
大規模コンピュータシステムに対する

次世代信頼性評価技術の実用化に関する研究

科学研究費補助金基盤研究(B) (1)研究成果報告書

Grant No. 10558059

平成13年3月

研究代表者　尾崎　俊治
広島大学工学部第二類(電素系)教授



目次

研究日的

研究方針

¥>'¥ >C租・r.<,

研究経費

活動報告

fiJr加K 31

資料(ASSM2000講演論文)

A new graphical method to estimate the optimal repair-time limit with

incomplete repair and discounting

T. Dohi, N. Kaio and S. Osaki

Numerica「valuation of a switched knockout option
K. Hanada and T. Kimura

Optimal reset number of a microprocessor system with network processing - - - - - - - 34

M. Imaizumi, K. Yasui and T. Nakagawa

Optimal self-diagnosis policy for dual redundant FADEC of gas turbine engines　　　　42

K- Ito and T. Nakagawa

Optimal life insurance and portfolio choice in a life cycle

H. Iwaki, M. Kijima and K. KOmqribayashi

An efficient backup warning policy for a hard disk

H. Kawai and H. Sandoh

Reliability of a communication system with limited number of rollback

M. Kimura, K. Yasui, T. Nakagawa and N. Ishii

An optimal join policy to the queue in processing two kinds of jobs

J. Koyanagi and H. Kawai

An optimal maintenance time of automatic monitoring system of
ATM with two kinds of breakdowns

S. Nakamura, C. Qian, I. Hayashi and T. Nakagawa

83



A structural approximation method to generate the optimal auto-sleep schedule for

a computer system

H. Okamura, T. Dohi and S. Osaki

Replacement policies for a shock model with maintenance and minimal repair

C. Qian, S. Nakamura and T. Nakagawa

Optimal inspection policies for a scale

H. Sandoh and N. Igaki

Optimal replacement policies for a two-unit system with shock damage interaction..

T. Satow and S. Osaki

On relationship between software availability measurement and the number of

restorat ions

K. Tokuno and S. Yamada

98

116



、研究目的

近年,情報通信ネットワークの発達と超並列コンピュータの実用化にともない,航空機の予約シ

ステムや銀行のキャッシュディスペンサーに代表されるOLTP　オンライン・トランザクション)シ
ステムは,大規模化・複雑化の一途をたどっていると言っても過言ではない. OLTPシステムのよう

に,システムダウンによる社会的影響が極めて大きいコンピュータシステムの信頼性および保全性技
術では,フォールトトレラント(耐故障)の観点からシステム全体の動特性を解析・評価する・ことが

必要とされるため,電子部品,情報伝送ソフトウェアといった個々のモジュール単位で信頼性解析を
行った後,ボトムアップ的にコンピュータシステム全体の信頼性を向上させるという手法が従来まで

に行われてきた.しかしながら,先にも述べたように,並列かつ非同期的に情報の伝達を行うことが
今後益々必要とされるコンピュータネットワークにおいては,ボトムアップ的信頼性評価技術はシス
テムの稼働初期段階においてのみ効力を有するが,定常段階に移行するにつれて個々のモジュールシ

ステムの稼働特性が大幅に変化するため,システム全体が初期状態と比較して全く異なる様相を呈す

る・つまり並列かつ非同期的に信頼性が変化するシステムに対しては,トップダウン形式でシステム
全体の信頼性を評価することが重要となり,各モジュールシステムに要求される保全技術にもダイナ

ミックな時間変化を考慮する必要がある・本研究の目的は,コンピュータシステムを構成する(i)コン
ピュータハードウェア(電子材料). (")コンピュータソフトウェア. (Hi)データ伝送技術. (iv)ネッ
トワ~ク設計. (v)コンピュータ保全技術. (vi)信頼性基礎数理. (v")統計的信頼性試験の7つの専門
家グループによる共同研究を行い,大規模コンピュータシステムにおける新しい総合的な信頼性評価
技術を確立することである.このような共同研究の必要性は,トップダウン的な信頼性評価を実現す

るためだけではなく,種々の個別領域で現在までに達威された研究成果を総括し,それらの結果を有
機的に結合させ,全く新しい耐故障コンピュータシステムの設計法を実現するためには不可欠である.

研究方針

コンピュータシステムを構築する7つの異なる研究専門グループによって多角的に新しい信頼性
技術を模索すると同時に,広く最新の研究動向を把握する.これらを実現するために,大規模なシン
ポジウムを開催し異なる分野の幅広い研究者層から意見を求める.本研究では,専門グループによっ

て協議された指針やシンポジウムにおいて抽出される信頼性評価技術に関する成果を民間企業に所属

する技術者にフィードバックすることによって,次世代コンピュータシステムへの実用化を検討する.
我が国における信頼性の基礎数理に関する研究は,主に日本オペレーションズ・リサーチ学会を母

体とする研究組織において活発に行われてきた.また,信頼性技術は土木建築物,海洋構造軌メカ
トロニクス,コンピュータシステムといった個々の領域において独立に発展してきたという歴史的な

経緯がある.本研究グループは主にオペレーションズ・リサーチ学会と電子情報通信学会信頼性研究
会を活躍の場としているが,本研究計画においては日本材料学会,日本機械学会,情報処理学会,ソ

フトウェア科学会,日本品質管理学会において活躍する研究者を各専門小委員会の代表者(分担者)
としている・本研究グループによって行われた研究業績は本研究企画以外にも「信頼性理論における

確率モデルシンポジウム」 (名古屋, 1984) , 「工学・技術管理における日豪確率モデルワークショップ」

(ゴールドコースト1993, 1996) 「革新的生産技術における日英確率モデルワークショップ」 (ケン
ブリッジ, 1995)などがある.これらは当該研究グループが海外において運営した信頼性評価技術に
関するシンポジウムであり,国内外から高い評価を得ている.
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活動報告

大規模コンピュータシステムに対する次世代信頼性評価技術の体系化を行った.コンピュータシス

テムを構築する7つの異なる研究専門グループによって多角的に新しい信頼性技術を検討した.コン
ピュータ技術については福岡,紀,菅滞,山田,データ保全技術については中川,三通,ネットワー

ク設計技術については木札　コンピュータ保全技術および基礎数理については河合,海生,木島,舵

計的信頼性については土肥,田中がぞれぞれ担当となり,全体の取りまとめは尾崎が担当した,また,
大規模なシンポジウムを開催し,異なる分野の幅広い研究者層から意見を収集した.さらに,新しい

信頼性評価技術を実現するために,多くの民間企業の協力も得られた.特に,専門グループによって
協議された指針やシンポジウムにおいて抽出された信頼性評価技術に関する成果を民間企業に所属す

る技術者にフィードバックし,次世代コンピュータシステムの実用化を検討した.

平成10年度

(1)第1回研究準備委員会の開催: (0コンピュータハードウェア(電子材料) (ii)コンピュータソ

フトウェア(iii)データ電送技術(iv)ネットワーク設計(Ⅴ)コンピュータ保全技術(vi)信頼性
基礎数理(vii)統計的信頼性試験の7つの研究グループによる専門委員会を開催した.特に,各
専門領域においで現在までに得られた理論的かつ実証的知見を整理し,信頼性理論の歴史的変

遷とコンピュータテクノロジーとの関連について資料をまとめた.また. (iv)ネットワーク設
計委員会と(vi)信頼性基礎数理委員会を軸に大規模コンピュータの信頼性評価に関する基本方
針をまとめた.

(2)第2回初究準備委員会の開催:ォで決定された基本方針並びに現在収集しているデータを用い
て,大規模コンピュータシステムのトップダウン的信頼性評価技術の草案を作成した.この段

階においては,シミュレ-ショ:/テストを除いたすべての理論的モデルの解析を完了した.各
委員間の調整はE-mailも使って行った.各専門小委員会で決定された研究方針をもとに, 7つ

の研究グループによって独自に研究を実施した.各専門委員会に参加する研究者はおおむね5-
6名とし,各専門委員会代表者(分担者)がその調整を行った.

(3)平成10年度信頼性技術シンポジウムの開催: 7つの専門委員会による個別領域における研究調
査の報告ならびに研究準備委員会全体でまとめられたトップダウン的信頼性評価技法について

の報告を行った.シンポジウム-の参加資格は特に定めないものとし,学会,大学関連企業か
らの参加を呼びかけた.最終的に本報告会でまとめられた成果は印刷製本され,シンポジウム

への参加者および学会などに無料送付した.また,国際共同研究の企画として,英語版の報告
書を作成し,牡界各国に配送した.シンポジウムでの講演者は,各専門小委員会において委託

された大学研究者ならびに民間の研究者であった.また,シンポジウムでの発表に対する自由
応募も並列して行い,我が国における信頼性評価技術の発展に寄与するような学会研究集会が
開催できたものと考えている.

平成11年度

(4)第3,4回研究準備委員会の開催:平成10年度に開催された準備委員会とシンポジウムで議論さ
れた内容を吟味することによって,平成11年度に開始されるべき研究分野の内容を調整し,節
究組織を再構築した.また,各専門分野における現在までの研究成果を整理・統合することに
より,信頼性技術シンポジウムの準備を行った.

(5)平成11年度信頼性技術研究シンポジウムの開催:前年度のシンポシゥムに引き続き,大規模コ
ンピュータシステム信頼性に対する学術研究会を実施した.ここでは,前年度までの問題を克
服し,次世代信頼性技術に対する具体的なイメージを定量化することに主眼を置き,意見交換
を行った.
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平成12年度

(6)平成坤11年度の研究成果の発表の場として平成12年3月29,30日,京都ガーデンパレス(京
都市)において国際会議ASSM2000: International Conference on Applied Stochastic System
Modelingを開催した.この国際会議には,ほぼ全員の研究分担者と海外から7名の有名研究者
を中心に50名ほどの参加者があった.コンピュータシステムの次世代信頼性技術に関する数々の

発表とそれに対する活発な討論があった.そして,その報告集としてProceedings ofASSM2000
を出版した.

(7)平成10, ll, 12年の3年間にわたる科学研究費基盤研究の総括として平成12年12月7,8,9
日の3日間のシンポジウムがKKR鳥羽いそぶえ荘(鳥羽市)で開催された研究分担者のほぼ
全員とその他の有志も参加した. 3年間の研究成果のまとめと今後の研究動向について討論を

行った.
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研究成果

I.研究論文

1. H. Sandoh, H. Hirakoshi and T- Nakagawa, A new modified discrete preventive mainte-

nace policy and its application to hard disk management, Journal of Quality in Mainte-

nance Engineering, 4(4), pp. 284-290, 1998.

2. T. Shibuya, T. Dohi and S. Osaki, Spare part inventory models with stochastic lead

tImes, International Journal of Production Economics, 55, pp. 257-271, 1998.

3. Y. Shinohara, Y. Nishio, T. Dohi and S. Osaki, An optimal software release problem under

cost rate criterion: arti丘cial neural network approach, Journal of Quality in Maintenance

Engineering, 4(4), pp. 236-247, 1998.

4・岡村寛之,土肥正,尾崎俊治,コンピュータシステムの自動スリープ機能における省電力

効果I -再生過程によるモデル化情報処理学会論文誌　39(6), pp. 1858-1869, 1998.

5,土肥正,西尾春彦,篠原康秀,尾崎俊治,ニューラルネットワークを用いたソフトウェア

最適リリース問題の幾何学的解法,電子情報通信学会J81-A(l), pp. 110-118, 1998.

6・土肥正,永井秀治,尾崎俊治,動径基底関数ニューラルネットワークを適用した再生関数
の計算手続き,日本応用数理学会論文誌　8(2), pp. 13-29, 1998.

7・藤広敏幸,土肥正,尾崎俊治,屋内不点故障発生件数の推定に関する事例研究,電子情報

通信学会, J81-A(9), pp. 1316-1319, 1998.

8・山田茂,影山高章,木村光宏,高橋宗雄,コードレビューにおける人的エラーと人的要因

に関する考察,電子情報通信学会論文誌A, J81-A(9), pp. 1238-1246, 1998.

9. T. Kurasugi and I. Kino, Approximation method for two-layer queueing models, Perfor-

mance Evaluation, 36-37, pp. 55-77, 1999.

10. K. Okuhara, S. Osaki and M. Kijima, Learning to design synergetic computers with an

extended symmetric diffusion network, Neural Computation, ll, pp. 1475-1491, 1999.

ll. S. Yamada and M. Kimura, Software reliability assessment tool based on object-oriented

analysis and its application, Annals of Software Engineering, 8, pp. 223-238, 1999.

12・田中泰町角野泰臣,土肥if,尾崎俊治,株価指数オプションの価格評価と相関分析,シス
テム制御情報学会論文誌, 12(7), pp. 379-389, 1999.

13・林坂弘一郎,三道弘明,ソフトウェアの保守サービス契約に関する-考察,電子情報通信学
会論文誌J82-A(12), pp. 1819-1829, 1999.

14. T. Dohi, N. Kaio and S. Osaki, The optimal age-dependent checkpoint strategy for a

stochastic system subject to general failure mode, Journal of Mathematical Analysis and

Applications, 249, pp. 80-94, 2000.

15. T. Dohi, K・ Takeita and S. Osaki, Graphical methods for determining/estimating optimal

repaiトIimit replacement policies, International Journal of Reliability, Quality and Safety

Engineering, 7(1), pp. 43-60, 2000.

16. H. Hirakoshi and H. Sandoh, An optimal time to sleep for an auto-sleep system consider-

ing multi-usage states, Mathematical and Computer Modelling, 31(10-12), pp. 157-164,
2000,

17. B. P. Iskandar, B. Klefsjo and I王Sandoh, An opportunity-based age replacement policy

with warranty analyzed by using TTT-transforms, International Journal of Reliabi的
and Application, 1(1), pp. 27-38, 2000.
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18. B. P. Iskandar and H. Sandoh, An extended opportunity-based age replacement policy,

RAIRO Operations Research, 34(2), pp・ 145-154, 2000.

19. B. P. Iskandar and H. Sandoh, An opportunity-based age replacement policy considering

warranty, International Journal of Reliability, Quality and Safery Engineering, 6(3),
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20. K. Ito and T. Nakagawa, Optimal inspection policies for a storage system with degrada-
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2000.

21. M. Kijima, Valuation of a credit swap ofもhe basket type, Review of Derivatives Research,

4(1), pp. 81-97, 2000.

22. M. Kijima and Y. Muromachi, Credit events and the valuation of credit derivatives of

the basket type, Review of Derivatives Research, 4(1), pp. 55-79, 2000.

23. M. Kijima, K. Nakagawa and T. Namatame, Competitive price equilibrium when con-

sumers have a category reservation utility, Computafional and Mathematical Organization

Theory, 6, pp. 7-27, 2000.

24. K. Sawada and H. Sandoh, Continuous model for software reliability demonstration test-

ing considering damage size of software failures, Mathematical and Computer Modelling,

31(10-12), pp. 321-327, 2000.

25. K. Tokuno and S. Yamada, Markovian software availability measurement based on the

number of restoration actions, IEICE Transactions on Fundamentals, E83-A(5) , pp. 835-

841,2000.

26.今泉充啓,安井-氏,.中川掌先シグネチャを用いたジョブ実行過程の高信頼化方策,電子

情報通信学会論文誌, J83-A(9); pp. 1125-1128, 2000.

27.三道弘明,秤の点検政策に関する研究,電子情報通信学会論文誌, J83-A(3), pp. 302-308,
2000.

28.三道弘明,中川章夫,太田俊象化学製品に対する最適計り直し量に関する一考察,オペ
レーションズ.リサーチ, 45(2),pp. 76-80,2000.

29.田中泰明,システム信頼性解析における効率的シミュレーション解法,日本応用数理学会

誌, 10(3), pp. 229-239, 2000.

30.永井秀治,土肥正,尾崎俊治,動径基底関数ニューラルネットワークを適用した再生関数の

ノンパラメトリック推亀日本応用数理学会論文誌, 10(3), pp. 17-30, 2000.

31.中村正治,福本聡,中川軍先差分バックアップ方式における最適フルバックアップ間隔,

電子情報通信学会論文誌, J83-D-I(10), pp. 1087-1096, 2000.

32.藤原隆次,山田茂,テスト習熟性を考慮したソフトウェア信頼度成長モデルとその適合性

評価に関する考察,電子情報通信学会論文誌, J83-A(2), pp. 188-195, 2000.

33.江崎和埠山田茂,高橋宗雄,設計レビューにおけるソフトウェア信頼性に影響を及ぼす
人的要因の品質工学的解析,電子情報通信学会論文誌J84-A(2), pp. 218-228, 2001.

34.銭存華,中村正治,中川軍夫,差分バックアップ運用を伴うデータベースシステムにおけ

る最適バックアップ方策,電子情報通信学会論文誌, J84-A(2), pp. 208-217, 2001.

II.図書

1, R. J. Wilson, S. Osaki and M. J. Faddy (cds.), Proc. First Western Pacific and Third

Australia-Japan Workshop on Stochastic Models in Engineering, Technology and Manage-

merit, Centre for Statistics Department of Mathematics, The University of Queensland,

Brisbane, 1999.
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2. S. Osaki (ed.), Proc. ASSM2000: International Conference on Applied Stochastic Sys-

tern Modeling, Department of Industrial and Systems Engineering, Hiroshima University,

Higashi-Hiroshima, 2000,

III.口頭発表
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and Third Australia-Japan Workshop on Stochastic Models in Engineering, Technology

and Management, pp. 9ト100, 1999.

2. T. Dohi, K. Yasui, and S. Osaki, So氏ware reliability assessment models based on cumu-

1ative Bernoulli trial processes, Proc. First Western Pacific and Third Australia-Japan
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Abstract-In this paper, we consider a repaiトtime limit replacement problem with imperfect

repair and discounting, and focus on the problem to determine the optimal repair-time limit

which minimizes the expected total discounted cost over an in丘nite time horizon. Based upon

a sophisticated graphical idea, we develop a non-parametric method to estimate the optimal

repair-time limit from the empirical repair-time data. Numerical examples are devoted to

estimate the optimal policy and to examine the asymptotic properties of the estimator.

Keywords-maintenance optimization, repair limit replacement policy, incomplete repair,
discounting, non-parametric estimation

1. INTRODUCTION

Since the seminal contribution by Hastings [1], a large number of repair limit replacement problems

were analyzed in the literature. This paper concerns a different type of repair-time limit replacement

problem with imperfect repair from Nguyen and Murthy [2].甲ore speci丘cally, consider a single-

unit system where each spare is provided only by an order after a lead time and each failed unit

is repairable. When the unit fails, one estimates the completion time of repair, which may be a

possibly subjective one. If one estimates that the -repair is completed up to a prespeci丘ed time-

limit at the failure point of time, then the repair is started immediately, otherwise, the spare unit

is ordered with a lead time. Since the repair is imperfect, the repaired unit or the ordered one

fails again during a丘nite time horizon. Nakagawa and Osaki [3] considered the similar problem

to determine the optimal repair-time limit which minimizes the expected cost per unit time in the

steady-state, though they did not take account of the imperfect repair.

Since the knowledge on the repair一七ime distribution is incomplete in general, any statistical

estimation method for the optimal repair-time limit will be needed in practical situations. Dohi et

al. [4] developed a non-parametric method to estimate the optimal repaiトtime limit applying the

total time on test (TTT) statistics for the problem with imperfect repair by Nguyen and Murthy [2].

Also, Dohi et al. [5] showed that the TTT method is applicable to a repaiトcost limit replacement

problem with imperfect repair. Recently, Dohi et al. [6] proposed a new graphical method based

on the Lorenz transform [7, 8], for the repair-time limit replacement problem with imperfect repair

under the expected cost criterion per unit time in the steady-state.

However, if the maintenance operation is performed for a su缶ciently large planning horizon,

then it is important to take account of an effect of discount factor in estimating the operating cost.
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In other words, it will be useful under a fluctuating economic circumstance that the repair-time

limit schedule is designed so as to minimize the expected total discounted cost over an infinite time

horizon. In fact, for the repair limit replacement problem with discounting, the Lorenz method in

[6] can not be applied directly to determine the optimal repair limit policy. Main purpose of this

paper is to develop a new statistical method丘ar the optimal repair-time limit under the expected

total discounted cost criterion, from the complete sample of repair-time data.

The paper is organized as follows. In Section 2, we describe the repair-time limit replacement

problem under consideration and de丘ne the notation and assumptions. In Section 3, the optimal

repair-time limit is analytically derived under the assumption that the knowledge on the repair-

time distribution is complete. In Section 4, the underlying problem to seek the optimal repair limit

replacement policy is translated to a graphical one. Then, the similar but somewhat different geo-

metrical idea from [6] is introduced and plays an important role for the translation. Next, we develop

a non-parametric statistical estimation method for the optimal repair-time limit from the empiri-

cal data. It is found that the repair limit problem with discounting shows quite different aspects

from the non-discounting problem. Numerical examples are devoted to illustrate the asymptotic

behaviour of estimates for the optimal repair-time limit and the corresponding minimum expected

cost in Section 5. Finally, the paper is concluded with some remarks in Section 6.

2.　MODE!一DESCRIPTION

The repair time X for each unit is a non-negative i.i.d. random variable. The decision maker has

a subjective probability distribution function Pr{X ≦ t} - G(t) on the repair time, with density

g[t) (> 0) and丘nite mean ¥(¥x (> 0). Suppose that the distribution function G(ま) ∈ [0,1] is

arbitrary, continuous and strictly increasing in t ∈ [0, ∞ , and in addition has an inverse function,

i.e. G (・). Suppose that the time to failure for a repaired unit, Y¥, is a non-negative i.i.d. random

variable having the probability distribution function Fi (t) with density function /i (ま) and丘nite

mean 1/入i (> 0). Also, the time to failure for a new (spare) unit, Y2, is a non-negative i.i.d,

random variable having the probability distribution function F^yt) with density function fiyt) and

finite mean 1/入2 (> 0). Further, we de丘ne:

to ∈ [0, ∞): repair-time limit (decision variable)

kf (> 0): penalty cost per unit time when the system is in down state

kr (> 0): repair cost per unit time

> 0 :丘xed cost associated with the ordering ofa new unit

L (> 0): lead time for delivery of a new unit

(3 (> 0): discount factor

Consider a single-unit repairable system, where each spare is provided only by an order after a

lead time L and each failed unit is repairable. When the unit has failed at timeま- 0, the decision

maker wishes to determine whether he or she should repair it or should order a new spare. If the

decision maker estimates that the repair is completed within a prespeci丘ed time limit to ∈ [0, ∞),

then the repair is started immediately at t - 0 and completes at time t - X. After the completion

of repair, the unit is started to operate again, but fails again for a finite time span since the repair

is imperfect.

On the other hand, if the decision maker estimates that the repair time exceeds the time limit

まO, then the failed unit is scrapped at time t - 0 and a new spare unit is ordered immediately. A
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new unit is delivered after the lead time L. Further, the new unit also fails for a finite time span.

Without any loss of generality, it is assumed that the time required for replacement is negligible.

Under these model setting, we define the interval from the failure point of time to the following

failure time as one cycle. Figure 1 depicts the configuration of the repair limit repacement model

under consideration.

× : failure (renewaユpoint)

・: recoverypoint for aunit

: opieration period

.ー　こrepair period

:lead time

Figure 1: Configuration of the repair limit replacement model.

Wemakethefollowingadditionalassumptions:

(A-1)(kf+kr)[c{f2(P)}exp(-βL)-C{h{β)}]+」{/l(β)}[*/{lexpトβ'!>)}蝣βexp(-OL)¥

>0,

(A-2)(kf+kr)[l-」{/2(β)}exp(-/3L)]>β[fc/{l-exp(-βL)}/β+cexp(-βL),

where」{/*(β¥"ITOO)i-J。expトβx)dFi(x)(i-1,2)istheLaplace-StieltzestransformofF^t).These

assumptionsmightbesomewhattechnical,butwillbeneededtoprovetheuniqueoptimalrepair-

timelimit.

3.EXPECTEDTOTALDISCOUNTEDCOST

Letusformulatetheexpectedtotaldiscountedcostoveraninfinitetimehorizon.Ifthedecision

makerjudgesthatanewspareunitshouldbeordered,thentheorderingcostforonecycleis

J'oo
t。cexp仁βL)dG{t).InthiscaseっtheexpectedpenaltycostforonecycleisJ芸J。fc/exp(-βx)dx
dG(t).Ontheotherhand,ifheorsheselectstherepairoption,theexpectedpenaltycostforone

cycleis/0-/0kfexpトβx)dxdG(t)andtheexpectedrepaircostforonecycleisJq-J*krexp(-βx)dx

dG{t).Thus,theexpecteddiscountedcostduringonecycleis

Vto)-
(K+kf)

/・toトexp(-βt)}dG(t) + [
kf{l - exp(-pL)}

・cexp(-βL)¥G(to) (1)

whereingeneralip(-)-ト^(・).Also,thediscountedvalueofunitcostafteronecyclebecomes

s(to)-11

J。J。∞exp(-β[t+z])dFi(a;)dG(申//exp(-

Jt。J。β[L+x])dF2{x)dG(t)巧み(β)) expトβt)dG(t) + 」{/2(β)} expトβL)冒(to)-

-19-
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Thentheexpectedtotaldiscountedcostoveranin丘nitetimehorizonis

こヽ.、
TC(to)-どV(to)S(to)n-V(tQ)/S(to),

n=O

andtheproblemistodeterminetheoptimalrepair-timelimitt昌∈[0,∞)satisfying

TC{t昌)-minTC(to).
'o<ォ。<。。v'

Di鮎rentiatingTC(to)withrespecttotoyields

dtoTC{to)-IwQQ(to);

where

qo(to) - [ |l - exp(-βto)} -
Mi - expトβL)‡

- cexpトβL)¥ S(to)

- [」{Mβ)} exp(-βL) - C{h{β)} expトPto)] v{to).

i.>i

(4)

!蝣>]

(6)

We have the following result to guarantee the existence of the optimal repair-time limit analyt-

ically.

Theorem 1: Under the assumptions (A-1) and (A-2), there exists a丘nite and unique optimal

repair-time limit t昌(0 < t昌< ∞　which satisfies the non-linear equation qo(t昌) - 0, and the

minimum expected total discounted cost becomes

TC(t昌) -
(kr + kf){¥ - exp(-βt昌))/β - kf{l - exp(-13L)}/β- cexp(-βL)

」{/2(β)} expトβLト」{/l (β)} expトβ電)

Proof: Differentiating qo(to) with respect to to yields

孟?o(*o) - exp(-βto)Z(to),
where

Z{to) - (kr + kf)S(toトβWi(β)}V(to).

The further differentiation yields

孟Z{to) - g(to) [(kf +kr){」{f2(13)}exp(-PL) - C{fx{β)))

・」{/l(β)}{*/{! - exp(-/?I)} + c,βexp(-βL)}] > 0,

which is due to (A-1). Also, since

z o
(kf十*V){] - 」{/2 β)}exp(-βL))

-β」{/i(β)}{fc/{l - exp(-/3L)}/β + cexp仁βQ} > 0

-20-
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from (A-2), we have Z(tQ) > 0. From this result, it is seen that the function TC(t。) is strictly
convex inま0- Further, it is straightforward to con丘rm

go(o) - -¥kf{l -expトβL)}/β+cexp(-βL)¥ ¥l - C{h{βサ] < 0　　(12)

and

qo(∞)
」{9(β))

(kf + kr){」{Mβ)}expトβL) - C{fi{β)}} + 」{/l(β)}{*/{! - expトβL))

・ +Cβexp(-βL)}] + p [(kf+kr){l -」{f2(β)}exp(-βL)¥ - β{*/{! - expトβL)}!β

+cexp(-β*>　>o　　　　　　　　　　　　　　　　　　　　　(13)

from both (A-1) and (A-2), where 」{g(β)} - /0--exp(-Ox)dG(x). The proof is completed.

In the following section, we develop a graphical method for the repair-time limit replacement

problem, applying the concept of the similar idea to the Lorenz curve [7, 8]. The result is applied

directly to a statistical non-parametric problem to estimate the optimal repair-time limit from the

empirical repair-time data.

4.　GRAPHICAL METHOD

De丘ne the following transform;

・w)=1-
.∫:

G~蝣(p)

exp(一伽)dG(x),

where

G-¥p)-M{to|G{t。)≧p}, o≦p≦1.

From a few algebraic manipulation, we obtain

TC(to) - TC(p) -
ai4>(3{p) + a2(p - 1)

G30/3(p) + cL4P + 05

(14)

(15)

(16)

where aァ- (kr+kf)/β (> 0), a2 - kr/P+{kf/β-c}exp(-βL) (>0), a3 - C{Mβ)} (> 0), a4 -

」{/2(β)}exp(-βL) (> 0) and a5 - 1 - C{h{β)} - c{Mβ)}expトβL). Hence, the optImization

problem in Eq.(4) can be rewritten by minp≦p≦ TC(p).

Lemmal:

α2-α1α4/α　<0. (17)

Theorem 2: Under the assumptions (A-1) and (A-2), the minimization problem in Eq.(4) is
equivalent to

毎(p)+α

o≦p≦1　p+ぐ'

-21-
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where毎(p) - {1 - ¢β(p)}/」{g(β)),

1

a　-　-

」{s(β))

1/.1/　蝣II,J''''", ":

0,20,3 - CLidi

α2 + α1α5/α3

IIJ-(IHJi "・:

ォim矧

(19)

(20)

Fortheproof,seeDohi,etal.[4].Thetheoremabovemeansasfollows.Inthetwo-dimensional

plane(x,y)。K2,plotthecurve(p,」/?(p))。[0,1]×[0,1]andthepointB仁信αI,where㍗0

andC>0fromtheassumptions.Thentheproblemisthedeterminationofp*togivethemaximum

slopefromthepointBtothecurve(p,玩(p)).SincethereexiststheinversefunctionG-1(-),the

optimalrepair-timelimitisgivenbyt昌-G(p*).ThisresultisessentiallysameasTheorem1,but

itisinterestingthatonecangraphicallyobtaintheoptimalrepair-timelimitwhentherepair-time

distributioniscompletelyknown.Inotherwords,thisgraphicalideabecomesanimportanthint

todevelopanon-parametricmethodtoestimatetheoptimalrepair-timelimitreplacementpolicy

fromtheempiricalrepair-timedata.

Nextweproposeastatisticalmethodtoestimatetheoptimalrepair-timelimitusinganempir-

icalcurve丘・omcompletesamplesontherepairtime.Supposethattheoptimalrepair-timelimit

hastobeestimatedfromanorderedcompletesample0-zo≦£1≦3;2≦-≦xnofrepairtimes

fromanabsolutelycontinuousrepair-timedistributionG,whichisunknown.Theestimatorofthe

repair-timedistributionshouldbethefollowingempiricaldistribution;

Gin(x)≡控f:霊X<xi+i,

x,(21)

wherei-0,1,2,...,n-1.0ntheotherhand,thenon-parametricestimatorof」/j(p)inEq.(18)is

de丘nedby

n

」fn - (-fj/{l - β∑巨定王](xJ - xJ-1)exp(-βx蝣)}
3-1

l

-expトβxi){l-i/n+β∑ll一宇I¥xj xj- )}蝣
7-1

where

(22)

(23)

By plotting the point (i/n,」」 ), i - 0, 1, 2, - ,n, and connecting them by line segments, we obtain

the sample curve.

The following result is the empirical counterpart of Theorem 2.

