AN APPROACH TO TEACHING A COMPUTER PROGRAMMING LANGUAGE

Toru Tamaki¹ Takeshi Hagiwara² Yoshinobu Maeda² Yasuo Nakamura²

¹Graduate School of Science and Technology, Niigata University, Niigata, Japan ²Faculty of Engineering, Niigata University, Niigata, Japan

Programming Languages

Our Programming Course

30 weeks in total

- Two semesters, for a year
- 45h for lecture (class): 1.5h / week
- 90h for lab (practice): 3h / week
- C language

Students' Present Ability

About 100 students

had learned almost for a year. allowed to see any texts, but no talking. tasked 5 questions in 15 min.

Question :
 "rewrite the mathematical equation in C statement".

 $c = \frac{a+b}{c-\frac{d}{a+2}}$

Answer: x=(a+b)/(c-d/(a+2))

% of correct answers : 74%

Students' Present Ability

Question :

"fill the blanks to sum up all elements of the array a[128]"

```
int i, sum=0;
for(___;___;___)
    sum += a[i];
printf("%d\n", sum);
```

Answer:

for(i=0;i<128;i++)</pre>

% of correct answers : <u>41%</u>

Lack of fundamental knowledge
Necessity for training the basics

in C language:

```
#include <stdio.h>
int main(int argc, char *argv[]){
    printf("Hello World!\n");
    return 0;
}
```

Problems :

- Required to input the program, and execute it
- Many unknown symbols and rules
- No common basics with other programming languages

in C language:

- 1: #include <stdio.h>
- 2: int main(int argc, char *argv[]){
- 3: printf("Hello World!\n");

```
4: return 0;
```

```
5:
```

Line numbers :

- Provided for making code ease to see
- Must not be written into the actual program file
- May be seen as a part of the program for beginners

in C language:

- 1: #include <stdio.h>
- 2: int main(int argc, char *argv[]){
- 3: printf("Hello World!\n");
- 4: return 0;
- 5:]

```
#inclde (stdio.h)
int main(int argc, char *argv[]){
    prinf("Hello World!\n);
    return 0
}
```

in C language:

test.c: In function `main': test.c:1: undefined or invalid # directive test.c:1: `#include' expects "FILENAME" or <FILENAME> test.c:3: possible real start of unterminated constant test.c:3: unterminated string or character constant test.c:5: parse error before `}'

in C language: #include <stdio.h>
 int main(int argc, char *argv[]){
 printf("Hello World!\n");
 return 0;
 }

in Pascal: program hello(input, output);
 begin
 writeln('Hello World!');
 end.

Compatibility :

Different rules for different languages

Proposed Materials

Programming Drill

Beginning with the basics.

- · Common to all procedural languages.
- Based on C, but applicable to Pascal/Fortran/C++/etc.

Without execution on computers.

- · Writing answers on a paper
- · Computing by students' brains, not by computers

Without any knowledge about programming, only

a little mathematics in high-school level is needed.

- Fundamental mathematical functions (ex: sin / cos / exp)
- · Some symbols (ex. $\Sigma \pi e$)
- Repeat one topic with many exercises to train the sense of programming.

Contents of the Drill

Exercise 1.

"*Evaluation*" is to calculate (ex: the evaluation of 1+1 is 2). Evaluate the following statements in C.

statement:	answer:		
1+2	3		
22*3.3	42.6		
2-1	1		
10.2+5.1	15.3		
10/5	2		

Contents of the Drill

Exercise 2.

"*Evaluation*" is to judge a statement whether it is true:1 or false:0 (ex: The evaluation of 1>0 is 1, that is, true). Evaluate the following statements in C.

statement:	answer:	
0 < 1	1	
1.0 != 10.0	1	
-1 >= 3	0	
3 < -1.5	0	

Contents of the Drill

Exercise 3.

A statement is evaluated in left-first order. Evaluate the following statements in C.

statement:	answer:	
-2+4-3.5	1.5	
3*8/4	б	
10/ 2/5	1	
1.1 + 0.1 < 1.1	0	

Topics in the Drill

evaluation of statements

- value assignment to variable
- initialization of variable
- mathematical functions
- int and float types
- declaration
- value range
- char type
- printf function
- •array
- initialization at declaration

- •while loop
- double loop
- infinite loop
- if
- •else
- modular
- arithmetic operators
- for loop
- flowchart

20 more topics about 250 exercises

Practical Training with Drill in Our Programming Lab

Practical Training with Drill in Our Programming Course

Questionnaires on understanding

Results of short exams

Correlations

Correlations among grades of lecture, lab, and exams.

	lecture	lab	1 st exam	2 nd exam
lecture	1.00	0.59	0.48	0.54
lab	0.59	1.00	0.60	0.66
1 st exam	0.48	0.60	1.00	0.69
2 nd exam	0.54	0.66	0.69	1.00

Grades :

- Lecture and lab are graded independently.
- Lecture : writing examination
- Lab : two exams (5% each) and reports of three tasks (30% each).

Scattered Diagrams

Conclusions

- Proposed a new material to train the basics of programming, and shown the result of the practical training in our programming course.
- The sort examinations on the drill have some correlations with grades of lecture and lab.
- The effect of the drill on students' ability on programming have not yet validated.