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Abstract

This paper proposes a method for an Eigenspace-based

prediction of a vector with missing components by modify-

ing a projection of conventional Eigenspace method, and

demonstrates the application to the prediction of the path

of a walking person. This modification is based on domain-

specific knowledge of data, and a linear combination of vec-

tors in the null space of Eigenspace is added so that a cost

function of smoothness of path is minimized. Some exper-

imental results on actual paths are shown to demonstrate

how the proposed method works.

1 Introduction

It is useful to estimate or predict unknown future data

from previously observed data in past or present not only

for meteorology and economics, but also for computer vi-

sion. Generally, the AR model or Kalman filter are used to

estimate time series of data. Although predicting gestures

and tracking people also use similar methods, a prediction

for such sequences is not so simple because usually their

behavior cannot be captured by the Gaussian signal model.

On the other hand, patterns of behavior and motion of peo-

ple in daily life have few variations: same gesture has sim-

ilar motion and a same person walks in similar paths in a

same scene. Thus, scene-dependent information of time se-

ries in such applications can be learned as prior knowledge

in advance.

Eigenspace approach has been widely used to learn such

domain-specific information from samples. Fod et al.[4]

and Yacoob et al.[10] used Eigenspace to recognize motion

of a person, and Nakajima et al.[7] predicted spatially and

temporally to recognize gestures by Eigenspace made from

sample gestures. These methods use learning of Eigenspace

E with samples, and recognition and prediction are per-

formed based on projection of a vector x onto Eigenspace

spanned by several eigenvectors ej :

a = ET x, E = [e1, e2, . . .]. (1)

A problem of these Eigenspace-based methods is that

they merely use a projection of a vector with all compo-

nents: i.e., for a vector to be recognized or predicted, it

should have the same dimensionality as the samples that

were used to construct the Eigenspace. However, we have

no components corresponding to future data for prediction,

and occluded data for recognition. A simple solution is to

just put 0 for such missing components in the vector:

â = ET x̂, x̂ = [x1, x2, . . . , xp, 0, 0, . . .]T , (2)

but its result is awful[6] and a reconstructed vector Eâ is

not similar to the original vector x.

One way to reconstruct a vector without using all pix-

els has been proposed by Leonardis et al.[6] to achieve a

robust recognition when an object is occluded. Fidler et

al.[3] utilized it to make LDA robust. Nakajima et al.[7]

used a similar method for reconstruction and prediction, and

Amano [2, 1] proposed methods to fill-in occluded regions.

These methods are good for discrimination or recognition,

but seem to fail to reconstruct or predict a vector with miss-

ing components1 because characteristics of domain-specific

data, such as smoothness or continuity, are ignored. These

are summarized in section 2.

In this paper, we propose a new Eigenspace-based pre-

diction method by modifying the conventional projection-

based prediction with domain-specific knowledge of data,

1These missing components can be regarded as outliers, but robust sub-

space techniques such as a robust PCA proposed by De la Torre et al.[5]

are not applicable because there are outliers not in learning samples but in

a new test sample and also our case more than 50% components in the test

sample are missing.
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and demonstrate an application to predict the walking path

of people. The modification uses Null space, the orthocom-

plement of Eigenspace, and a linear combination of vectors

in the null space (null vectors) is added to the prediction

so that a reconstructed vector with missing components (in

our case, a person’s walking path) satisfies some character-

istic of data such as smoothness. Coefficients of the linear

combinations are computed by the decent gradient method.

The organization of this paper is as follows. Eigenspace-

based prediction is explained in Sec.2, then in Sec.3 we

describe modification of the prediction with null vectors

and estimation of linear combination of null vectors with

the gradient decent method. Experimental results on actual

paths are shown in Sec.4.

2 Eigenspace-based Prediction of a Path

This section introduces a prediction of a person’s path

based on projection onto Eigenspace.

2.1 Construction of Eigenspace with Sam-
ple Paths

In this paper, a path of a person is defined as a sequence

of successive coordinates of the person over frames. Here

we describe how to obtain a sequence of a path for learning.

First, regions in a frame where changes in intensity oc-

cur are extracted by using background subtraction. Then,

the size of each region is used to reject regions other than

people. The center of gravity of a region is used as a posi-

tion of a person in the frame.