Theorem 3: The estimator of the optimal repair-time limit which minimizes the expected total

discounted cost over an infinite time horizon is去昌- 3昔, where

〈鞭宗鑑等　　　　　(24)

Of our next interest is the convergence speed of the e更もimators ts and C(<o)- We examine

numerically the strong consistent property of the estimatorぢin the following section.
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5.NUMERICALILLUSTRATIONS

Inthissection,wepresentthreeexamplestounderstandthegraphicalandstatisticalmethods

proposedintheprevioussections.

Example1:Supposethattherepair-timedistributionG(t)isknownandobeystheWeibulldis-

tribution:

G{t)-1-expj-(芸(25)

withtheshapeparameter7-1.5andthescaleparameter0-1.2.Theothermodelparam-

etersarec-10.0000(S),L-5.0000(day),kf-3.0000(S/day)kr-1.2000(S/day)and

β-0.0500.Thedeterminationoftheoptimalrepair-timelimitispresentedinFig.2.Inthis

case,wehaveB-ト0・8524,-0.8540)andtheoptimalpointwithmaximumslopefromBis

I/?T¥mi¥p*i牀p(p*))-(0.3530,0.5167).Thus,theoptimalrepair-timelimitandtheminimumexpectedcost

axet昌-G」(0.3530)-13.1971(day)andTC(t昌)-79.2792(S),respectively.

与.巾・)
iU(即= 0.4543

ォ/.(サ] = 0.9550

」{/2(/サ} = 0.9500

/3 = 0.0500
L = 5.0000
c = 10.0000　　0^167

*, = 3.0000

*.= 1.2000

t;= 13.1971

TC(/蝣S) = 79,2792

-0.駈24

Figure 2: Determination of the optimal repair-time limit.

Example 2: The repair-time data are made by the random number following the Weibull distribu-

tion with shape parameter 7 - 1.5 and scale parameter S - 1.2. The other model parameters are

same as Example 1 except that C{g{β)} - 0.5369. The sample curve based on the 20 sample data

is shown in Fig. 3. Since B -仁0.8524, -0.7226), the optimal point with maximum slope from
B becomes (i*/n,亡君　- (ll/20'」ii,2。) - (0.5500,0.7273). Hence, the estimates of the optimal

repair-time limit and the minimum expected cost are t% - 17.1523 (day) and TC(i%) - 81.5756 (S),
respectively.

Example 3: Suppose that the repair-time distribution and model parameters are similar to those

in Example 2. Then the real optimal repair-time limit and the minimum expected cost become

i昌- 13.1971 (day) and TC(t*o) - 79.2792 (S), respectively. On the other hand, the asymptotic

behaviour of estimates for the optimal repair-time limit and the corresponding minimum expected

cost are depicted in Figs. 4 and 5, respectively. From these figures, we observe that the estimates

converge to the corresponding real optima around where the number of data is 30. In other words,

without specifying the repair-time distribution, the proposed non-parametric method may function

well to estimate the optimal repair-time limit precisely.
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'-{/;(/3)) = 0.9500　　0.7273
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⊥こ5.0000
c - 10.0000
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7C(ro) = 81.5756

Figure 3: Estimation of the optimal repair一七ime limit.
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7igure 4: Asymptotic behaviour of the estimate for the optimal repair-time limit.

o           so          too　　　　1 50　n

Figure 5: Asymptotic behaviour of the estimate for the minimum expected total discounted cost.
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6.　CONCLUSION

In this paper, we have developed a new graphical device to calculate the optimal repair一七ime limit

replacement policy with imperfect repair and discounting. The basic idea is similar to the classical

one by the TTT transform, but it should be noted that the underlying maintenance problem is

quite different from the TTT-based problem. In numerical examples, it has been observed that the

non-parametric method based on the empirical curve has nice convergence properties, although any

estimator related with the empirical distribution does not converge to the real optimal at earlier

phase and more than 50 data are needed to get the satisfactory estimate from our experiences.

In that sense, the method proposed here will be useful to estimate the optimal repair-time limit

replacement policy in practice.
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Abstract-Knockout options are kinds of exotic contingent claims whose right to exercise is

nullified when the underlying asset price hits a knockout boundary. Beginning with a mathe-

matical model of Merton (1973), some extended models have been developed for the knockout

options, under a common assumption that the knockout boundary exists in the whole trading

interval. In this paper, however, we consider a new European knockout option whose knockout

boundary exists only in a certain part of the trading interval, so that we call it a switched

knockout option. Extensive numerical experiments show that the switched knockout options

have quite different properties from the ordinary knockout as well as vanilla options, especially

on the sensitivity with volatility-

Keywords--switched knockout options; incomplete knockout boundary; European call/put;

numericaユvaluation; Crank-Nicolson method

1. INTRODUCTION

For a vanilla European option, the payoff at exercise can be determined by the spot price of the

underlying asset, independently on its past history in the trading interval. The so-called e£otic or

path-dependenまoptions have values that depend on the history of the asset price in some non-trivial

way. Among various exotic options, we focus on a knockout option with an incomplete boundary

in this paper,

Knockout options are contingent claims whose right to exercise is nulli丘ed when the undelying

asset value crosses a certain value. The set of those values over the trading interval is called a

knockout boundary. Knockout options are classi丘ed as either up-and-out or down-and-out, options

by the relative position between initial values of the asset price and the knockout boundary. Of

course, they are classi丘ed into two basic types, i. e, call or put. Hence, there are totally four different

types in knockout options: When the initial price is below the knockout boundary, there are up-

and-out calls and puts. On the other hand, when the initial price is above the knockout boundary,

there are down-and-out caユIs and puts.

In Merton [1], he has first studied a basic mathematical model of down-and-out European knock-

out options to obtain closed pricing formulas under an assumption that the knockout boundary is

an exponential function of remaining time to maturity. Rubinstein and Reiner [2] and Rich [3]

developed pricing formulas for all types of the basic knockout options. Rich also examined compar-

ative statistics for these formulas. In addition, more general knockout options have been proposed

by many researchers: Cox and Rubinstein囲dealt with a down-and-out European knockout option
with a rebate, whose holder can receive a speci丘ed amount of money if the boundary is crossed.

Kunitomo and Ikeda [5] and Geman and Yor [6] obtained pricing formulas for knockout options

with two seperate boundaries that are located above and below the asset price atもhe initial time.
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Roberts and Shortland [7] analyzed the option price under an assumption that both of the drift

and volatility parameters are functions of time. Linetsky [8] proposed a new-type knockout option

called a step option, which is not instantaneously nullified when the asset price hits the knockout

boundary. These basic and generalized knockout options above have exponential knockout bound-

anes. Recently, Hanada and Kimura [9] developed an approximate pricing formula for a knockout

option with a general class of non-exponential knockout boundaries.

All of the previous results are based on a common assumption that the knockout boundary exists

m the whole trading interval from initial time to maturity. In this paper, however, we consider an

incomplete knockout boundary that exists only in a certain part of the trading interval. In other

words, there is a toggled switch in the knockout boundary; this option is equivalent to a vanilla

or an ordinary knockout option according as the switch is off or on. Hence, we call it a switched

knockout option in this paper. Obviously, the vanilla and ordinary knockout options are special

cases of our switched knockout option.

This paper is organized as follows: In Section 2, we mathematically specify the switched knockout

option to show that its price at arbitrary time satisfies a partial differential equation together with

some boundary conditions. In Section 3, we numerically solved this equation by the Crank-Nicolson

method to examine general properties of switched knockout options. To avoid redundancy, we are

mainly concerned with the analysis of the up-and-out call option, but we also refer to some general

properties of other three types shortly. Finally, in Section 4, we give a few concluding remarks.

2.　MATHEMATICAL FORMULATION

We use the same assumptions as those in the Black-Scholes model [10] except for knockout bound-

aries: Assume that the capital market is well-defined and follows the e伍cient market hypothesis.

Let S(t) denote the underlying asset price at time t and let T (≧ 0) be the maturity. Then, the

process {S(t); 0 ≦ i ≦ T} satisfies the stochastic differential equation

I].トけ;

S(t)
- /j,d≠+ adW(t),　0 ≦ i ≦ T, (1)

where ¥i (a) is the drift (volatility) of the process S(-) and r is the risk-free interest rate, all of

which are assumed to be positive constants. In (1), {W(t); 0 ≦ i ≦ T} is the standard Brownian

motion process, so that the process S(-) becomes a geometric Brownian motion. Also, assume that

the option price written on S{t), say V, is a function ofS(t) and t, i.e., V ≡ V{S(t),t) for S(t) > 0

and 0 ≦ i ≦ T. From these assumptions and Ito's lemma, we have the partial differential equation

呈*s(ty
∂蝣V(S(t),t)

ds{tf
+ rS(t) - rV(S(t),t) +

∂V(S(t),t)　′′C/J.、 1、. ∂V(S(t),t)

∂S(t)　　＼U＼/7ノ'　∂t

-0,

1'2)

S{t)>0, 0≦i≦T;

see Harriso云and Pliska [11] or Oksendal [12].

For a vanilla call option with the exercise price K (> 0), the option price V satisfies the terminate
condition

V(S(T),T) - max(S(T) - K, O),

together with the boundary conditions

v&t)
f-oo 」 - Ke- γ(T-ま)

lim -1,　　≦i≦T
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and

limVU*)-O,　　≦t≦T・ (5)

For a switched knockout option, however, these boundary conditions should be modified as follows:

Let J。n be the set of time intervals where the nullified switch is on, and let X。ff ≡ [0, T]＼　Let

B{t) be the value of knockout boundary at time t and assume that B(t) > 0 for t ∈ [0, T]. Then,

for the up-and-out call type, the boundary conditions should be

v{i, t)

El=誌上Ke-r T-t

ne,t) -O,

HR inl -1, t∈Z.臥

(E,ま) ∈ W), ∞) ×-^・。nj

liiri」→oV&t) - O,　　　≦ i ≦ T,

whereas, for the down-and-out call type, the boundary conditions are given by

v& t)
C-oo上Ke-r(?~t)
帽欄 -1, 0≦t≦T,

lim^→o V(」, t) - 0,　　∈ Zoff,

v(t,ま) - O,　　　　　& *) ∈ [0, B(t)} ×-^・。n-

(6)

(7)

Similarly, we can formulate the price of the switched knockout puts with the exercise price K: The

terminate condition at time t - T is given by

V(S(T),T) - max(K - S{T), 0).

The boundary conditions are, for the up-and-out put type,

limf-∞ V(t,t) - O,　　　　∈ 2。ff)

V(0 -0,　　　　　　(」,*) ∈ [B(t), ∞) ×-'蝣。n)

lim巨QV{^t)-Ke-^Tサ　o≦t≦T,

and for the down-and-out put type,

lim」→.v&t)-O,　　　　≦t≦T,

1im卜OV(」,t) - Ke-r<>T-t>, t ∈ fo庁,

ne,*)-O,　　　　　　&* ∈ 0,B(t)}×-^-。n-

3.　GENERAL PROPERTIES

(8)

(9)

(10)

3.1　PREIJIMINARIES FOR NUMERICAIJ EXPERIMENTS

In general, it is quite di鼠cult to obtain an analytical solution of the partial differential equation

(2) together with such complex conditions as described in Section 2. The purpose of this paper is,

however, no to obtain closed-form pricing formulas, but to examine general properties of the switched

knockout options, in particular, the differences from the associated options without the nullified

switch. Hence, we use a numerical method for the examination. In our numerical experiments,

we used the Crank-Nicolson method for solving (2) with the terminate and boundary conditions.

The Crank-Nicolson method has been known as a most accurate implicit丘nite-difference method;
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see Courtadon [13] for details. Also, see Hull [14] and Wilmott et al. [15] for the general theory of
finite-difference methods for option pricing.

To keep the original form of the knockout boundary as it is and to avoid the complication, we

directly apply the Crank-Nicolson method to (2) without using any transformation of variables in

the calculation. For convenience, we set the initialtime to be t - 0 and the maturityto be舌- T - 1.

As a computational requirement, we restrict the state space of S(t) for all t in an interval [0, Sx

with Smax - 1,000 and divide this interval into 10,000 fragments with equal widths. Also, the

time interval [0, 1] is divided into 500 fragments. For the option parameters, we use K - 100 and

r = 0.05 m all cases, and a - 0.3 if not clearly mentioned. For the knockout boundary function, we

use a constant-valued boundary

B(t) -
〈

B,　t ∈ I.n

^maxj　* ∈2off;
i=)

where both Jon and Xos are compact sets in [0, 1] and B - 180 in all cases.

3.2　THE UP-AND-OUT CAI-L TYPE

Figures 1 and 2 illustrate the curves of the up-and-out call price V(S(0), 0) as a function of 5(0) for

several knockout boundaries, where the intervals l。n - 0 (i.e. empty set) and l。n - [0, 1] are added

for comparisons, which represent the vanilla and ordinary knockout options, respectively. Clearly,

the prices of these extreme cases give upper and lower bounds for V of the switched knockout

options. In Figure 1, the knockout boundaries exist in latter parts of the trading interval, whereas

m Figure 2 they exist in former parts. From these丘gures, we see that there are significant differences

between these two cases: The option prices for the former-part cases are higher and more sensitive to

the length ofloa than those for the latter-part cases. No doubt, this result is due to the assumption

that the process S(-) follows a geometric Brownian motion with continuous sample paths. In actual

markets, it is reasonable to place a knockout boundary at a latter part of the trading interval for

hedging risk in future. In this sense, switched knockout options with latter-part boundaries can be

attractive alternatives to the vanilla option. Another marked difference is the value of each option

price when 5(0) ≧ B - 180. That is, the option prices for the latter-part cases have positive values,

while those for the former-part cases are always 0.

To see the effects of volatility to option prices, we compute the prices of switched knockout

options with a - 0.2, 0.3, 0.4. Figures 3 and 4 illustrate the curves of V(S(0),0) as a function 5(0)

when lon - [0.5, 1] and Xon - [0,0.5], respectively. For the vanilla option, it is well known that

the price is monotonously increasing with <7, i.e., ∂V/∂a > 0 for all a > 0. However, we see from

Figures 3 and 4 that this property does not hold丘jr switched knockout options: Roughly speaking,

tor all a > 0, ∂V/∂a > 0 when 5(0) << K and ∂V/∂a < 0 when 5(0)サK. This result indicates
that a new scheme for risk hedging should be invented for switched knockout options. For more

numerical results, see Hanada [16].
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Figure 1: Prices of the Up-and-Out Calls: Latter-Part Cases

o o o o o o o
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▼-　　　　　▼　　　　　　　　　　　　　　　　　　　　　　　　▼-

s o

Figure 2: Prices of the Up-and-Out Calls: Former-Part Cases

-30-



C〉　　⊂>　　C〉　　⊂)　C)　　⊂)　C>
00　　　　　　CvJ　　寸　　qプ　　03　　O

▼■.　　▼　　　　　　　　　　　　　▼-　　　C＼l

S(0)

Figure 3: Prices of the Up-and-Out Calls: Ton - [0.5, 1]

⊂)　C)　　くつ　　CD O O O C〉　　⊂〕
寸　　CO OO　　　　　　ぐり　　寸　　く　　　00

▼~　　　▼-・　　▼-　　　▼-　　　t-　　　<N

s o

Figure 4: Prices of the Up-and-Out Calls: lon - [0, 0.5]
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3.3　THE OTHER THREE TYPES

Some general properties of the other three types of switched knockout options can be shortly dis-

cussed by using similarity or symmetry: For the down-and-out call, it has properties similar to those

for the associated vanila option. This result is, in some sense, reasonable because of the similarity on

the boundary position. That is, both down-and-out and vanilla calls have the knockout boundaries

in the direction that the option value is decreasing. Unlike the up-and-out call, the price for the

down-and-out call is an increasing function of volatility, just as in the vanilla call.

Except for some trivial differences, general properties of the up-and-out put and the down-and-

out call are almost symmetric about the line 5(0) - K. This result clearly reflects the symmetry

of the payoff lines for call and put options. We can observe a similar symmetric relation between

the prices of down-and-out put and up-and-out call switched knockout options; see Hanada [16] for
detailed numerical data.

4.　CONCLUSION

In this paper, we have, introduced the switdied knockout option whose boundary feature is in the

middle of the vanilla and ordinary knockout options. From extensive numerical experiments, we

saw that the position of 2。n in the trading interval significantly a:月Tects the option price, and that

the sign of the hedge parameter ∂V/∂a varies depending on S(0). In addition, we saw that there

are some similar and symmetric relations among the four types of switched knockout options.

A future direction of this research is to examine the cases that

・l。n contains many disjoint intervals.

two knockout boundaries axe located above and below S(0),

the knockout boundary is either a certain function of time t and Sit) or a random variable.

Another future direction is to develop an approximate pricing formula for the switched knockout

option; see Hanada and Kimura [9] for a related research,
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Abstract-As a computer network technology has remarkably developed, microcomputers

which form a data terminal equipment (DTE) in a communication network have been used

in many practical fields and the demand for improvement of their reliabilities has greatly

increased. In fact, a microprocessor (fiP) which is one of vital devices of a communication

network often fails through some faults due to noise and changes in the environment and

programming bugs. Therefore, it is necessary to take preventive measures for occurrences of

such errors. This paper considers the maintenance problem for improving the reliability of

a fxP system with network processing. After the system has made a stand-alone processing,

it executes successively communication procedures of a network processing. When either /j,P

failures or application software errors in the system have occurred, a fiP is reset to the beginning

of its initiA1 state and restarts again・ The reliability quantities such as the mean time to the

success of a network processing and the expected reset number, using the theory of Markov

renewal processes, are derived. An optimal reset number which minimizes the expected cost

until a network processing is successful, is analytically discussed. A numerical example is丘nally
given.

Keywords-Microprocessor, Network processing, Mean time, Expected cost, Reset number.

1. INTRODUCTION

As a computer network technology has remarkably developed, microcomputers which form a data

termm聖1 equipment (DTE) in a communication network have been used in many practical fields.

Recently, a new communication network combining the information processing and communication

plays an important role as the infrastructure in the information society. Therefore, the demand

for improvement of reliabilities and functions for devices of a communication network has greatly
increased m.

In fact, a microprocessor (jjlP) which is one of vital devices of a communication network often

fails through some faults due to noise and changes in the environment and programming bugs.

Hence, it is necessary to take preventive measures for occurrences of such errors. Generally, when

we consider the reliability of the system on an operational stage, we should regard the cause of

error occurrences of a jiP as faults of software, such as mistakes of operational control and memory

access, rather than faults of hardware. That is, when errors of a /xP have occurred, it is effective to

recover the system by the operation of reset [2].

This paper considers the maintenance problem for improving the reliability of a jiP system with

network processing: After the system has made a stand-alone processing, it executes successively
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communicationproceduresofanetworkprocessing.Wheneither/j,Pfailuresorapplicationsoftware

errorsinthesystemhaveoccurred,ajjlPisresettothebeginningofitsinitialstateandrestarts

again.Mostreliabilityevaluationmodelsofa/iPsystemuntilnowhaveassumedthatbotherrorsof

ajiPandfailuresofthedatatransmissionoccurunlimitedly[3],[4],[5],[6].Thispaperassumesthat

iftheresetduetoerrorshasoccurredNtimesintermittently,thenafiPinterruptsitsprocessing

andrestartsagainfromthebeginningofitsinitialstateafteraconstanttime・Thatis,ifthereset

hasoccurredfrequently,thesystemhaslatentfaults,andtakespreventivemaintenancestocheck

theenvironmentandtoeliminateerrors.

Wederivethereliabilityquantitiessuchasthemeantimeandtheexpectedresetnumberuntil

anetworkprocessingissuccessful.Further,weregardthelossesandtimesfortheresetandthe

interruptionofprocessingandforthemaintenancetorestartthesyste血asexpectedcosts,and

discussoptimalpolicieswhichminimizethem.Anumericalexampleis丘nallygiven.

2.MODELANDANALYSIS

WepayattentiontoonlyacertainDTEwhichconsistsofaworkstationorapersonalcomputer

andconnectswithsomenetworks,andconsidertheproblemforimprovingitsreliability.

SupposethaterrorsofafiPsystemoccuraccordingtoanexponentialdistributionF(t)with

meanI/A.IferrorsofajiPhaveoccurred,a(iPisresettothebeginningofitsinitialstateand

restartsagain.Itisassumedthatanyresettimesareneglected.

(1)Afterafj,Pbeginstooperate,itexecutesaninitialprocessingimmediatelyandastand-alone

processing.

(2)Thetimesforaninitialprocessingandastand-aloneprocessinghaveageneraldistribution

V(t)withmean1/vandanexponentialdistributionA(t)with1/α,respectively.

(3)Afterafj,Pcompletesastand-aloneprocessing,itbeginstoexecuteanetworkconnection

processing:

(a)AconnectionprocessingneedsthetimeaccordingtoageneraldistributionB(t)with

mean1/βandfailswithprobability7(0≦7<1).

(b)Ifaconnectionprocessinghasfailed,afiPexecutesthesameprocessingagainaftera

constanttimewwhereW(t)≡0fort<wand1forf≧W.

(4)Afteraconnectionprocessinghasbeensuccessful,afj,Pexecutesanetworkprocessing.

(c)AnetworkprocessingneedsthetimeaccordingtoageneraldistributionU(t)withmean

l/u,andissuccessfulwithprobability1ifithasnotfailed.

(5)IftheN-thresethasoccurredsincea

li〃beginstooperate,onceitinterruptstheprocessing,andrestartsagainfromthebeginningafteraconstanttimefi,whereG(ま)≡0fort<jj,and

lfort≧p・

Undertheaboveassumptions,wede丘nethefollowingstatesofthesystem:

State0:Aninitialprocessingbegins.

State1:Astand-aloneprocessingbegins.

State2:Astand-aloneprocessingiscompletedandanetworkconnectionprocessingbegins.
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State 3: A network connection processing succeeds and a network processing begins.

State F: A network processing is interrupted.

State S: A network processing succeeds.

The system states de丘ned above form a Markov renewal process [7] where state S is an absorbing

state,

Let Qi j{t) (i - 0, 1, 2, 3;j - 0, 1, 2, 3, 5) be one-step transition probabilities of a Markov renewal

process. Then, mass functions Qij^t) from state i at time 0 to state j at time f are:

Go,o (<)

Qo,i (t)

Qi,o(<

QiAv

Q2fi (t)

<92,3(t)

Q3,0(*)

Qs,s(i)

where

.∫:∫

.、!: ′

Lt

.!′

V(t)dF(t),

F(t)dV(t),

A(t)dF{t),

F(t)dA(t),

差x^-l¥t)*f

J。
B i) +7B(i) * W(t)}dF(t),

差xu-サ{t)*[(l-'y)fF(t)dB(t)},

J。

U(t)dF(t),

F(t)dU(t),

X(t)≡y/F(t)dB(t)*[

J。J。鞠坤),

(1)

(2)

(3)

(4)

(5)

Hi)

(7)

(8)

(9)

the asterisk mark denotes the Stieltjes convolution and a^n'(t) denotes the n-fold Stieltjes convo-

lution of a distribution a(t) with itself, i.e., or�")(ま) ≡ aln-V(t) * a(t), a(t) * b(t) ≡ jzw - u)da{u).

We derive the mean time ls fr-m the beginning of system operation until a network processing

is successful. Let i?O,s(i) be the first-passage time distribution from state 0 to state S. Then, we

have

A

Ho,s{t) - ∑DV-1>(t) *Z(t),
3-1
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where

D(t) ≡　Qo,o(t)十Qo,i(t)*QiAt) +Qo,i{t) *Qi,2(t) *Q2,0(t)

+ Qo,.(*) *Ql,2(*) * Q2,3(<) * Q3,0(<),　　　　　　　　　(ll)

Z{t) ≡　Qo,i(t)*Qi,2(t) *Q2)3(t) *Q3,s(t)-　　　　　　　　　　(12)

It is noted that D(t) is the distribution function which a /iP is reset by occurrences of errors and

Z(t) is the distribution function which the system moves from state 0 to state F directly without

being reset. Further, the first-passage time distribution Ho F(t) from state 0 to state F by a !JP

the AT-th reset is given by

Ho,F(t) ≡ 」>W(t).　　　　　　　　　　(13)

Therefore, the first-passage time distribution Ls(t) until a network processing is successful is

given by the following renewal equation:

Ls(t) - Ho,s(t) + HoiF(t) * G(t) * Ls{t).　　　　　　　(14)

Let 4>(s) be the Laplace-Stieltjes (LS) transform of any function S(」), i.e., 4>{s) ≡ /0--c-*d*(*).
Taking the LS transforms on both sides of (14) and arranging them, we have

his) -

Hence, the mean time 」s is given by

ps≡L∞tdLs{t)王i-「

ho,s (s)

1 - ho,F(s)g(s)

dls{s),_　之′(0)十d′(0) , /^(0)N

ds J　　1-d(0)　l-d(O)N

(15)

(16)

where ¢′(s) is the differential function of 4>(s), i.e., ¢′(S) ≡ d4>(s)/ds. From equation (16), Us is

strictly decreasing in N and is minimized when N - oo.

Next, we derive the expected reset number MR from the start of system operation or the restart

by the reset until a network processing is successful. Let MR{t) be the expected reset number until

a network processing is successful in an interval (0, t]. Then, we have

JV-1

MR(t) - ∑jD&>(jt) * Z(t).
3-1

Thus, the expected reset number is given by

」Ⅴ-1
MR≡limMR(t)-
t->。。王Lmo∑j[d(s)Yz(s)-
3-1

d O

1 -d(0)

(17)

1 -Nd(O)N-1 (N- 1)d(O)iVi　(18)

where it is noted that z(Q) - 1 -d(0).

Further, let Mpit) be the distribution of the expected interruption number of processing from

the start oi system operation until a network processing is successful. Then, we have the following

renewal equation:

MF(t) - HoiF{t) * [1 + G(t) *MF(t)].　　　　　　　　(19)

Similar to equation (18), the expected interruption number Mp until a network processing is sue-
cessful is given by

MF-
d(0)N

1 -d(0)N
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3.　0PTIMAIJ POIJICIES

We obtain two objective functions which are the total expected cost C(N) and the expected cost
C(N) per unit of time until a network processing is successful, and discuss optimal policies which

minimize them, respectively.

3.1　POLICYI

Let c¥ be the cost for the reset and c<i be the cost for an interruption of processing. Then, we define

theもotal expected cost C(N) until a network processing is successful as the following equation:

C(N)-ciMR+aMp-d[
D{1-DN)蝣¥TT¥N-¥　c2DN

-Ⅳが]+1-D J 1 1-DN (AT- 1,2,---),  (21)

where D ≡ d(0) which is the probability that a ¥xP is reset.

We seek an optimal number N* which minimizes C(N). From the inequality C(N+1) -C(N) ≧
0,wehave

N(1-Dォ)(i-DN+1)≧冨

Denoting the left-hand side of (22) by L(N), we have

L(l) - (1-D)(1-D2),

L(∞) -　∞.

(22)

Hence, L(N) is strictly increasing in N from L(l) to ∞・ Thus, we have the following optimal policy:

(i) If L(l < C2/ci, then there exists a finite and unique minimum N*(> 1) which satis丘es (22).

(ii) If L(l) ≧ C2/ci, then N* - 1 and the totalexpected cost is C(l) - (c2D)/(1 - D).

In this model, c¥ is the cost for the increase of system resources such as spaces of memory and

times by the reset, and c2 is for the increase of system resources by the preventive maintenance to

eliminate the cause of errors. It could be generally estimated that c2 is greater than c¥, i.e., c<2 ≧ cl.

Thus, we have L(l) < C2/ci, and hence, N* > 1. Further, it is easily shown that N* increases with

i.コ.''I

3.2　POI-ICY2

In the policy 1, we have considered the total expected cost as an objective function. However,

it would be more practical to introduce the measure of the time until a network processing is

successful. Next, we consider an optimal policy which minimizes the expected cost per unit of

time until a network processing is successful. That is, from equations (16) and (21), we define the

expected cost C(N) per unit of time as the following equation:

C(N) ≡
C(N上cl∑㌫ljDi(l-D)一書C2

es a+鎧
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where

A=- z'{0) + d'(0)

1-D
>0. (26)

We seek an optimal number iV-f which minimizes C(N). From the inequality C(N + 1)-C(N) ≧
0,wehave

Ⅳ-1
"'1~が)(l-DN+1)+芸[NDN{1-が+1)+(1-D)J2JDj]

。=1≧芸(27)

Denotingtheleft-handsideof(27)byL^N),

Li(l) - (1-D2)(1-D十芸D),

Ll(∞) -　∞.

Putting the second term on the bracket of the left-hand side of (27) by

.V-1

L2(N)=NDN{l-D,N十l)+トD) ∑jD3,
j-1

L2(l) - (1-D2)D,

L2(∞)
D

1-D'

L2(N+1トL2{N) -　DN十1匠DN+2+NDN(l-D2)) >O.

we have

(30)

(31)

(32)

(33)

Hence, L2(AO is strictly increasing in N. Further, since N(1 -DN)(1 -DN+1) in (27) is also strictly

increasing in N, L¥(N) is strictly increasing in N from Li(l) to ∞　Thus, we have the following

optimal policy:

(i) If Li(l) < C2/cl, then there exists a finite and unique minimum Nf(> 1) which satisfies (27).

(ii) If Li 1) ≧ C2/ci, then N* - 1, and the resulting cost is

C(l)
,D

A[l-D)+nD
(34)

Further, we compare the optimal policy 2 to the optimal policy 1. Since from equations (22)

and(27).
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Jヽ'-i

Ll(N)-L(N)-芸[NDN(1-DN+l)+トD)∑jI>>]>0 (N-1,2,-), (35)
.∫-1

and hence, N* ≧ AT*.

This means that when the number N of reset is small, the mean time until a network processing

is large, since is strictly decreases in N. Thus, it would be better to adopt the policy 2 where N is

small when we consider only the cost of the system on the whole. On the other hand, if we want a

processing time to be small, we should adopt the policy 1.

4.　NUMERICAL EXAMPLE

We compute numerically the optimal number N* which minimizes C(N) for Policy 2. Suppose that

the mean initial processing time 1/v of fj,P is a unit of time and the mean time to error occurrences

is (1/A)/(1/v) - 30 - 60. Further, the mean stand-alone processing time is (1/α)/(1/v) - 5 - 20,

the mean network connection processing time is (1/β)/(1/v) - 1, the mean waiting time when

a network connection processing fails is w/(l/v) - 1 - 4, the mean network processing tIme is

(1/tt)/(1/u) - 10, the mean maintenance time after an interruption of processing is (1//*)/ !/V) -

10, the probability that a network connection processing fails is 7 - 0.2, 0.4, 0.6, and the cost c i for

the reset is a unit of cost and the cost rate of an interruption of processing is c2/C1 - 1.- 3.

Table 1 gives the optimal reset number iV* which minimizes the expected cost C(N). For

example, when (1/A)/(1/v) - 60, wv - 2, 7 - 0.2, (1/α)/{l/v) - 10 and c2/C¥ - 2, the optimal

number is N[ - 3.

Table 1: Optimal reset number iV-f to minimize C(N).

