/s so that a value of the heat capacity C of 800 J/kg K is 

appropriate for our assumption of 2500 kg/m3 for bulk density. In the modeling we used 

the same values for thermal properties for the northern and southern borehole data. Our 

experimental results showed that the transport properties of permeability, specific 

storage, and porosity changed as effective pressure changed, in a manner similar to that 

described by Noda and Shimamoto [2005]. Therefore, we described the transport 

properties as a function of effective pressure as proposed by Noda and Shimamoto 

[2005]. We also used different transport property values in the numerical modeling for 

the slip zone and the surrounding rocks; these values are shown in Figures 6 and 8. 

Our friction tests showed that the friction coefficient decreased dramatically with slip 

distance at high velocity; this cannot be neglected in defining μd in equation (5) for the 

numerical modeling. The slip-weakening curve in our gouge experiments (Figure 5) is 

quite similar to previous results for fault gouge, which have been fitted by the following 



379 exponential equation [Mizoguchi et al., 2007]: 
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where μr is residual coefficient of friction, μi is initial coefficient of friction, and d is 

displacement from initial coefficient of friction. We defined dc as a specific 

displacement at which μi – μr reduces to 5% of the initial value. When friction tests are 

conducted under dry conditions, the effect of pore pressure building up can be ignored 

in determining the value of μd. The friction parameters we used in our numerical 

modeling analyses are listed in Table 3. We assumed the slip velocity to be constant at 1 

m/s for 10 s (i.e., 10 m of total slip displacement) in our analyses for both the northern 

and southern borehole sites. We also simplified the uniform strain rate distribution 

within the slip zone, such that the fault zone slips with the same slip velocity. We also 

assumed the same thickness of fault gouge (20 mm) at the northern and southern 

boreholes. 

 

4.2 Numerical Modeling Results 

Numerical modeling showed that the contrasting behavior of the northern and southern 

sections of the fault zone was because of differences in the degree of thermal pore fluid 

pressurization. The thermal pressurization mechanism was shown to be stronger at the 



northern borehole site than at the southern site. At the northern site, shear stress 

reduction was enhanced by increased pore pressure (Figure 9a and 9e). The thermal 

pressurization process was shown to have more effect at greater depths; the reduction of 

shear stress became much sharper with increasing depth. At the southern borehole site, 

shear stress was reduced only by the mechanical slip weakening described by equation 

(7), without additional stress reduction attributable to increased pore pressure at depth. 

This suggests that thermal pressurization was ineffective in the south. These contrasting 

behaviors reflect different temperature and pore pressure characteristics within the slip 

zone. For a given slip displacement, the temperature rise was smaller and pore pressure 

increase was larger in the north (Figure 9c). In contrast, the temperature rise was much 

larger in the south, and became considerably larger with increasing depth (Figure 9d). 

The numerical modeling analysis clearly showed that when the thermal pressurization 

process is eliminated, the rise of temperature is much stronger. 
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5. Discussion 

Our experimental data and numerical modeling showed that low-velocity frictional 

behavior, transport properties, and the potency of the thermal pressurization mechanism 

differ in the northern and the southern sections of the Chelungpu fault. On the other 

hand, the behavior of fault gouge samples from the northern and southern sections of 



the fault under high-velocity friction was shown to be similar. This suggests that 

differences in physical properties along the fault likely influenced slip-weakening 

behavior and might have caused the contrasting slip behaviors observed in the northern 

and southern sections of the fault during the 1999 Chi-Chi earthquake. 
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The low-velocity frictional behavior of fault gouge from the northern and southern 

sections of the fault differed remarkably. Steady-state friction under wet conditions was 

generally higher in the southern gouge than in the northern gouge. Furthermore, we o 

observed velocity-strengthening behavior for the northern gouge, whereas tests on the 

southern gouge yielded velocity-weakening behavior. Fault instability in the south did 

not relate to wetness. The trends in low-velocity friction that we observed agree well 

with the results of previously reported simulated fault gouge experiments. Kopf and 