N paths are acquired for learning, then the paths are nor-

malized in length that is defined as a sum of Euclidean dis-

tance between two successive coordinates. First the shortest

path in the N paths is chosen. All paths are cut to the short-

est length, then resampled so that all paths have the same

length, M number of coordinates. Each i-th normalized

path is represented by a vector yi with 2M elements pt as

follows:

yi = (pT
1 ,pT

2 , . . . ,pT
M )T ∈ IR2M , (3)

pt = (pxt
, pyt

)T ∈ IR2, (4)

where pt is a 2D vector representing t-th coordinates in a

path.

EigenspaceE is constructed with the normalizedN sam-

ple paths yi that are centered by subtracting an average vec-

tor m (= 1
N

∑N
i=1 yi) in advance, then eigenvectors ei are

computed:

E = [e1, · · · , eN ], (5)

ei = (eT
i1,e

T
i2, . . . , e

T
iM )T ∈ IR2M , (6)

where E represents a matrix of Eigenspace spanned by the

eigenvectors (or Eigenpaths) {ei}, and eit ∈ IR2 corre-

sponds to t-th 2D coordinates in ei.

2.2 Eigenspace-based Path Prediction

In prediction, a path of a new person is not fully traced,

and there is no coordinates of the person in future. Sup-

pose that a new person is tracked and the path is normalized

to have s coordinates p′

1, . . . ,p
′

s as the same way for the

learned paths.

y′ = (p′T
1 , . . . ,p′T

s )T ∈ IR2s, where s ≤ M. (7)

For unknown coordinates p′

s+1, . . . ,p
′

M , we set them to

zero p′

t = 0 = (0, 0)T , then an extended vector y′′ is ob-

tained:

y′′ = (p′T
1 , . . . ,p′T

s ,0T , . . . ,0T︸ ︷︷ ︸
(M−s)

)T (8)

= (y′T , 0, . . . , 0︸ ︷︷ ︸
2(M−s)

)T ∈ IR2M . (9)

In the framework of conventional Eigenspace methods,

the observed vector y′′ is represented by a linear combina-

tion of the eigenvectors so that the following L-2 error norm

is minimized [6] with respect to a:

||y′′ − Ea||2 =

∣∣∣∣∣
∣∣∣∣∣y′′ −

N∑
j

ajej

∣∣∣∣∣
∣∣∣∣∣
2

(10)

=
M∑
t

∣∣∣∣∣
∣∣∣∣∣p

′

t −
N∑
j

ajejt

∣∣∣∣∣
∣∣∣∣∣
2

, (11)

where a = (a1, a2, . . . , aN )T is the coefficient of the linear

combination. In our case, unknown coordinates are set to

zero, so the norm is rewritten as:

||y′′ − Ea||2 =
s∑

t=1

∣∣∣∣∣
∣∣∣∣∣p

′

t −
N∑
j

ajejt

∣∣∣∣∣
∣∣∣∣∣
2

+
M∑

t=s+1

∣∣∣∣∣
∣∣∣∣∣

N∑
j

ajejt

∣∣∣∣∣
∣∣∣∣∣
2

. (12)

The second term in the above equation affects greatly the

estimates of the coefficient a. Instead, using only the first

term and omitting the second term lead to a more appropri-

ate estimate of the coefficient. This estimation is done by

solving the following linear system [6, 3]:

E′T E′a = E′T y′′, (13)

E′ = diag(

2s︷ ︸︸ ︷
1, · · · , 1,

2(M−s)︷ ︸︸ ︷
0, · · · , 0) E (14)
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whereE′ is a subspace ofE spanned by truncated eigenvec-

tors, but their basis are no longer orthogonal to each other.

Note that rank(E′T E′) = N or det(E′T E′) �= 0 should

be held so that the linear system doesn’t become under-

determined. This means 2s > N , hence the estimation can

be done after several positions of a person are observed.