(1′入)/ l′V ) W V 7

(1 /α)′(l v ) = 5 (1′α)′(1′i>) = 10 (1/α)′(1′u ) = 20

C 2′C1 C2/C1 C2/ C1

1 1.5 2 2 .5 3 1 1.5 9 2 .5 3 1 1.5 2 2 .5 3

30

1

0 .2 2 2 3 3 4 2 3 3 3 4 2 3 3 4 4

0 .4 2 2 3 3 4 2 3 3 4 4 2 3 3 4 4

0 .6 2 3 3 3 4 2 3 3 4 4 3 3 4 4 4

2

0 .2 2 9 3 3 4 2 3 3 3 4 2 3 3 4 4

0 .4 2 3 3 3 4 2 3 3 4 4 3 3 3 4 4

0 .6 2 3 3 3 4 2 3 3 4 4 3 3 4 4 4

4

0 .2 2 2 3 3 4 2 3 3 4 4 2 3 3 4 4

0 .4 2 3 3 3 4 2 3 3 4 4 3 3 4 4 4

0 .6 2 3 3 4 4 2 3 3 4 .4 3 3 4 4 5

60

1

0 .2 2 2 3 3 4 2 2 3 3 4 2 2 3 3 4

0 .4 2 2 3 3 4 2 2 3 3 4 2 2 3 3 4

0 .6 2 2 3 3 4 2 2 3 3 4 2 2 3 3 4

2

0 .2 2 2 3 3 4 2 2 3 3 4 2 2 3 3 4

0 .4 2 2 3 3 4 2 .2 3 3 4 2 2 3 3 4

0 .6 2 2 3 3 4 2 2 3 13 4 2 2 3 3 4

4

0 .2 2 2 3 3 4 2 2 3 3 4 2 2 3 3 4

0 .4 2 2 3 3 4 2 2 3 3 4 2 2 3 3 4

0 .6 2 2 3 3 4 2 2 3 3 4 2 3 3 3 4
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ThisshowsthattheoptimalnumberJV*decreaseswith(1/A)/(l/v),however,increaseswith

wv,7,(1/α)/(1/v)andc2/Cl.Thiscanbeinterpretedthatwhenthecostforaninterruption

ofprocessingislarge,JVj*increaseswithc2/cl,andso,theprocessingshouldnotbeexcessively

・_lmterrupted.Thatis,weshouldkeeponexecutingtheprocessingaslongaspossiblebythereset.

Table1alsoshowsthatJV-j*dependsoneachparameterwhen(1/A)/(l/v)issmall,i.e.,whenerrorsof

a〃Poccurfrequently,however,N*dependslittIeonwv,7and(1/α)/(l/Iwhen(1/A)/(!/ォ)≧60,

andN*isalmostdeterminedbycijc¥.

5.CONCLUSIONS

WehaveinvestigatedtheproblemforimprovingthereliabilityofafiPsystemwithnetworkprocess-

ing,andhavederivedthemeantimeandmeanresetnumbersuntilanetworkprocessingissuccessful.

Further,wehavediscussedtheoptimalresetnumberswhichminimizethetotalexpectedcostand

theexpectedcostperunitoftime.

Ithasbeenshownfromthemathematicalanalysisthattheoptimalresetnumberwhichmini-

mizesthetotalcostislargerthanthatwhichminimizestheexpectedcostperunitoftime.Ithas

beenalsoshownfromthenumericalexamplethattheoptimalresetnumberwhichminimizesthe

expectedcostdecreaseswiththemeantimetoerroroccurrencesofa/j,P,however,increaseswith

themeanstand-aloneprocessingtime,theprobabilitythatanetworkprocessingfailsandthecost

foraninterruptionofprocessing.Further,whenthemeantimetoerroroccurrencesislarge,the

optimalresetnumberdependslittleoneachparameterandisalmostdeterminedbythecostforan

mterruptionofprocessing.

Itwouldbeveryimportanttoevaluatethereliabilityofa[xPsystemwithnetworkprocessing.

Furtherstudiesforsuchsubjectswouldbeexpected.
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Abstract-FADEC(Full-Authority Digital Engine Control) was developed for aircraft gas

turbine engine controllers and now has been widely adopted to industrial ones because of its

high performance. Although aircraft FADECs are so expensive because they operate in severe

environment, industrial FADECs should be inexpensive considering the severe cost competi一

土ion in the market. Recently, the recent progress of electronics produces high performance

and low price PLCs(Programmable Logic Controllers). Although they were originally devel-

oped as substitutive relay logic sequencers, they have been utilized as multi-purpose numerical

controllers now. When we adopt them, we shall develop inexpensive gas turbine FADECs.

However, the PLC makers do not assure to use them as gas turbine engine controllers. So en-

gine makers should consider adequate measures and assure their reliabilities when they utilize

them as FADECs. This paper considers the self-diagnosis policy for dual redundant FADECs.

The self-diagnosis is performed at every n-th control calculation cycles. Introducing expected

cost per unit time, an optimal n* which minimizes it is considered.

Keywords-Advice to authors, Important notice

1. INTRODUCTION

The original idea of gas turbine engine was represented by Barber in England at 1791, and the

engine was firstly realized in 20-th century. After that, they had advanced greatly during World

War II. Today, gas turbine engines have been widely utilized as main engines of airplanes, high

performance mechanical pumps, emergency generator and cogeneration systems because they can

generate high power compare to their size, their start time is very short and no coolant water is

necessary for operation.

Gas turbine engines are mainly constituted with three parts, i.e., compressor, combustor and

turbine. The engine control is performed by governing the fuel flow to engine. When gas turbine

engines operate, surge, stool and over-temperature of exhaust gas should be paid attention.because

these phenomena cause serious damage for engine. To prevent such dangerous phenomena, the

turbine speed, inlet temperature and pressure, and exhaust gas temperature of gas turbine engine

are monitored and engine controller should determine appropriate fuel aow considering these data.

The gas turbine engine operates in serious environment and hydro mechanical controller (HMC)

is adopted to engine controller for long period because of its high reliability, durability and excellent

responsibility. However, the performance of gas turbine engines have advanced and customers need

to decline the operation cost. So HMC could not follow these advanced demands and the engine

controller has been electrified. The丘rst electric engine controller which was a support unit of

HMS, was adopted for J47-17 turbo jet engine of F86D五ghter at the late 1940-th. The change of
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device,i.e., from vacuum tube to transistor and transistor to IC, has changed the roll of electric

engine controller from the assistant of HMS to full authority controller because of the reliability

growth. In 1960-th, the analogue full authority controller could not follow the accuracy demand of

engines, and full authority digital engine controller (FADEC) was developed [1, 2, 3].

FADEC is an electric engine controller which can perform the complicated signal processes of

digital engine data. Aircraft FADECs, which are expected high mission reliability and are needed

to decrease weight, hardware complication and electric consumption, adopt generally a duplicated

system [4, 5, 6j.

Industrial gas turbine engines have been advanced absorbing key technologies which were es-

tablished for aircraft gas turbine engines. FADECs which were originally developed for aircrafts,

have also been adopted for industrial gas turbine engines. Comparing between general industrial

gas turbine FADECs and aircraft FADECs, the following differences are recognized:

1) Aircraft gas turbine FADECs have to perform high speed data processing because the rapid

response for aircraft body movement is necessary and inlet pressure and temperature change

greatly depending on height. On the other hand, industrial gas turbine FADECs not need

such high performance comparing to aircraft ones because they operate at steady speed on

ground.

2) Aircraft gas turbine FADECs have to be reliable and fault tolerable, and so, they adopt

a duplicate system because their malfunction in operation may cause serious damages for

aircrafts and crews. Industrial gas turbine FADECs also have to be reliable and fault tolerable,

and still be low cost because they have to be competitive in market.

Depending on the advance of microelectronics, small, high performance, low cost programmable

logic controllers (PLC) have distributed in market. Their origins were relay sequencers and they are

still utilized as sequencers of industrial automatic systems. Applying numerical calculation ability of

microprocessors, these PLCs occupy the analogue-digital and digital-analogue transformer and can

perform numerical control. When we use such PLCs, very high cost performance FADEC system can

be realized. However, these PLCs are developed as general industrial controllers and PLC makers

might not permit them for applying high temperature and pressurized hot gas controllers. Then,

gas turbine makers which apply these PIJC as FADEC, have to design some protective mechanism

and have to assure high reliability of FADEC.

In this paper, we consider a self-diagnosis policy for dual redundant gas turbine engine FADECs.

2.　ANALYSIS

A dual redundant system is commonly employed for aircraft FADECs. We consider the following
dual redundant FADEC:

(a) A system is constituted with two perfectly endependent channels i.e., they have their own

engine sensors, fuel control valves, watch dog timers and power sources.

(b) A data communication line called CCDL (Cross Channel Data Link) connects two channels.

Each channel exchanges its engine sensor data and calculation results with another channel,

and can diagnosis each other (cross-diagnosis). Furthermore, each channel performs self-

diagnosis by its watch dog timer. We call the cross-diagnosis between two channels and

self-diagnosis of each channel as the self-diagnosis of FADEC.

(c) Although two channels perform the same control calculation at same time, only one channel

can conquer a whole system at one time. Initially, one channel has a priority to control a
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whole engine (active condition) and another channel is in standby condition. When the active

channel fails, the channel changes from active condition to standby oneフand another channel

changes from standby condition to active one. When two channel fail, a whole engine system
stops.

We introduce the expected cost per unit time and derive an optimal diagnosis policy which

minimizes it. Consider the following control and self-diagnosis policy for dual redundant FADEC

(I) The reliabilityofchannel i at time t is Fi(t), where i - 1,2.

(II) The control calculation of each channel is performed at time interval Tq and the self-diagnosis

and cross-diagnosis are performed synchronously between two channels at every n-th calcula-

tion. The coverage of these diagnoses is lOO%.

(Ill) Initially, channel 1 is in active condition and channel 2 is in standby condition, When channel

1 fails, channel 1 changes to standby condition and channel 2 changes to active condition with

no failure. We assume these elapsed time for changing are negligible.

(IV) When n decreases, the diagnosis calculation per unit time increases and it degrades the quality

of control. We assume that the degradation of control is represented as ci/(n十T{), where c¥

is constant and T¥ is the percentage of diagnosis time divided by To.

(V) When n increases, the time interval from occurrence of failure to its detection is prolonged and

it causes the damage of gas turbine engine because of the extraordinary fuel control signal.

The damage of engine is represented as c2(roTb - t), where t is the time that failure occurs

and c2 is the system loss per unit tIme.

When channel % fails at time U, the following two expected time intervals from occurrence of failure

to its detection depending on the timing of ij , are considered:

When h ≦ ti < tm or tm-i < ti < t2 ≦ tm, the expected time interval is

」F^-)

m=l£1
(tm - tJdFxfa) ,

wheretm-mnTo(m-1,2,3-・).

Whenh<im-i<t2≦tm,theexpectedtimeintervalis

m;,貰r<(*fc-ォ!+*ォ-t2)dFl(tl)/

Jtm-ldF2{t2)

Thetotalexpectedtimeintervalisthesummationofequations(1)and(2),i.e.

J2 F2{t- £:1
泥粥　ffiBI

十∑∑
m-2 fc=l

(七m - t^dFiih)

n-i+t--h)dFl(*l)/

Jtm-1dF2(t2)

∞

nTo ∑ Fi(-nTo)一芸
m=0

ォfnTo

+^r,Fl(mnTo)¥

m=lJ。

[F2(t + mnTo) - F2(mnTo)]dt ,

-44-

(1)

<・>'.

・>)-



wherel/¥¥≡/0--Fi(t)dt,andFi(O)-O.

Thus,theexpectedcostis

c{n)-志+c2¥nToY2Fl(-nTQ)-

r。=。去

+^fnTo

>FiimnTo)/

=1"'O

E

[F2(t + mnTo) - F2(mnTo)]dt

Assuming Fi{舌) - 1 - exp(一入it) (i - 1, 2), equation(4) is rewritten as

C{n)

We easily find that

n+7i

1　　　　　　　1

1-e-入inT0　- 1-e-入2TITo

I - g-A2rjTo

A2(l-e-(Ai+A2)ォro) Ai A2

c o

C(∞) -　∞,

Therefore, there exist a finite n* (くqo) which minimizes C(n).

1 - e-(入1+入2Wo

(4)

i・-)!

(6)

(7)

3.　NUMERICAL EXAMPLE

It is convenient to introduce x defined as x - tiTq to calculate optimal n*. Using z equation (5) is
rewritten as

(蝣(./・)

ciTo

x + TxTq

iJ il il

嘘1-e-*2X I_e-(Ai+A2)」
1-　人2X

入2(l - e-^+入1>X)

We obtain the derivative of C(£) as

dC{x)

,1.1~　‥　-TT

-.7:

ciTo

+ 2iTo)2

Ai X2

l^^^^^H^^^^^^M

嘘蒙画HF漢書顎図1 _e-(Ai+A2)a:

入1e~入1ご　　　　　　(入1十人2)e~(Ai+A2)a;
一一TTn-+一入2e一入2% (Ai+A2)、.、、.〈

(1-e一入1£)2 (1-c~入2*)2　(!-e-(Al+入2)x¥2

e~如　　(^1 十人2)(トe~人2£)e-(入1+入2)T

1 - e-(入1+入2)訂　　　入>(l - e-(入!+X2)x)2

To obtain a minimum C(x), we search x* numerically which satisfies dC(£)/dx - O.
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Table 1 gives the optimal self-diagnosis time interval x* and n*, and the expected cost C(n*

for入　- 1.0× 10-',2.0× 10-7,410× 10-7 per hour, cx - 1,5,10and Tx - 0.1,0.5,1.Owhen

入　- 1.0× 10-7 per hour, c^ - 10 and T0 - 10 2(10msec). Optimal n*s are integers and are

also denoted parenthetically for comparison. When c¥/C2 or ¥jT¥ increases, z or n*, and C(n.*)

increase. When入1/入2 increases, x* or n* decreases and Cyrf) increases.

Table 1. Optimal self-diagnosis interval x* and n

which minimize expected cost C(n*),

A i/ A 2 c i / c 2 T i
.)

(n *

1 .0 0 .1 0 .1 0 .0 3 6 4 (3 .6 0 .5 4

2 .0 0 .1 0 .1 0 .0 3 4 3 3 .4 0 .5 7

4 .0 0 .1 0 .1 0 .0 3 2 3 3 .2 0 .5 9

1 .0 ー5 0 .1 0 .0 8 1 8 (8 .1 ) 1 .2 2

1 .0 1 .0 0 .1 0 .1 1 4 1 1 (1 1 ▼4 ) 1 .72

1 .0 0 .1 0 .5 0 .0 3 2 0 .5 1

1 .0 0 .l l .0 0 .0 2 6 3 (2 .6 0 .4 7

4.　CONCLUSION

We have considered an optimal self-diagnosis policy for dual redundancy FADEC: A FADEC per-

forms the control calculation at time interval To and self-diagnosis is performed at every n-th

calculation. The expected cost is derived and there exists an optimal n* which minimizes it, when

reliability functions of two channels are exponential distributions. Numerical examples have shown

optimaln.
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Abstract-This paper considers an optimal life insurance for a householder subject to moト

tality risk. The household receives a wage income continuously, which is terminated by the

householder's death. In order to protect the sudden loss, the household buys a life insurance

from which they can receive some amount of insurance at the householder's death. Also, the

household can invest their wealth into a financial market. The problem is to determine an

optimal insurance and investment in order to maximize the expected total, discounted utility

from consumption and terminal wealth. It is shown that an explicit solution is obtained for

some special case.

Keywords-Life Insurance, Life Cycle, Investment/Consumption Model, Martingale.

1. INTRODUCTION

In this paper, we consider an asset allocation problem of a household. In the literature of such

problems, asset classes are limited to riskless asset (bank accounts), and risky assets (stocks). In

this paper, we extend the asset allocation problem in such a way to include life insurance contracts.

By including them, the problem becomes not only to obtain an optimal optimal consumption and

investment of the household, but also to decide how much amount of the life insurance should be

invested to prepare for mortality risk of its householder.

Asset allocation problems are traced back to Merton [5] in which he derived optimal consumption

and portfolio selection rules by assuming that an agent has speci丘c utility functions in a continuous-

time model. Subsequently, Merton [6] generalized his model for the case of general utility functions.

ln these papers, an agent decides the amount of consumption for goods or services, and the amount

for investment into financial assets at each time so as to maximize their utility through their life

time. In. a relatively recent research, a life time model ofBodie, Merton and Samuelson [1] considered

a human capital in order to add more reality to existing models. The human capital of an agent

represents the present value of the total wage income which he/she will obtain in the future. By

including the human capital in their model, they explicitly derived the relation between age and

optimal investment strategies for the agent.

This paper considers an optimal life insurance for a household. The household lives through

consumption by a wage income of the householder and a capital gain of investment into丘nancial

assets. However, if the householder dies, the wage income will terminate. The household may then

want to buy a life insurance to prepare for risk of the householder's death. The household decides
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an optimal insurance as well as optimal consumption and investment amount into員nancial assets

to maximize the expected total, discounted utility from consumption and terminal wealth.

This paper is organized as follows. In the next section, we formulate our model by assuming

that utility functions of the household are given, and derive an optimal insurance, consumption and

investment amounts. In Section 3, we consider the special cases of exponential and power utility

functions, and derive an optimal insurance, consumption and investment amounts explicitly.

2.　THE MODEL

We consider a household which consumes a wage income of its householder to maximize the expected

total, discounted utility from consumption and terminal wealth. The income of the household is

only the wage of the householder, and if he/she dies, then the income terminates. Therefore, the

household may be willing to buy a life insurance to protect the sudden loss from mortality risk of

the householder. On the other hands, the household may want to invest its wealth into丘nancial

assets. Let the current time be zero, and assume that the householder's income terminates at time

T > 0, i.e., his/her retirement is time T. The problem for the household is then to maximize the

expected total, discounted utility from consumption over time 0 to T, and from terminal wealth

at time T. The terminal wealth will be used for their lives after retirement or a bequest to their

descend ants.

We assume that our economy consists of a financial market, which is frictionless and perfect,

and that every trade occurs continuously at time t ∈ T, T ≡ [0,T¥. In order to make the model

tractable, we also assume that the resolution of uncertainty of the economy is described by evolutions

ofa standard Brownian motion Z - {Z(t);t ∈ T} and a Poisson process N - {N(t);t ∈ T¥ with

an intensity process入- (A(*); * ∈ T} de軸ed on a given probability space (Q,T, P), where Z is

assumed to be independent of N. Here, without loss of generality, we set Z(0) - 0 and iV(0) - 0.

Let F ≡ {Ft,ま∈ Tj be the P-augmentation of filtration with

Ft-a{{Z{s),N{菖));0≦S≦tI,　∀i∈T・

The intensity process入is assumed to be positive, Markov and predictable with respect to IF, and

satis丘es

IJo ¥X(t)¥dtく∞　　a.s.

Hereafter, equalities and inequalities for random variables hold in the sense of a.s. (almost surely);

however, we omit the notation a.s. for the sake of notational simplicity. The conditional expectation

operator given Tt is denoted by Et with E - Eq,

The financial assets into which the household can invest consist of a risk-free asset and a risky

asset. Let Po(t) and P¥{t) be the time t ∈ T prices of the risk-free asset and the risky asset,

respectively. We assume that the price processes, Po(t) and Pi{t), are de丘ned by the following

stochastic differential equations (SDEs) , respectively.

PoQ) -po,

Pi(O) -pi, 享.二

宇: - r(t)dt,　　≧ 0,

- n{t)dt+ a(t)dZ(t),　ま≧ 0,
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where po and px are positive constants, and where r(t), n(t) and a(ま) are progressively measurable

processes with respect to W that satisfy

/Jo r{t)十H(t)+02(朝dt < ∞.

Let r denote the time of the householder's death, and assume that it is generated by the丘rst

passage time of the Poisson process TV to state 1, i.e.

r-inf{t≧O;N(t)- l}.

A life insurance that the household considers to buy is as follows. An insurance company pays

the insurance amount 6{t) if the householder's death occurs at time t before the terminal epoch

T, and nothing if it occurs afiもer T. It is noted that, in many situations, the insurance amount

is set to be constant; however, as we shall show later, it must be a stochastic process, in general,

to attain the optimal plan. Of course, in order to receive the insurance amount, the household

must pay a premium戸to the insurance company at time 0. We assume that the insurance process

9 - {B(t);t ∈ T} is bounded and adapted to F. It is also assumed that the income process

y - {y(t);t ∈ T} and the consumption process c - {c(t);t ∈ T} are bounded and adapted to 『.

Let w(t) be the inv'占stment amount into the risky asset at time t. We refer to w - {w(t);t ∈ TI

as a portfolio process. Given a portfolio process w, a consumption process c, an insurance process

9, and an income processy, the wealthprocess W - {W(t)¥t ∈ T} is defined by W(0) -, Wq -p and

dW(t) - (y(t)lmt-)-o} - c(舌)) dt+e(t)i{N{t-)=0}dN(t)

+ w(t) ¥ji(t)df+ a(t)dZ(t)]十(W(ま) - w(t)) r(t)dt

- (y(*)i{jv(*-)=o} - c(ま)) dt + 0(t)l{N{t_)=。}dN(t)

+ r(t)W(t)dt+w(t)[(/i(tトr(ま))dt+adZ{t)},　t ∈ T,　　(3)

where Wo is a given initial wealth which is assumed to be a positive constant, and where 1 {.} denotes
the indicator function.

Let <f>(t) be the state price density at time t which satisfies 0(0) - 1, 0 < cj>{t) < ∞, and for

eacht∈Tandanys>t, s∈T,

HmPM]-<f>(t)Pj(t),　j-O,i.
The insurance premium is then given by

声- E |jf <p(t)8(t)hN(t-)-o}dN(t)j ,

since otherwise there is an arbitrage opportunity.

Consider another risky security whose price process i-2(*) is de丘ned by ^(0) - p2-and

dp2(t)-P2(t)孟-ljdN(t), t≧0・

(4)

!蝣>、:

wherep2isapositiveconstant.Ifweassumethatthesecurityistradedinthefinancialmarket,

thenitisnotdifficulttoshowthatthestatepricedensityisrepresentedas

紳)-exp^一存)dZ{s)一路ftft
'蝣(s)ds-/r(s)ds+/In

J。J。豊^jdN(s)-J^(s)-¥(s))dsy

(6)
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where

ミーナ:-
H{t)-rt)

a(t)　　　γ＼Vノ　1-p2

尋>(*) -字とr(t). (7)

The next definition is similar to the one given by Karatzas and Shreve [4].

Definition 1. The triplet (c, w, 9) of consumption, portfolio and insurance processes is admissible

for the household if the corresponding wealth process satisfies

-(t)+Et ¥j 6{s)y{s)lms-)-o}ds¥ + Et ¥J 4>{s)e{s)l{N{s-)-Q}dN{s)¥ > 0,ま∈ T. (8)

The class of admissible processes is denoted by A.

From (6) and (8), and by the arguments similarもo Karatzas and Shreve [4], we can readily show

that if (c, w, 0) is admissible, then the consumption process c must satisfy the budget constraint

e ¥ [ 4>.{t)c{t)dt+ (j){T)W{T) ≦ E lf-(*)l{jv(t-)-o}rf* + Wo.

Lemma 1. For any pair of consumption process c and terminal wealth W¥T) that satisfies

E ¥J cf>(s)c(s)ds+<j>(T)W(T)¥ - Wo + E U <t>(s)y{s)l{N{s-)-Q}ds¥ ,

there exists a portfolio/insurance processes (w, 9) such that (c, w, 9) ∈ A and

紳)∴　r 4>(s)(c(s)-(y(s)+iP(s)6(s))l{N{a-)=0})ds+<f>(T)W{T)

foranyf∈ T・

Proof. Let M(去) be云martingale de丘ned by

M(t) - Et ¥　^(s) (c(aト(y(8)+xl>(8)9(3))l{N{a-(-0})<fe+#r)W(r).  (9)

Then, by the martingale representation theorem (see, e.g., Bremaud [2] and Karatzas and Shreve

[3]), there exist a progressively measurable process tti (」) and a predictable process ^(t) such that

∫ Kl(*) + 7T2(朝dt < ∞,

andsatisfying

rr
M(t)-Wo+/Trl{s)dZ(s)+/

J。J。汀>(s)(dN(iト¥{s)ds).

Ontheotherhands,from(3)and(6),wecanreadilyshowthat

d(4>(t)W(t))-4>(t)[(y(t)+0(tW(t))l{mt-)=o}-c(t)]dt+<t>(t)(w(舌)a(tト拍)W{t))dZ{≠)

・ o(i) 6サ(t)l{jv(t-)-o}豊十W(t)

-50-

l.'¥t)- ＼ifI

入(i)
(dN(t) - X(t)dt).



Thus, if we define w(t) and 9(t) so as to satisfy

・f>{t){w{t)a(ま)一拍Wt)) - 7n(t)

and

・(t) ¥e(t)imt-)-o}豊十W(t)
m一入(i)

・・＼日..
- 7T2(ま),

(10)

(ll)

respectively,then

d(紳)W(t))-dM{tト<K<)c(t)-fo(t)十e(t)if>(t))l{N(t-1=0}]dt.

Thelemmanowfollowsbyintegratingtheaboveequationover[0,t).ロ

Now,supposethatthehouseholdhasatime-discountfactoreJoP^ds,t∈T,wherep{ま)

isboundedandadaptedtoIF,andhasutilityfunctionsuj,-(0,∞),i-1,2,whichare

stnctlyincreasing,strictlyconcaveandtwicecontinuouslydifferentiablewithpropertiestij(∞)≡

limz-∞u;(£)-Oan中{(0+)≡1im£tQu'i{x)-∞.Theproblemthatthehouseholdfacesisformally

describedasfollows:

(MP)Giventhediscountfactorandutilityfunctions,hdanoptimalconsumption/portfolio

process(6,w)andanoptimalinsuranceprocess0tomaximizetheexpectedtotal,discountedutility

fromconsumptionandterminalwealth

E¥fe-fop(s)dsul(c(t))dt+e-tf^dsu2{W{T))¥,

overtheadmissibleconsumption/porttolio/insuranceprocess(c,w,9)∈A,thatsatisfy

E¥f-in{O,e-/o/'(*)dsttl(c(t))}dtl>--

and

E[min|0>e-/oT/'(a)ォtow2(w(r))}]>-∞,

respectively.

Foreachutilityfunctionuj,i-1,2,andforeacht∈T,weshalldenotebyJj(z,t)theinverse

functionof」¥ui(x)e-&p(s)ds].Underthe-su-ptionsstatedabove,foreacht∈T,thefunctions

li(x,t),i-1,2,exist,andarealsocontinuous,strictlydecreasing,andmap(0,∝ontoitselfwith

respecttox,withproperties7j(0+,t)-∞and/j(∞,*)-O.

Thehouseholder'soptimalconsumption/wealthprocessisgivenbythenexttheoremwhose

proofissimilartothatofTheorem3.6.3inKaratzasandShreve[4],anditisomitted-here.

Theorem1.Undertheconditionsstatedabove,anoptimalconsumptionprocessどandthecorre-

spondingwealthprocessWaregiven,respectively,by

c(i)-Ii(i,C<6(t)),*∈T,

wher℃Qisasolutionofequation

E舶用</>(t),t)dt+<j>(T)I2((<j>(T),T)¥-Wo+E¥<f>{t)y{叫N(t)-O}

-n¥dt
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andby

W(t)-志Et　舶c(s)-(y(s)+V(s)^(s))lw8-)-o})ds+ <f>(T)W{T)¥, tGT, (12)
with舟(T) - I2(C</>(T), T). An optimal portfolio/insurance process (w, 6) is given by (10) and (ll),
respectively, with W(ま) being replaced by the optimal wealth W(t).

3. SOME SPECIAIJ CASES

In this section, we consider some cases in which the household has specific utility functions. Namely,

we study the cases of exponential and power utility functions, and explicitly derive optimal con-

sumption/portfolio/insurance processes (～, w, ♂) given by Theorem 1 For simplicity, we assume that

r(t), A*(t), a(t),A(t), y(t), and p(t) are positive constants, from which 」(i) and尋(i) defined in (7)

are also constant, 」(」) - 」 andゆ(t) - ip say.

3.1　EXPONENTIAL UTILITY FUNCTIONS

First, we consider the case in which the household has utility functions denned by

ui{x) -
1 - exp(-r)iX)

りi

0<x<∞　　1-1,2, (13)

where rji are positive constant which represent indices of risk aversion.

It is easily seen that the functions 7j(x, t) are given by

・i{x,t)-一志(1:nx十pt), 4-1,2.

From Theorem 1, the optimal consumption process and the optimal terminal wealth are given,

respectively, by

c(t) -一志(ln㈱ +¥n(+pt)

and

桓) -一志(ln<XT) + ln'+pT).

Using (12) and a tedious algebra leads to

舟(t) - c(t)f(t)り-s(P - ft(t)lw{-)-o},

/*

9(t)

1 1-e-^T-*J
+I,-r(Tサ

、>h          V2

1 1 -e-HT-t) -r(r-まa-r{T-ま)

vi

h(t) -　y

1 - ,-ォ>+r)(T-ま)

V)+r

・志(T功了r(T-t)

O(s + t)e~w+r)sds,　∈ T,
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and

・4-^2+ln害巨(巨人-r+p.
It follows, from (9) and (14), that

dM{t) -　d{<l>{t)W{t)) +<j>{t){c{t) - (y+ゆO)l{N(t)=O})dt

-紳) [f{t) - W{t))idZ{t)

・<t>{t) W(t)誓- In害f(t)-h(t)lmt-)-o}) I) (dN(t)-Arft).
Therefore, from (10) and (ll), the optimal portfolio and insurance are given, respectively, by

w(t) -笠/(*)
and

0(t) -

h(t)-吉(

1 - e-r(T-t)

(fcl(*) + *2(*)) ,

l-e-KT-t)-r(T-舌)e-r{T-t) 1-g-r(r-t)

where

and

k2(t) - I -r{T-t)(1十1>(T-t))
'/2

for all t ∈ T. The insurance premium is then given by

v-rniy-In害) (孟-2+志-3
where

raj

m2

mz

浩(1-e-(仰-(1-岬),

t(1 - *サー(-)

ip+r十車T
(1-e-岬)十三二(1- ,-tT-仰一岬),

r

(1+#T)(1- ,-^Tト函-rT(1- e-岬- ijjTe-岬).

Furthermore, from (14), the optimal consumption is given by

c(t)-読(w(t)+g(t)A+h(t)lmt-)-o}),ま∈T・
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3.2　POWER UTILITY FUNCTIONS

We next consider the case in which the household have utility functions defined by

ul(£)-u2(x)-蛋, o<£<∞, α∈(叫1)＼{0}, (15)

where α represents the shape parameter.

In this case, it is easily seen that, from Theorem 1, the optimal consumption process and the

optimal terminal wealth are given, respectively, by

l

∂(ま) - (ぐ3P**(*))訂

and

l

舟(T) - (Ce"3 卓co)蒜T

Again, (12) and a tedious algebra leads to

W(t) - c(t)l(t) - h(t)l{N{t-)=0},

where

ht¥-
・B(T-t) - 1

+ e,B(T-i)

(16)

B
1　　α

(1-α)2

with

e　害)よ*一入)一芸((</>一恒r)十岩
Itfollows,from(9)and(16),that

dM{t)-」盈[h(t)l{N(t-)-。}+α的)tdz(t)

・mw{t)呈十(((害)勺軸十ri{t)l{N(t-)-o}>y

AA(dN(t)-Xdt).

(17)

Itisclear,from(ll)and(17),that9(t)竺erallydependsonthevalueof-ealth叫).If,

however,thehouseholddoesnotrequirepremiumforthemortalityriskofthehouseholder,i.e.