Brown [2003] reported that friction decreased with increasing clay mineral content. This 

is consistent with our observation that values of the friction coefficient for fault gouge 

from the southern borehole were higher than those of both the northern borehole. Clay 

content in the gouge of the southern borehole was lower than that in both the northern 

gouge. We also observed that friction in the quartz-rich southern fault gouge was 

independent of wetness, a result that is also consistent with previous work [Frye and 

Marone, 2002]. Saffer et al. [2001] found that the frictional velocity dependence (a – b) 



of smectite shows normal stress dependence, and that the transition from 

velocity-weakening to velocity-strengthening occurs at around 30 MPa; these results are 

consistent with our findings for northern gouge under dry conditions. However, our 

results showed velocity-strengthening in the water-saturated northern under low normal 

stress. Our results agree with a previous study that showed that clay minerals become 

weaker with increasing water content, especially at high normal stress [Ikari et al., 

2007]. Normal stress dependence of friction was more notable under wet conditions 

than under dry conditions in the northern fault gouge, and can be explained by the 

different water contents. 
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If we assume that the faulting mechanism of the 1999 Chi-chi earthquake is 

represented by the behavior of wet gouge, the velocity-weakening frictional behavior in 

the south is consistent with the onset of the seismicity of the earthquake. However, the 

northern gouge exhibits velocity-strengthening behavior, which implies stability; this is 

inconsistent with the large slip displacement and high velocity observed in the north 

during the 1999 Chi-Chi earthquake. This indicates that low-velocity friction properties 

are not applicable to the dynamic fault motions during the 1999 Chi-Chi earthquake. 

It is plausible that a mechanism other than low-velocity friction controlled the slip 

dynamics that caused the large displacement in the north. Our experiments showed that 



high-velocity frictional behavior is very different from low-velocity frictional behavior, 

especially at the beginning of slip, when we observed a rapid decrease of shear stress. 

Furthermore, the steady-state values of the friction coefficient were much smaller in our 

high-velocity friction tests than in the low-velocity tests. The high-velocity frictional 

behavior in quartz-rich powdered gouge material is also different from that in solid rock 

[Tsutsumi and Shimamoto, 1997; Hirose and Shimamoto, 2005; Hirose and 
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Bystricky, 

2007]. Rock-on-rock friction in the low-velocity tests showed a much higher friction 

coefficient (0.4 to more than 0.6), though a rapid decrease of strength was commonly 

observed. The strength reduction might be associated with development of a molten 

layer, though in our gouge experiment we did not identify pseudotachylyte material and 

the temperatures reached were probably too low to melt the sample. Therefore, different 

concepts are needed to explain the low friction at high speed in the fault gouge. 

Previously reported in situ temperature deficits [Tanaka et al., 2006a, 2006b; Kano et 

al., 2006] imply that dynamic friction was very low during the 1999 Chi-chi earthquake. 

They indicate that a friction coefficient as low as 0.05 to 0.12 is necessary to explain the 

heat deficit observed around the Chelungpu fault zone. In our low-velocity tests, we 

observed a high steady-state friction coefficient (a lowest value of 0.4) in all fault 

gouges, even under wet conditions. In contrast, the high-velocity steady-state value of 



the friction coefficient was very low, only 0.2, a similar value to that of the crushed 

gouge obtained from the deep borehole penetrating the Chelungpu fault [Tanikawa et al., 

2007]. If these low friction values can be extrapolated to depth (though the 

high-velocity tests were carried at very low normal stress), we can reasonably explain 

the observed temperature anomaly.  
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We observed no remarkable difference in high-velocity frictional behavior of the 

northern and the southern gouges. On the other hand, our numerical modeling of the 

thermal pressurization weakening mechanism showed that thermal pressurization 

probably occurred along the northern section of the fault, but not along the southern 

section of the fault. In our modeling, the thermal properties, slip zone width, and slip 

velocity we used were the same in the north and south, so the different degrees of 

thermal pressurization along the fault were likely caused by stratigraphically controlled 

hydrological variations in the fault zone. In the south, the slip zone is at the stratigraphic 

boundary between the permeable Toukoshan Formation and the Chinshui Shale. In the 

north, however, slip occurred within the impermeable Chinshui Shale. This structural 

contrast of the Chelungpu fault can be extrapolated to at least 3 to 4 km depth [Yue et al., 

2005], which explains the relatively lower permeability of the northern fault zone. 

