Unified Approach To Image Distortion
Toru Tamaki (Niigata Univ.)
Tsuyoshi Yamamura (Aichi Pref. Univ.)
Noboru Ohnishi (Nagoya Univ. \& RIKEN)

## ABSTRACT

We propose a new unified approach to deal with two formulations of the image distortion and a method for estimating the distortion parameters by using the both formulation. Although all of conventional researches are based on the same distortion model proposed in an early study in photogrammetry, two different formulations have been used and developed by different papers separately, and this has caused a confusion for developing calibration methods. The proposed method is based on image registration and consists of nonlinear optimization to estimate parameters including view change and radial distortion.


## MODELING

Two step observation of distortion
A point $\boldsymbol{p}$ on a calibration pattern is projected to $\boldsymbol{p}^{u}$ on the image plane through a camera lens.

$$
\boldsymbol{p}^{u}=\boldsymbol{u}\left(\boldsymbol{p} ; \boldsymbol{\theta}^{u}\right)=\frac{1}{\theta_{1}^{u} x+\theta_{2}^{u} y+1}\binom{\theta_{3}^{u} x+\theta_{4}^{u} y+\theta_{5}^{u}}{\theta_{6}^{u} x+\theta_{7}^{u} y+\theta_{8}^{u}}
$$


, The projected point is moved on the image by the distortion.

$$
\begin{array}{ll}
\boldsymbol{p}^{u}=\left(x^{u}, y^{u}\right)^{T} & : \text { Undistorted (projected) point } \\
\boldsymbol{p}^{d}=\left(x^{d}, y^{d}\right)^{T} & : \text { Distorted point }
\end{array}
$$

- Distortion model

$$
\begin{aligned}
& \boldsymbol{f}\left(\boldsymbol{p} ; \boldsymbol{\theta}^{d}\right)=\left(\begin{array}{cl}
\frac{x-c_{x}}{s_{x}} & \left(1+\kappa_{1} R^{2}+\kappa_{2} R^{4}\right)+c_{x} \\
\left(y-c_{y}\right) & \left(1+\kappa_{1} R^{2}+\kappa_{2} R^{4}\right)+c_{y}
\end{array}\right) \quad R=\sqrt{\left(\frac{x-c_{x}}{s_{x}}\right)^{2}+\left(y-c_{y}\right)^{2}} \\
& \boldsymbol{\theta}^{d}=\left(\kappa_{1}, \kappa_{2}, c_{x}, c_{y}, s_{x}\right)^{T}: \text { Intrinsic camera parameters } \\
&>\text { Radial distortion parameters } \kappa_{1} \text { and } \kappa_{2} \\
& \text { Image center }\left(c_{x}, c_{y}\right)^{T} \\
& \text { Horizontal scale factor } s_{x}
\end{aligned}
$$

## Two formulations of the distortion model

$$
\begin{array}{ll}
\boldsymbol{p}^{d}=\boldsymbol{f}\left(\boldsymbol{p}^{u}, \boldsymbol{\theta}^{d}\right) & \text { from-Undistorted-to-Distorted (U-D) formulation } \\
\boldsymbol{p}^{u}=\boldsymbol{f}\left(\boldsymbol{p}^{d}, \boldsymbol{\theta}^{d}\right) & \text { from-Distorted-to-Undistorted (D-U) formulation }
\end{array}
$$



$$
\boldsymbol{p}^{d}=\boldsymbol{f}^{-1}\left(\boldsymbol{p}^{u}, \boldsymbol{\theta}^{d}\right) \equiv \boldsymbol{d}\left(\boldsymbol{p}^{u}, \boldsymbol{\theta}^{d}\right)
$$

An implicit function $d()$ is defined.

## ESTIMATION

EXPERIMENAL RESULTS

Image registration seeks to minimize the residuals $r_{i}$ of intensities of $I_{1}$ (calibration pattern) and $I_{2}$ (distorted image). The function to be totally minimized is the sum of the squares of the residuals over the image $I_{1}$.

E Cost function

$$
\min _{\theta} \sum_{i} r_{i}^{2} \quad r_{i}=I_{1}\left(\boldsymbol{p}_{i}\right)-I_{2}\left(\boldsymbol{p}_{i}^{d}\right)
$$

Estimating the parameters $\boldsymbol{\theta}=\left(\boldsymbol{\theta}^{u}, \boldsymbol{\theta}^{d}\right)$, the cost function is minimized by the Gauss-Newton method. To calculate the decent direction of the cost function, the following Jacobian of $r$ with respect to $\theta$ is required.