A-ip,theoptimalinsuranceprocessandportfolioprocessare,respectively,givenby

9(t) -

1 _ e-r{T-t)

w(t)
M- 1 - e-r{-T-I)

yi{jv(t-)-o}

and

The premium is therefore given by

P=miy.

Furthermore, from (16), the optimal consumption is given by

1 - e-^-t)
yi{jv(t-)=o}
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Abstract-In this decade, a hard disk has become an essential key component of a personal

computer system. It preserves important information which is frequently updated. In case the

hard disk fails, we may possibly lose such important information. This is called a hard disk

failure. One of the simplest methods to cope with such a possibility of a hard disk failure is

to periodically make a copy of the information to another secondary medium. This is called a

backup operation.

This study discusses an efficient backup warning policy which gives us a warning to back

up files at the prespeci丘ed time Tw measured by the elapsed time since the previous backup

operation or the recovery from a hard disk failure. For the purpose of determining the value of

Tw, this study formulate the efficiency as a criterion, which is de丘ned by the long-run average

ratio of (i) the time spent in processing jobs effectively in the sense that their accomplishments

are successfully backed up to (ii) the total time spent in processing jobs ineffectively as well as

effectively, and spent in backup or recovery operations. We then clarify the conditions under

which an optimal warning time exists. A numerical example is also presented.

Keywords-Backup, Warning, Hard disk, Efficiency, Optimal warning time

1. INTRODUCTION

Hard disks used for an engineering work station or a personal computer can, in recent years, be

purchased at lower prices. Furthermore, a variety of application software products for a personal

computer are being developed, which require a hard disk. For these reasons, the hard disk has

become one of the essential components for a personal computer system as well as an engineering

work station system.

A hard disk generally preserves various丘Ies, which are frequently updated. However, these files

are occasionally lost because of human errors or failures of hardware devices which the computer

system consists of. This is called a hard disk failure. One of the simplest methods for protecting

us from such a serious loss is to make a backup copy of the files on magnetic tapes, removable

disks, magnetic optical disks and so forth (backup disks for simplicity) periodically. In the case of a

hard disk failure, the backup disks can partially recover the hard disk. The recovery will be partial

since the data updated after the previous backup operation or the recovery from a hard disk failure

cannot be recovered.

Frequent backup operations could signi丘cantly reduce the loss at a hard disk failure although

they would spend much time in backup operations. On the contrary, rare backup operations could

save time in backup operations while the loss time incurred by a hard disk failure would become

3-1*



very large. These observations indicate the signi丘cance of determining an adequate backup timing
of丘Ies on a suitable criterion.

Similar problems to the above have been discussed for the main internal memory of a main

frame computer, where data stored in the main internal memory are sometimes lost because of

a system failure. For such a system, many studies have been reported on rollback and recovery

strategies[l-12], which provide adequate times to backup data in the main internal memory on a

hard disk. These strategies were originally devised for fear of a system failure of an online banking

system. In the case of a system failure of such an online banking system, all the data in the main

internal memory at a failure must completely be recovered at any rate. For this reason, all the log

丘Ies are also backed up on a magnetic tape. With both the data backed up on the hard disk and

the log別es backed up on the magnetic tape, the system data can perfectly be recovered although
it spends a great deal of time and cost.

Assuming that the state of the system can perfectly be recovered up to the state at its failure, a

formulation based` on the renewal reward process[13] is possible. The underling idea in the formu-

lation is quite similar to that in replacement policies for a system in the reliability context[14, 15],

where the cost structure depends on the age of the failed unit at its failure[16-19].

In the problems associated with a hard disk for personal computers or workstations (backup

policy problems for simplicity), it should be reminded that the recovery from a hard disk failure

using backup disks is partial, i.e., the hard disk can only be recovered up to the state at the last

backup time. This peculiarity makes the backup policy problem more complicated than that of

rollback and recovery strategies for the main internal memory.

For backup policy problems, Sandoh, Kaio and Kawai[20] and Sandoh, Kawai and Ibaraki[21]

have proposed a backup policy, which suggests to backup丘Ies in the hard disk at time T measured

by the elapsed- time spent in updating or creating丘Ies after the last backup operation or the

recovery from a hard disk failure, whichever occurred most recently. This policy is called a time-

managed backup policy. For the purpose of determining the value of T, Sandoh, Kaio and Kawai[20]

formulated the expected cost per unit time over an in丘nite time span as an objective function to be

minimized. Sandoh, Kawai and Ibaraki[21] introduced the limiting availability as another objective

function to be maximized. Sandoh and Kawai[22] have also proposed another backup policy, which

insists on backing up files when N jobs of creating or updating files are completed. This is called a

job-managed backup policy. The limiting availability was introduced that was to be maximized for

the purpose of determining an optimal integer N*

Under the time-managed backup policy, we may have to stop creating or updating files for a

backup operation when the elapsed time since the last backup operation or the recovery reaches T.

Such a problem can be solved by adopting the job-managed backup policy. Under the job-managed

backup policy, however, some backup operations may be executed too early and others too late.

This is because the processing time of each job is random.

In order to overcome both problems under the time-managed and the job-managed policies,

this study proposes a warning policy for backup operations. This policy gives us a warning to

back up別es at the prespecified time Tw(> 0) measured by the elapsed time since・the previous

backup operation or the recovery from a hard disk failure. The time to give us a warning is called a

warning time. In case a job is being processed at the warning time, a backup operation is actually

conducted immediately after the process of the job is completed. Such a job is called a warned job

in the following.

For the purpose of determining the value of Tw, this study formulate the e氏ciency as a enもerion,

which is de丘ned by the long-run average ratio of (i) the time spent in processing jobs effectively

in the sense that their accomplishments are successfully backed up to (ii) the total time spent in

processing jobs ineffectively as well as effectively, and spent in backup or recovery operations. If
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awarningtimeTw-T*maximizesthee艮ciency,itisoptimum.Wethenclarifytheconditions

underwhichsuchanoptimalwarningtimeexists.Anumericalexampleisalsopresented.

2.ASSUPMTIONSANDPROCESSBEHAVIOUR

2.1ASSUPMTIONS

Thisstudymakesthefollowingassumptions:

a)TheharddiskfailuretimeX,followsanexponentialdistributionwithfailurerateA,sincethe

failuresoccurrandomlyintime.Theharddi白kfailurecaninstantlybedetected.

(b)Weonlyconsiderthetimeduringwhichajobisbeingprocessed,andthereuponweassume

4-1,^+^Ur.~AJ.vuju:i_._ii..,thataharddiskfailureoccursonlywhenasystemisprocessingajob.

(c)TheprocessingtimeYforeachjobofupdating丘Iesisindependentlyandidenticallydis-

tributed,andthecumulativedistributionfunctioned/)andtheprobabilitydensityfunction

[pdfjofaprocessingtimearedenotedbyH(y)andh(y),respectively.

(d)Thebackinguptimeateachbackupoperationconsistsofasetuptimerandthetimepr。-

portionaltothetotalprocessingtimeofjobswhoseaccomplishmentsarebackedup.The

proportionalconstantisdenotedbyα・

(e)Themeanrecoverytimefromaharddiskfailureisgivenby/j,.

(f)Noharddiskfailureoccursduringarecoveryoperationalthoughonemightoccurduringa

backupoperation.

Assumption(b)signifiesthatweregardaharddiskasanintermittently-usedsystem囲.Assump-

tion(c)indicatesthatthecdfandthepdfofthetotalprocessingtimefornjobsarerespectively

givenby

Hn{t)-f

-J。

and

現ーi(t-y)dH(y)-H(t)*Hn-1(t), n-2,3,-,

Hx{t) -　H(t),

hn(t)-些迎　n=l,2,…
dt

(1)

(2)

2.2　PROCESS BEHAVIOR

Let us here define the excess age as the residual processing time of a warned job at Tw. The

processing times of jobs generate a renewal process[13] , and therefore the cdf, G(t) of the excess age

Te is given (see, e.g. [13]) by

G(te)-H(Tu fe)- 育(Tw - t + te)m(t)dt,

00

m(t) - ∑hn(t).
n=l

-58-

C'. 1

(4)

where



Fromassumption(a),theprocessofthesystembehaviorgeneratesarenewalrewardprocess[13],

T,,L~,,^J-U~1・j_"・1j.ji.j*ir-.ifllwheretherenewalpointisassignedtothetimewhenoneofthefollowingtwoeventsoccurs:

(i)Theprocessofthewarnedjobwasfinishedandthebackupoperationhassuccessfullybeen

earnedout,thatis,X>(a+l)[Tw+Te).

(ii)Aharddiskfailureoccurredduringorbeforeabackupoperationandarecoveryfromthe

harddiskfailureusingbackupdiskshasbeencompleted,thatis,X≦(a+l)(Tw+Te).

Theabovecase(i)includestheeffectivetime,whichisexpressedbyTw+Te,andthetimeover

onecycleis(a十1)(Tw+Te)inthiscase,whereonecyclereferstothetimebetweentowsuccessive

renewalpoints.Inthecase(ii),thetimeoveronecycleisgivenbyXandthereisnoeffectivetime

overonecycle.

3.　EFFICIENCY

Let A(Tw) and B(Tw) respectively denote the expected time and the expected effective time over

one cycle, then the e鼠ciency W{Tw) is written by

W{Tw) -豊),

A(Tw) I∞[(a+i)(ru -可e-¥[(a+l)(T-「e)+TUG(te)

・創(a+l)(Tw+te)+T(x + ji)¥eヰG(te),
B{T-) - L∞(T- + te)erx^+^T-+t^kG{te).

where

l-rサl

(6)

(7)

The first and the second terms of the right-hand-side of Eq. (6) respectively express the above events

(i) and (ii), while the right-hand-side of Eq. (7) shows only the event (i). In many cases, however,

it is difficult to derive G(te) in Eq. (3) in a closed form, and hence, it is also di艮cult to conduct the

subsequent analysis using Eqs. (6) and (7).
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On the other hand, A(Tw) and B(Tw) are also given by

A(Tw

B{Tw)

[(a+ l)vw + r] e-x^a+1^+T^dH(t

・/{/

J。{J。∞(a+l)vw+r]e-x^a+1-+^h(vw-t)dv-¥-{t)dt

・r¥s>+l)

wuvyjふ(x+pi)Xe-車V.

・fr[/

J。[Jtw¥_Jvx

蝣ooIAa+l)vw+r(x+jj)¥eヰ(v--t)dvw¥-(t)dt

・£ (T十Ii)H{x)

・I (x+ii)H(x-t)¥e A車(t)dt
(x + p)入e一入諾dx.

-A(a+lK
L/7/1C'twC十T]dH(vw)

十IJ。 ∞　-A[(a+l)ォtl+Tl/t(--t)d-|-(i)rft.

(8)

(9)

where variables vw, x, t in the above equations, are used to express the accomplishment time of the

warned job, the hard disk failure time, and the completion time of the job processed just prior to

the warned job, respectively.

Each term in the right-hand-side of Eq. (8) respectively expresses each of the seven cases listed
below:

(a) A warning had been given to the job immediately after the renewal point, and a backup

operation has successfully been completed after the warned job was processed.

(b) At least one job had been processed before the warning, and a backup operation has success-

fully been completed after the warned job was processed.

(c) A warning had been give to the job immediately after the renewal point, and a hard disk

failure occurred during a backup operation.

(d) At least one job had been processed before the warning, and a hard disk failure occurred

during a backup operation for the accomplishments of processed jobs.

(e) A warning had been given to the job immediately after the renewal point, and a hard disk

failure occurred after the warning and before the warned job was processed.
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(f) At least one job had been processed before the warning, and a hard disk failure occurred after

the warning and before the warned job was processed.

(g) A hard disk failure occurred before the warning.

The first and the second term in the rightーhand-side of Eq. (9) express the above cases (a) and (b)

respectively since the other cases include no efficient time in themselves. From Eqs. (8) and (9), we
obtain

A{T-) -呈+a* 1-Q+入bPIJ。 -(t)e-入加dt¥

B{Tw) -　R+

W(Tw) -

where

The above results yield

(R一入bPt) m{t)e~Abtdt,

p　=　e-At

Q　-　e-AT

R　=　--At

b　-　a+1.

育(t)e~入btdt,

h(t)e~入todt,

th(t)e-Abtdt,

R+ f。I- (R一入bPt)m(t)e-旭dt

(i十n) 1 - Q+XbPff-m(t)e一入bidt¥

(10)

(ll)

(12)

(13)

(14)

(15)

(16)

we have formulated the efficiency of the proposed policy. If Tw - T^ maximizes W(Tw), it is

optimum. In the succeeding section, we will examine the existence of such T」,.

4. EFFICIENT WARNING POLICY

By differentiating W(Tw) in Eq. (5) with respect to Tw, we have

W'{Tw)

From Eq. (10), we have

B'(Tw)A(Tw) - A'(Tw)B(Tw)

A2(㌔)

謁[芸掛T-トB(T-)¥.

A'(T-)-A(呈十/j.1bP-(Tu AbTw >O.
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It follows that the sign of W′(Tw) agrees with that of D(Tw), which is denned by

D(T-) -語A(TuトB{Tw).
From Eqs. (10), (ll) and (19), we obtain

lim D(Tw)
7u-co

-∝) <0,

K-D(T-)-蒜(トQ-XbP).

Equations(12)and(13)revealtherelationshipbetweenPandQ,whichisexpressedby

Q-一入bP+e入T,

andthuswehave

・i-D{Tw)-
Tw-++。芸(1-e-入T)は霊

Ontheotherhand,Eq.(19)yields

D'(Tw)-[語]′A{T-).

sinceA{Tw)>0,thesignofD′(Tw)coincideswiththatof[B′(Tw)/A'(Tw)}′whichsatis丘es

B'(Twy孟<o・

(19)

(20)

(21)

(22)

(23)

(24)

(25)

From Eqs. (20), (23) and (25), the existence of an efficient warning time can be discussed for

the following two cases:

(1) r > 0 (i.e., the setup time cannot be neglected):

In this case, the sign of D(Tw) changes from positive to negativeフand thus there exists a

unique finite positive warning time Tw(> 0).

(2) r - 0 (i.e., the setup time is negligibly small):

In this case, we have D(Tw) < 0 for Tw > 0, and therefore Tu一十0. This result suggests to

backup files as frequently as possible.

5. NUMERICAL EXAMPLES

This section illustrates the proposed warning policy assuming that the processing time of each job

independently and identically follows a gamma distribution with shape parameter 2 whose cdf and

pdf are respectively given by

Hit) - 1- (1+at)e~αt,

h(t) - α2ね~αt
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Under H{t) in Eq. (26), we have

and

p 2α十人b :入T
e

(α十人by

α2
(_'

-At

(α十人b)2〉 I

2α2
e.
SB

(α十人by

m(t) -芸(1-e-2αt)・

Hence, A(Tw) and B(Tw) in Eqs. (10) and (ll) respectively become

A(Tw)-呈*,){l-Q+晋(l-e-XbT^-

B(T-) - Ril+孟1-e職十

α入bP

4α+2人b

α

2(2α +入b)

十誓(義(l-e-A--) -

(28)

(29)

(30)

(31)

巨(2a+Xb)T-　(32)

1 - e-(2Q+入b)Tw

(2α +入♭)2

・-(2α+¥b)Tu.

2α十人b

! -.-(2α+Xb)Tw

10　　　　15　　　　　20

Warning time

Figure 1: Efficiency

(33)

Figure 1 shows the e缶ciency when r - 0.01, 0.05 and 0.1 for (入a,/j,,α) - (0.001,0.001,

0.25,2.0). It is signi丘ed by α - 2 in the gamma distribution with shape parameter 2 that the
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Table 1: E氏cient warning times.

(a,ji,α - (0.001,0.25,2.0)

T = 0.01 r = 0.05 r=0.1

ID
W (T: T * W (Tl ) T *ァw

3.72 0.9943 9.21 0.9888 13.31

2.41 0.9922 6.29 0.9844 9.18

1.84 0.9905 4.99 0.9810 7.34

1.49 0.9890 4.22 0.9782 6.25

1.26 0.9877 3.69 0.9756 5.51

1.09 0.9865 3.30 0.9732 4.96

0.96 0.9854 3.00 0.9711 4.53

0.85 0.9843 2.76 0.9690 4.19

0.76 0.9832 2.56 0.9671 3.90

0.69 0.9822 2.39 0.9652 3.66

0.34 0.9726 1.47 0.9500 2.36

0‥22 0.9632 1.07 0.9378 1‥78

0.16 0.9538 0.83 0.9272 1.44

0.12 0.9446 0.67 0.9174 1.21

0.10 0.9354 0.56 0.9081 1.04 、

0.09 0.9263 0.48 0.8991 0.91

0.07 0.9173 0.42 0.8904 0.81

0.07 0.9085 0.37 0.8819 0.72

0.06 0.8997 0.33 0.8735 0.65

0.0010

0.0020

0.0030

0.0040

0.0050

0,0060

0.0070

0.0080

0,0090

0.0100

0.0200

0.0300

0.0400

0.0500

0.0600

0.0700

0.0800

0.0900

0.1000

0.9847

0.9787

0.9740

0.9700

0.9665

0.9633

0.9604

0.9576

0.9550

0.9526

0.9324

0.9165

0.9030

0.8909

0.8798

0.8695

0.8598

0.8506

0.8417

mean processing time of each job is equal to 1.0 (hour, e.g.). It can be observed in Fig. 1 that

the efficient warning time becomes larger as the setup time, r increases. In addition, the efficiency

becomes smaller on the whole when r increases. This is because the time for a setup operation is

regarded as being ine伝cient in this study.

Table 1 reveals the e伍cient warning times in the case of (a,//, α) - (0.001, 0.25, 2.0). Table 1

indicates the e氏ciency corresponding to the efficient warning time as well.

From Table 1, we can see that the efficient warning time decreases with increasing failure rate,

入It is also seen that the efficiency decreases on the whole as the setup time increases and that the

setup time does not a庁ect the e抗cient warning time significantly when入takes a large value.

6.　CONCLUSIONS

This paper proposed an efficient backup warning policy for a hard disk of an engineering workstation

or a personal computer, where a warning for a backup operation is given at the elapsed time Tw(> 0)

since the last backup operation or the recovery from a hard disk failure. If a warning is given while

we are processing a job, a backup operation is carried out immediately after we負nish processing the

job. The efficiency was adopted as a criterion to be maximized. It was then shown that there exists

a unique efficient warning time T^ if the setup time for a backup operation cannot be neglected.

A numerical example was also presented to illustrate the theoretical underpinnings of the proposed

backup warning policy formulation.

-64-



REFERENCES

1. K.M. Chandy and C.V. Ramamoorthy, Rollback and recovery strategies for computer programs,

IEEE Trans. Computer, C21, 546-556 (1972).

2. K.M. Chandy, J.C. Browne, C.W. Dissly and WR Uhrig, Analytical models丘3r rollback and

recovery strategies in data base system, IEEE Trans. Software Engineering, SE-1, 100-110

(1975).

3. K.M. Chandy, A survey of analytic models of rollback and recovery strategies, Computer, 8.

40-47 (1975).

4・ J.S.M. Verhofstadt, Recovery techniques for database systems, ACM Computing Surveys, 10,
167-195 (1978).

5. F. Faccelli, Analysis of a service facility with periodic checkpointing, Ada Informatica, 15,

67-81 (1981).

6. V.F. Nicola and F.J. Kylstra, A model of checkpointing and recovery with a specified number

of transactions between checkpoints, Performance 83, (Edited by A.K. Agrawalla and S.K.

Tripathi), pp. 83-100, North-Holland, Amsterdam, (1983).

7. A. Reuter, Performance analysis of recovery techniques, ACM tods, 9, 526-559 (1984).

S. Toueg and 0. Babaoglu, On the optimum checkpoint selection problems, SIAM J. Computer,

13, 630-649 (1984).

9. N. Kaio and S. Osaki, A note on optimum checkpointing policies, Microelectronics & Reliability,
25, 451-453 (1985).

10. R. Koo and S. Toueg, Checkpointing and rollback-recovery for distributed systems, IEEE Trans.

Software Engineering, SE-13, 23-31 (1987).

ll. U. Sumita, N. Kaio and P.B. Goes, Analysis of effective service time with age dependent inter-

ruptions and its application to rollback policy for database management, Queueing Systems, 4,

193-212 (1989),

12. S. Fukumoto, N. Kaio and S. Osaki, Evaluation for a database recovery action with periodical

checkpoint generations, Trans. Electronics, Information and Communication Engineers, E-74,

2076-2082 (1991).

13. S.M. Ross, Applied Probability Models with Optimization Applications, Holden-Day, California,
(1970).

14. R.E. Barlow and F. Proschan, Mathematical Theory of Reliability, John Wiley, New York,
(1967).

15. R.E. Barlow and F. Proschan, Statistical Theory of Reliability and Life Testing, Holt, Rinehart

and Winston, New York, (1975).

16. R. Scheaffer, Optimum age replacement policies with an increasing cost factor, Technometrics,

13, 139-144 (1971).

17. R. Cleroux and M. Hanscom, Age replacement with adjustment and depreciation costs and

interest charges, Technometrics, 16, 235-239 (1974).

-65-



18. C. Tilquin and R- Cleroux, Block replacement policies with general cost structures, Technomet-

rics, 17, 291-298 (1975).

19. A. Ran and SエRosenlund, Age replacement with discounting for a continuous maintenance

cost model, Technometrics, 18, 459-465 (1976).

20. H. Sandoh, N. Kaio and H. Kawai, On backup policies for a hard computer disk, Reliability

Engineering and System Safety, 37, 29-32 (1992).

21. H. Sandoh, H. Kawai and T. Ibaraki, An optimal backup policy for a hard computer disk

depending on age under availability criterion, Computers & Mathematics with Applications, 24,

57-62 (1992).

22. H. Sandoh and H. Kawai, An optimal TV-job backup policy maximizing availability for a hard

computer disk, J. Operations Research Society of Japan, 34, 383-390 (1991).

23. H. Mine and H. Kawai, Preventive replacement of an intermittently-used system, IEEE Trans.

Reliability, R-30, 391-392 (1981).

-66-



RELIABILITY OF A COMMUNICATION SYSTEM
WITH LIMITED NUMBER OF ROLLBACK

MITSUTAKA KIMURAl, KAZUMI YASUI2, TOSHIO NAKAGAWA2 and
NAOHIRO ISHII 1

Department of Intelligence and Computer Science, Nagoya Institute of Technology,

Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan

department of Industrial Engineering, Aichi Institute of Technology,
1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan

kimura@egg. ics.nitech.ac.jp / {yasuilab,nakagawa}@ie.aitech.ac,jp /

ishii@ics.nitech.ac.jp

Abstract-This paper considers a communication system which consists of two processors,

and studies the problem for improving its reliability by adopting the recovery techniques of

checkpoint and rollback : When either processor failure or communication error occurs, the

rollback operation for processors associated with such an event is carried out to the most recent

checkpoint. If the rollback recovery for processors has been executed at k times successively,

we regard that the system has become a faulty state permanently, and interrupt it. Then,

the inspection and maintenance are made and after that, the system is recovered successsfully

and restarts again from the beginning of its initial state. We formulate the stochastic model

with the above recovery techniques, and derive the mean time to checkpoi叫the expected
number of rollback operation and interruption. Further, an optimal checkpointing interval

which minimizes the expected cost is analytically discussed under the assumption that the

number of rollback operation is limited. Finally, some numerical examples are given and useful
discussions are made,

Keywords-Rollback recovery, Limited rollback, Communication system, Expected cost,
Checkpointing interval.

1. INTRODUCTION

As a computer communication technology has remarkably developed, efficient control mechanisms

of a system have been actually realized by a number of processors [1]. Hence, the processing

of each processor has to be carried out accurately and fast. Moreover, a system needs to restore

rapidly a consistent state after transient faults, to improve the reliability of communications between

processors [2J. This paper considers a communication system which consists of two processors, and

studies the problem for improving its reliability, by adopting the recovery techniques of checkpoint

and limited number of rollback [3]言4].

Several algorithms of rollback recovery with checkpoints have been already proposed to keep a

system consistent when transient faults occur. In the previous model [6] , we discussed the policy that

when either processor failure or communication error occurs, the rollback operation for processors

associated with such event is executed to the most recent checkpoint, and so that, the consistent

state in the whole system is always maintained. That is, it was assumed that both processor failures

and communication errors are transient, i.e., these are unlikely to recur after rollback operation. In

this paper, we assume that the system becomes like failure if the number of rollback operation for

processors is greater than a. threshold level. That is, if the rollback recovery for processors has been
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executedatktimessuccessively,weregardthatthesystemhasbecomeafaultystatepermanently.

andinterruptit.Then,wemaketheinspectionandmaintenanceofthesystem,andafterthat,it

isrecoveredsuccesssfullyandrestartsagainfromthebeginningofitsinitialstate.

Weformulateastochasticmodelofacommunicationsystemwiththeaboverecoverypolicy:

Themeantimebetweencheckpoints,theexpectednumberofrollbackoperationsduetoprocessor

failuresorcommunicationerrors,andtheexpectednumberofinterruptionsareobtained,using

thetheoryofMarkovrenewalprocesses[5].Further,wederivetheexpectedcostanddiscuss

analyticallyanoptimalcheckpointingintervalwhichminimizesit,undertheassumptionthatthe

numberofrollbackoperationislimited.Finally,somenumericalexamplesaregiven.

2.MODEIJANDANAIJYSIS

Thesystemconsistsoftwoprocessors,whichiscalledAandB,andthecontrolmechanismsare

realizedbycommunicationsbetweenprocessors.Weobserveonlyaboutcommunicatonbehaviorof

processorA.

(1)Thesystembeginstooperateattime0,andtakescheckpointsforallprocessesthatarerelevant

totheoperationofAatscheduledtimeT.Anytransmissionswhichhavenotfinisheduntil

timeTdealwithnotransmissionwitheachother.

(2)ThedemandfortransmissionsbetweenAandBhasageneraldistributionA(t)withmean

l:しl・

(3)Amessageisdividedintonpiecesofsegmentsbecauseitisnecessarytoensurethereliability

^f+.;;ii___oftransmissions,andeachsegmentissentfromasendertoareceiverwithacknowledgment

byhandshakeasfollows:

i)EachcorrespondinganswerofACK(positiveacknowledgement)orNAK(negativeac-

knowledgement)fromareceivertoasenderjudgeswhetherthetransmissionofasegment

succeedsordoesnot.ThecommunicationofamessageterminateswhenntimesofACK

havebeenacceptedfromareceiver.

(ii)WhenNAKhasbeenreceivedornoanswerhasbeenrecieveduntilalimitedtime,ye

retransmitamessageofthesamesegment.Iftheretransmissiondoesnotsucceedagain,

itisjudgedthatcommunicationerrorshaveoccurred.

(iii)Thetimeneededforthetransmissionofasegmenthasadistributiona(t),andthe

probabilitythatitsucceedsisp(0<p<1).

(4)FailuresofprocessorAandprocessorsBoccurindependentlyaccordir堅todistribu些isFA{t)

andFfl(i),respectively.Then,wede丘netheprobabilitydistributionF(t)≡FA{t)FB{t)with

meanI/A,whereS(」)≡1-S(」)representsasurvivalfunctionofanyfunction坤).

(5)Wheneitherprocessorfailuresorcommunicationerrorshaveoccurred,therollbackopera一

七ionforprocessorsassociatedwithsucheventsisexecutedfromthattimetoitsmostrecent

checkpoint.

(i)Anytransmissionswhichhavenotfinisheduntilthattimedealwithnotransmissionwith

eachother.

(ii)Thesystemisregeneratedbyもherollbackoperation.

(iii)ThetimerequiredforrollbackrecoveryhasageneraldistributionG(t)withmeanl//z.
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(6) If the rollback recovery for processors has been executed at k times successively, the system

is inspected and maintained. After that, the system restarts again from the beginning of its
initial state.

(i) The system is regenerated by the inspection and maintenance.

(ii) The total time required for the inspection and maintenance has a general distribution

V(t) with mean v.

Under the above assumptions, we define the following states of the system:

State Sq: The system begins to operate or restart.

State Sf- Either processor failure or communication error occur and the rollback recovery
starts.

State Sk- Rollback operation has executed at k times, and the inspection and maintenance
starts.

State St: Checkpoint of the system is made at time T.

The system states defined above form a Markov renewal process [6], where ST is an absorbing state
and So is a regeneration point.

We can derive the mean time eso,sT from the beginning of operation to the next checkpoint,
from Appendix 1:

^sq,sx

F{T)X{T) [ f? F(t)X(t)dt +吉拒否(T)貢(T)車
vl1 -戸(T)育(T)f

ト[1 -戸(T)雷w
l=

Note that X(t) is a probability distribution that communic牢on errors occur. The expected number
of rollback operations caused by processor failures or communication errors and the expected number

of interruptions are, respectively, from Appendix 2,

MF-

MK-

F(T)X(T)

1

-- I.

ト[1 -育(T)貢"cor

(2)

1.51

3. OPTIMAL CHECKPOINTING INTERVAL

Let c¥ be the cost for the operation of the system, c2 be the cost for a rollback recovery of commu一

mcation errors or processor failures, and c3 be the cost for inspection and maintenance. We define

that the expected cost per unit o‖ime until the next checkpoint is

C(T) -
ci + ciMp + czMk

eso ,sT
(4)

We seek an optimal checkpointing interval which minimizes C(T) in Eq.(4) for c3 ≧ C2 > ci, and

discuss analytically it. From Eq.(l),Eq.(2) and Eq.(3), we can rewrite Eq.(4) as follows:
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C(T) -
cl乎(r)[l - Y(T)k] + c2Y{T)[l - Y{T)k] + c3乎(T)Y(Ty

tfY(t)dt十吉Y(T)¥ [1-Y{T)k]+vY{T)Y{T)k　フ

I-"'

where

Y(T) ≡ 1 -戸(T)芳(T).

Let j(t) =サ(*)/乎(t) where y(t) is a density of Y(t). Differentiating C(T) in Eq・(5) with respect

to T and setting it equal to zero, we have

[1・孟7(T)] [l-Y(T)<

HI
(6)

Co-Ci

Denoting the left-hand side of Eq.(6) by Lfe (T), we have the following policy, from Appendix 3‥

(i) Ifj(t) is strictIyincreasingin t, f」-Y(t)dt+l/fj, > civ/{c%十C2-c¥) and Li(∞ > cl/(C2-Cl),

there exists a finite and unique 7¥* which satis丘es Li(T) - ci/(C2 - ci.

(ii) If 7(t) is strictly increasing in t, JQ y(t)dt - 1h(∞) > civ/cs and L∞(∞) > ci/(C2 - Cl),

there exists a finite and unique T^ which satisfies L∞(T) - ci/(c2 - ci), and is Tf ≦ TL・

(iii) If Lfe(T) is strictly decreasing in k, there exists a finite and unique Tj* 'which satis丘es Lk(T) -

cl/(c2-ci),andT*≦Tk*≦　#-2,3,一.)・

4.　NUMERICAL EXAMPLE

We consider the paticular case that A{t) is exponential and the transmission time of a segment can

be neglected because it is much smaller than the other times, i.e., A{t) ≡ 1 - e~α土and a(t) ≡ 1 for

i ≧ 0. Let ¥(t) ≡ f(t)/F(t) where /(」) is a density oiF(t)・ Then, we can rewrite (6) as
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C2-Ci
(7)

where x ≡ b(2-p)]n(0く£ ≦ 1) and Y(t) -ト否(t)e-a(¥-x)t

We compute numerically an optimal checkpointing interval T* which satis丘es Eq.(7). It is

assumed that failures of processor A or processor B are caused by random factors of processors.