Thermal pressurization not only enhances the decrease of stress but also increases fault 



instability according to the value of DC, as follows [Mikumo et al., 2003; Wibberley and 

Shimamoto, 2005]. For similar decreases of fault strength, a fault would be less stable 

for smaller values of Dc. This is because instabilities arise from a force imbalance if the 

fault weakens at a faster rate during rupture than the decrease of driving shear stress in 

the surrounding medium. Hence, the enhancement of stress release and increased fault 

instability during dynamic slip as a result of thermal pressurization may explain the 

greater slip displacement in the northern Chelungpu fault zone. 
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Recent studies have proposed other possible dynamic weakening mechanisms. The 

lack of microscopic evidence for melting [Hirono et al., 2006] suggests that melt 

lubrication [Hirose and Shimamoto, 2005] was not the main dynamic weakening 

mechanism for the northern fault zone. Ma et al. [2003] suggested that dynamic 

weakening in the north may have been caused by a hydrodynamic lubrication 

mechanism [Brodsky and Kanamori, 2001], but did not provide mechanical or physical 

data for fault gouge material to support their assertion. Chemical reactions caused by 

thermal decomposition are another possible weakening mechanism [Han et al., 2007], 

as several chemical anomalies associated with heating have been observed in the 

Chelungpu fault [Hirono et al., 2006; Mishima et al., 2006]. However, the likelihood of 

this is low because the fault rocks are composed mainly of quartz and feldspar, and lack 



the minerals that are commonly involved in thermal decomposition. When flash 

weakening [Rice, 2006; Beeler et al., 2008] occurs at microscopic asperity contacts on a 

fault, where very high temperatures are generated at very short-lived contacts, it results 

in a dramatic reduction in shear strength due to melting or phase transition at asperity 

contacts. We observed magnetic susceptibility change of gouge samples (Table 3) and 

partial gel formations of Teflon at lateral of cylindrical samples after high-velocity 

friction tests, suggesting a moderate temperature increase at the slip surface. Magnetic 

property change of the fault rocks in the Chelungpu Fault was well studied [Mishima et 

al., 2006; Tanikawa et al., 2007], and the magnetic susceptibility change suggests 

temperature within the fault gouge was raised at least 400°C due to frictional heating, 

which is consistent with the melting of Teflon jacket (melting point is 327 °C) . 

High-velocity friction tests were performed at dry condition, where thermal 

pressurization mechanism is neglected, therefore the large dynamic stress drop observed 

in high-velocity friction tests can be explained by flash weakening model. The slip rates 

of the Chelungpu Fault and high-velocity friction tests are large enough to cause 

dynamic weakening by flash heating [Beeler et al., 2008], whereas the large slip 

weakening distances observed in both the seismic data [Zhang et al., 2003] and friction 

tests (several m) are inconsistent with flash heating model. Therefore flash weakening 
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model is not enough to satisfy the slip behavior of the Chelungpu Fault. 524 
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We assumed 20 mm thickness of deformation zone for the thermal pressurization 

analysis, though it is, in general, difficult to define the deformation thickness accurately. 

7 mm thickness of the fault gouge layer was observed at the FZ-B and 1 mm thick dark 

gray layer was observed at the FZ-C in the north shallow borehole [Tanaka et al., 2002], 

though blackish ultracataclasite layers 10 to 20 mm thick are developed in the center of 

fault zones at the TCDP deep borehole [Hirono et al., 2006]. Therefore thickness of the 

slip zone of the Chelungpu Fault can be in the range of several mm to several ten mm. If 

the thickness of shear zone is within the range of 5 to 100 mm, the contrasting slip 

behavior that thermal pressurization is relatively effective in the north and ineffective in 

the south is still acceptable (Figure 10).  

