HYPERBOLIC KNOTS WITH THREE TOROIDAL DEHN
SURGERIES

MASAKAZU TERAGAITO

ABSTRACT. It is conjectured that a hyperbolic knot admits at most three
Dehn surgeries which yield closed 3-manifolds containing incompressible tori.
We show that there exist infinitely many hyperbolic knots which attain the
conjectural maximum number. Interestingly, those surgeries correspond to
consecutive integers.

1. INTRODUCTION

For a knot K in the 3-sphere S?, let E(K) = S? —IntN(K) be its exterior, where
N(K) denotes a tubular neighborhood of K. A slope « is the isotopy class of an
unoriented essential simple loop on OE(K). Slopes are parameterized by the set
Qu {1/0} in the usual way (see [19]). In particular, 1/0 corresponds to the slope
of a meridian. A slope is said to be integral if it corresponds to an integer. Thus
an integral slope runs once along the knot. For a slope «, let K(a) be the closed
orientable 3-manifold obtained by a-Dehn surgery on K, that is, K () is the union
of E(K) and a solid torus V', where V' is attached to E(K) along their boundaries
so that a meridian of V' goes to « on 0E(K).

Assume that K is a hyperbolic knot. When K («) is not hyperbolic, the slope «
is called an ezxceptional slope, and the surgery is also said to be ezceptional. Each
hyperbolic knot has only finitely many exceptional slopes by Thurston’s hyperbolic
Dehn surgery theorem [22]. It is conjectured that except the figure-eight knot
and the (—2,3, 7)-pretzel knot, any hyperbolic knot admits at most six exceptional
slopes [15, Problem 1.77(A)(1)]. On the other hand, the resulting manifold by an
exceptional Dehn surgery is expected to be either S3, a lens space, a Seifert fibered
manifold over the 2-sphere with three exceptional fibers (referred to as a small
Seifert fibered manifold), or a toroidal manifold [8]. Here, a toroidal manifold is a
closed 3-manifold which contains an incompressible torus.

According to the type of the resulting manifold, an exceptional surgery is referred
to as a lens space surgery, a Seifert surgery or a toroidal surgery, respectively. By
Gordon and Luecke’s theorem [9], only 1/0-Dehn surgery can yield S? for a non-
trivial knot. The cyclic surgery theorem [2] implies that a hyperbolic knot admits
at most two lens space surgeries, which must be integral, and if there are two, they
are consecutive. In fact, there are infinitely many hyperbolic knots with two lens
space surgeries. Except the figure-eight knot with six Seifert surgeries, a hyperbolic
knot seems to admit at most three Seifert surgeries. Recently, Deruelle, Miyazaki
and Motegi [3] gave a hyperbolic knot with three Seifert surgeries corresponding to
any successive three integers.
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In this paper, we will focus on toroidal surgeries. Eudave-Muifioz [4] conjectured
that any hyperbolic knot admits at most three toroidal surgeries (see also [15,
Problem 1.77(A)(5)]). This conjecture holds for 2-bridge knots [1] and Montesinons
knot [24]. In general, the best result forward this direction is Gordon and Wu’s
one [12] which claims that a hyperbolic knot admits at most four toroidal surgeries,
and if there are four, then they correspond to consecutive integers. As far as
we know, the only examples of hyperbolic knots that realize the expected optimum
number are the figure-eight knot and the (—2, 3, 7)-pretzel knot, with toroidal slopes
{—4,0,4} and {16,37/2,20}, respectively. The purpose of this paper is to give the
first infinite family of hyperbolic knots with three toroidal surgeries. Interestingly,
these toroidal surgeries correspond to consecutive integers.

Theorem 1.1. There are infinitely many tunnel number one, hyperbolic knots, each
of which admits three toroidal Dehn surgeries corresponding to consecutive integers.

Our construction is based on the Montesinos trick [16]. We will construct a tangle
which can produce the unknot by summing some rational tangle. This implies that
the double branched cover of the tangle gives the exterior of a knot in S3. The
tangle is carefully given so that the sums with three rational tangles yield knots
or links which admit essential Conway spheres. Thus our knot will admit three
toroidal surgeries. The idea of the tangle is a variation of the pentangle introduced
by Gordon and Luecke in [10] for a different purpose. Although it is easy to see
that our tangle admits two rational tangle sums yielding essential Conway spheres,
it came as a surprise that the third rational tangle sum also yields an essential
Conway sphere.

As an additional interesting feature, one of the toroidal surgeries for each of our
knots yields a closed 3-manifold which contains a unique incompressible torus meet-
ing the core of the attached solid torus in exactly four points, but does not contain
an incompressible torus meeting the core in less than four points. Such examples of
toroidal surgeries on hyperbolic knots have been already given by Eudave-Munoz
[6]. The simplest knot among his knots seems to have genus 37 as he wrote, but
our simplest knot, as shown in Fig. 10, has genus nine.