Thus, failures occur according to a Gamma distribution with order 2, i.e., F(t) ≡ 1 - (1 + 2人t)e -2人t

Suppose that the mean time 1/jj, of rollback is a unit of time, the mean time offailures is ///A

- 1800 or 3600, the mean time of inspection and maintenance is v - 60 or 360, the mean time of

demand for communcations between A and B is fj,/α - 30. For example, when 1/n - 1 second,

I/A - 30,60 minutes. The number of segments is n - 1,4, 8, and the transmission of undivided

message fails with probability q, and hence, the probability of accepting ACK for one segment when

a message is divided into n isp- 1 - q/n.

Introduce the following costs : A cost of checkpoint is c¥ - 1, the loss costs of rollback recovery

for communication errors and processor failures are c<ijc¥ - 10, and the loss costs of inspection and

maintenance are C3/c2 - 2, 4.

Table 1 gives optimal checkpointing intervals fj,T*/60 and expected cost C(T*) × 1(T4 when

q - 0.1, /Vα - 30 and c2/c¥ - 10. These values are scaled to a unit of minute in time. This shows

that T decrease with c3/C2 and ra, increase with ¥xj入and fjiv for the same value c3/C2. Similarly,

T also increase and the expected cost C(T*) decrease with k for the same value n. Hence, it is

better to make the checkpoint at a maximum T* when k goes to in丘nity. However, when k is large,

little depend on c3/C2, and become constant.

Table 1 Numerical values of optimal time /j,T"/60 and expected cost C(T*) × 10-4

to minimize C(T) when q - 0.1, /j,/α - 30 and cijc¥ - 10.

C3/C2 FLU FL/A
-

n = 1 n = 4 n =

k k k

1 4 . (X) 1 4 〇〇 1 4 . 00

2

60

1800

C (T *)x 10" 170.3 73.3 71.5 100.6 48.5 48.2 88.8 44.5 44.3

MT *′60 5.0 8.7 10.7 4.8 9.7 10 .4 4 .8 9.8 10 .3 、

3600

C (T *)耳10 13.3 54.1 51.3 62.6 28.3 27.9 50.6 24.2 24.1

fj,T * 60 10.1 14.5 22.4 9.7 18.S 20.9 9.6 19.4 20.7

360

1800

C (Tつ×i0-4 149.2 73.1 71.5 94.1 48.5 48.2 84.5 44 .5 44.3

V T * 5.5 8.7 10.7 5.2 9.7 10.3 5.1 9.8 10.3

3600

C IT *)×i0-4 119.0 53.9 51.3 59.8 28.3 27.9 48.9 24.2 24.1

ixT * 10.9 14.8 22.4 10.1 18.9 20.9 9.9 19.4 20.6

4

60

1800

C {T *)×10ー4 260.2 74.5 71.5 142.2 48.8 48.2 122.2 44.7 44.3

nT * m 3.6 7-9 10.7 3.5 9.3 10.3 3.5 9.5 10.3

3600

C (T ")×10" 210.8 55.6 51.3 91.7 28.6 27.9 71.5 24.4 24.1

H T * 7.3 12.6 22.4 7.1 17.7 20 .9 7.1 18.6 20.6

360

-

1800

C (T *)×10" 229.9 74.4 71.5 134.3 48.8 48.2 116.8 44.7 44.3

fiT * 60 4.0 8.0 10.7 3.7 9.3 10.3 3.7 9.5 10.3

3600

C (T つ×10" 189.1 55.5 51.3 88.0 28.5 27.9 69.5 24.4 24.1

サt *′60 7.8 12.7 22.4 7.3 17.8 20.9 7.2 18.7 20.6

5.　CONCLUSIONS

We have considered the reliability of a communication system by applying the recovery tequniques of

checkpoint and rollback, under the assumption that the number of rollback operation is limited: We
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have formulated the stochastic model where the consistent state is restored by rollback when either

processor failures or communication errors have occurred, and if the rollback recovery for processors

has been executed at k times successively, we interrupt the system operation and make the inspection

and maintenance. We have derived the mean time to checkpoint, the expected number of rollback

recovery by processor failures or communication errors, and the expected number of interruption.

Further, we have discussed analytically the optimal checkpointing interval which minimizes the

expected cost.

From the numerical example, we have shown that the optimal checkpointing interval decreases

with the rate of costs丘3r rollback operations and interruption, and increases with limited number

of rollback operations. Moreover, we have understood that optimal checkpointing interval reaches

mostly a fixed value which is given by the parameters of ¥xj¥ and k.

After this, it would be important to improve and evaluate the reliability of a system with multi-

communicator! mechanisms from various practical viewpoints.
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6.　APPENDIX

1. Derivation of mean time Jso,s7

using the mass functions of Markov renewal processes [5], Laplace-Stieltjes (LS) transformヲqij (s)
of the transition probabilities Qij(t) from state i(i - So) to state j(j - SF, ST, SK) are given by
the丘blowing equations :

・lso,sF(s)≡,-stl

/e-stF(t)dX(t)J。イe-st雷(t)dF(t),

qso,sK{s)-[qso,sF(s)9(s)]k,

k
・ls。,sT(s)≡∑ks。,sF(s)g(s)]i-l--sT芽(T)戸(T),

1=1
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where

wi(舌) =　A(t)*♭蝣a(t)+(l-p)paW(t)]U (i-l,2,-,n),

cv:　　　　　/?

X(t) ≡ ∑wjj¥t)∑wi-1(t)*[(l-p)a{t)]W,
3-0     t-l

and ◎V'(t) is thej-fold convolution ofS(t) with itself and ◎(o)(t) ≡ l forま> 0. Then, LS transforms

h-s。,sT(s) which is the mean time from the beginning of the operation t0品e next checkpoint is

hso,sT(s) -
qso,sT (s)

1 - qs。,sK(8)v(s)

Therefore, the me即i time Jso,sT is

・sq,5t　… lim
s-サ0

-dhso,sT (s)

as

F(T)X(T) [ l。 rn雷(*)*+i[i-F{T)貢mi +
v[l　戸(T)貢cnr

1 - [1一戸(T)君cor

(A4)

A5

2. Analysis of MF and Mk
LS transforms 7毎(s) and元k(s) of the expected number of rollbacks caused by processor failures

and communication errors or the expected number of interruptions are, respectively

玩　*.-
∑%iU - Vtos。M*)}蝣i-ip-ST戸(T)育(T) + kqs。,sK (s)

玩KO0 -

1 - Qs。,sK(s)v{8)

qso,sK {s)

! - <lso,sK (s)v{s)

(A6)

(A7)

Therefore, the expected number of rollback recovery Mp and interruption Mk per unit of time are,
respectively

MF ≡ limrhpis) -

MK ≡ lira磁00 -

F{T)X{T)

1

-1、

1 - [トF(T)芳w

3. Analys阜s of Tfc* which satisfy Eq.(6)

Let Lk(T) be the left-hand side ofEq.(6). First, when k - 1, we have

Ll(∞) -

LiO)-O,

[7(oo)/0-慧1+

¥C2-CiJc2-Cl

1+吾人(∞)
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LAT) -
7en 1+浩[/<TY(t)dt+孟Y(T)]浩)V)

ll・吉MO+α(1-x)]

where ◎′(t) is a density of坤). Then, taking Lx(T) - 0, we have,

f乎榊十王Y(T) -
crr

C3+C2-Ci'

(A12)

(A13)

which is strictly increasing in T. Thus, if Joy(t)dt+ 1/pL > civ/(cs + C2 - ci), there exists a finite

and unique 2i(0 < Tx < ∞ which satis丘es Eq.(A.13). Hence, when T > T¥, Li(T) is increasing in

T.

Therefore, we have the following policy:

(i) If7(t) isstrictlyincreasingin t, /。乎(t)dt十l/jj, > ci"u/(c3+C2-ci) and Lj(∞) > cl/(C2-Cl),

there exists a finite and unique Tf(Ti < Tj* < ∞) which satisfies L¥(T) - c¥/(C2 - ci).

Next, when k - ∞, we have, from [6], if7(t) is strictlyincreasing in t and L∞(∞) > ci/(C2-Ci),

there exists a丘nite and unique TJJ, which satisfy L∞en - ci/(c2 - ci).

Further, we consider the case that Li(T) > L∞ n i.e・,

F乎(

Letting Q{T) ≡ I.Tァ(t)dt蝣課, we have

Y{t)dt - 欝,芸V・

.g0-0,

Q (T)
Y(T)7′ (T)

bVOY

Then, if 7(4) is strictly increasing in t, Q{T) is also strictly increasing in T. We easily have, from

Ti which satis丘es Eq.(A.13),

Q(Ti) - L

Q(Ti)一望ニー

STSn l

乎[t)dt -
ハ　　Y(Ti)

7CTi

Cl'('

C3+co-C¥

civ(c2 - ci)

- -Y{Ti) -
〃

㌣＼▲1ノ　C3　　C3(C3+C2-Ci)

Therefore, we have the following result:

>・(/,!

7(7i) '

主Y{Tx) -
If・

Y.I己

7(Ti)
<0.

,4.16

(A17)

(ii) if j。-- y(t)<ft-i/7(∞) > CIV/C3, then there exists ^(Ti < T2 < ∞) which satisfies J。乎{t)dt-

Y(T)/y(T) - ciu/c3, and we have that Li{T) > L∞(r) for T > T2.

It would be very difficult to show that Lfc(i) is strictly decreasing in k. We could show that

if Lj-(t) is strictly decreasing in k, there exists a finite and unique Tj* which satisfies Lk(T) -

cl/(c2-ci), and Tf ≦ Tk* ≦ 2」(fc - 2,3,...).
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Abstract-We deal with a situation where a worker processes two kinds of jobs. Job A (JA)

can be processed only at a queueing system. He must join the queue when he decides to process

JA and stays there until he completes JA. Job B (JB) is completed after processing several

steps and each step needs a constant time. At the end of each step, he can know whether JB

is completed or not and decides whether he joins the queue. If JB is completed, he joins the

queue to process JA. If he decides to join the queue, he processes the rest of JB after JA. The

objective is to minimize the expected time until two jobs are completed. We prove a monotone

property of the optimal policy by a dynamic programming formulation.

Keywords-イ)ptimal join, Dynamic programming, Monotone policy.

1. INTRODUCTION

In queueing theory, a customer is usually assumed to arrive at the system without his own policy.

However, the customers sometimes decide whether to join the queue or not. Typically, the decision

depends on the waiting cost and service merit. Naor[l] proposed the system in which the customer

decides心hether to join the queue. The decision is made on the basis of waiting cost, service merit

and toll to enter the system. He showed that the admission control by the toll yields the better

performance of the system. Bell and Stidham[2] dealt with a static control in a multifacility model,

which assigns the arriving customers to the multiple servers with determined probabilities. It is

shown that the socially optimal control uses more servers than the individually optimal control. In

the shortest queue problem (Winston囲), the behavior of joining the shortest queue, which is the
individually optimal control, is also the socially optimal control.

In this paper we deal with the model, in which one customer can decide whether to join the queue

and discuss his (individually) optimal policy. His objective is the minimization of the expected time

for processing two jobs. One job (job A) is processed in a queueing system and the other job (job

B) can be processed if he is not in the queueing system. To complete job B, several steps must be

processed. At each end of step he can decide whether to join the queue. If he decides to join the

queue, he resumes job B after finishing job A. To minimize the total processing time, it is desirable

to minimize the time in the queueing system.

This problem may be considered as a model which explains the behavior of a man, for example,

m an amusement park. In an amusement park, there are many facilities that enjoy people. Some

of them are very popular and they usually have long queues. In this case, we sometimes enjoy the

other minor facilities and wait for the queue to be shorter. When we think the queue becomes short

enough, we join the queue. Though the objective and the situation in an amusement park are very

complicated, our model can be considered as a primitive model of this situation.
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Our problem is formulated as a dynamic programming problem (Ross[4]j. It is shown that the

optimal policy has a monotone property. The monotone property is similar to the switch curve

structure introduced in Warland[5J.
In the next section, we describe our model. In Section 3, the formulation and the analysis are

shown. In the last section, we supply the numerical examples to confirm our results.

2.　MODEL DESCRIPTION

We consider a worker who processes the two types of jobs. Type A job (JA) can be processed only

in a q?eueing system. Type B job (JB) are processed while he is not in the queueing system. The
queueing system where JA is processed has Poisson arrivals and an exponential server. The arrival

rate may depend on the queue length i and it is denoted by Aj. The service rate is denoted by /x.

There is only one JA and one JB. To complete JB, we need to process several steps whose number

is distributed with distribution Rk- The distribution Rk denotes the probability that more than or

equal to k steps are needed to complete JB. Each step needs the constant time T and after each step

he can know whether there are more steps to complete JB. If JB is completed, he joins the queue

and waits until JA is finished. If the steps are stiU left he decides whether to join the queue or to

continue JB, with the information of the queue length and the number of steps he has processed. If

he chooses to join the queue, he waits for JA to be finished and resume JB. If he chooses to process

JB, he will decide again after the step. Our objective is to minimize the total expected processing

time of two jobs.

2.1　FORMULATION BY DYNAMIC PROGRAMMING

Let us de丘ne the following notation for optimality eqlnation.

(i, k) : State (i,k) indicates that the queue length is i, and JB has not been completed after k

steps are finished.

V(i, k) : V(i, k) is the optimal expected time for state (i, k).

W(i, k) : W(i, k) is the expected time for choosing to continue JB at state (i, k) and optimal be-
havior thereafter.

D(i,k) : D(i,k) is the optimal action for state (i,k).

D(i,k) -
if it is optimal to join the queue,

if it is optimal to continue JB.

Sk '蝣The conditional probability that the total number of the steps is k, given the total number

ofthe steps is morethan k. (首k ≡ 1 -S*)

Sk - (Rk - Rk+i)/Rk

Mfc : Expected residual time to complete JB for state (i, k),

0〇

Mk-T ∑ Rm/Rk+l-
m-fe+l

Pii : The probability that the queue length changes to j after time T, given the initial length

?,.
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Qi : The expected queue length after time T, given the initial length i.

OC)

Qi-∑JPu
3-0

With these notation we obtain the following optimality equation.

W{i,k) - T+云y(sk+i(子叫fjL+Sk+1V{j,k+l)j
3-0

V(i,k) -　mm{Mk+(i+l)/n, W(i,k)}

Optimal action D(i, k) is determined by

D(i,k) -
〈

1 ifMk+{i+I)/(i≦W(i,k)

2 iJMk+(i+l)/li>W(i,k)

I.=

(2)

We assume the following conditions for our model.

Condition 1. The arrival rate入i and the probability Sk satisfy the following conditions.

1・入i is a decreasing function oft.

2. Sk is a monotone function ofk and there existsN and」 > 0 such that Sk > e for allk > N.

Lemma 1. The transition probability of the queue length has the following properties.

()〇

1. Forallm, ∑Pij is increasing ini.
7=m

2. The inequality Qt+i - Qi ≦ 1 holds.

This lemma is easily derived by Condition 1.1.

The value of V(i, k) is obtained by the following iteration (successive approximation, Wessels[6]).

v-(i,k) - 0 foralii,ft

Wn+I(i,k) - T+云pij(Sk+iti+l)/n+首k+1Vn(j,k+ l)
,=O

Vn+I(i,k) -　min{Mk+{i+l)/n,Wn(i,k)}

We prove some properties of V(i, k) and W(i, k) by mathematical induction with respect to n.

Lemma 2. The functions V(i, k) and W(i, k) have the following properties.

1. IfSk is increasing in k,

V(i,k+1)-V(i,k) ≧　Mk+i-Mk and

W(i,k+l)-W(i,k) ≧　Affc+i-Mfc.
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2. IfSk, is decreasing in k,

V(i,k+1)-V{i,k) ≦　Mfe+i-Mk and

W(i,k+1)-W(i,k) ≦　Mfc+i-Mk.

Proof.

We prove the case that Sk is increasing. When Sk is decreasing, the proof is similar, therefore it is
omitted.

As the first step of the induction, the inequality obviously holds for V (i, k). Then, we show

that ifVn(i,k+ 1) -Vn{i,k) ≧ Mk+i -Mk, then Wn+l(i,k十1) - Wn+1i,k) ≧ Mk+i -Mk・

Wn+l{i,k+ l) - Wn+I(i,k)

-云pij¥(Sk+2- <Sfc+l)(子ト脇
7-0

・吉k+2Vn(j,k+2ト音k+lVnU,k+ l) ¥

≧云pij (^fc+2-Sfc+l)(十川ル
j-0

・首k+2{Vn(j,k+ l) + Mk+2欄+1ト雷k+1Vl(j,fe+ l)j

-云ptj¥(Sk+2-Sk+1){(打1)ルーVn(j,k+ 1)}
J"-O

-・雷k+2(Mk+2 - Affc+i)]

≧云pij¥(Sk+2 - Sk+1)(-Mk+l) +育k+2(Mk+2 - Affc+i)]
3-0

-云pij(雷k+2Mk+2 - Sk+lMk十1)
7=0

-　Mfc+i-Mk

Vn+1(i,k+ l) - Vn+I(i,k) ≧ Mk+1 -蝿is obvious by min{x,y} - min{a,b} ≧ min{x- a,y - b}.
Since Vn(i, k) and Wn(i, k) converges to V(i, k) and W(i, k) respectively, Lemma 2 holds. □

By Lemma 2, the following theorem holds.

Theorem 1. The optimal policy has the following properties.

1. IfSk is increasing andD(i,k)- 1 forsome s苦ate (i,k), thenD(i,1) - 1 for　≧ k・

2. IfSk is decreasing andD(i,k) - 2 for some state (i,k), thenD(i,I)- 2forI ≧ k・

-78-



Proof.

We prove the theorem when S& is increasing.

D(i,k)- 1 indicatesM^+　十1)/M≦ W{i,k), then

Mk+{i+l)/fi≦ W(i,k)≦ W(i,k十1)十Mfc-Mfc+i.

Therefore, Mk+i + (i+ l)//i ≦ W(i,k+ 1) holds and it implies D(i,k+ 1) - 1. Repeating this
argument, we obtain Theorem 1.

The next lemma is also concerning to the optimal policy.

Lemma 3. The functions V(i, k) and W(i, k) satisfy the following inequalities.

V(i+l,k)-V{i,k) ≦ 1/p

W(i+l,.k)-W(i,k) ≦ 1/p

Proo£

For n - 0, the result obviously holds. We show that Vn(i+1,kトVn(i, k) ≦ llix implies Wn+I(i+
1, kトWn+I(i,k) ≦ 1/p. Here, let us define 5(j,k) by

8(j,k) f監二
Note that 5{j,k) ≦ 1//u for j ≧ 1. Then

/fi + Sk+1Vn(O, k)　　　　　　U - o)

Sk+1(Vn(j,k)-Vn(j-l,k)) (j≧ 1)

wn+1{i+l,k)-Wn+l(i,k)

-藍pi+ij¥Sk+i(j-tl)/iJ,+首fe+1VnU,k))

i-o

一三pij{sk+i(j+l)/fi+Sk+lVn(j,k)}

7-0

ooJo>oj
-∑pii+lj∑S(m,kト∑pij∑5(m,k)

3-0m-07-0m-0

0ゥOOCxO∞
-∑5(m,k)∑pi+lj-∑8(m,k)∑pij

m-03-mm-0J-m

-x>K*)(

m=lEi+lj云p.)

DC>

3=m]=m

∫EM

m=lEpi+lj云y,

・!・

j=mj=m

-l/n{Qi+i-Qi)

≦l//i
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The first inequality holds by 5(m,k) ≦ 1/fj, (m ≧ 1) (by inductive assumption) and Lemma 1.1

and the last inequality holds by Lemma 1.2. Vn+1(i + l,k) - Vn+l{i,k) ≦ 1/ji is obvious by

minja;,y}- min{a,b} ≦ max{x- a,y - b}.

By Lemma 3, we have the next theorem.

Theorem2. IfD(i,k)-2, thenD(j,k)-2　≦j).

Proo£

D(i,k) - 2 indicates Mk十(i十1)/M ≧ W(i,k), then

Mk+{i+1)/FL≧ W(i,k)≧ w(i+i,k)- i/(i.

Therefore, Mk + (i + 2)/fi ≧ W(i -f- l,k) holds, which implies D(i + l,fc) - 2. Repeating this

∬gument, we obtain Theorem 2.

By Theorem 1 and Theorem 2, the changes of optimal action happen at most once, as i or k

increases. Thus optimal policy has the following monotone structure.

Sk is increasing S& is decreasing

Figure 1: Monotone Property of Optimal Policy

3. NUMERICAL EXAMPLE

In this section we show numerical examples.

First, we show the case that Sk is increasing.

1. The service and arrival rates of the queueing systems are 〟 - 1.8,
人0-1-9,人　-1.9,人　-1.9.人　-1.9,人　-u

入5-1・5,人6-1-5,人7-1.0,A-1.0,A-1.0,A-0(t≧10).

2. The processing time and distribution of step of JB are T - 1,

S0-0,　Si-Q,　S2-0.1, S3-0.1, S4-0.2,

S5-0.5, S6-0.5, S7-0.5, S8-0.5, Sg-0.6,

Sk-0.9 (k≧10)

With these values, the optimal policy is shown in Table 1.

Next, we show the case that S^ is decreasing.

1. The service and arrival rates of the queueing systems are jj, - 1.8, T - 1,
Ao-1.9, Ai-1.9, A2-1.9, A3-1.9, A4-1.8,

人-1.5,A-1.5,A-1.0,人8-1.0,A-1.0,A-0(*≧10).
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Table 1: Optimal policy for increasing Sk

1 1 1 1　2　2　2　2　2　2　2

1 1 1 1　2　2　2　2　2　2　2

1 1 1 1　2　2　2　2　2　2　2

1 1 1 1　2　2　2　2　2　2　2

1 1 1 1　2　2　2　2　2　2　2

1 1 1 1　2　2　2　2　2　2　2

1 1 1 1　2　2　2　2　2　2　2

1 1 1 1　2　2　2　2　2　2　2

1 1 1 1　2　2　2　2　2　2　2

1 1 1 1　2　2　2　2　2　2　2

1 1 1　2　2　2　2　2　2　2　2

1 1 1　2　2　2　2　2　2　2　2

1 1 1　2　2　2　2　2　2　2　2

1 1 1　2　2　2　2　2　2　2　2

1 1　2　2　2　2　2　2　2　2　2

2. The processing time and distribution of step of JB are T - 1,

S0-0.7, Si-0.7, S2-0.7, S3-0.7, 54-0.5,

S5-0.5, S6-0.5, S7-0.5, S8-0.5, ^g-0.2,

Si0-0.2, Su-0.2, S12-0.2, Sk-0.1(k≧13)

With these values, the optimal policy is shown in Table 2.

Table 2: Optimal policy for decreasing Sk

k 1 1　2　2　2　2　2　2　2　2　2

1 1　2　2　2　2　2　2　2　2　2

1　1　2　2　2　2　2　2　2　2　2

1 1　2　2　2　2　2　2　2　2　2

1 1　2　2　2　2　2　2　2　2　2

1 1　2　2　2　2　2　2　2　2　2

1 1　2　2　2　2　2　2　2　2　2

1 1 1　2　2　2　2　2　2　2　2

1 1 1　2　2　2　2　2　2　2　2

1 1 1　2　2　2　2　2　2　2　2

1 1 1　2　2　2　2　2　2　2　2

1 1 1 1　2　2　2　2　2　2　2

1 1 1 1　2　2　2　2　2　2　2

1 1 1 1　2　2　2　2　2　2　2

1 1 1 1　2　2　2　2　2　2　2
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Abstract-All automatic tellers machines (ATM) in a bank make an unmanned driving on a

weekend and holidays, and an automatic monitoring system continuously watches the operation

of ATM through the telecommunication network. There are two kinds of troubles according

to the installed places of ATM. : One is the trouble which occurs inside the branch of a bank

where ATM make a manned driving except a weekend and holidays, and the other is the

one which occurs outside the branch where ATM always make an unmanned driving. Two

kinds of breakdowns are introduced, and the e甲ected cost for an unmanned driving period
is obtained. A maintenance policy which minimizes the expected cost is analytically derived.

Finally, a numerical example is given and some useful discussions are made.

Keywords-ATM of bank, Two breakdowns, Expected cost, Maintenance policy.

1. INTRODUCTION

Most automatic tellers machines (ATMs) are connected with the online system of a bank and

improve the e氏ciency of business about since 1975・ The operational times of ATMs are greatly

increased with the driving on a weekend and holidays in recent years. Further, ATMs have various

functions such as the transfer of cash, the contract and cancellation of deposit and account, the

reception of loan, and so on. Moreover, ATMs are now planning to connect with other organizations,

and so, their networks are expanded on every place and become an indispensable infrastructure in

a daily life. In such situations, it is very important to consider an automatic monitoring system of

ATMs, because adequate maintenance for troubles and breakdowns have to be promptly done from

the viewpoints of trust and customer's service.

A bank consigns the replenishment of cash, and the check and maintenance of ATMs to a guard

company[lj. There axe roughly two kinds of ATMs according to their installed places: One is an

ATM which is set up in the branch of a bank, and the other is in department stores, stations,

supermarkets or other public facilities, which is called the outside branch ATM.

An automatic monitoring system continuously watches the operation of outside branch ATMs

because they always make an unmanned driving. However, the inside branch ATM is watched by a

bank employee in the branch on weekdays, and is done at the control center on holidays. Further, a
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bank employee checks an ATM at the beginning time of the next day after holidays. Even if some

troubles have occurred in an ATM on holidays, they are removed and a bank employee restores it

to a normal condition on the next day. At the control center, a monitoring system displays the

state of troubles in the terminal unit and outputs them. Moreover, there might be phone calls to

report the situation of troubles by users in an ATM. When troubles are displayed in the terminal

unit, a watch member at the control center can remove some of them, by operating the terminal

unit remotely according to their state. If a watch member cannot remove them, he reports this fact

to a guard company. A guard member can remove promptly troubles or breakdowns of ATM.

It is assumed in this paper that there are two kinds of troubles, which might break down

indirectly, and breakdown directly. This paper proposes a stochastic model with two kinds of

breakdowns: An ATM is checked at time to after trouble occurrence. When the distributions of two

breakdowns, the checking cost and the loss cost due to breakdowns are introduced, the expected cost

of the inside branch ATM for an unmanned driving period is obtained. An optimal maintenance

policy, which minimizes the expected cost, is analytically derived. Finally, a numerical example is

given and some useful discussions are made.

2.　MODEL

An automatic monitoring system watches ATM by the polling selecting method through a tele-

phone line, and displays the state of ATM. The state can be classified in the following four states:

state 0: ATM is normal. There is no trouble in ATM.

state 1: Some troubles occur in ATM. There is a possibility that it will break down soon. For

example, it is warning that the cash-and the receipt are running out soon, or ATM is choked

up with the cash and the card. If a watch member at the control center removes troubles,

they are not included in state 1.

state 2: ATM is checked at time to after trouble occurrences in state 1. A guard member goes

to the ATM place and removes troubles before it breaks down. This is an easy work, which

changes the cashbox or replenishes the receipt and the journal form.

state 3: ATM breaks down until time to after trouble occurrences(breakdown 1), i.e., it breaks

down before a guard member arrives at the ATM place. He recovers the breakdown by

changing the cashbox or replenishing the receipt and the journal form.

state 4: ATM breaks down by mechanical factors(breakdown 2). For example, the power supply

stops or ATM is choked up with the cash and the card. A guard member goes to the ATM

place and recovers the breakdown. Therefore, ATM cannot be used from the breakdown to

the arrival time of a guard member. The maintenance time of breakdown 2 is usually longer

than that of breakdown 1 in state 3.

Figure 1 shows the transition relation between above states.

In the operation of ATM, troubles associated with the cash, the receipt form and the journal

form would occur at most one time for a short time span such as a weekend and holidays, It is

supposed that an ATM has to operate during the interval [0, T] and the trouble occurs only at most
one time in this interval.

It is assumed that troubles occur according to a general distribution Fo(t), and afiLer trouble oc-

currences, the time to breakdown 1 has a general distribution Fi (i). Further, the time to breakdown

2 is independent of the occurrences of troubles and breakdown 1, and has a general distribution
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Figure 1: Figure of state of transition.

F2(t). If there are two or more ATMs in the same booth, four states are defined as the state of the

last operating ATM.

We give the following probabilities that events such as troubles and breakdowns occur during

[0,T],whereFi-l-Fi (i-0,1,2).

(i) The probability that troubles and breakdown 2 do not occur during (0,T Hs

Fo(T)F2(T).

(ii) The probability that breakdown 2 occurs before trouble occurrence during (0,T ] is

Fo(x)dF2(x).

(iii) The probability that ATM is checked at T without breakdowns after trouble occurrence is

JT-to
Fl(T - x)dFo(x).

(iv)Theprobabilitythatbreakdown1occursaftertroubleoccurrence(seeFigure2)is

/dFo(x)/

JT-t。J。zF2(x+y)dFl{y).

Figure 2: Breakdown 1 occurrence

-85-

=J

:lm

(3)

(4)



(v)Theprobabilitythatbreakdown2occursaftertroubleoccurrenceis

I-TrT
dFo(x)/Fl{y-x)dF2(y).

't-t。

(vi)TheprobabilitythatATMischeckedattoaftertroubleoccurrenceis

Fi (tQ)
I

T-to

F2(to + x)dFo(x)

(vii)Theprobabilitythatbreakdown1occursuntiltimetoaftertroubleoccurrenceis

/-dFo(x)f-F2{x+y)dFl{y).

J。J。

蝣:>i

(6)

(7)

(viii) The probability that breakdown 2 occurs until time to after trouble occurrence (see Figure

3)is

JT-≠dFo{x)rx+to

JxFl{y-x)dF2{y).

Figure3:Breakdown2occurrence

Evidently,wehave

(3)十4+5

IdFo(x)[.F2(r)A(T

T-tQI一両/T-xF2(x+y)dFl{y)+/F^y-Iz)dF2{y)¥

JtT

T-t。

6)+(7)+(8)

P2 (£)dFo(x) ,

fT-todFo{x)¥F2{to+x)Fi(to)+/F2(x+y)dFl{y)+

J。/・x+to
LFx{y-x)dF2(y)

rT-to F2(x)dFo(x).

Hence, it is proved that

(1)+(2)+(9)+(10)
Fo(T)F2(T)+fFo(x)d

J。-+/J。F2(x)dFo(x)-1.
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3.EXPECTEDCOST

Weintroducethefollowingcosts:

co-costatT.AnATMstopsattimeT.AbankemployeechecksanATMbeforeitbeginsto

operateonthenextday,andreplenishesthecash,thejournalandreceiptforms.

c¥-checkingcostattimeio-Aguardmemberre丘11supthecashcassette,andifnecessary,

replenishesthejournalandreceiptforms.Acostc¥ishigherthancqbecauseaguardmember

speciallyhastogototheATMplace.

C2-costforbreakdown1.AnATMhasstoppeduntilaguardmemberarrivesattimeioafter

breakdown1occurrence.AnycustomerscannotuseitandhavetouseATMsofotherbanks.