It is not certain that the low-velocity friction behavior evaluated using the shallow 

borehole samples represent the friction behavior at the hypocentral depth of the Chi-Chi 

earthquake (8-10 km) [Chang et al., 2000; Kuo et al., 2000]. Assuming a liner 

temperature gradient (22-30 °C/km) [Suppe and Wittke, 1977; Kano et al., 2006] and a 

hydrostatic stress, the temperature and the vertical stress at the hypocentral depth are 

estimated to be 200-300 °C and 120-150 MPa, respectively. Therefore, thermally driven 

mineral transitions, such as dehydration of smectite to illite and dehydroxidation of 



kaolinite, can occur in the fault zone at depth. In the western Taiwan basin, the 

transition depth from smectite to illite is assumed to be around 4 km [Tanikawa et al., in 

press], therefore, illite-rich gouges are expected in the northern fault zone at the 

hypocentral depth. On the other hand, the dominant composition of the fault gouge may 

not change in the southern gouge because the fault gouge is mainly composed of quartz. 

Even if the transformation of smectite to illite occurs at a depth of fault zones, the stable 

slip behavior is expected, because illite-rich gouge shows only velocity-strengthening 

behavior over the entire range of normal stress [Saffer and Marone, 2003]. Therefore, 

the contrasting velocity-dependent frictional behavior between the northern and the 

southern fault rocks is expected at the hypcentral depth, on the assumption that the 

variation of the relative proportion of clay and quartz within the fault zone, which is 

observed at shallow borehole samples, is preserved at the hypocentral depth. 
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6. Conclusions 

The behavior of fault gouge materials from shallow boreholes on the Chelungpu fault 

during high-velocity slip is much different than during low-velocity slip. At high slip 

rates, a rapid reduction of friction was observed immediately after the onset of slip. We 



found the behavior of northern and southern gouge was similar during high-velocity slip. 

In contrast, permeability distributions showed differences between the north and south. 

Even though specific storage values were similar, permeability was shown to be one 

order of magnitude smaller in the north than in the south. Thermal pressurization 

modeling using the measured frictional and transport properties indicated that thermal 

pressurization was relatively effective in the north, where dynamic stress reduction was 

enhanced by an increase of pore pressure due to frictional heating. In contrast, thermal 

pressurization was ineffective in the south. The contrasting slip behavior between north 

and south is, therefore, explained by the effectiveness of fault weakening due to thermal 

pressurization. 
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Assuming that the behavior of wet gouge under low-velocity friction is representative 

of the faulting mechanism, the velocity-weakening friction behavior in the south is 

consistent with nucleation of the 1999 Chi-Chi earthquake.  The probable low friction 

during the slip event, as estimated from in situ temperature measurements, can be 

explained by the occurrence of thermal pressurization during the earthquake and 

dramatic fault weakening during high-velocity slip in the north. 
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Captions 758 



 759 



Figure 1. (a) Geological map and geological column of the study area (after Lo et al., 

1999; Huang et al., 2000; Wang et al., 2000) showing locations of the northern 

(Fengyuan) and southern (Nantou) shallow drilling sites, and the deep TCDP drillhole. 

