## ICPR2006 @ Hong Kon 路

## String-like Occluding Region

 Extraction for Background RestoratioToru Tamaki, Hiroshi Suzuki, Masanobu Yamam


## ICPR2006 @ Hong Kong

## String-like Occluding Region Extraction for Background Restoration

Toru Tamaki, Hiroshi Suzuki, Masanobu Yamamoto


## ICPR2006 @ Hong Kong

## String-like Occluding Region Extraction for Background Restoration

Toru Tamaki, Hiroshi Suzuki, Masanobu Yamamoto


## ICPR2006 @ Hong Kong

## String-like Occluding Region Extraction for Background Restoration

Toru Tamaki, Hiroshi Suzuki, Masanobu Yamamoto

## ICPR2006 @ Hong Kong

## String-like Occluding Region

 Extraction for Background RestorationToru Tamaki, Hiroshi Suzuki, Masanobu Yamamoto


## ICPR2006 @ Hong Kong

## String-like Occluding Region Extraction for Background Restoration

Toru Tamaki, Hiroshi Suzuki, Masanobu Yamamoto


## modal / amodal completion



modal<br>completion



## amodal completion in real scenes



## Our Goal

- Objective
- Find occluding regions: given an image only
- Recover the background scene

■ What's "occlusion" ?

- difficult to define...
- Related Researches
- task-depend object detection
$\rightarrow$ glasses
$\rightarrow$ rain
$\rightarrow$ fences
$\rightarrow$ etc.


## Our Goal

- Objective
- Find occluding regions: given an image only
- Recover the background scene

■ What's "occlusion"?

- difficult to define...
- Our Target
- string-like regions
$\rightarrow$ strings, wires, fences, branches, etc.
- properties
$\rightarrow$ long and narrow
$\rightarrow$ small, but not tiny
$\rightarrow$ contrast with background
$\rightarrow$ same background in both sides



## Our Goal

- Objective
- Find occluding regions: given an image only
- Recover the background scene

■ What’s "occlusion" ?

- difficult to define...
- Our Target
- string-like regions
$\rightarrow$ strings, wires, fences, branches, etc.
- properties
$\rightarrow$ long and narrow
$\rightarrow$ small, but not tiny
$\rightarrow$ contrast with background
$\rightarrow$ same background in both sides



## Our Goal

- Objective
- Find occluding regions: given an image only
- Recover the background scene

■ What's "occlusion"?

- difficult to define...
- Our Target
- string-like regions
$\rightarrow$ strings, wires, fences, branches, etc.
- properties
$\rightarrow$ long and narrow
$\rightarrow$ small, but not tiny
$\rightarrow$ contrast with background
$\rightarrow$ same background in both sides



## Our Goal

- Objective
- Find occluding regions: given an image only
- Recover the background scene

■ What's "occlusion" ?

- difficult to define...
- Our Target
- string-like regions
$\rightarrow$ strings, wires, fences, branches, etc.
- properties
$\rightarrow$ long and narrow
$\rightarrow$ small, but not tiny
$\rightarrow$ contrast with background
$\rightarrow$ same background in both sides


## Our Goal

- Objective
- Find occluding regions: given an image only
- Recover the background scene

■ What's "occlusion"?

- difficult to define...
- Our Target
- string-like regions
$\rightarrow$ strings, wires, fences, branches, etc.
- properties
$\rightarrow$ long and narrow
$\rightarrow$ small, but not tiny
$\rightarrow$ contrast with background
$\rightarrow$ same background in both sides



## Circle Contrast: a proposed feature

Circle Contrast : $v(\boldsymbol{x})=I(\boldsymbol{x})-\frac{1}{2 \pi r_{1}} \int_{C_{1}(\boldsymbol{x})} I\left(\boldsymbol{x}^{\prime}\right) d \boldsymbol{x}^{\prime}$


## Circle Contrast: a proposed feature



## Circle Contrast: a proposed feature

Circle Contrast: $v(\boldsymbol{x})=\frac{1}{2 \pi r_{1}} \int_{C_{1}(\boldsymbol{x})} I(\boldsymbol{x})-I\left(\boldsymbol{x}^{\prime}\right) d \boldsymbol{x}^{\prime}$


## Circle Contrast: a proposed feature

Circle Contrast : $v(\boldsymbol{x})=\frac{1}{2 \pi r_{1}} \int_{C_{1}(\boldsymbol{x})} I(\boldsymbol{x})-I\left(\boldsymbol{x}^{\prime}\right) d \boldsymbol{x}^{\prime}$