2. CONSTRUCTION

A tangle is a pair (B,t) where B is a 3-ball and ¢ is a finite disjoint union of
simple closed curves and properly embedded arcs.

For an integer n > 2, consider the tangle T,, = (B,t) as shown in Fig. 1, where
B is the 3-ball obtained from S$® by removing the interior of the 3-ball D. Here,
the rectangle labeled by an integer n (resp. —n) denotes n right-handed (resp.
left-handed) vertical half-twists. (Although T,, can be defined for any integer n,
the restriction n > 2 suffices to prove our result.)

We will insert several rational tangles into D, giving a knot or link in S®. In fact,
we use only the rational tangles illustrated in Fig. 1, where we adopt the convention
of [7].

A filling of T,,, T, (), refers to filling D with the rational tangle of slope a. Let
T (a) denote the double branched cover of $* branched over T, ().

Lemma 2.1. T,,(1/0) = S3.
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FiGURE 1. The tangle T},
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FI1GURE 2. Rational tangles

Proof. This easily follows from the figures. After inserting the 1/0-tangle into D,
the two twist boxes are canceled, and we see that T3,(1/0) is the unknot. Thus the
double branched cover T,(1/0) is S®. O

Since the lift of a rational tangle is a solid torus, the lift of the 3-ball B of the
tangle T,, = (B,t) gives the exterior of a knot in S®, which is denoted by K,.

We use M (r, s) to denote the Montesinos tangle consisting of two rational tangles
corresponding to the rational numbers r and s, respectively. (See [11].) The double
branched cover of M (r, s), denoted by D?(r, s), is the Seifert fibered manifold over
the disk with two exceptional fibers of type r and s.

Lemma 2.2. T,,(0) = D2(1/2,1/3) U D2(1/n,—1/(n + 1)).

Proof. Figure 3 shows T,(0) which is decomposed along a tangle sphere P into two
Montesions tangles M (1/2,1/3) and M (1/n, —1/(n+1)). Thus T}, (0) is decomposed
along a torus into two Seifert fibered manifolds D?(1/2,1/3) and D?*(1/n,—1/(n+
1)), where the Seifert fibers intersect once on the torus. O

Lemma 2.3. T,,(—1) = D2(1/2,1/n) U D2(=1/2,-1/(n + 1)).
Proof. 1t follows from Fig. 4 similar to the proof of Lemma 2.2. O

Lemma 2.4. T,,(—2) = D?(=2/3,1/(n+ 1)) U D2(—=2/3,—-1/n).

Proof. Following the sequence of isotopies as in Fig. 5, T},(—2) is decomposed along
a tangle sphere P into two Montesinos tangles as desired. d
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Ficgure 3. O-filling

Ficure 4. (—1)-filling

3. PROPERTIES OF K,

Lemma 3.1. K,, admits three toroidal slopes which correspond to three successive
integers. Moreover, one of the toroidal surgeries yield a closed 3-manifold which
contains an incompressible torus meeting the core of the attached solid torus in four
points, but does not contain an incompressible torus meeting the core in less than
four points.

Those integral slopes will be calculated in the next section by using an explicit
description of K,,.

Proof. The first conclusion immediately follows from Lemmas 2.2, 2.3 and 2.4. We
remark that if O-filling for T, lifts to an integral slope m for K,,, then (—1)-filling
and (—2)-filling lift to m + 1 and m + 2, respectively.

In the double branched cover T, (0), the lift of the arc & as shown in Fig. 3
gives the core ¢ of the attached solid torus of the surgery on K, corresponding
to the O-filling 77,(0). Since £ meets the Conway sphere P in two points, ¢ meets
the incompressible torus R as the lift of P in four points. Let M; and M> be the
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FIGURE 5. (—2)-filling

Montesions tangles in the tangle decomposition of Tn(O) as shown in Fig. 3, and let
F; be a disk in M; which divides M; into two rational tangles for i = 1,2. Moreover,
we can choose F; so that ENM; C F; for i = 1,2. Then each component of £€N M; is
either an arc going from 0F; to an intersection point with the strings, or a spanning
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arc in F; which splits it into two disks, each having a point of intersection with the
strings. This implies that ¢ and R intersect minimally in four points by [6, Example
1.4].

%t is well known that each M; admits the unique Seifert fibration [23]. Since the
Seifert fibers of each side intersect once on the torus R by Lemma 2.2, Tvn(O) does
not admit a Seifert fibration. In other words, {R} gives the torus decomposition of
T,,(0) in the sense of Jaco-Shalen [13] and Johannson [14]. Thus T,,(0) contains a
unique incompressible torus, which implies the second conclusion. d

We remark that for the other two toroidal surgeries for K,,, the resulting manifold
contains an incompressible torus which meets the core of the attached solid torus
in two points.