(b) Geological cross section through the area affected by the 1999 Chi-Chi earthquake 

(after Mouthereau et al., 2002). The location of the mainshock is shown by a star. (c) 

Geological interpretation of a shallow reflection seismic section at the northern borehole 

site. (d) Geological interpretation of a shallow reflection seismic section at the southern 

borehole site (modified from Wang et al., 2002 and Yue et al., 2005). Seismic data 

interpretation was correlated with shallow borehole data and surface dip measurements. 
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 770 



Figure 2. Lithologic columnar sections of northern (Fengyuan) and southern (Nantou) 

wells (Huang et al., 2002;Tanaka et al, 2002) and sample location. FZ-A to FZ-D 

indicate the candidate fault zones related to the Chi-Chi earthquake. 
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 775 

776 Figure 3. (a) XRD patterns from oriented, glycolated and air-dried fault gouge samples 



used in the double-layered low-velocity experiments. Sm, smectite; Ch, chlorite; I, illite; 

K, kaolinite; Qz, quartz; Pf, potassium feldspar. (b) Shear stress and normal stress 

history of one experimental set. Before the velocity-stepping tests, gouge layers were 

subjected to two shear-load cycles at high normal stress (19 MPa) to create a fresh 

surface area. Slide-hold-slide (SHS) tests were carried out at a normal stress of 14 MPa. 

(c) Schematic diagram of the apparatus used for the biaxial low-velocity friction tests. 

(d) Schematic diagram of the apparatus used for the high-velocity rotation (HVR) 

friction tests. 
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Figure 4. Friction coefficient vs. displacement curves under various conditions of 

normal stress and relative humidity for fault gouges from (a) the northern borehole, and 

(b) the southern borehole. (c) and (d) velocity dependence of steady-state friction as a 

function of velocity for the same fault rocks shown in Figure 3a, and b.  

 



 792 

793 

794 

795 

796 

797 

Figure 5. Friction as a function of slip displacement for the high-velocity friction tests 

of fault gouge samples at various normal stress levels and a constant equivalent slip 

velocity of 1.03 m/s. Fault gouges from (a) the northern borehole, and (b) the southern 

borehole. 
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Figure 6. Permeability as a function of effective pressure during one pressure cycling 

test for (a) the northern, and (b) the southern shallow borehole samples. k1 and k2 are 

the permeabilities of the slip zone and the surrounding rock, respectively, which were 

used for thermal pressurization analysis. 
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Figure 7. Permeability distributions at depths from 1 to 3 km around the slip zone at (a) 

the northern shallow borehole site and (b) the southern shallow borehole site. 
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Figure 8. Porosity as a function of effective pressure for (a) the northern and (b) the 

southern shallow borehole samples. Specific storage as a function of effective pressure 

for (c) the northern and (d) the southern shallow borehole samples. Specific storage was 

determined from porosity data shown in Figure 8a and 8b. Drained pore compressibility 

was estimated from porosity. Φ1 and Φ2 are the porosities of the slip zone and the 

surrounding rock, respectively, which were used for thermal pressurization analysis. 
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Figure 9. Shear stress evolution curves vs. slip displacement associated with thermal 

pressurization calculated at various depths for (a) the northern and (b) the southern 
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828 

shallow borehole site. A one-dimensional finite-difference calculation based on the 

theory of Lachenbruch (1980) was performed using measured permeability and storage 

capacity values as a function of effective pressure along with friction data from the 

high-velocity friction tests. Fault strength is shown as a normalized shear stress with 

respect to the initial shear stress, assuming that the shear stress depends on the effective 

normal stress and displacement as determined by the high-velocity friction tests. 

Estimated temperature rise at the center of the slip zone during slip at (c) the northern 

and (d) the southern shallow borehole site taking into account thermal pressurization 

process. Estimated pore pressure rise at the center of the slip zone at (e) the northern 

and (f) the southern shallow borehole site. 

 

 829 

830 Figure 10. Shear stress evolution curves vs. slip displacement associated with thermal 



pressurization calculated at 2 km depth and at various thickness of deformation zone for 

(a) the northern and (b) the southern shallow borehole site. 
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Symbol Value Units Comment and Reference 

αf 5×10-4 ℃-1 Coefficient of thermal expansibility of fluid (Luo & Vasseur 1992) 

βf 4.4×10-10 Pa-1 Compressibility of fluid (Luo & Vasseur 1992) 

ρs 2500 kg m-3 Bulk density of sediments 

ρw 1000 kg m-3 Density of water 

T0 20 ℃ Surface temperature (z=0) 

δT/δz 25 K km-1 Geothermal gradient (Suppe & Wittke, 1977) 

κ 2 W m-1 K-1 Heat conductivity (Tanaka et al., 2006b) 

c 800 J kg-1 K-1 Heat capacity (Tanaka et al., 2006b) 

 

Table 1. Physical parameters used for thermal pressurization analysis. 