Inthiscase,notonlycustomerspaythecommissiontootherbanks,butalsoabankpaysthe

commissionforcustomers'usage.Acostc2includesthewholecostwhichisthesumofcost

c¥andthelosscostforbreakdown1.

C3-costofbreakdown2.AnATMbreaksdowndirectly,andhasstoppeduntilaguardmember

arrivesattheATMplace.Themaintenancetimeandcostforbreakdown2wouldbeusually

longerandhigherthanthoseofbreakdown1,respectively.Itcanbeseeningeneralthat

C3>C2>ci>cn.

ThetotalexpectedcostofATMduring[0,T]isgivenby

c(to)-coF2(T)¥fo(T)十/JT-t。Fi(T-x)dFQ(x)]+ciFifo)j-A(*o+a;)dFo(x)

十C2IT-t。dFo(xrT-xF2(x十y)dFl(y)+[

J。~去/・to

J。

dFQ(x)/F2(x十y)dFl{y)

+C3/Fo{x)dF2(x)+/dFo(x)¥

JT-t。JxFi(y-x)dF2{y)

・f~*odFo{x/x+tQF^y-x)dF2(y)¥(0≦to≦T).(ll)

4.OPTIMALPOLICY

ItisaproblemtodeterminewhenaguardmembergoestotheATMplaceaftertroubleoc-

currence.Forexample,iftroublesoccurnearattimeT,itwouldbeunnecessarytosendaguard

member.WefindanoptimaltimeJq(0≦t昌≦T)whichminimizestheexpectedcostC(*o)in(H)-

Inparticularcaseofto-0,i.e.,whenanATMismaintainedimmediatelyaftertroubleoccurrences,

theexpectedcostis

I
C(o)-coF2(T)Fo(T)+cl/F2(a;)dFo(a;)+c3/Fo(x)dF2(x).

IJ。(12)

Inparticularcaseofto-T,i.e.,whenanATMisnotmaintaineduntiltimeTeveniftroubles
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occur, the expected cost is

C(T) coF2(T) ¥fo(T) + J F^T - x)dFQ(x)

・C2/dFo(x)/

J。J。zF2{x+y)dFl{y)

・c3UFo(x)-I
)+/dFo(x)/Fl(y-x)dF2(y)¥(13)

Next,supposethatdistributionsFo(t)andF2(t)areexponential,i.e.,Fo(t)-1-e一入-*and

F2(t)-l-e一入2tFurther,assumethatF¥(t)hasadensity/i(t),andde丘nethat71(t)≡h(t)/Fi(t)

withっ′.(0)≡0whichrepresentsthefailurerateofbreakdown1.Then,differentiatingC(to)with

respecttotoandsettingitequaltozero,wehave

(C2 - Cl)71(*o) + (C3 - Cl)入2]

e(入o+入2)(T-to) - 1

Ao+A2
=Ci-Co- (14)

In general, it would be very di伍cult to derive an optimal time t昌analytically.

5.　NUMERICAL EXAMPLE

Suppose that the distribution Fi(t) of time to breakdown 1 has the IFR property [2],i.e., Fi(t) -

1-e~入　(m > 1). Figure 4 draws the expected cost C(to) for to when T - 16(hours),入。 - 5/1000

(1/hours),入　- 7/200 (1/hours),入2 - 5/200 (1/hours), c0 - 4.5, c¥ - 6.0, c^ - 7.0, C3 - 8.5. It

is shown from this figure that去昌- 1.00 (hours) and C(io) - 4.745. We have to dispatch a guard

member after 60 minutes from trouble occurrence, and he make the maintenance of an ATM. In

actual operations, a guard member usually goes to the branch of ATMs from about 20 minutes to

60 minutes even if one of them in the booth breaks down, and sequentially makes the maintenance

of ATMs with troubles. The above model, where a guard member arrives there at 60 minutes after

trouble occurrence, would be suitable for the above real situations.

0 1 2　3　4　5　6　7　8　9 1011 1213141516

Figure 4: Graph of total expected cost.
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6.　CONCLUSIONS

We form a stochastic model of an automatic monitoring system for an ATM in a bank: Assuming
the occurrences of two breakdowns where one occurs after some troubles and the other occurs

directly, we obtain the expected cost during an unmanned period. Further, we discuss numerically an

optimal time t昌which is the checking time of an ATM after trouble occurrences. This maintenance

policy woul be applied to an actual monitoring system by suitable modi丘cations.
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Abstract-This paper addresses a problem of how to determine the optimal auto-sleep sched-

ule when the computer user should turn the hard disk or the display to a sleep mode in order

to save the electrical power afiCer the computer has not been accessed. We propose a stochas-

tic model to obtain the optimal sleep timing strategy which minimizes the expected electrical

power consumed per unit time in the steady-state, where access requirements arrive at the

system according to a renewal process and are processed by a general service time. Then the

phase-type approximations are proposed to generate the optimal auto-sleep schedule approxi-

mately. We investigate the performance of the phase-type approximation through a simulation

study.

Keywords-auto-sleep scheduling, power saving, renewal process, phase-type distribution,

EM algorithm, approximation.

1. INTRODUCTION

Recently, the auto-sleep function of the hard disk or the display in a computer system is rapidly

recognized to be important in terms of power management. In fact, the auto-sleep function is

equipped in almost computer systems as a standard function. Then the optimal design for the

auto-sleep function is the most important problem, in particular, for notebook computers with

limited capacity of battery. For example, on the hard disk of a computer, the electrical power

consumed to warm up from sleep mode is larger than that consumed in the normal operation.

Thus, it is not always effective to design the system such that moves its state to the sleep mode

whenever there is no access requirement.

First, the optimal design problem for the auto-sleep function was considered by Sandoh, Hi-

rakoshi and Kawai [1]. Dohi, Kaio and Osaki [2] proposed a statistical non-parametric method to

estimate the optimal sleep timing for the same problem. However, it is noted that the seminal

works above simpli丘ed the underlying problem extremely and was incomplete for representation of

stochastic behavior of the auto-sleep system. More valid formulations were made by Okamura, Dohi

and OsakH3, 4]. They considered two kinds of models (Type I model and Type II model) with and
without cancellation of access requirements arrived at the system, respectively. More sped五cally,

Type I model with cancellation assumes that other access requirements arrived at the system while

one job has been processed are canceled, and focuses on the multi-use circumstance for a desktop

computer unit. On the other hand, Type II model corresponds to a buffer system in which other

access requirements are accumulated while one job has been processed, and deals with the multi-job

system such as network printers. Okamura, Dohi and Osaki [3, 4] proved that the optimal sleep

timing strategies for both models are the switching strategies, i. e., turn always the system to a sleep
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mode after the process for a job is completed, or do not at all, if the access requirements arrive

according to the homogeneous Poisson process.

However, if the arrival of access requirements follows more general stochastic processes such as

the renewal process, it is difficult to obtain the optimal sleep timing explicitly. Okamura, Dohi

and Osaki [3, 4] applied the simple parametric approximation methods by Miyazawa [5] and the

usual d凪ision approximation to generate the optimal auto-sleep scheduleフbut could not obtain the

satisfactory approximation performance. The main reason is that the arrival process may belong to

a more wide class of stochastic processes. In this paper, we apply the phase-type approximations

to generate the optimal auto-sleep timing which minimizes the expected power consumed per unit

time in the steady-state for Type I model. Altiok [6] and Heijden [7] showed that the phase-type

approximations are useful to represent the general probability distributions. Asmussen and Koole [8]

also proved that the phase-type renewal process is weakly dense in the class of stationary simple

point processes.

The paper is planed as follows. Section 2 describes the auto-sleep model under consideration and

gives an implicit丘:>rm of the expected power consumed per unit time in the i もeady-state under the

assumption that the arrival of access requirements follows the renewal process. Section 3 concerns

the approximation problem for the expected power consumed per unit time in the steady-state.

Then, the phase-type approximation is introduced to represent the access requirements process.

Furthermore, two statistical estimation methods with the phase-type approximation are developed,

Section 4 is devoted to investigate the approximation performance for the proposed methods through

a simulation study. Finally, the paper is concluded with some remarks.

2.　MODEL DESCRIPTION

2.1　NOTATION AND ASSUMPTIONS

Suppose that the access requirements arrive at the system according to an ordinary renewal process

{N(t); t > 0}. Denote a sequence of inter-arrival times between (k - 1)-th and k-th arrivals by

{Xk¥ k - 1, 2,・・・}. Then, X/- are the non-negative i.i.d. random variables, having the probability

distribution F{ま) with mean 1/A(> 0) and variance aa (> 0). The tasks required by the fe-th

access are processed with the times 5&, which are the non-negative i.i.d. random variables having

the probability distribution H(t) with丘nite mean 1/fj, (> 0) and variance as (> 0). It is assumed

that the system under consideration can take the following states;

Busy: The system processes some tasks required by accesses, where the set-up time r (> 0) is

needed before processing each task. After the present task is completed, the state of system

moves to the idle state. During the busy state, the electrical power consumed per unit time

isPi(>0).

Idle: No access requirement occurs, after one task is completed. If a new access requirement occurs

ur)til the total spent time in the idle period becomes fo, the system begins to process it after

elapsing r time units. Otherwise, the state of system moves to the sleep state at the moment

when the total spent time in the idle period becomes to- Throughout this paper, we call to the

auto-sleep time. The electrical power consumed per unit time during the idle period is also

Pi(>0).

Sleep: The sleep state is the lower-power state, so that the electrical power consumed per unit time

is less than that in the other states. To simplify the discussion, we assume that the electrical

power consumed per unit time in the sleep state is zero. When an access requirement occurs,

the sleep mode terminates immediately and the state of system moves to the warm-up state.
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Figure 1: Possible realization of the stochastic system.

Warm-up: In order to begin processing a task from the sleep mode, s (> 0) time units are needed
for warming-up. Hence, after s + r time units are elapsed, the process for the task is started.

In the warm-up state, the electrical power P2 (> 0) is consumed per unit time, where P2 > Pi-

In this paper, we assume that the other access requirements are canceled while the system is

busy. Hence, the state of system moves to an idle when each task is completed. Figure 1 is depicted

the possible realization of the auto-sleep sy声tern.

2.2　FORMULATION OF THE EXPECTED POWER CUNSUMED PER
UNIT TIME IN THE STEADY-STATE

Let us consider the expected power consumed per unit time in the steady-state as a criterion to

evaluate the system per丘armance. In this model, since the other access requirements arrive during

the processing of the previous task, the time length of an idle period can be represented as the

residual life of the arrival process. Define the residual life of the arrival process by 「′t having the

distribution function I{坤), where the subscript t is the elapsed time. De丘ne M{ま) as the renewal

function of the arrival process・ Then the residual life distribution is given by

I(xt)-Ft十3)-戸F{t+ x - y)dM(y), 小

where, in general, V>(') - 1 - i>v)-

Now we define the time period from the beginning of warm-up state to the next beginning of

that as one cycle. Using the residual life jt, we can derive the mean time length of one cycle;

・(まo) -s+r+l′p・L∞E[7s+T+x]dH(-N] [t+1′〃+L∞軸T+x}dH{x). (2)

where E[N] is the expected number of transitions from idle to busy during one cycle, and the

probability mass function is

Pr{iV-可　- ド /(tos+T+X)子{to¥r+x)I(to¥r+x^dHix),　forn-1,2,-・(3)

Hence, it is found that the expected number of transitions from idle to busy during one cycle is

E[N} -
pr{/。 7s+r+宕≦ to}dH(x)

Pi{fi-'yT+x > to}dH{x)
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Ill a fashion similar to the mean time length, the expected power consumed during one cycle is

C(to)
ll-p)票+M岩恥+r.

蝣]+E[-T∧to]

・E[7V]{票+p,(震E[??r]+E[7yrAto])},
(5)

where E[りt ∧ to] - E[min(扉o)] - /d-udi{u用十hi(t。国　Therefore, from the usual renewal
reward theorem, we can obtain the expected power consumed per unit time in the steady-state,

V(to) - C(to)/T(to). Then, the problem is to find the optimal auto-sleep time t昌which minimizes

the expected power consumed per unit time in the steady-state, i.e., mino≦t。<∞ V(to).

3∴　THE PHASE-TYPE APPROXIMATION

3.1　FORMULATION OF THE EXPECTED POWER VIA THE
PHASE-TYPE APPROXIMATION

In general, it is difficult to obtain the explicit form of the expected power consumed per unit time

in the steady-state for the renewal arrival case. This is due to an analytical difficulty to represent

the renewal function. In this section, we propose a structural approximation scheme to generate the

optimal auto-sleep schedule effectively, applying the phase-type approximation method. These are

based on the fact that an ordinary renewal arrival process can be approximated well by a phase-type

renewal process, so that we give an approximation form of the residual distribution I(t¥x) in Eqs. (2)

and(5).

Before developing the phase-type approximation, we describe the phase-type renewal process.

Consider a Markov process on the state space {1,2,- ,m+ 1}, where {1,2,- ,m) denote the

transient states called the phases, and {m + 1} means the absorbing one. The initial probability

vector for the Markov process is given by (α, 0), where α is the 1 x m probability vector. Until the

absorption in the stateれ+ 1, the process behaves similar to the Markov process with an infinitesimal

generatorT,whereTisamatnxwiもhcomponents入(> 0), 1≦i,3 <m>3 ≠iand　入(<0). In

our model, the absorption implies the occurrence of events, i.e. the arrival of access requirements.

After the absorption, the process is restarted at the phase having the initial probability vector.

Then, the time interval of successive arrivals can be represented by the phase-type distribution with

parameter (α, T), where the iユiter-arrival time distribution becomes Fph(t) - 1 α exp(Tt)e with

a column vector e of Is.

Let us now return our argument to the phase-type approximation. Denote Nt and J% be the

number of arrivals in (0, t] and the internal state of arrival at time t, respectively, where the internal

states can be interpreted as the states of various factors which cause the arrival of access require-

ments. We de丘ne the transition probability; Pij(n,t) - Pr{Nt - n, Jt - j | N0 - 0, Jo - i} and the

matrix P(n, t) with components Pij(n, t). Then, the Kolmogorov's forward equation is given by

孟P(O,t) - P(O, t)T,

孟p(n+1,t)-P(n+1,t)T+P(n,t)T-α　forn-1,2,・

P(O,O) - J,　P(n,0) -O,　for n- 1,2,
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where T-- -Te is the column vector and where / and O are an identity matrix and a zero matrix.

respectively. Letting P*(z, t) - ∑n=。P(n, t)zn be the matrix generating function, from Eq. (6),
weobtain

()〇

p*(z,ま) - ∑p{n,t)zn - exp{(T+ zT-α)*}.　　　　　(7)
71=O

Henceフwe can derive the probability vector gr(f with component gj(t) which means the probability

that the state of process at time t is j, that is.

g(t) - αexp{(r+T-α)*}.　　　　　　　　　(8)

Therefore, from the Markov property for the phase-type renewal process, it is found that the residual

life distribution can be written as

w項- 1 -0ま)exp(T:r)e.　　　　　　　　　　　(9)

Finally, the residual life distribution in Eqs. (2) and (5) can be approximated by I(x¥t) m IpH{坤),
which leads to an approximation form of the expected power consumed per unit time in the steady-
state.

3.2　STATISTICAL ESTIMATION PROCEDURE

Since the phase-type renewal process is composed of two stochastic processes which are observable

and unobservable, usual statistical estimation methods such as the method of maximum likelihood

cannot be used for model parameters. Thus, we introduce the following two estimation methods for

the phase-type approximation method.

The moment matching

Heijden [7] proposed the following moment matching conditions. If there are n unknown-

parameters, they are determined by丘tting the first n moments to the sample moments estimated

from real data. If the inter-arrival time distribution of the phase-type renewal process obeys the

following Coxian-2 distribution ;

T--AiO

A2-A2-dα-(1-a,a),

thentheestimatorsf:orthepaJametersaregivenby

--r^(miA-1),

(10)

(ll)

Ai-
3mim2 -m-i -

and

+ 18m∋ + 24r可m,3 - 9mim2(3mim2 + 2ms)
3m主2mim,3

A2-
2(miAi - 1)

m2Ai - 2mi

where mi, rri2 and m^, are the丘rst three moments of inter-arrival time.
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(ii)TheEM-algorithmforphase-typedistribution

TheEM(expectation-maximization)algorithmisaniterativemethodforthemaximumlike-

lihoodestimation[9,10].Itisusefultoparameterizestatisticalmodelsincludingtheincomplete

data.SupposethatY-u{X)isobservedandthatXisunobserved,whereYandXhavethe

probabilitydensityfunctions#7and/7,respectively.Then,the(n+l)-thstepintheEMalgorithm

istofindthevalue7n+iwhichmaximizes

T→E【logf7(X)¥u(X)-y;7n},(14)

whereyistheobserveddataandjnisthecurrentestimateafterthe柁stepsintheEM-algorithm

seee・g.[11]fordetail).Inparticular,whentheinter-arrivaltimedistributionhasthephase-type

distribution,theEM-algorithmisgivenasfollows:

Let(yi,y2,...,yn)betheobservedsampledata.Then,the(k+l)-thiterationoftheEM一

・ii・・ialgorithmisgivenby

E-Step:Calculate;

n
汀.(k+1)-
i∑EKwto&(k¥f(%fori-1,・,m,
1=1

n
∑Efc%;<*ォ,!蝣<*)],fori-l,～,m,

Z=1

n
(fc+1)-∑E鴫V;ォ(fc),^fc>],for≠j,i-1,～,mandj-1,)帆

～=1

(15)

(16)

(17)

M-Step:Generate七henewestimates;

(*+l)-誓,ぢ+1)-鍔it(㌘+1)--a(*+1)
xHo

Ak+l)+f(k+i)(18)

where&iandUjaretheelementsofaandT,respectively.Intheaboveexpressions,灯isthe

numberofMarkovprocessesstartingfromthestatei,」jisthetotaltimespentinthestateiand

Ayisthetotalnumberofjumpsfromthestateitoj.

4.NUMERICALEXAMPLES

Inthissection,weinvestigatetheapproximationperformanceofthephase-typemethodsproposed

inSection3.Supposethatthearrivalofaccessrequirementsfollowstherenewalprocesswiththe

Weibullinter-arrivaltimedistribution;F(t)-1-exp{-(t/βa)ma},wherema-0.5andβa-

p/r(i+i/ma)denotetheshapeandscaleparametersoftheWeibulldistribution,respectively,and

wherer(-)isthestandardgammafunction.Wealsosupposethattheprocessingtimedistributionis

theexponentialdistribution;H(t)-1-expトt).TheothermodelparametersarefixedasPi-1.0,

Pi-4.0,r-0.1ands-1.0.Inourapproximationscheme,theinter-arrivaltimedistributionofthe

phase-typerenewalprocessisequivalenttotheCoxian-2distribution.Inadditiontothephase-type

∵em



Table 1 : The optimal auto-sleep time based on the equilibrium approximation.

〟
^ (*o ) v (t*0 )

0 .1 0 .0 0 0 0 .15 9 0 .2 9 9 (0 .2 78 , 0 .3 2 0 )

0 .2 0 .0 0 0 0 .2 9 8 0 .4 8 4 (0 .4 5 4 , 0 .5 15

0 .3 0 .00 6 0 .4 2 1 0 .6 1 7 (0 .5 7 9 , 0 .6 5 5 )

0 .4 0 .1 8 9 0 .5 2 9 0 .7 6 2 (0 .7 2 8 , 0 .7 9 7

0 .5 0 .4 7 6 0 .6 2 0 0 .8 0 4 (0 .7 6 1 , 0 .8 4 6

0 .6 0 .80 6 0 .6 9 5 0 .8 7 1 (0 .8 2 5 , 0 .9 1 8 )

0 .7 1 .15 4 0 .7 5 6 0 .8 9 6 (0 .8 5 5 , 0 .9 3 7 )

0 .8 1 .5 14 0 .8 0 6 0 .9 5 2 (0 .9 1 1 , 0 .9 9 4 )

0 .9 1 ▼8 7 4 0 .8 4 7 0 .9 1 8 (0 .8 7 3 , 0 .9 6 2

Table 2: The optimal auto-sleep time based on the phase-type approximations.

m om ent m atch ing E M -algorith m

〟
i昌 V (t昌 V (t*Q) iG ¢(t昌 v (t*0)

0 .1 0 .00 0 0 .379 0.299 (0.278 ,0.320) 0.000 0 .334 0.29 9 (0.278,0 .320

0 .2 0.00 0 0 .608 0.484 (0.454 ,0.515) 0.000 0 .622 0.484 (0.45 4,0 .5 15)

0 .3 3.12 8 0 .705 0.665 (0.626 ,0.704 ) 0.000 0 .644 0.6 17 (0.5 79,0 .655)

0 .4 3.26 5 0 .747 0.790 (0.762, 0.819 0.037 0 .852 0.77 3 (0.73 6,0 .809

0 .5 3.05 8 0 .778 0.815 (0.780, 0.851) 0.42 1 0 .922 0.80 8 (0.764 ,0 .85 1

0‥6 2.82 6 0 .805 0.861 (0.824, 0.899 ) ∞ 1.000 0.99 7 (0.991, 1.003)

0 .1 2.62 5 0.828 0.881 (0.848,0 .9 14 ) ∞ 1.000 1.00 0 (1.00 0, 1.000

0 .8 2.454 0.850 0.942 (0.906,0 .9 77) ∞ 1.000 1▼00 0 (1一00 0, 1.00 1)

0Ⅰ9 2.3 10 0.870 0.9 18 (0.880,0 .956 ) 0 .797 0.710 0.964 (0 .908 , 1.019)

approximation, we calculate the optimal auto-sleep time based on the equilibrium approximation [4]

and compare their precision, where the equilibrium approximation is to represent the residual life

distribution with the equilibrium distribution of inter-arrival time, that is,

I(t¥x)ォFe{t) -A
Lt首

F(u)du. (19)

Tables 1 and 2 present the optimal auto-sleep times and their associated minimum expected

powers consumed per unit time in the steady-state, based on the equilibrium approximation and

the phase-type approximations. In the phase-type approximations, we use the moment matching

and the EM-algorithm to estimate the model parameters. Furthermore, we estimate numerically

the expected power by the Monte Carlo simulation, provided that the auto-sleep time is given

by the estimated optimal solution. On each table, the values in brackets indicate the lower and

upper bounds on the con丘dence interval with significant level 95%, and are calculated by the

simulation.　From Tables 1 and 2, it is observed that the expected powers estimated by the

equilibrium approximation and the moment matching tend not to belong to the corresponding

confidence intervals. On the other hand, the phase-type approximation with EM-algorithm can

estimate the expected power consumed per unit time within the confidence intervals with significant

level 95%. These results show that the the phase-type approximation with EM-algorithm is efficient

to calculate the expected power consumed per unit time approximately. However, in estimating the

optimal auto-sleep time, the phase-type approximation with EM-algorithm does not always give the

best solutions. From Tables 1 and 2, it can be observed that the estimation results for the optimal
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auto-sleep time by both the equilibrium approximation and the moment matching are better than

that by EM-algorithm. Thus, we can conclude that the equilibrium approximation and the moment

matching are useful methods to estimate the optimal auto-sleep time. Also, if one wants to obtain

more reliable estimate of the expected power consumed per unit time, the EM-algorithm may
function better than the others.

5. CONCLUDING REMARKS

In this paper, we have considered the stochastic auto-sleep model under the renewal arrival process,

and have proposed two kinds of phase-type approximation methods to represent the expected power

consumed per unit time in the steady-state. Based on these approximations, we have calculated

the optimal auto-sleep schedule which minimizes the expected power consumed per unit time in the

steady-state. In numerical examples, we have investigated the approximation performance for the

proposed methods: As a result, we have shown that the phase-type approximations couldtbe useful

for finding the optimal auto-sleep time approximately in the heavy traffic circumstance.
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Abstract-This paper considers replacement polices for an extended cumulative damage

model with maintenance at each shock and minimal repair at failure: Shocks occur at a non-

homogeneous Poisson process. A system undergoes maintenance at each shock when the total

damage does not exceed a failure level K, undergoes minimal repair at each shock when the

total damage exceeds a failure level K, and is replaced at time T or at failure N, whichever

occurs first. The expected cost rate is obtained and optimal T* and N* to minimize the ex-

pected cost are analytically discussed. It is shown that this model would be applied to the

backup of secondary storage丘Ies in a database system as an example.

Keywords-Shock model, Minimal repair, Replacement, Maintenance, Backup policy.

1. INTRODUCTION

In recent years, the database in computer systems has become very importantt in the highly

information-oriented society. In particular, the reliable database is the most indispensable instru-

ment in on-line transaction processing systems such as real-time systems used for account of bank.

The data in a computer system are frequently updated by adding or deleting them, and are stored

in且oppy disks or other secondary media. However, data丘Ies in secondary media are sometimes

broken by several errors due to noises, human errors and hardware faults. In this case, we have to

reconstruct the same files from the beginning.

The most simple and dependable method to ensure the safety of data would be always to make

the backup copies of all files in other places as total backup, and to take out them if files in the

original secondary media are broken. But, this method would take hours and costs when files

become large. To make the backup copies efficiently, we make the backup copies of only updated

別es which have changed or are new since the last full backup when the total update files do not

exceed a threshold level K. We call it incremental backup. This would reduce significantly both

duration time and size of backup [1]. Conversely, we perform full backup at periodic time T, or at

iV-th update since the total updated丘Ies have exceeded a threshold level 〟 whichever occurs丘rst.

It is assumed that the database system returns to an initial state by the full backup.

Cumulative damage models, where a system suffers damage due to shocks and fails when the

total amount of damage exceeds a failure level K, generate a cumulative process [2j. Some aspects

of damage models from reliability viewpoints were discussed by Esary, Marshall and Proschan [3].

It is of great interest that a system is replaced before failure as preventive maintenance. The

replacement policies where a system is replaced before failure at time T [4], at shock N [5], or at
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damage Z [6, 7] were considered. Nakagawa and Kijima [8] applied the periodic replacement with

minimal repair [9] at failure to a cumulative damage model and obtained optimal values T*, N*

and Z which minimize the expected cost.

This paper considers an extended cumulative damage model with maintenance at each shock

and minimal repair at each failure. Reliability measures of this model are derived, using the theory

of cumulative processes. Further, this is applied to the backup of files in a database system.

2. PROBLEM FORMULATION

Suppose that shocks occur at a nonhomogeneous Poisson process with an intensity function入(i)

and a mean-value function R(t), ・e・, R(t) ≡ /0 ¥(u)du. Then, the probability that shocks occur
exactly j times during [0, t] is [10]

Hj(t)-響-R(t) (j-0,1,2,蝣蝣蝣).　　　(1)

Further, an amount Yj of damage due to the j-th shock has a probability distribution Gj(x) ≡

Pr{Yi ≦ x) (j - 1,2,- -) with finite mean. Then, the total damage Z3 ≡ ∑言=1Yi to the j-th
damage shock where Zq - 0 has a distribution

Gu)(x)=Pv{Zj ≦x}-G¥*G2*-*Gj(x) (j-0,1,2,蝣蝣蝣),　　　(2)

where G?(-)(x) ≡ 1 for z ≧ 0, 0 for z < 0, and the asterisk mark represents the Stieltjes convolution,

i.e.. a * b(t) ≡ J。 b(t - u)da(u) for any functions a(t) and b(t), Then, the probabilitythat the total

damage exceeds exactly a failure level K aけth shock is Gy-V(KトGU¥K). Let Z(t) be the
total amount of damage at timeまThen, the distribution of Z{t) is [3]

〇ご

pv{Z(t) ≦可- ∑Hj(t)G^(x).
7=0

i '-U

Consider the system which should operate for an infinite time span and assume: When the total

damage does not exceed a failure level K, the system undergoes maintenance at each shock, and

the maintenance cost is c^ + cq(x) when the total damage is x (0 ≦ x < K). It is assumed that the

function cq(x) is continuous and strictly increasing and cq(0) ≡ 0. When the total damage exceeds

a failure level K, the system undergoes minimal repair at each failure, and the repair cost is c3,

where o3 - c^ + cq(K). The system is replaced at periodic time T, or at failure N, whichever occurs

first, and the replacement cost is a, where c3 < c¥. The maintenance time, the repair time and

the replacement time are negligible, i.e., the time considered here is measured only by the total

operating time of the system. Then, the probability PT that the system is replaced at time T is

D〇　　　　　　∞　　　　　　　j+N-1

pT - ∑Hj(T)G^(K)+∑¥gU¥kトG帥](M ∑ Hi{T)
3-0　　　　　　　　　　0-0

∝　　　　　　　j+N-1

∑[GU>(KトG糾l)(K)} ∑ Hi(T),
7-0 i=0
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and the probability Pjv that the system is replaced at failure N is

Pn

【)〇　　　　　　　　　　　　　　∞

∑[G{j¥K)-Gか(K)] ∑ Hi(T)
3=O i-j+N

-差[G{j)(K)-G帥(K)}fHj+N-(t)¥(t)dt,

J。

whereG^{K)-1fori<0.Itisevidentthat

0〇

(6)

(7)

pt + pn - ∑HAT)G^-N+l¥K) + ∑Hj(T)[l - G(J-N+1¥K)} - l.
3-0　　　　　　　　　　　　　　3-0

Let Mi(T) and M2(T, N) denote the expected numbers of maintenances and minimal repairs

until replacement, respectively. Then, from (4) and (6), we have

Mx {T)

o〇　　　　　　　　　　く30　　　　　　　　　　　　　OC〕

∑jHj(T)G^(K) + ∑ j[GU>(KトG直1)ra ∑ Hi{T)
3-0 i-o i-j+l

oe      j

∑Hi(T) ∑G^{K),
j-l i-l

(刃　　　　　　　j+N-1　　　　　〇

M2(T,N) - ∑[GU)(K)-G糾1}W]{ ∑ {i-3)Hi{T)十∑ (N-1)Hi(T)}
3 -0 i-j+l i-j+N

ロC,　　　.i

- ∑Hj(T). ∑ [l-G^(K)}.
3-1　　　i-j-N十2

Thus, the total expected cost E[C] to replacement is

E[C] - a +差Hj(T)維C2 +軸{x))dG{恥c3-2(T, N).
Let E[U] denote the mean time to replacement Then, from (5) and (7), we have

E[U]
差匿W(K)-G(紳>(*蝣)]/tHj+N-(t)X(t)dt+TPT

差GO-
i-N+1¥K)f

J。Hj(t)dt.

I*J

!'J)

(10)

(ll)

Therefore, from (10) and (ll), by using the theory of renewal process [11], the expected cost

per unit time is C(T, N) - E[C¥/E[U¥.
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3.　OPTIMAL POLICY

suppose that shocks occur at a Poisson process with rate A, i.e.湖) -A, R(t) -入t and Hj(t) -
[(Xty/j¥}e~xt (j - 0, 1, 2,・・蝣). Further, assume that the cost of maintenances is proportional to the

total damage, i.e., c2 + cq(x) - C2 + cog (0 ≦ x < K), Then, the expected cost per unit of time is

C(T, N)

o j-N

C3+
ci -A(T,N)

∑T=i H3(T) ∑言=1 G(i-N)(K)
(12)

where

A(T, N) ≡ C3∑Hj(T) ∑[G[i){KトG^i+1¥K)] + co∑Hj(T)
・7-1　　i-0 J-l 善子 G^ (x)dx.  (13)

IfM(K) ≡ ∑�"=1GU>(K) < ∞, then C(0,N) ≡ limy→oC(T,N) - ∞ for allN and C(∞,∞) ≡

limy-誓,N--C(T,N) - c3人Thus, there exists a positive pair (T*,N*) (0 < T*,N* ≦ ∞ which
minimizes C(T, N).