Recall that a knot K has tunnel number one if there exists an arc 7 with KN7 =
Ot such that S® — Int N (K U ) is a genus two handlebody. Then such an arc 7 is
called an unknotting tunnel for K.

Lemma 3.2. K,, has tunnel number one.

Proof. The sphere S illustrated in Fig. 1 splits the tangle T;, into two parts, one
being a 3-string trivial tangle, and the other being as shown in Fig. 6. (Such a
decomposition is called a 3-bridge decomposition in [6].) The lift of this decom-
position to the exterior of K, gives a genus two Heegaard splitting. Thus K,, has
tunnel number at most one. Since K, admits a toroidal surgery by Lemma 3.1, K,
is non-trivial, so its tunnel number is one. d

In Fig. 9, an unknotting tunnel 7 for K, is shown by a dotted line.

FIGURE 6

Lemma 3.3. K,, is hyperbolic.

Proof. The argument is the same as the proof of Theorem 3.2(3) in [6]. Assume
that K, is not hyperbolic. Then K, is either a torus knot or a satellite knot.
Since no surgery on a torus knot produces an incompressible separating torus, K,
is not a torus knot. Hence K, is a satellite knot. Because K,, has tunnel number
one by Lemma 3.2, K, is a satellite of some torus knot by [5, 17]. Let @ be
the incompressible torus in E(K,) which bounds the torus knot exterior. More
precisely, Q decomposes S® into V UN, where N is the torus knot exterior and V is
a solid torus containing K, in its interior. Let a be the toroidal slope corresponding
to O-filling of T),. Since the toroidal manifold K,(a) = T},(0) contains the unique
incompressible separating torus which meets the core of the attached solid torus
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in four points by Lemmas 2.2 and 3.1, @ is compressible in K, (). This means
that the boundary torus 9V of V' is compressible after performing a-surgery along
K,. By [20], the resulting manifold obtained from V by a-surgery on K, is either
a solid torus or the connected sum of a solid torus and a lens space. The latter
is impossible, because K,(«) is irreducible and not a lens space. If the former
happens, then K, (a) is obtained by surgery along a torus knot. This contradicts
the fact that any surgery on a torus knot does not produce an incompressible
separating torus [18]. O

4. EXPLICIT DESCRIPTION OF K,

First, we give an explicit description of K,. Consider the 1/0-filling T,,(1/0) of
the tangle T,,. Let k denote the unknot T,(1/0). To keep track of the framing,
we indicate a band b as shown in Fig. 7. Since k is trivial, it can be deformed
so that it looks like a standard circle. During this deformation, the band b gets a
complicated appearance. In particular, we should be careful with the twists on the
band. See Fig. 7 and Fig. 8, where a full twist means a right-handed full twist.
(In Fig. 8, we indicate only the core of b for simplicity.) Let b be the lift of b in
the double cover S3 branched over k. Then the core of b is exactly the knot K,,
and the framing of b represents the slope corresponding to 0-filling for T,,. Figure
9 shows K, according to the parity of n. In Fig. 9, K,, has writhe —3n and b
is represented as a flat band with (—3)-full twists before adding the 4-full twists
and the 1-full twist indicated there as boxes. Hence we see that b has the framing
(=3n —3) +4(n +1)? + n? = 5n” + 5n + 1 after performing those twists. See [4, 6]
for this kind of procedure.

?

FIGURE 7. The unknot k£ with band b

2-full \

twists

Hence we have the following.

Proposition 4.1. The three toroidal slopes for K,, correspond to 5n*>+5n+1,5n2+
5n + 2,51 + 5n + 3.

Proposition 4.2. K,, is a fibered knot of genus (5n* —n)/2.

Proof. As seen in Fig. 9, K, is represented as a closed braid. It is obvious that
K, will be a closed positive braid after canceling negative crossings with positive
crossings coming from the 4-full twists. By [21], K, is fibered. Moreover, its genus
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FIGURE 8. The unknot k¥ with band b (cont’d)
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Ficure 9. K,

can be easily calculated by counting the number of crossings in the closed posi-
tive braid presentation, because the Seifert surface obtained by applying Seifert’s
algorithm to the presentation is minimal genus [21]. O
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Proof of Theorem 1.1. This immediately follows from Lemmas 3.1, 3.2, 3.3,
and the fact that K,,’s are mutually distinct, which is a consequence of Proposition

4.2.

O

For reader’s convenience, we exhibit the simplest K2 of genus nine in Fig. 10.

2000000000

FiGure 10. K, with toroidal slopes 31, 32,33
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