 



Permeability [m2] / Porosity [%] during pressurizing path 

Sample Well 
Depth 

[m] 
Rock type Formation Method Pc [MPa] 

Pp 

[MPa] Pe 10 [MPa] 20 30 40 50 60 

Parameter 

used for 

TP 

analysis 

Permeability              

NSA1 N 40.5 Sandstone Chinshui OPP 50-202 20  ― ― 1.7E-15 6.8E-16 9.4E-17 1.7E-17  

NSA2 N 40.5 Sandstone Chinshui SSF 5.5-101 0.1-1  5.2E-15 3.2E-15 1.9E-15 5.7E-16 2.0E-16 4.6E-17  

NGF1 N 51 Fault gouge Chinshui SSF 2.9-140.6 0.1-1.1  2.3E-15 6.0E-16 3.2E-16 2.0E-16 9.5E-17 ―  

NSA3 N 283 Sandstone Kueichulin SSF 2.1-202 0.05-0.8  4.7E-14 4.5E-14 4.4E-14 4.1E-14 4.3E-14 4.2E-14  

NSA4 N 283 Sandstone Kueichulin SSF 3.9-201.2 0.1-0.8  5.6E-14 5.0E-14 4.8E-14 4.7E-14 4.5E-14 ―  

NFG1 N 305.5 Fault gouge Kueichulin SSF/OPP 3.3-80.4/101.5-170.4 0.1-0.7/20  3.7E-16 1.3E-16 3.9E-17 1.6E-17 ― 4.5E-18 k1 

NFB1 N 326.5 Fault breccia Kueichulin SSF 5-160 0.4-1.6  1.1E-16 4.5E-17 2.4E-17 1.1E-17 ― 5.3E-18 k2 

NFB2 N 326.5 Fault breccia Kueichulin SSF/OPP 3.1-30.8/51.4-199.6 0.1-0.6/20  4.0E-17 2.2E-17 8.0E-18 5.1E-18 ― 2.3E-18  

NSA5 N 355.5 Sandstone Kueichulin SSF 3.2-199.1 0.1-1  1.0E-14 7.5E-15 6.3E-15 5.6E-15 5.0E-15 4.6E-15  

NSI1 N 402.5 Siltstone Kueichulin SSF/OPP 3-30.8/60.2-121.9 0.1-0.7/20  2.4E-16 3.6E-17 1.1E-17 1.7E-18 ― 1.1E-19  

NFG0 ― 0 Fault gouge Chinshui SSF/OPP 3.4-80.3/100.5-198 0.2-2/20  1.2E-15 3.4E-16 7.2E-17 2.1E-17 9.5E-18 3.9E-18  

SSS1 S 30 Sheared sandstone Chinshui SSF 2.9-199.5 0.2-0.7  1.7E-15 9.9E-16 6.9E-16 5.5E-16 3.9E-16 ―  

SFF1 S 156.5 Foliated fault breccia Chinshui SSF 5-120 0.2-1.8  1.6E-15 2.6E-16 6.4E-17 2.1E-17 1.0E-17 4.3E-18  

SFF2 S 156.5 Foliated fault breccia Chinshui SSF/OPP 2.8-21.2/30-142.5 0.2-0.7/20  4.5E-17 1.5E-17 4.1E-18 2.0E-18 1.3E-18 ―  

SFF3 S 173.5 Foliated fault breccia Chinshui SSF 3.1-110.8 0.2-0.8  2.7E-15 6.6E-16 1.9E-16 7.7E-17 3.6E-17 1.7E-17 k1 