The reconstruction with the estimated coefficients a is as

follows [2, 1, 7]:

y∗ = Ea = E(E′T E′)−1E′T y′′. (15)

2.3 Modifying a Projection Outside of
Eigenspace

The predicted path y∗ is represented by a linear combi-

nation of eigenvectors ei,

y∗ = Ea = a1e1+a2e2+ · · ·+aNeN =
N∑

i=1

aiei. (16)

However, Eq.(15) shows us that y∗ is a projection of y′′

onto a subspace spanned by non-orthonormal vectors[8, 3],

in this case not E but the truncated subspace E′. There-

fore, there is no reason to believe that the projection repre-

sents the original data well because the truncation of the

Eigenspace depends not on principal components corre-

sponding to small eigenvalues (usually referred as dimen-

sionality reduction) but just the length of observation. Also,

this projection does not take into account the characteristics

of a person’s walking path, and the estimated path y∗ results

in something different from a real path.

In this paper, we propose the use of the orthocomplement

of the Eigenspace, denoted as E⊥, where IR2M = E +E⊥.

All vectors in E⊥ are orthogonal to any vectors in E, and

vice versa: e.g., ∀� ∈ E⊥ ⇒ E� = 0. Therefore, we call
E⊥ as the null space of E, and a vector in the null space is

called a null vector. By using null vectors in the null space,

a path is represented as follows:

ỹ = y∗ +
∑

k

bk�k =

N∑
i=1

aiei +
∑

k

bk�k (17)

Estimated path y∗ in Eq.(15) is identical to the equation

above when coefficients bk for null vectors in the second

term are zero.

The concept of the proposed method is that domain-

specific knowledge discarded by the conventional projec-

tion can be found in the null space if we can find the ap-

propriate coefficients bk for the null vectors �k. This topic

is described in the next section. It should be noted that the

projection of ỹ onto E is still y∗.

3 Null Vector Modifications

The proposed method shown in this section adds null

vectors to the projected path y∗ so that the modified path ỹ

looks like a person’s walking path. In this paper, we make

an assumption that a person walks toward a destination, and

does not turn suddenly, and the path is smooth and does not

have a sharp curve. Here we introduce a cost function of

smoothness of a path that has never been used by conven-

tional Eigenspace-based estimations.

First, we assume that K null vectors �k =
(�T

k1, �
T
k2, . . . , �

T
kM )T ∈ E⊥ are given. Then the linear rep-

resentation of the modified path ỹ is:

ỹ =
N∑

i=1

aiei +
K∑

k=1

bk�k

= (p̃T
1 , p̃

T
2 , . . . , p̃

T
M )T , (18)

p̃t =
N∑

i=1

aieit +
K∑

k=1

bk�kt. (19)

Let ut be a vector defined by two successive
2coordinates

p̃t, p̃t+1, and θt be an angle subtended by ut and ut+1:

ut = p̃t+1 − p̃t, (20)

cos θt =
uT

t ut+1

||ut||||ut+1||
, 1 ≤ t ≤ M − 2. (21)

Next, we define a cost function J so that the smaller the

angle θt is the smoother the path is:

J =

M−2∑
t=1

cosα θt, α = 1, 3, 5, . . . (22)

The steepest gradient method is used to maximize the

cost function for coefficients of the null vectors bk (k =
1, . . . ,K) as bk ← bk + ∂J

∂bk

, and all bk are initialized to 0.

A stopping condition is max
k

∣∣∣ ∂J
∂bk

∣∣∣ < 10−5. The Jacobian

of J comprises ut and �t (omit detail).

In the discussion above, we assume that the null vectors

are given. However, there are no established methods to get

null vectors. Also there are a lot of variations to choose null

vectors from the null space. For example, assume that there

are 13 paths comprised of 250 coordinates given as samples.

The dimensionality of the Eigenspace is up to 13, however,

the null space has 500 − 13 = 487 dimensions. Usually

the number of samples is much fewer than the number of

coordinates in a path. Therefore it is difficult to find the

most appropriate null vector to modify the predicted path.

2Of course, we can two coordinates distant from each other ept and

ept+k . In this case, the sum of k-curvature (see, for example, [9]) over the

path is minimized.
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Figure 1. A frame of video and paths used in the experiments. (a) Predicted path y∗ (green) and

actual path y (red). (b) 13 sample paths y1, . . . ,y13, (c) 5 eigenvectors e1, . . . , e5, (d) 3 samples used

for null vectors v1, . . . ,v3 and (e) 3 null vectors �1, . . . , �3. Note that ej and �k are scaled properly for

visualization.
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Table 1. Initial and converged values of the cost func-

