

Unified Approach To Image Distortion

Toru Tamaki (*Niigata Univ.*) Tsuyoshi Yamamura (*Aichi Pref. Univ.*) Noboru Ohnishi (*Nagoya Univ. & RIKEN*)

$$oldsymbol{p}^d = oldsymbol{f}^{-1}(oldsymbol{p}^u,oldsymbol{ heta}^d) \equiv oldsymbol{d}(oldsymbol{p}^d)$$

An *implicit function* d() is defined.

ESTIMATION

Image registration seeks to minimize the residuals r_i of intensities of I_1 (calibration pattern) and I_2 (distorted image). The function to be totally minimized is the sum of the squares of the residuals over the image I_1 .

Cost function
$$\min_{\theta} \sum_{i} r_i^2 \qquad r_i = I_1(\boldsymbol{p}_i) - I_2(\boldsymbol{p}_i)$$

Estimating the parameters $\theta = (\theta^u, \theta^d)$, the cost function is minimized by the Gauss-Newton method. To calculate the decent direction of the cost function, the following Jacobian of r with respect to θ is required.

Gradient

$$\frac{\partial r}{\partial \boldsymbol{\theta}} = \left(\frac{\partial r}{\partial \boldsymbol{\theta}^u}, \quad \frac{\partial r}{\partial \boldsymbol{\theta}^d} \right)$$

For each formulation, the Jacobian is derived as follows by *the implicit* function theorem.

Jacobian

$$\begin{aligned} \mathbf{For } \mathbf{U} - \mathbf{D} & \mathbf{p}_i^d = \mathbf{f}(\mathbf{p}_i^u, \mathbf{\theta}^d) & \mathbf{p}_i^u = \mathbf{u}(\mathbf{p}^u) \\ \frac{\partial r}{\partial \mathbf{\theta}} = \left(-\nabla I_2(\mathbf{p}^d) \frac{\partial \mathbf{f}}{\partial \mathbf{p}^u} \frac{\partial \mathbf{u}}{\partial \mathbf{\theta}^u}, \quad -\nabla I_2(\mathbf{p}^d) \frac{\partial \mathbf{f}}{\partial \mathbf{\theta}^d} \right) \end{aligned}$$

For D-U
$$p_i^d = d(p_i^u, \theta^d)$$
 $p_i^u = u(p_i^u)$
 $\frac{\partial r}{\partial \theta} = \left(-\nabla I_2(p^d) \frac{\partial f}{\partial p^d}^{-1} \frac{\partial u}{\partial \theta^u}, \nabla I_2(p^d) \frac{\partial f}{\partial p^d}^{-1}\right)$

For every point p^u in the corrected image I'_2 , the intensity is decided by that of the corresponding point in the distorted image I_2 .

Correction

$$I'_{2}(p^{u}) = I_{2}(f(p^{u}, \theta^{d}))$$
 for

$$I'_2(\boldsymbol{p}^u) = I_2(\boldsymbol{d}(\boldsymbol{p}^u, \boldsymbol{\theta}^d))$$
 for

EXPERIMENAL RESULTS

$$oldsymbol{p}_i^d$$
)

Calibration pattern I_1

(640x480)

	$oldsymbol{k}_1$	k ₂	c_x	c_y	s_x
U-D	-4.96e-7	7.49e-13	298.7	241.2	0.762
D-U	5.07e-7	-4.22e-13	297.7	241.2	0.978

Distortion curves of both formulations

- U-D model
- D-U model

_r estimated by U-D is unreliable.

 s_x is absorbed into θ^u for U-D formulation (θ^u stretches the image horizontally, and s_x makes it shrink)

(if $s_x=1$)

Distortions by both U-D and D-U have the same effect where $|p^d| < 400$.

 $|\mathbf{p}^d|$ is the distance from the image center, and maximum distance for an image of 640x480 is less than 400.