SC1 S 178 Clay Toukoshan SSF 2.9-181 0.1-0.5  3.4E-14 2.3E-14 1.5E-14 9.0E-15 6.1E-15 4.6E-15 k2 

SC2 S 180 Clay Toukoshan SSF 3.5-25 0.1-1  1.9E-17 3.4E-18 7.1E-19 ― ― ―  

SG1 S 194 Gravel (clay matrix) Toukoshan SSF 3-199.7 0.2-1.8  2.7E-15 8.5E-16 5.3E-16 3.0E-16 2.2E-16 1.6E-16  

SG2 S 194 Gravel (clay matrix) Toukoshan SSF 2.5-81.6/100.5-198 0.2-1/20  9.2E-14 6.6E-14 4.4E-14 2.6E-14 1.8E-14 1.3E-14  



Porosity              

NFG3 N 51 Fault gouge Chinshui  5-160.5 0.6-0.7  24.8 22.2 20.3 19.0 17.7 16.5   

NFG4 N 51 Fault gouge Chinshui  2.9-140.6 0.3  17.9 16.3 14.8 13.5 13.8 ―  

NSI2 N 144 
Siltstone (with sand 

layer) 
Chinshui  5-160.5 0.65  

9.5 8.8 8.4 8.1 7.9 7.6  
 

NSI3  N 299 Siltstone Kueichulin  5-160.6 0.55-0.6  15.0 13.9 13.1 12.4 ― 11.1   

NFG5 N 305 Fault gouge Kueichulin  3.3-80.4/101.5-170.4 0.3/21  43.5 41.5 38.3 37.9 ― 36.7  φ1 

NFB3 N 326.5 Fault breccia Kueichulin  3.1-30.8/51.4-199.6 0.3/20  12.7 10.5 7.9 7.1 ― 5.5  φ2 

NSI4 N 402.5 Siltstone Kueichulin  3-30.8/60.2-121.9 0.3/20  4.8 3.4 3.3 2.6 ― 1.7   

NSI5 N 402.5 Siltstone Kueichulin  5-160.5 0.62  9.6 9.1 ― ― 8.5 8.1   

NFB4 N 415 Fault breccia Kueichulin  5-120.6 0.6-0.7  14.8 12.1 10.6 9.5 8.7 8.0   

SSS2 S 30 Sheared sandstone Chinshui  2.9-199.5 0.3  17.2 14.5 13.5 12.5 ― 12.0   

SFF4 S 156.5 Foliated fault breccia Chinshui  2.8-21.2/30-142.5 0.3/20  11.1 9.8 9.2 8.5 7.9 ―  

SFF5 S 167.2 Foliated fault breccia Chinshui  5.6-120.8 0.9-1  12.8 11.2 10.2 9.5 8.8 8.3   

SFF6 S 170 Foliated fault breccia Chinshui  5.6-120.6 0.95-1.1  16.4 14.6 13.4 12.6 11.8 11.2  φ1 

SC3 S 178 Clay Toukoshan  2.9-181 0.3  28.2 24.7 22.1 20.8 18.9 18.0  φ2 

 

Table 2. Summary of the results of permeability and porosity measurements on core samples from the northern and the southern shallow holes. OPP: 

oscillating pore pressure method; SSF: steady state gas flow method. NFG0 is an outcropped sample at Ta-Chia River near Shihkang Dam. 

 



  μr μi dC χ0 [10-8 m3/kg] χhvr

North 0.15 0.95 8.8 10.8  3.5  

South 0.22 1.03 6.4 23.7  30.1  

 

Table 3. Fitting parameters of dynamic friction in equation (7) used for thermal 

pressurization analysis, and bulk magnetic susceptibilities before (χ0) and after (χhvr) 

high-velocity friction test. Bulk magnetic susceptibility was measured with a KLY-3S 

Spinner Kappabridge (AGICO, Czech Republic ltd.). 

 