- Gradient $\quad \frac{\partial r}{\partial \boldsymbol{\theta}}=\left(\frac{\partial r}{\partial \boldsymbol{\theta}^{u}}, \frac{\partial r}{\partial \boldsymbol{\theta}^{d}}\right)$

For each formulation, the Jacobian is derived as follows by the implicit function theorem.

## * Jacobian

$$
\text { For U-D } \quad \boldsymbol{p}_{i}^{d}=\boldsymbol{f}\left(\boldsymbol{p}_{i}^{u}, \boldsymbol{\theta}^{d}\right) \quad \boldsymbol{p}_{i}^{u}=\boldsymbol{u}\left(\boldsymbol{p}_{i}, \boldsymbol{\theta}^{u}\right)
$$

$$
\frac{\partial r}{\partial \boldsymbol{\theta}}=\left(-\nabla I_{2}\left(\boldsymbol{p}^{d}\right) \frac{\partial \boldsymbol{f}}{\partial \boldsymbol{p}^{u}} \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{\theta}^{u}}, \quad-\nabla I_{2}\left(\boldsymbol{p}^{d}\right) \frac{\partial \boldsymbol{f}}{\partial \boldsymbol{\theta}^{d}}\right)
$$

$$
\text { For D-U } \quad \boldsymbol{p}_{i}^{d}=\boldsymbol{d}\left(\boldsymbol{p}_{i}^{u}, \boldsymbol{\theta}^{d}\right) \quad \boldsymbol{p}_{i}^{u}=\boldsymbol{u}\left(\boldsymbol{p}_{i}, \boldsymbol{\theta}^{u}\right)
$$

$$
\frac{\partial r}{\partial \boldsymbol{\theta}}=\left(-\nabla I_{2}\left(\boldsymbol{p}^{d}\right) \frac{\partial \boldsymbol{f}^{-1}}{\partial \boldsymbol{p}^{d}} \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{\theta}^{u}}, \quad \nabla I_{2}\left(\boldsymbol{p}^{d}\right) \frac{\partial \boldsymbol{f}^{-1}}{\partial \boldsymbol{p}^{d}} \frac{\partial \boldsymbol{f}}{\partial \boldsymbol{\theta}^{d}}\right)
$$

For every point $\boldsymbol{p}^{u}$ in the corrected image $I_{2}^{\prime}$, the intensity is decided by that of the corresponding point in the distorted image $I_{2}$.
Correction

$$
\begin{array}{ll}
I_{2}^{\prime}\left(\boldsymbol{p}^{u}\right)=I_{2}\left(\boldsymbol{f}\left(\boldsymbol{p}^{u}, \boldsymbol{\theta}^{d}\right)\right) & \text { for U-D model } \\
I_{2}^{\prime}\left(\boldsymbol{p}^{u}\right)=I_{2}\left(\boldsymbol{d}\left(\boldsymbol{p}^{u}, \boldsymbol{\theta}^{d}\right)\right) & \text { for D-U model }
\end{array}
$$



Corrected by D-U
Corrected by U-D (if $s_{x}=1$ )

## - Estimated parameters of both formulations

|  | $\kappa_{1}$ | $\kappa_{2}$ | $c_{x}$ | $c_{y}$ | $s_{x}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| U-D | $-4.96 \mathrm{e}-7$ | $7.49 \mathrm{e}-13$ | 298.7 | 241.2 | 0.762 |
| D-U | $5.07 \mathrm{e}-7$ | $-4.22 \mathrm{e}-13$ | 297.7 | 241.2 | 0.978 |

$s_{x}$ estimated by U-D is unreliable. $s_{x}$ is absorbed into $\boldsymbol{\theta}^{u}$ for U-D formulation ( $\boldsymbol{\theta}^{u}$ stretches the image horizontally, and $s_{x}$ makes it shrink)

Distortion curves of both formulations


Distortions by both U-D and D-U have the same effect where $\left|p^{d}\right|<400$.
$\left|\boldsymbol{p}^{d}\right|$ is the distance from the image center, and maximum distance for an image of $640 \times 480$ is less than 400.