Remark 1 The expected cost per unit of time when the system is replaced only at failure N is

cl-C3-CoJ。 M{x)dx
C3+

C(N) ,三　C(T,N)

≡ lim

入　　T-00　人　　〉　　　　M{K)+N
(N- l,2,-)・　　　(14)

If S。 M{x)ゐ> (ci - c3)/C。 then N* - 1, and the system should be replaced at the first shock

after the total damage has ezceeded a failure level K. Conversely, ifJQK 〟(諾)dz ≦ (cl - c3)/c。 then

N* - ∞, and the resulting cost is C(oo)/A- c3.

In general, let an optimal pair (T*, N*) denote a positive solution which minimizes C(T, N). t
is evident that

oo      J             x      j            oo

∑Hj{T)∑G(i-N-1)(Kト∑Hj{T)∑G^-N)(K) - ∑ Hj(T)[l - G^-N¥K)} > 0,
J-l j-l J-l i-l J-JV+1

sD3別

00

A(T,N) - A(T,N+ l) - c3 ∑ Hj{T)【G(j~N¥K) - G{i-N+l¥K)} > 0.
j-N

Thus, we have the following property for (T*, N*):

Remark 2 Ifcx < A{T*,N) forsome N then N* - 1, and ifa > A(T*,N) for allN, then
N*=a〇.

3.1　MINIMAIJ REPAIR MODEIJ

First, consider an optimal policy for the minimal repair model, i.e., the system undergoes minimal

repair at each shock when the total damage exceeds a failure level K, and the system is replaced

at time T. Since we put N - ∞ in (12), the expected cost per unit of time is

cl/A- co ∑芸。 f。KO糾y¥x)dx Jq Hj(t)dt
Q+

Cx{T)_　_　C(T,N)
⇒　日日皿

入　　　N-二品　　入　　　　　　　　　　　　　　　　T
(15)

Since Ci(O) ≡ limx-oCi(T) - ∞ and C¥{-) ≡ limy-∞ Ci{T) - c3人then there exists a positive

T* (0 < Tf < ∞) which minimizes (15). A necessary condition that a finite T* minimizes Cァ(T) is
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given by differentiating C¥(T) with respect to T and setting it equal to zero. Hence, from (15), we
have

差H. 3 fK[G{i¥x)-G{j)(壷-芸
Letting Q(T) be the left-hand side of (16), we have

Q{0) ≡ limQ(T)-0,

(J(ヽ1

Q′(T)

lirarK
Q(T)-/.

J。M(x)dx.

入差J。トG(汁1)(£)]dx>0.

(16)

Thus, Q(T) is a strictly increasing function from 0 to JQ M(x)dx.
There丘>re, we have:

Theorem 1 //f" M{x)血, cl/co then there ezists afinite and unique I¥* (0 < T* < ∞) which
minimizes Ci(T), and it satisfies (16). The resulting cost is

響- C3 - Co差Hj(TD距+1)(x)dx.　(17)
IfJ~ M{x)dx≦ cl/cq then T-j* - ∞ andC¥(∞)/入　C3-

Example 1 Suppose that a database is updated according to a Poisson process with rate A. Further,

an amount of only丘Ies, which changed or are new since the last fall backup, arises from the j-th

update, is Yj. It is assumed that each Yj has a probability distribution Gj{x) - 1 - e-'xz i.e..

G^¥x) - 1 - ∑言1-。1[(/*E)7*!]e-'*㌶ (i - 1,2, -) and M(K) - y,K. We replace shock by update,

damage by dumped files, maintenance by incremental backup, minimal repair by total backup and

replacement by full backup. Then, equation (16) is simpli丘rd as

〔氾　　j11

∑Hj(T) ∑iGii+1){K) -
j-2　　　　i-l

Cl

co/p '
(18)

Letting Qx{T) be the left-hand side of (18), we have that Qi(0) - 0, and Q¥{∞) - (i*Ky/2.

Thus, Q¥(T) is a strictly increasing function of T from 0 to (fJ,K) 2/2. If iiK2/2 > cx/cp then there

exists a finite and unique T* (0 < Tx* < ∞) which satis丘es (18), and the resulting cost is

CiiiY
A

∝-　　　j+1

-C2+冨3=。 ∑Gョ(K).　　(19)E!ーil

H /xK2/2 ≦ ci/co then T? - ∞, and the resulting cost is c3人,

It is supposed that the total volume oHlies is 5 × 105 trucks and a threshold level 〟 is 3 × 105

trucks which correspond to 60% of the total volume. Table 1 gives the optimal full backup times

入Tf, the resulting costs Ci(Tf)/入for ci - 70, 90, 110, 140, 200, 260, 320, 440, and fiK - 12,24

when c2 - 10 and cq - 2 × 10-4・ It is found from the optimal policy that if30/j,K > c¥ then
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T* < ∞, and conversely, if30〃K ≦ ci then Tj* - ∞ and C¥(∞)/A- 70. This shows that both

optimal T2 and costs Ci(2¥*) are increasing with cx, and Ci(T?) are decreasing with 〃K. However,

T¥ are smaller for small ci, and conversely, are greater for large a, when ¥xK is smaller. This reason

would be explained that if the cost cx is small then it is better to perform the full backup early, but

if c¥ is large then it is better to do it lately, especially when its mean updated ale is large.

Table 1. Optimal full backup times AI¥* and resulting costs Ci (T?)/¥ for minimal repair model

C1 70 90 110 140 200 260 320 440

〃∬= 12
XT? 5.418 6▼211 6.953 8.020 10.163 12.652 16.675 ∝〉

a m : 41.272 44.726 47.771 51.787 58.427 63.731 67.935 70.000

〃∬= 24
AT? 7.486 8.492 9.393 10.611 12.740 14.636 16▼422 19.981

C i(Tf)/¥ 31.206 33.710 35.947 38.947 44.089 48.475 52.341 58.961

For example, when the mean time of update is I/A - 1 day, ci - 320 and fiK - 12, the optimal

full backup time Tf is about 17 days. In this case, K/(A//x) - 12 days, and note that it represents

the mean time until the total updated丘Ies exceed a threshold level K.

3.2　PREVENTIVE REPLACEMENT MODEL

In this section, consider an optimal policy for the preventive replacement model, i. e., the system is

replaced at periodic time T, or at failure, whichever occurs first. Putting that N - 1 in (12), the
expected cost per unit of time is

cl/A+∑oorKi
j=。J。(C2十cQX)dG(川)(諾)J。1Hj(t)dt

∑芸。G^W /。 Hj(t)dt

Since C2(0) ≡ limy→o C2(T) - ∞ and缶0m (14),

響≡ li-堅型i^^S^^H^
=C3+

ci -C3-c。/0 M(x)dx

〟(〟)十1　'

(20)

(21)

there exists a positive T| (0 < T| ≦ ～) which minimizes (20). A necessary condition that a finite

r2 minimizes C2(T) is given by differentiating C2 (T) with respect to T and setting it equal to zero.

Hence, from (20), we have

差[V(T)G(j)(KトJ。(c2+句-+1)(x)]/

J。Hj{t)Xdt-cl,

V(T) -
∑?=。/。 (C2 + c^dG^wHjiT)

∑JL。 G^ mHj iT)
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Letting U(T) be the left-hand side of (22), we have

U(o) ≡ limU(T)-0.

U(∞) ≡ lim U(T)-V{∞)[1+M(K)ト
T-⇒OO

oo

U'(T) - F'(T)^GW
,=0

r

JoHj(t)Xdt,

(c2 + cox)dM(x),

where V(∞) ≡ limy→∞V(T). If V(T) is a strictly increasing function, U(T) is also a strictly

increasing function from 0 to U{∞).

There丘>re, we have:

Theorem 2 IfV′(T) > 0 and U(∞) > c¥ then there exists a finite and unique T% which甲invmizes

C2(T), and it satisfies (22). The resulting cost is C^C^I)/A- y(T2*). ifv′(T) ≦ 0 or U(∞) ≦ cl

then T| - ∞ and C2(oo)/入is given in (21). This corresponds to the case ofN* - 1 in Remark 2.

Example 2 In example 1, we perform full backup at periodic time T, or when the total update

files have exceeded a threshold lever K, whichever occurs first. When Gj(x) - 1 - e~)1X i.e.,

GV¥x) - 1 - ∑'I^xy/il}e-サx (j - 1,2, -) and M(K) - fiK, equation (22) is simplifird as

(X〕　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　0〇

∑[V(T)G(j)(K) - c2G{j+1)(Kト冨(j + l)G^+2¥K)} ∑ Hi(T) - cu　(24)
i-o i-j+l

and equation (23) is

V(T) - c2 +
∑7=。G糾V(K)Hj(T) _ c.∑~ (j+ l)^+2)(i^(T)

∑f^GMvQHjiX)　〃　∑~。GW(if)i^CO
(25)

Table 2 gives the optimal full backup times入T|, the resulting costs C2(r2*)/入for ci - 70, 90,

110昌40, 200, 260, 320, 440, and jjlK - 12, 24 when c2 - 10 and c。 - 2 × 1(T4. This shows that

both optimal T| and costs 」2(^2) are increasing with c¥, and入r2* < ftK.

Table 2. Optimal full backup times AXV? and resulting costs C^T^J/A

for preventive replacement model

C1 70 90 110 140 200 260 320 輿0

〝∬ = 12
¥T X 6.311 ▼922 11.094 刃 ∝) ∝) ∝) ∝)

C im )iA 40.318 43ー225 45.555 47.692 52.308 56 .923 6 1.538 70.769

〃∬ = 24
A T,* 7.515 8.553 9.505 10.843 13.443 16.396 ∝〉 (X)

C 2 T | ) X 31.196 33.686 35.903 38.856 43.831 47.919 51.200 56.000

It is found from Table 1 and Table 2 that Arx* < AT| and Ci(Tf)/¥ > C2(T2*)/A, that is,

the preventive replacement model is better than the minimal repair one. But, if T% - ∞ and

c2(∞)/入> Ci(∞)/A- c3, i.e., ci > c3 + /0 M(x)血, then the system should undergoes minimal

repair at each shock foreever.
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In general, note that dA(T, N)/dT > 0 in (13) and A(T, N) is strictly decreasing in N. From

Remark2,ifc¥ > A(∞'!) - c3+/。 M(x)dx,then(T*,AT*) - (班,∞), andifc¥ ≦ C。十tf wz)dx.
then N*- 1 andT* -To*

Remark 3 //cx > c3+/*M(£)dx then (T*,N*) - ∞,∞i; tfci ≦ C3+Jo M(x)dx then

(r*,iv*) - (r2*, i).

4.　CONCLUSIONS

We have proposed the extended cumulative damage model with maintenance at each shock and

minimal repair at failure, and is replaced at scheduled time T or at failure N, whichever occurs

丘rst. Using the theory of cumulative processes, we derive the expected cost and discuss the optimal

replacement policy which minimizes it.

Further, we have shown that this would be applied to the backup of secondary storage files in

the database system. Thus, by estimating the costs of backups and the amount of dumped files

from actual data and by modifying some suppositions, we could practically determine a scheduled

time of full backup. These formulations and results would be applied to other management policies

for computer systems [12].

Acknowledgment This form a part of research results by the Hori Information Science Promotion

Foundation.
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Abstract-In the final stage of manufacturing some specific products such as chemical ones,

they weigh each product using a scale and mark the weighing result on each product. However,

the scale will occasionally undergo malfunction or a failure during the weighing process. The

products weighed by such a scale will be shipped with different marks丘:om their actual weights.

In the case of chemical products, those products with wrong marks can be regarded as defective

products.

This study proposes two types of periodical inspection policies for a scale to adjust it or

to detect its malfunction or a failure followed by repair. The inspection in this study involves

adjustment operations by which the malfunction or failures of the scale can be detected and the

scale will recover from its malfunction or failure. Under Policy I, the scale is inspected at time

iT(i - 1, 2, - i. Under Policy II, we consider a situation where the scale is inspected every

morning before we start daily work of weighing products, which can be observed in the actual

circumstances. For such a case, we can carry out an inspection at iT/N(i - 0, 1, 2, - , N - 1),

where r signi丘es the working hours per day and an integer N denotes the inspection frequency

to be conducted per day.

Two types of objective functions are considered; (1) the fraction defective and (2) the long-

run average cost under each policy. Under Policy I (Policy II), we examine the existence of an
inspection interval Ta (inspection frequency Na) which guarantees that the fraction defective

does not exceed a prespeci丘ed value α(0 < α < 1). An economical inspection interval T*

(inspection frequency N*) minimizing the long-run average cost is also discussed. Numerical

examples are presented to illustrate the proposed inspection policy formulations.

Keywords-Inspection policy, Scale, Fraction defective, Long-run average cost.

1. INTRODUCTION

In the final stage of manufacturing some specific products such as chemical ones, there is a process

in which each product is weighed using a scale to mark each weight on the product. This process

is not emphasized generally and its associated cost is reduced as much as possible since it does not

affect the product quality. However, the scale occasionally undergoes its malfunction or failures,

and this malfunction or a failure can be detected only by an inspection. When the scale becomes

out of order, it will indicate different weight for each product from the actual one, and hence each

product will be shipped with a different mark from each actual weight. In the case of chemical

products pa.rticularly, this will be a signi丘cant problem if their consumers believe the wrong weights

indicated on them and use them for chemical reactions.

The present study concentrates on the products that are marked with wrong weights and calls

them defectives. In addition, it is postulated that we cannot devote a large expense to this weighing
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process as observed in the actual circumstances. We then discuss two types of inspection policies
for ascale,

Under Policy I, we conduct an inspection to a scale at iT(i - 1,2,蝣・・) to adjust the scale or to

detect malfunction or a failure followed by repair. Under Policy II, we consider a situation where

the scale is inspected every morning before we start daily work of weighing products. For such a

case, we can inspect the scale at ir/Nyi - 0, 1,2,・・・,N- 1), where r signifies the working hours

per day and an integer N denotes an inspection frequency to be carried out per day.

Two types of objective functions are considered; (1) the fraction defective and (2) the long-run

average cost under each policy. Under Policy I (Policy II), we examine the existence of an inspection

interval Ta (inspection frequency Na) which guarantees that the fraction defective does not exceed

a prespecined value α(0 < α < 1). An economical inspection interval T* (inspection frequency

N*) minimizing the long-run average cost is also discussed. Numerical examples are presented to

illustrate the proposed inspection policy formulations.

On the other hand, inspection policies have a long validated history. Most of studies associ-

ated with inspection policies have considered to carry out an inspection with a view to detect-

ing a system failure which cannot be detected instantIy[l-30]. Among these studies, Barlow and

Proschan[3] , Munford and Shahani[4,5] , Tadikamalla[14] , Wattanapanom and Shaw[15] , Nakagawa

and Yasui[16,17] , Kaio and Osaki[20,21] have proposed methods for obtaining inspection points in

time {a;1, ^2, - }. Weiss[2] and Kaio and Osaki[23] have considered models under imperfect inspec-

tions, and Luss and Kander[9] have dealt with a model when time required for an inspection is not

negligible. Zacks and Fenske[6], Lussand and Kander[8] , and Kander[13] have discussed inspection

policies for a恥unit system. Approximately optimal policies have been studied by Munford and

Shahani[4], and Anbar[10]. Yum and MacDowell[25] and Gassandras and Han[29] have applied

inspection policies to a manufacturing system.

The above studies assume that since we cannot detect a system failure instantly, we incur cost

depending on the period over which we leave the failed system as it is. The cost in is, however,

based on not a concrete but an abstract concept. In addition, most of the above studies focus on the

period from the time when we start to use a system to the time when the system failure is detected.

In addition, the above studies focus on the time interval from when we start to use the system to

when we detect the system failure. In this study, however, the period over which the scale is left to

be out of order corresponds to the volume of defectives. In addition, the scale is used again after it

is adjusted by an inspection.

2.　ASSUMPTIONS

In this study, we make the following assumptions:

(1) The malfunction or a failure of the scale can be detected only by an inspection. Furthermore,

an inspection involves adjustment operations by which the scale can recover from its malfunc-

tion or a failure. Hence the scale enters its normal state immediately after an inspection.

(2) The number of products to be weighed is very large and thus we can regard it as being

continuous by corresponding their volume to the time to be spent in weighingもhem・

(3) The malfunction or failure time distribution of the scale is expressed by F(t) with mean //,
i.e.,

p-L∞tdF{t)-I

J。∞F(t)dt
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3.　POLICYI

This section discusses Policy I under which we conduct an inspection at time iT(i - 1, 2,・・蝣) to

adjust the scale or to detect its malfunction or a failure. From assumption (1), the process behavior

generates a renewal reward process[31, 32] where a renewal point corresponds to the time when an

inspection is completed.

3.1　FRACTION DEFECTIVE

Since we regard products with different marks from their actual weights as defectives, the fraction

defective in this study can be de丘ned by the ratio of the volume of shipped defective products to

that of all the shipped products. Prom the renewal reward theory[31, 32], the fraction defective

Qi(T) under Policy I is given by

den hBE
t・・→+oo

E[time during which the scale is out of order over (0, i¥]

li¥(r)

Ai(T) '
蝣:2)

where A¥ (T) and Bj (T) respectively denote the expected cycle length and the expected time during

which the scale is out of order over one cycle.

Since we have

Ax{T)-T,

Bi(T)-0×F(T)+f(T-t)dF(t)-fF(t)dt,

J。J。

thefractiondefectiveinEq.(2)becomes

Qi(T) -
f? F(t)dt J。 F(t)dt

T

(3)

(4)

(5)

We here consider an upper limit for the inspection interval Ta which makes the fraction defective

equal to lOOα% or less for a prespeci丘ed value ofα (0 < α < 1). From Eq. (5), we have

TlunoQl(T) - 0,

lim QiiT)
T-+∝'

Q'l iT)
」T戸(TトJ。 Ht)dt]

T2

Let R(T) denote the numerator of the right-hand-side of Eq. (8おi.e. let

R(T) - -T戸(?) +
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then we have

R'(T) -　Tf(T)>0, (10)

lim R(T) -　0.　　　　　　　　　　　　　(ll)

This indicatesthat R(T) > 0 for T > 0, and thus we have Q[(T) > 0. From Eqs. (6) and (7), there

exists a finite upper limit Ta{> 0) for an inspection interval which satis丘es Qi(TQ) ≦ α(0 < α < 1).

3.2　ECONOMICAL INSPECTION INTERVAL

In this subsection, we discuss an economical inspection interval T* which minimizes the long-run

average cost. mom the renewal reward theory, the long-run average cost of the proposed inspection

policy is given by

Ci-(T) lim
f-+〇(、

E[total cost over (0, t]]

cxJi F(t)dt+ c2
T

cxj* (T- t)dF{t)十C2

(12)

It should be noted that the above formulation coincides with that of Moldel II for block replacement

policy proposed by Osa叫33],
By differentiating C¥{T) with respect to T, we can show that C'x(T) ≧ 0 agrees with

R(T) ≧芸,

where R(T) is given by Eq. (9). Prom Eqs. (10) and (ll), if

T聖∞埠)-/x>芸,

(13)

(14)

there exists a unique finite economical inspection interval T*(> 0) which minimizes C¥ {T). If the

inequality in (14) does not hold, we have C[(T) < 0 and thus T* -十∞ which suggests to conduct

no mspections.

4.　POLICYII

This section considers a situation where we perform an inspection to make adjustment to the scale

every morning just before we start our daily work of weighing products. In such a situation, we can

divideour dailywork hoursr intoN divisions. At ir/N(i - 0, 1,2, N-l, N - 1,2,・・・); we perform

an inspection to adjust the scale or to detect its malfunction or failure followed by repair. It should

be noted that N - 1 corresponds to the policy which conducts only one inspection every morning

before we start our daily work. From assumption (1), the process behavior generates a renewal

reward process where a renewal point corresponds to the time immediately after the inspection is
丘nished.
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4.1　FRACTION DEFECTIVE

The definition of the fraction defective is identical to that in 3.1. The fraction defective Q2¥N)

under Policy II is given by

Q2{N) lilll

i-+oo

f?[time during which the scale is out order over (0, t¥]

壁上塑
A2(NY

N-0,l,2,---,N-l, (15)

where ^(AQ and B2(N) are the expected cycle length and the expected time representing the
volume of defective products per one cycle.

We here have

A2(N)

B2(N) - 0×鳴)・L責(志- i)dF(t)- f寿F(t)dt,

and therefore Q%(N) in Eq. (15) becomes

Q2(N) - I..～ 1 -

T　　　　　　　　　　　　`r

Jo" Ht)dt loN nm
T T

万　　　　　　　　　　芹

(16)

(17)

(18)

We here consider a lower limit for the inspection frequency TVα that makes the fraction defective

of products equal to lOOα% or less for a prespecified value of α (0 < α < 1). It is convenient to

introduce u denned by

ォ--, iV-l,2,

and then we have

Q2(u)-Qi(u), u∈(0,r.

Hence, Q2(u) is strictly increasing in u from 0 to Q'2{t)- Consequently, if

Q2(t)-Qir)-1-
Io F(t)df

T
aa

(19)

(20)

(21)

then there exists an upper limit uα(> 0) satisfying Q2{u) ≦ α for a prespecified value of α. This

indicates that there exists a lower limit Nα(≧ 1) that satis丘es Q2{Aも) ≦ α・

4.2　ECONOMICAL INSPECTION FREQUENCY

The long-run average cost of the proposed policy is, from the renewal reward theory, given by

C2(N)

T

ci/oN (寿-t)dF(t) +c2
T

万

T

a J。N F{t)dt + c2 N-0,1,2,-,N-1.

-110-

(22)



LetusagainintroduceuinEq.(19),andwehave

C2ォ)-Ciu),U∈(0,r].

Henceif

R(T)--T京(r)+fF(t)dt

J。>芸,

(23)

(24)

there exists a unique u* minimizing C?,{u) in relation to u, and therefore there exists a finite

economical integer iV*(≧ 1) that minimizes C2C/V) with respect to N. If the inequality in (24) does

not hold, we have C′(u) ≦ 0 which signi丘es u* - t, i.e., N* - 1. This indicates that it is the

optimum to conduct an inspection only just before we start our daily work of weighing products.

5. NUMERICAL EXAMPLES

This section assumes an exponential failure(malfunction) time distribution with failure rate入- l//i.

5.1　POLICYI

Under the exponential distribution, the丘蝣action defective Qi{T) in Eq. (2) becomes

Qi(T)-l-
l-e-AT

xt

and the long-run average cost C¥{T) in Eq. (12) yields

Ci r)-

r>o,

cl (e~XT+入T- 1) +C2人

Ar
r>o.

(25)

(26)

Table 1 shows values of inspection interval Ta for α - 0.01, 0.05 and 0.1 in the case of入-

0.2{/jl - 5). Figure 1 indicates Ci(T) for c2 - 1 with cx - 10, 20, 30, 40 and 50, while Table 2 shows

T with Cj(T*). It is observed in Figure 1 and Table 2 that the economical inspection interval T*

decreases with increasing c¥ , which can intuitively explained.

Table 1: Inspection interval.

α 0 .0 1 0 .0 5 0 .1

T a 0 .10 0 0 .5 17 1 .0 72

Table 2: Economical inspection interval.

C1 10 20 3 0 40 5 0

T * 1.0 7 0 .7 4 0 .6 0 .52 0 .46

C U T *) 1.9 3 2 .76 3 .4 0 3 .93 4 .4 0
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Figure 1: Long-run average cost.

5.2　POLICYII

Under the exponential distribution with failure rate入- 1/H, the fraction defective Q2CO in Eq. (15)

becomes

Q2(N)-1-
1 - e-XT'N

Xt/N '
AT-1,2,-i,

while the long-run average cost C2(N) in Eq. (22) becomes

C2(N) -
cl (e-Ar/iV+"入t/N- 1) +caÅ

・＼ ∴ヽ~
JV-1,2,

(27)

(28)

Table 3 shows values of inspection interval Na for α　0.01, 0.05 and 0.1 in the case of入-

Q.2(/j, - 5). Figure 2 depicts C2{N) for c2 - 1 with cx - 10, 20, 30, 40 and 50, while Table 4 reveals

N* along with C*2 (iV*). It is observed that the economical inspection frequency JV* increases as c¥

becomes large, which can also be explained intuitively.

Table 3: Inspection frequency.

α 0 .01 0 .05 0 .1

N et 10 2 1

Table 4: Economical inspection frequency.

Cl 10 20 30 40 50

N 1 1 2 2 2

C 2(N *) 1.94 2.87 3.45 3.93 4.42
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Figure 2: Long-run average cost・

6.　CONCLUSIONS

In the final stage of manufacturing some speci丘c products such as chemical ones, there is a process

in which each product is weighed using a scale to mark each weight on the product. However, the

scale occasionally undergoes its malfunction or failures. When the scale becomes out of order, it

will show different weighもfor each product from the actual one, and hence each product will be

shipped with a different mark from each actual weight-

This study focused on the products that are marked with wrong weight and regarded them

as defectives. We then discussed two types of inspection policies for a scale. Under Policy I, we

conduct an inspection to a scale at iT(i - 1,2,蝣蝣・). Under Policy II, we considered a situation

where the scale was inspected every morning before we started daily work of weighing products.

For such a case, we considered to inspect the scale at ir/N(i - 0, 1,2, - , N- 1), where r signified

the working hours per day.

Two types of objective functions were considered; (1) the fraction defective and (2) the long-run

average cost under each policy. Under Policy I (Policy II), we clarified the condition under which

an finite inspection interval Ta (finite inspection frequency Na) exists, which guarantees that the

fraction defective does not exceed a prespeci丘ed value α(0 < α < 1). An economical inspection

interval T* (inspection frequency N*) minimizing the long-run average cost was then discussed.

Numerical examples were presented to illustrate the proposed inspection policy formulations.

This study dealt with a case where an inspection involves adjustment operations, but there is a

case where an inspection does not include adjustment activities. A model considering such a case

will be discussed taking another opportunity.
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Abstract-In this paper we consider a two component system where component 1 failures

occur according to a Poisson process. Each component 1 failure cause a random amount of

damage to component 2 leading to its failure when the total damage exceeds a specified level.

We study a two parameter maintenance policy which minimize the expected cost per unit of

time for in丘nite time operation.

Keywords-Shock damage, Cumulative damage, Optimal policy, Control limit

1. INTRODUCTION

There is a vast literature on the maintenance of unreliable systems. Bulk of them deal with single

component system. Valdez-Flores and Feldman [1] present a comprehensive review where references

to earlier review papers can be found. In contrast, the maintenance of multi-component systems

has received less attention and is an area of considerable research activity. Most of the models deal

with the case where the component failures are independent. For a review of maintenance models

for multi-component system, see Thomas [2], Cho and Parlar [3] and Dekker [4].

In a multi-component system, the failure times are often stochastically dependent [5]. Ozekici [6]

deals with optimal periodic replacement policy with statistically dependent failure times. Murthy

and Nguyen [7] deal with a formulation where failure of a component has an effect on one or

more of remaining components. They call this "failure interaction" and suggest two different types

(Types 1 and 2) of interactions. In Type 1 failure interaction, a natural failure of a component

can induce the failure (call "induced" failure) of one or more of remaining components. In Type

2 failure interaction, the failure affects the performance (e.g., the failure rate) of one or more of

the remaining components. Murthy and Wilson [8] discusses the estimation problem for Type 1

failure interaction model with different data structures. Nakagawa and Murthy [9] deals with a two

component (labelled components 1 and 2) system. Whenever component 1 fails, it causes a random

amount of damage to component 2. The damage accumulates and leads to component 2 failure

when it exceeds a sped丘ed level K. Component 1 failures occur according to a non-homogeneous

Poisson process and are rectified through minimal repair. They considered two maintenance policies

(one and two parameter policies) and derived conditions for the optimal parameters for the policies.

This paper deals with a two component system with component failures as in Nakagawa and

Murthy [9]. We formulate a maintenance policy involving two parameters ( "2-parameter policyつ
and derive an expression for the expected cost per unit time for infinite time operation. We give

an optimal policy to minimize the expected cost per unit of time. We examine two special cases

of this policy by letting one of the parameters assume their upper limits. The 1-parameter poli-
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cies correspond to some well known policies studied by earlier researchers. These include the age

replacement囲and the control limit policies with additive damage囲and囲.
The outline of this paper is as follows. In section 2, we give the details of the model formulation.

Section 3 deals with the analysis of the 2-parameter maintenance policy- The special cases of this

policy are considered in the next section. Section 4 deals with three 1-parameter maintenance

policies. Section 5 deals with some numerical examples and we conclude with some comments in

Section 6.

2. MODEL DESCRIPTION

We consider a system composed of two components (denoted as units 1 & 2). Unit 1 is repairable

and it undergoes minimal repair at failure. The time to repair is small so that it can be ignored.

As a result, unit 1 failures occur according to a nonhomogeneous Poisson process with intensity

function r(t) andふmean-value function R(t), i.e., R(t) ≡ Jo r(u)du, and r(t) is increasing in t. Let

Sj (j - 0, 1, 2,・・・) be the random variable denoting the occurrenceもime ofjth unit 1 failure with

dq - 0. Then, the probability that j or more unit 1 failures occurring during (0, t] is given by

Hj(t)≡Pv{Sj<t}-云響e-R{t) (j-0,l,2,- )・　　(1)
蝣=J

Let N(t) be the total number of unit 1 failures by time t. The probability that exactly j failures
occur until time t is given by

m) =PT{N(t)-j}-Hj(t)-Hj+1(t) (j-0,l,2,-)・　　　　　(2)

Whenever unit 1 fails, it causes a random amount of damage {Yj} (j - 0, 1,2,・・・) to unit 2. Yj is

a sequence of identical and independent r.v with distribution G(x), i.e., Pr{Yj ≦ x} - G(x). The

damage is additive and let Zj be the damage after the jth failure of unit 1 with Zo - 0. Then Zj
3

is a cumulative process (see [13]) with Zォ= ∑Yi (j - 1,2, -) and
!=1

pr{zj≦可=Gョ(x) (j-0,1,2,蝣蝣蝣), 蝣:3i

where G^¥x) is the j-fold Stieltjes convolution of G(x) with itself, and G^(£) ≡ 1 for x ≧ 0, and
Oforx<0.

Unit 2 fails whenever the total damage exceeds a failure level K. A system failure occurs

whenever unit 2 fails because both units fail simultaneously. We assume that unit 2 is not repairable

and as a result, a failed system needs to be replaced by a new one. Note that such replacements

are unplanned replacements.

A system failure, in general, results in a high cost. One way of reducing this cost is to replace

the system preventively, based on some policy, which reduces the likelihood of system failure. From

a cost point of view, a preventive replacement is cheaper than failure replacement. However, a

preventive replacement implies discarding some useful life of the system. Hence, preventive replace-

ment needs to be done in a manner which achieves a suitable trade off between this loss versus the

risk of a failure. We consider the following 2-parameter policy:

The system is replaced through a failure replacement when unit 2 fails (which corresponds to

the damage for unit 2 exceeding K) or earlier through a preventive replacement when one of the

following conditions occur:
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(i) system reaches an age T,

(ii) the total damage to unit 2 exceeds a level k (< K).