tion J with a null vector �1 for different α.
α 1 3 5 7 9

J (init.) 234.56 215.23 201.26 190.71 181.87

J (conv.) 235.20 217.95 206.06 196.84 189.18

b1 −15.14 −27.36 −34.18 −36.96 −38.33

Table 2. Comparison of the number

of the null vector.
�1 �2 �3

∑
bk�k

K 1 1 1 3

J 235.20 234.67 239.88 240.727

b1 −39.73 0 0 −4.80
b2 0 −5.90 0 14.07
b3 0 0 −34.54 −42.62

In this paper, null vectors are obtained from paths other

than sample paths. In general, the dimension is so high

that the new paths probably do not lay on the Eigenspace

spanned by the sample paths. The null vectors �k in the

null space are made from the new vectors vk by using the

Gram-Schmidt orthonormalization:

�′k = vk −
N∑

i=1

(vT
k ei)ei −

k−1∑
j=1

(vT
k �j)�j , (23)

�k =
�′k

|�′k|
. (24)

Wemay add the new paths for null vectors to the learning

sample paths to construct the Eigenspace instead to make

the null space. This way seems to make use of the infor-

mation of the new paths for better prediction, however, all

information of learning samples are truncated by eq.(14),

then no way to retrieve information corresponding to the

missing components in the new paths.

4 Experimental Results

We implemented the proposed method, and evaluated us-

ing real image sequences of 714×480 in size. In the exper-
iment, a video camera was fixed to a tripod, and movies

were recorded as MPEG files, then 17 paths were obtained

by off-line processing. People walked from the bottom left

to the top right of the frame (Fig.1(a)). 13 paths were used

as samples to make an Eigenspace (Fig.1(b)), and another

three paths were used for null vectors (Fig.1(d)(e)). The

remaining path is used for prediction (Fig.2). When learn-

ing, each path was cut so that it consisted of 350 coordi-

nates, then 50 points are sparsely downsampled with linear

interpolation for noise reduction. Finally M = 250 coordi-
nates are resampled for a path. When predicting, a person

is tracked and the path was normalized at each frame.

Predicted paths y∗ with N = 13 are shown in Fig.2(a)

for several different positions p′

s represented by ©. The

prediction near to the start position (for small s) deviated

largely from the actual path. As s increases, the prediction

becomes similar to the actual path.

Next, Fig.2(b) shows the modification by a null vector

�1. The estimated path y∗ was predicted at s = 100.

Actually the modification is slight, but ỹ is indeed more

smoother than y∗. Table.1 shows values of the cost function

and estimated coefficient b1 when α changes. Although b1

differs for different α, this variation is so small and does not

affect the shape of the path because the null vector �1 has

500 elements but its norm is normalized to 1. Therefore, the

choise of α is trivial and we set α = 1 for all experiments.

Fig.3(a) illustrates results of modification by each null

vector. Fig.3(b) shows the result by using 3 null vectors at

the same time, and Table.2 shows the estimated parameters.

Although the modified path depends on which path is used,

the difference is small.

Another experiment is shown in Fig.4. Fig.4(a) shows 30

sample paths used to construct Eigenspace. Unlike the pre-

vious experiment, the walking path curves twice and looks

like the S letter. Predicted and modified paths of a new

path are shown in Fig.4(b) for different positions. This re-

sult shows that the proposed method is applicable to curved

complex path in which prior knowledge is effectively used.

5 Conclusion

In this paper, we proposed a method for predicting a

vector with missing components based on Eigenspace with

null space modifications. We applied the method to paths

of walking people in a real sequence, and demonstrated in

the limited experiments how the proposed method works.

There are many things to be considered, such as the num-

ber of the null vectors, the way to obtain the null vectors,

the choice of other cost functions that represent domain-

specific knowledge. Also futher experiments should be

done. Nevertheless, the concept of the proposed method

— to explore out of the subspace spanned by samples based

on a prior knowledge — can be applicable to any other sub-

space recognition methods. We will investigate the possi-

bility in other pattern recognition problems.
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Figure 2. (a) Predicted paths y∗ for different

position s. (b) Predicted path y∗ (solid) when

s = 100, and modified path ỹ (dashed).
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Figure 3. (a) Modified path ỹ using each null

vector. (b) Modified path ỹ using 3 null vec-

tors.
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Figure 4. (a) Learned 30 paths. N = 30,M =
300. (b) Predicted and modified path.
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