## Circle Contrast in a flat region



## Circle Contrast at side of a string

$$
I(\boldsymbol{x})-I\left(\boldsymbol{x}^{\prime}\right) \neq 0
$$

$$
v(\boldsymbol{x}) \neq 0, \text { but small }
$$



## Circle Contrast at side of a string

$$
I(\boldsymbol{x})-I\left(\boldsymbol{x}^{\prime}\right) \neq 0
$$

$$
v(\boldsymbol{x}) \neq 0 \text {, but small }
$$



## Circle Contrast on the string

$$
\begin{array}{l|l}
I(\boldsymbol{x})-I\left(\boldsymbol{x}^{\prime}\right)=0 & v(\boldsymbol{x}) \neq 0, \text { but LARGE }
\end{array}
$$



## Circle Contrast on the string

$$
I(\boldsymbol{x})-I\left(\boldsymbol{x}^{\prime}\right)=0
$$

$$
v(\boldsymbol{x}) \neq 0, \text { but LARGE }
$$

A point $x$ where is
$v(\boldsymbol{x})$

- far from the region:

0

- near to the region: not 0, but small
- on the region: not 0, but large


## Circle Contrast across the string

$$
I(\boldsymbol{x})-I\left(\boldsymbol{x}^{\prime}\right)=0
$$

## Circle Contrast across the string

$$
I(\boldsymbol{x})-I\left(\boldsymbol{x}^{\prime}\right)=0
$$

## Circle Contrast across the string

$$
I(\boldsymbol{x})-I\left(\boldsymbol{x}^{\prime}\right)=0
$$

$$
I(\boldsymbol{x})-I\left(\boldsymbol{x}^{\prime}\right)<0
$$

$$
v(\boldsymbol{x})<0
$$

The circle contrast alters its sign as crossing a string-like region (from positive to negative, or vise versa)
black (0) white $C_{1}(x)$ (255)
black
(0)

## Circle Contrast as a spatial filter

How large is the circle enough?

## Response across the string



Response across the string


Response across the string


## Absolute with locally largest value




## An example




## string-like region

 extraction
## Evaluation for Extraction

original image
occluded image

difference image extracted image




$$
\begin{aligned}
& \mathrm{FN}: \frac{\#(S-T \cap S)}{\#(S)} \\
& \mathrm{FP}: \frac{\#(T-T \cap S)}{\#(\bar{S})}
\end{aligned}
$$

## Evaluation for Extraction

original image

occluded image

difference image extracted image



$$
\begin{aligned}
& \mathrm{FN}: \frac{\#(S-T \cap S)}{\#(S)} \\
& \mathrm{FP}: \frac{\#(T-T \cap S)}{\#(\bar{S})}
\end{aligned}
$$

## Evaluation for Extraction

original image

occluded image

difference image extracted image


$$
\begin{aligned}
& \mathrm{FN}: \frac{\#(S-T \cap S)}{\#(S)} \\
& \mathrm{FP}: \frac{\#(T-T \cap S)}{\#(\bar{S})}
\end{aligned}
$$

## Images for Evaluation



Total: over 180 images

## ROC Curve



False positive rate

## Circle contrast as the radius changes


appropriate parameter value:

$$
r_{1}=3 w
$$

## Binarization threshold of circle contrast

Threshold range: [0, 1]
Results are very sensitive to threshold
 $t h=0.006$

$t h=0.003$

$t h=0.007$

$t h=0.004$

$t h=0.010$


th $=0.020$

## Experimental results

## original image


interpolation


## Experimental results

original image Circle contrast


interpolation



- Circle Contrast
- the circle radius $r_{1}$ by user is requred
$\rightarrow$ depends on images given
- sign determination is not enough
$\rightarrow$ many artifacts
$\rightarrow$ inappropriate decision at cross sections
- binarization threshold is the critical parameter


## Conclusions

- String-like occluding object detection
- proposed and analyzed the Circle Contrast
$\rightarrow$ simple model
$\rightarrow$ good properties
$\rightarrow$ needs parameter tuning
- evaluated by experimental results with images
$\rightarrow$ quantitatively with ROC curve
$\rightarrow$ qualitatively as changing parameters
- showed results images
$\rightarrow$ with an simplest interpolation method
- Future works
- make the circle contrast more robust
- employ sophisticated binarization
- consider color and texture