Note that the policy is characterized by two parameters (T,k) with 0 < T < ∞　0 < kくK・

When these two parameters assume their upper limits, then there is no preventive replacement and

the system is replaced only on failure.

Let C(T, k) denote the expected cost per unit time for infinite operation. Then the optimal

parameters of the policy are T* and k* which yield a minimum value for C(T, k).

We have a family of 1-parameter policies by allowing two of the parameter to assume their upper

limits. As a result we have the following two 1-parameter policies:

Policy la: T - ∞. In this case, the policy is characterized by k.

Policy lb: k - K. In this case, the policy is characterized by T.

For the analysis of these policies, we make the following simplifying assumptions:

1) The failures of unit 1 and 2 are detected immediately.

2) The damage to unit 2 is measured after each failure of unit 2.

3) The time to repair unit 1 and replace the system is small so that they can be approximated as

being zero. In other words, the repair or replacements are instantaneous.

4) The cost of each minimal repair for unit 1 is cm. The cost of each failure [preventive] replacement

for the system is cf [cp] with c/ > cp > cm.

Finally, for a continuous distribution function G(x), let G(x) - 1 - G{x) - Pr{Yj >可and
g{x) - dG{x)/dx, are the survivor and density functions associated with G{x) respectively.

3. ANALYSIS OF THE 2 PARAMETER POLICY

3.1　THE EXPECTED COST PER UNIT TIME

Note that the system gets renewed with each failure or preventive replacement. As a result, the time

interval between two successive renewals defines a cycle for a renewal process. Prom the renewal

reward theorem [13] C(T, k), the expected cost per unit time for in丘nite time operation, can be

expressed as the ratio of the expected cycle cost and the expected cycle length. We proceed to

obtain the expressions丘)r these two quantIties.

The probability α(K), that the system is replaced at failure of unit 2 (due to total damage

exceeding K), is given by

oo3
・(K)-∑∑pI{N(T)-j,Zl-1≦k,Zi>K]

3-ll-1

・差Hj+i{T)/G(K-x)dG{j)(x).

J。

Theprobabilityβ(T),thatthesystemisreplacedpreventivelyatageT,isgivenby
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CO　　　　　　　　　　　　　　亡ヾ I

β(T) - ∑pr{N(T) -j,Zj ≦ kI - ∑Fj(T)G{j)(k).
j-o J-0

(5)

Finally, the probability j(k), that the system is replaced preventively when the total damage of

unit 2 exceeds k and is less than or equal to K, is given by

oo　3

5(k) - ∑∑pr{N(T)-j,Zl-1 ≦k<Zi≦KI
3-1 1-1

差Hj+i(T)[

J。
[G{K- x) - G(k- x)]dGiJ¥x). (6)

It is easily seen that eqn(4)+eqn(5)+eqn(6)-l.

The expected cost per cycle is made up of corrective and preventive maintenance cost. Corrective

maintenance means the failure replacement of unit 2 and minimal repair of unit 1. The expected

number of minimal repairs over a cycle, 5(T, k), is given by

S(T,k)-差jFj(T)G^(k)差jHj+1(T)/G(K-x)dG^(x)

J。

・差jH3+i{T)[¥g(K

J。-G{k-x)]dG^¥x)

(:X〕
-∑Hj^G^ik).

3-1

Usingtheaboveexpressions,theexpectedcyclecostisgivenby

蝣A(T,k) -　cfα(K) +cp[β(T)十-r(k)] +cmS(T,k),

(7)

IS;

where cゎand Cf are the preventive replacement cost and failure replacement cost for the system,

and cm is the cost of each minimal repair for unit 1.

The expected cycle length is given by

oo

T∑ Fj{T)G{j>(k)
i-o

・真上r

tdHjit)I
J。G{K-£)dGu-1¥x)

・真上rtdHj(t)/

J。
[G(K- x) - G(k -x)]dG<j-1)(£)

差<&¥k)f

J。Fj{t)dま・
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From eqns(8) and (9) and renewal reward theorem, the expected cost per unit time, for infinite

operation, is given by

C(T, k) -
A(T, k)

差Gij){k) f Fj(t)dt
(10)

3.2　0PTIMAL POLICY FOR 2-PARAMETERS

T* and k* are the values which minimizes C(T, k) given by eqn(10). The optimal T* and k* can

be obtained from the丘rst order conditions, i.e., setting the derivatives of C(T, k) with respect to T

and k to zero. We assume that r(t) -入　This implies that failures of unit 1 occur according to a

stationary Poisson process. Differentiating C(T, k) with respect to T and setting it to zero, yields

oo                     oc

∑ Hj+1(T)Bs(kト∑ Hj+1(T)GW(k)
7-0　　　　　　　　　　　3-0

Bj{k) - Lk

whe re

00

∑ Fj (T)Bj(k)
j-0
00

∑ FfflGU'ik)
7=0

= Cp;

[(cf - Cp)G{K - x) - cmG(k - x)]dGU)(x).

Denote the left-hand side of eqn(ll) by J(T; k).

Differentiating C(T, k) with respect to k and setting it to zero, yields

・c/-cp)差Hj+l{T)f[G{K-x)-G{K-k)]dG{j¥x)

J。

十cm

`)a

∑旦汁XT)G(j¥k)
j-0

(:X〕

∑ Hj(T)gW(k)
J-l

00

∑Hj十(T)g^(k)
i-i

eO

- ∑HjiTjG^ik)
j-1

Mil

(12)

cp.　　(13)

Denote the left-hand side of eqn(13) by Q(k; T).

On comparing J(T;k) with Q(k;T), we see that Q{k¥T) is always greater than J{T;k) for

(∀t, (o<r<∞),∀k, {0<k≦K)),as
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J(T;k) - Q(k;T) -

cc

(C仁Cp) ∑ Hj+1(T)GV¥k)
7=0

CX〕

+cm ∑Hj+l(T)G^(k)
j-0

差r
Fj(T)/

J。

[G(K-kトG(K- )}dG{j¥x)

oo

∑ Fj(T)G^(k)
3-0

OCコ

∑ Fj{T)G{汁1}(*)
7-0

(X)

∑Fj{T)G{j¥k) ∑Hj+1(T)gV¥k)
i-0　　　　　　　　　　3-1

く0.　(14)

This implies that there does not exist (T*, k*) which satisfies eqns(ll) and (13) simultaneously.

4. 1-PARAMETER POLICIES

In this section, we consider the special case where one of the parameters assume their upper limits

so that the policy is characterized by a single parameter. As indicated earlier, we have two different

cases to consider.

4.1 POLICY l色CONTROL LIMIT POLICY (k)

The system is replaced preventively when the total damage of unit 2 exceeds k or on system failure

should it occur earlier. As a result, from eqn(10), the expected cost per unit time for in丘nite time

operation is given by

Cf+ (Cp-Cf)

C(∞,k) ≡ lim C(T,k)-

G{K- x)dG^-1¥x) + {cf - Op +cm)M(k)

差G{j)(k)[

J。∞Fj(t)dt

k , the optimal level k which minimizes C{∞, k), can be obtained by differentiating C(∞, k)

with respect to k and setting it equal to zero. This yields

真上た
[G{K- 3:トG(K- k)]dG^-l¥x) -

Denote the left-hand side of eqn(16) by V(k). Note that

・I V上と

dk

OC)

where M(K) ≡ ∑GVi(K). Note that
3-1

-g(K-k)[l+M(k)] > Q.

Cp Cm

Cf-Cp

limV(k)=Oand lim V(k)-M(K).
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As a result, if

M{K) >旦二旦,
Cf~Cp

(19)

then there exists a finite and unique k* which satisfies eqn(16). In this case, the optimal expected

cost per unit time is given by

C(∞,∞,fc*) - A[(C/- cp)冒(K- k*) + cm],　　　　　　　(20)

Ifeqn(16) is not satisfied for 0 < k < K then k* - K. This implies that the optimal policy is no

preventive replacement, and in this case the expected cost per unit time is given by

C(∞,K) -A
Cf + cmM{K)

(21)

4.2　POLICY lb: AGE POLICY (T)

The system is replaced preventively at time T or on system failure should it occur earlier. As a

result, from eqn(ll), the expected cost per unit time for infinite time operation is given by

C(T,K)≡ lim C(T,k)=

00　　　　　　　　　　　　∞

cf + (cp - cf) ∑FjiT^iK)十cm∑Hj{T)G^{K)
J-O i-i

差J。Fj(t)dま

(22)

We assume that r(t) -A. Differentiating C(T, K) with respect to T and setting it to zero, yields
(X)　　　　　　　　　　　　　　∞

∑ Hj(T)G{j'(KトQ(T) ∑Hj+1(T)Gョ(K) -
3=1

where

cp

/　T>　　m

(23)

(24)

Weneedtoconsiderthe丘allowingthreecases.

(I)c/-cp-cm>0;LetU(T)denotetheleft-handsideofeqn(23)andletQ(oc)-limQ(T).
T-*。。
IfQ(T)isstrictlydecreasingthenU(T)isstrictlyincreasingfrom0tot/(oo).Asaresult,if

lim U{T) - M{K) -Q{∞)[1 +M(K)] >
T→oo

cp

/　9p Cm
(25)

then there exists a finite and unique T* which satisfies eqn(23). If G^j+1](K)/G^>(K) is

strictly decreasing in j then Q(T) is strictly decreasing in T.

The optimal expected cost per unit time is given by

C{T¥∞>K) - -Mc/- cp- (cf - Cp - CmMT*)].　　　　　(26)

If eqn(23) is not satisfied for 0 < T < ∞ then T* - ∞ and the expected cost per unit time is

given by eqn(21).
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(ii) c仁Cp - cm < 0 ; If U(T) is increasing then C(T,K) is decreasing in T: therefore the optimal
T* - ∞ The expected cost per unit time is given by eqn(21). When U(T) is not increasing,
we need to use a numerical method to obtain T*.

(iii) cf - Cp一cm - 0 ; In this case, C(T,K) can be rewritten as follows.

C(T,K) -
cf +掘Hi{T)G^¥K)一差F^G^K)

Differentiating C(T, K) with respect to T, we have

dC{T, K)
dT

OCl

(cm - cf) ∑Fj(T)G^¥K)
J-0

ooT
」(?ォ(*)/Fj(t)dt

(27)

(28)

Since Cm < cf, C(T,K) is decreasing in T. Therefore, the optimal T* - ∞ In other words,

no preventive replacement is the optimal policy. The expected cost per unit time is given by

eqn(21).

5. NUMERICAL EXAMPLES

Let G{x) be an expone去tial distribution with mean l//z, i.e., G(x) -トe-Pz

For Policy la, the optimal k* can be obtained from (16) and this can be rewritten as

G(K- k*)M(k*) -芸篭 (29)

For Policy lb, T* to be finite and unique requires (25) to be satisfied and this can be rewritten

・l/IA")
cp

Cf-Cp-Cv
(30)

as

Note that G^+l>(x)/G^>¥x) is strictly decreasing in j when G{x) is an exponential distribution.

Therefore, if eqn(30) is satisfied then a丘nite T* exists and is unique.

We assume the following values for the model parameters, A - 1 (Mean time to failure for unit

1 is 1.) fi - 1 (Mean damage caused to unit 2 by each unit 1 failure is 1.)

Let Cm - 1. We consider a range of value for cp (varying from 2 to 30) and Cf (varying from

10 to 50). Table 1 and 3 give the optimal k* (for Policy la) and T* (for Policy lb) for cp - 5; two

values ofK (- 100 k 200) and a range of value for c/. Similar results for c/ - 50 and cp varying

are given in Tables 2 and 4. Also the optimal expected costs per unit tIme are given.
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Table 1. Policy la

OPTIMAL jfe*, C(oo, k*)

A-1,〟-1,cp-5,cm-1

」」〔≡100 K = 200

c/

10

k* C (∞,fc* fc* C (∞,*:*)

95.2 1.0419 194.5 1.0205

20 94.1 1.0424 193.4 1.0206

30 93.6 1.0427 192.9 1.0207

40 93.2 1.0428 192.5 1.0207

g50 93.0 1.0429 192.3 1.0207

Table 3. Policy lb

C(T*, K)

¥-l,fj,-l,cp-5,cm-l

」 ∬= 100 K = 200

C∫

10

T * C {T *,K ) T * C (T *,K )

83.8 1.065 171.9 1.030

20 74.9 1.071 160.0 1.032

30 71.9 1.074 155.9 1.033

40 70.1 1.075 153.5 1.033

i50 68.9 1.077 151.8 1.034

Table 2. Policy la

OPTIMAL fc*, C(oo, k*

A-1,[j,-1,Cf-50,cm-1

K = 100 K = 200

cp

9

k* C (∞,k*) k * C (∞,k*)

91.6 1.0109 190.8 1.0052

8 93 .6 1.0746 192.9 1.0362

15 94.5 1.1479 193.8 1.0721

20 94.9 1.1999 194.2 1.0977

30 95.8 1.3026 195.0 1.1486

Table 4. Policy lb

OPTIMAL T*, C(T*,K)

A-1,ix-1,Cf-50,cm-1
K = 100 if = 200

cp

2

T * C (T *,K ) T * C (空音丁雇)

64.7 1.032 145.8 1.014

8 71.5 1.119 155.5 1.053

15 '6.2 1.212 161.8 1.097

20 79.2 1.273 165.8 1.126

30 86.0 1.384 174.6 1.182

The optimal results for 2-parameter policy is identical to Policy la.

One would expect the optimal expected cost per unit time for the two parameter policy to be

smaller than that for the one parameter policies. The numerical results indicate that this is not so.

The reason for this apparent counter unintuitive result is as follows.

The state of component 2 is best indicated by the total damage (Z(t)). If this information is

not available then the age (t) of component 2 is the best indicator. In other words, given Z(t), then

t does not provide any extra information.

I(Z(t),去) - HZ(舌))　　　　　　　　　　　　　(31)

where I represents the information about the state of component 2. Also, it is worth noting that

w ⊂ I{Z{t))

This can be seen from Tables 1-4 where for a given set of parameter values, the optimal expected

cost per unit time for Policy la which is based on Z(t) is smaller than that for Policy lb.

The results of section 3 showed that 2-parameter policy is no better than the better of Policy

la. Since Policy la is better than Policy lb, we see that Policy 2a does not perform better than

Policy la. This is to be expected since the age of component provides no new information.

6.　CONCLUSION

In this paper we considered a two component system where component 1 failures occur according to

a Poisson process and cause damage to component 2. The damage is accumulated and component

2 fails when the total damage exceeds a specified limit.
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We derived an expression for the expected cost per unit time for a two parameter policy. The

policy reduces to two one-parameter polies as special cases. We give analytical characterization to

obtain the optimal parameter value for these special cases. In the process we obtained an apparent

counter unintuitive result and gave an explanation for it.

The results of the paper highlight indicate an important issue, i.e., increasing the number of pa-

rameters does not necessary lead to lower expected costs. The parameters used provide information

about the state of one or- more components of the system.

The important issue is whether the information provided by a parameter (A) is contained in

that provided by another parameter (B). If so, then the parameter (A) provide no new information

and hence will not lead to lower expected costs.

This issue has not received su氏cient attention in the maintenance literature as attested by the

number of two parameter policies that have been developed which perform no better than the one

parameter policies. There is scope for further study of this issue.
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Abstract-In this paper, we propose a software availability model considering the number

of restoration actions. We correlate the failure and restoration characteristics of the software

system with the cumulative number of corrected faults. Furthermore, we consider an imperfect

debugging environment where the detected faults are not always corrected and removed from

the system. The ・time-dependent behavior of the system alternating between up and down

states is described by a Markov process- From this model, we can derive quantitative measures

for software availability assessment based on the number of restoration actions. Finally, we

show numerical examples of sofi仁ware availability analysis.

Keywords-Software availability, Imperfect debugging, Software reliability growth, Markov
process, Quantitative assessment.

1. INTRODUCTION

Many methodologies for software reliability measurement and assessment have been discussed for

the last few decades [1]-[4j. A mathematical software reliability model is often called a software

reliability growth model (SRGM) ; this describes a software fault-detection or a software failure-

occurrence phenomenon during the testing phase of software development process and the operation

phase. A software failure is defined as an unacceptable departure from program operation caused

by a fault remaining in the software system. This model is available for measuring and assessing the

degree of achievement of software reliability, deciding the time to software release for operational

use, and estimating the maintenance cost for faults undetected during the testing phase.

Most of SRGMs so far provide quantitative software reliability measures for developers. However,

it begins to be necessary to assess software systems from the viewpoint of customers. In particular,

recent systems are required nonstop operation and utilities. One of the customer-oriented attributes

is software availability [5]-[7]; this is defined as the attribute that the software systems are

performing at a given time point, according to the specification, under the specified environment.

In other words言t represents the property that the systems are in available states whenever the

customers want to use them. Few mathematical models for evaluating software availability are

proposed.

In this paper, we construct a software availability model. Quantitative measures on reliability
derived from previous SRGMs, such as the mean time between software failures and the software

reliability representing the probability that the system can continue to operate for a given time

period, are often provided as the functions of the number of software failures or fault detections,

and useful for seizing the relationship between the number of detected faults and software reliability

growth. On the other hand, there are scarcely software availability measures for explicitly under-

standing the relation with the number of restoration actions. Here we discuss software availability
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measurement considering the number of restoration actions. The time-dependent behavior of the

software system is described by a Markov process [8]. The software failure and the restoration

characteristics are correlated with the cumulative number of corrected faults. Furthermore, we also

describe the imperfect debugging environment where the debugging activities corresponding to soft-

ware failure-occurrences are not always performed for certain [9]. The assumptions and modeling

are detailed in Sect. 2. Derivation of the stochastic quantities for software availability measurement

is presented in Sect. 3. Numerical illustrations of software availability analysis are shown in Sect. 4.

Finally, concluding remarks of this paper are summarized in Sect. 5.

2. MODEIJ DESCRIPTION

The following assumptions are made for software availability modeling:

Al. The software system is unavailable and starts to be restored as soon as a software failure

occurs, and the system can not operate until the restoration action is complete.

A2. The restoration action implies the debugging activity; this is performed perfectly with prob-

ability a (0 < at≦ 1) and imperfectly with probability 6(- I - a). We call a the perfect

debugging rate [9]. One fault is corrected and removed from the software system when the

debugging activity is per丘∋ct.

A3・ The next time intervals of software failures and restorations when n faults have already been

corrected from the system, follow exponential distributions with means 1/An and 1//J,n, re-
spectively.

A4. The probability that two or more software failures occur simultaneously is negligible.

Consider a stochastic process {X(t), t ≧ 0} whose state space is (W, R), where up state vector

W-{Wn; n-0, 1, 2, -}anddownstatevectorR-{Rn; n-0, 1, 2,...} [10]. Then,the
event ¥X(t) - Wn} and {X(t) - Rn} mean that the system is operating and inoperable due t。

the restoration action at time point t, when n faults have already been corrected, respectively.

From assumption [2], when the restoration action has been complete in {X(t) - Rn},

X(ま) -

〈
Wn　(withprobabilityb)

lVn+i (with probability a)
・=

We use Moranda's model [11] to describe the software failure-occurrence phenomenon, i.e. , when

n faults have been corrected, the hazard rate A is given by

入-Dkn (n-0,1,2,- 」>>0,0<fc<1),　　　　　　(2)

where D and k are the initial hazard rate and the decreasing ratio of the hazard rate, respectively.

The expression of (2) comes from the viewpoint that software reliability depends on the debugging

efforts, not the residual fault content. We do not note how many faults remain in the software sys-

tem. Equation (2) describes a software failure-occurrence phenomenon where a software system has

high frequency of software failure-occurrence during the early stage of the testing or the operation

phase and it gradually decreases after then [4], [9]. Early software availability models such as those

of Okumoto and Goel [12] and Kim et al. [13] often assume that the hazard rate is proportional to

the residual fault content and decreases by a constant amount with the perfect debugging, i.e., A,
is described as

入n-㊨(N-n) (n-0, 1,2,...,AT-1;TNT>0,¢>0),
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where N and <j> are the initial fault content and the hazard rate per fault remaining m the system.

respectively [14]. X(t) forms a finite-state Markov process if (3) is applied to入n・

Next, we describe the time-dependent behavior of the restoration action. The restoration action

for software systems includes not only the data recovery and the program reload but also the

debugging activities for manifested faults. From the viewpoint of the fault complexity, there are

cases where the faults detected during the early stage of the testing or the operation phase have

low complexity and are easily corrected/removed, and as the testing is in progress, detected faults

have higher complexity and are more di氏cult of correction/removal [1], [15]. In the above case, it is

appropriate that the mean restoration-time becomes longer with the increasing number of corrected

faults. Accordingly, we express ¥xn as follows:

Hn-Ern (n-0,1,2,…　E>0,0<r≦1),　　　　　　　　(4)

where E and r are the initial restoration rate and the decreasing ratio of the restoration rate,

respectively. In the case ofr - 1, i.e., fin - E means that the complexityofeach fault is random [10].

Let Qa,b(t) (A, B ∈ (W, R)) denote the one-step transition probability that after making a
transition into state A, the process {X(t), t ≧ 0} makes a transition into state S by time r. The

expressions for Qa,b {t)つs are given as follows:

Qwn,Rn(r) - 1-e"入nT,

QRn,wn+1{r) -　a(l-e ll

QRn,Wn(r) -　6(1-e-"サT).

The sample state transition diagram of X(t) is illustrated in Fig. 1.

トん.AT　　　　　　ト蝣XiAt　　　　　　　　　　　んAt 1-ん-iAx

Figure 1: A diagrammatic representation of state transitions between X(t) 's.

3.　DERIVATION OF SOFTWARE AVAILABILITY

MEASURES

3.1　DISTRIBUTION OF TRANSITION TIME BETWEEN UP STATES

-Let oitn yl ≦ n) be the random variable representing the transition time from state Wi to state Wn.

and Gitn(t) be the distribution function of 5j n, respectively. Then, we obtain the following renewal

equation with respect to Gitn(t):

Gitn(t) - Qwi,Ri * QRitWi+1 * Gi+iin(t)十Qwi,Ri * QRi,Wi * Gi,n(t),
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where * denotes a Stieltjes convolution and Gn,n{t) - l(t) (step function, n - 0, 1, 2. ‥ー).

We use Laplace-Stieltjes (L-S) transforms [8] to solve (8), where the L-S transform of G^n(t) is
de丘ned as

Gi>n(s) ≡ L∞ e-stdGi,n(t).

Substituting the LS transforms of (5ト(7) into that of (8) yields

Gi,n {S)
a入・IM

+ (入i + Mi)s十aAilM.

XiVi

S-¥rxi)(s十yi)

∂i+l,n(s)

Gi+i,n{s),

(9)

(10)

where

芸Hi*十pi)士V申司(doublesignsinsa-eorder). (ll)
By solving (10) recursively, we obtain Gitn{s) as

fflB H

∂iM-　n
iWZ一・日

n-1

-　∑
蝣　m=i

xm, ym

(S十xm)(s+ym)

Ai,n(m)xm Aln(m)yr,

s+xn Vm
(12)

AL(m) -

Aln(m) -

n-1

nKm
3=1

n-1　　　ra-1

・蝣Iite-z jJlivj-Xm)

3-i j-%

n-1

n x3Vj
l=J

n-1　　　n-1

vm II (vj - Vm)J¥{xj - Vm)
j完　　　j -i

m-i,i+1,　n-1),

(m-i,i+1,...,n-1),

(13)

(14)

where

respectively. By inverting (12), we obtain the distribution function of Si n as

Gi,n(t) ≡ PT{Si,r, ≦ i)

n-1

-1-∑[AL(m)e ㌶　+4?n("Oe-*サ*] (n-l, 2,...;t-0, 1, 2,..., n). (15)
m=i
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It is noted that

7BI

∑ Aln(m)+Aln(m)] - l.
m=i

Furthermore, the expectation and the variance of oj n are given by

n-1

E[Si,n] -　∑
m=i

n-1

Var[#,n] -　∑
m=t

(t十よ)7

%m

(16)

(17)

(18)

respectively.

3.2　STATE OCCUPANCY PROBABILITY

Let PA,B{t) (A, B ∈ (W, R)) be the state occupancy probability that the system is in state B at
time point t on the condition that the system was in state A at time pointま- 0, i.e.,

PA,B(t) …Pr{X(t)-B¥X(O)-A} (A, B∈ (Ⅵ′, R)).

We obtain the following renewal equations with respect to Pwi,wn ¥t)'-

Pwi,Wn(*) -　Gi>n*Pwn,wn(*))

pwn,wn(ま¥　　　入nt + Qwn,Rn * Qnn,wn * Pwn,wn (t).

From (21), the L-S transform of Pwn,wnw is given by

Pwn,wn (s)
S{S + fJn)

(s+ xn)(s+yn)

-紘+孟)
Substituting (22) into the L-S transform of (20) yields

pwi,wn{s) -

・EnVr)

(S十xn)(s十yn)

sGi>n+i(s) s2Gitn+i(s)

a入n a入n/%

Byinverting(23),Pwi:wn{≠)isobtainedas

Pwi,w,'.(*=Pi{X(t)-WnX(Q)-Wi)

9i,n+l(t),9i,n+l(t)

a入n a入nMn

(19)

(22)

(23)

(24)

where g^n{t) is the probability density function associated with Gitn{t) and gi n(t) ≡ dgi,n(t)/dt.
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Using the similar procedure for the derivation of Pwi,wn{t), we obtain the following renewal

equations with respect to Pwi,B^ (t)'-

Fwi,Rn(≠) -　Gii71 *Qwn,nn * Pnn,Rn{t),

PRn,Rn(t) -　e-^+QRn,恥*Qwn,Rn *PRn,Rn(t)-

Substituting the L-S transform of (26) into that of (25) yields

PwuRn{s) -
sGi,n+1 (s)

aun

By inverting (27), Pw^Rn if) is obtained as

PiVi,RnW　=　Pr{X(i)- RnlXiO) - Wt}

9i,n+l(t)

afin

3.3　SOFTWARE AVAILABILITY

Once we specify integer i, the following equation holds for arbitrary time岩:

00

∑ [pwuwn{t) + PwuRn(t)] - l.
n=i

(27)

(28)

(29)

Here we consider the relationship between the number of the restoration actions and software

availability measurement. Let Z - 0, 1, 2, … denote the number of the restoration actions.

Furthermore, we introduce the binary indicator variable Ia (t) taking the value 1 (0) if the system is

operating (inoperable) at time pointちgiven that it was in state A ∈ (W, R) at time point t - 0,

respectively. Then Ai(t) ≡ Pi{Iwi(t) - 1} (i - 0, 1, 2, …) denotes the instantaneous software

availability given that the system was in state Wi at time pointま- 0, i.e..

CO

A(t) - ∑pwi,Wn{t)
n=i

oe

1 - ∑pwi>Rn(t),
n=i

(30)

(see Fig. 2). It is noted that the cumulative number of corrected faults at the completion of the l-th

restoration action, Q, is not explicitly observed since imperfect debugging is assumed throughout

this paper. However, Ci follows the binomial distribution whose probability mass function is given
by

Pr{Q-i}- W ・*6'"* (i-0, 1, 2,　0,　　　　　(31)

where ( ) ≡ U/[(l - iy.il] denotes a binomial coefficient, Accordingly, the instantaneous software

availability after the completion of the l-th. restoration action is given by

J

A(t;l) - ∑Pr{C, - i}Ai(t),
i=0
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X : Software failure-occurrenc

O : Perfect debugging

A : Imperfect debugging

Figure 2: Sample behavior of the system and event ¥Iwi(t) - !}・

which represents the probability that the system is operating at time point t, given that the Z-th

restoration action was complete at time point t - 0. Furthermore, the average software availability

after the completion of the I一七h restoration action is given by

Aav¥k'iI)一言/J。 A(x;l)dx,　　　　(33)

which represents the ratio of the system's operating time to the time interval (0, t], given that the

l-ih. restoration action was complete at time point t - 0. In particular using (28), we can express

(32) and (33) as

A(棉-1一差iU-i

¥albl

蝣-蝣av Ky'i v

--‥‡∴

昌9i,n+l (t)

告Gi,n+l{t)
aibトi ∑

n=i
au,n

(34)

(35)

respectively.

4.　NUMERICAL EXAMPLES

Using the software availability model discussed above, we show numerical illustrations for software

availability measurement and assessment.

We define the maintenance factor as

pn　三　人i/Vn

Cvn (C=D/E, v=k/r), (36)

where we call C and v the initial maintenance factor and the availability improvement parameter,

respectively.

-132-



Figure 3 shows the time-dependent behavior of the average software availability, Aav(t; l) in

(35) for various numbers of the restoration actions, I, in the case of vく1. This figure indicates

that software availability drops rapidly immediately after the beginning of re-operation and then

gradually increases. We can also see that software availability improves with the increasing number
of the restoration actions.

Figures 4 and 5 show the instantaneous software availability, A(t; l) in (34) for various values

of perfect debugging rateフa, in the cases of v < 1 and v > 1, respectively. These figures tell us

that the software availability becomes higher (lower) as the perfect debugging rate becomes larger

when v < 1 (v > 1). The case of v > 1 may be a paradoxical result that the software availability

decreases more slowly with decreasing a. This reasoning is that software availability is related to

the ratio of the software failure time to the restoration time rather than the software failure time

itself, i.e., pn increases more slowly with decreasing a since smaller a means that the cumulative

number of corrected faults is more di氏cult to increase.

In the case of v < 1, we can find the minimum number of restoration actions, lmin, satisfying that

the minimum value of A(t; I) or Aav(t; I) exceeds the prespecified availability objective, α. Table 1

summarizes Zmm's on A(t; I) and Aav(t; l) for various values ofa, in the case of α = 0.95. As shown

m Table 1, the higher certainty of debugging attains the objective of software availability earlier.

Aav{t',L)

Figure 3: Dependence of number of restoration actions on Aav(t; I) (a - 0.9, D - 0.1, k - 0.8, E -

1.0, ㍗-0.9).

Table 1: lmin onA(t;l)and Aav(t;l) (α-0・95; D-0.1, k-0.8, E- 1.0. r-0.9).

a Im in on A (t;l) Imin OU A av(t]l)

1.0 6 5

0.9 6 6

0▼8 7 6

0.7 8 7

0▼6 9 9
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Figure 4: Dependence of perfect debugging rate on A[t¥l) in case ofv < 1 (I - 5, D - 0.1, k -

0.8, E-1.0, r-0.9).

100　　　　　　200　　　　　　300

Time

Figure 5: Dependence of perfect debugging rateon A(吊) in case ofv > 1 (I - 5, D - 0.1, k -
0.909, E- 1.0, r-0.9).
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5.　CONCLUDING REMARKS

In this paper, we have developed a stochastic model describing the relationship between the number

of restoration actions and so氏ware availability measurement. We have used a Markov process for

the description of the behavior of the system alternating between operable and inoperable states.

We have derived the instantaneous and the average so氏ware availability considering the number of

restoration actions. Numerical illustrations for software availability measurement have also been

presented to show that these measures are very useful for software performance assessment. This

model has been more generalized in terms of the imperfect debugging and the fault complexity than

several previous models,

The unknown parameters must be estimated based on the actual data for assessing software

availability with this model. But it is difficult to observe and collect the testing or the field data,

In particular, it is necessary to equip the collection procedure of the restoration times. Establish of

practical estimation of the model parameters remains a future study.
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