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Abstract

On anisotropic lattices with the anisotropy £ = ac/o,T the follow-
ing basic parameters are calculated by perturbative method: (1) the
renormalization of the gauge coupling in spatial and temporal direc-
tions, gc and gT, (2) the A parameter, (3) the ratio of the renormalized
and bare anisotropy 77 = £/£b and (4) the derivatives of the coupling
constants with respect to £, dg~2/d£ and dg~2/d£. We employ the
improved gauge actions which consist of plaquette and six-link rectan-
gular loops, COP(l x 1)^ + c\P(l x 2)^. This class of actions covers
Symanzik, Iwasaki and DBW2 actions. The ratio 77 shows an impres-
sive behavior as a function of c\, i.e.,77 > 1 for the standard Wilson
and Symanzik actions, while 77 < 1 for Iwasaki and DBW2 actions.
This is confirmed non-perturbatively by numerical simulations in weak
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coupling regions. The derivatives dgT 2/d(; and dg~2/d£ also change
sign as -c\ increases. For Iwasaki and DBW2 actions they become
opposite sign to those for standard and Symanzik actions. However,
their sura is independent of the type of actions due to Karsch's sum
rule.

1 Introduction
Anisotropic lattices allow us to carry out numerical simulations with the
fine temporal resolution while keeping the spatial lattice spacing coarse, i.e.
aT < aa, where aT and aa are lattice spacing in the temporal and spatial
directions, respectively. This is especially important for QCD Monte Carlo
simulation at finite temperature and heavy particle spectroscopy. There have
been many such calculations like glue thermodynamics[1], hadron masses
at the finite temperature[2], glueballs[3] and heavy quark spectra[4]. The
anisotropic lattice may become an important tool for the calculation of the
transport coefficients of the quark gluon plasma[5, 6] and for the determina-
tion of spectral functions at finite temperature[7, 8]. In numerical simulations
on the anisotropic lattice we need the information upon the renormaliza-
tion of anisotropy which is given by rj = £/£# where £ is the renormalized
anisotropy, aa-/aT, and £g is the bare one. Karsch has first studied anisotropic
lattices perturbatively with the standard plaquette action and obtained tj to-
gether with anisotropy coefficients which are defined by the derivatives of
the spatial and temporal gauge couplings with respect to £, i.e., dg~2/d£
and dg~2/d£, and the QCD A parameter [9]. In Ref.flO] rj was determined
non-perturbatively by analyzing Wilson loops in numerical simulations.

Anisotropic lattices play an essential role in the analysis of thermody-
namics of QCD. To get the thermodynamics quantities like the internal en-
ergy and the pressure from numerical simulations, one needs to know the
anisotropy coefficients.

On the anisotropic lattice, we can change the temperature by changing
not only NT but also aT. This allows us to adjust the temperature continu-
ously with fixed spatial volume.

Recently it has been recognized that improved actions are effective to
get reliable results from lattice QCD simulations on the relatively coarse
lattice; lattice.artifacts due to the discretization are expected to be much
less. Therefore, it is important to employ improved actions in the anisotropic
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lattice calculations, since the lattice is rather coarse in spatial direction in
current numerical simulations. Garcia Perez and van Baal pursued first this
direction, i.e., they have determined the one-loop correction to the anisotropy
for the square Symanzik improved action[ll].

In this article we study the improved actions which consist of plaquette
and six-link rectangular loops,

S<x52[c0P(l x 1)^+^(1 x2)^), (1)

where cq and Ci satisfy the relation Co + 8ci = 1. This class of actions
covers tree level Symanzik action without the tadpole improvement (ci =
-^)[12, 13], Iwasaki action {cx = -0.331) [14] and DBW2 action (a =
-1.4088) [15]. They are most widely used in simulations of recent days. For
the class of actions which consists of planar loops the anisotropic lattice can
be formulated in the same way as for the standard plaquette action. This
may not be the case for improved actions which include non-planar loops in
three or four dimensions.

In the following, we will calculate the A parameter, r\ - £/£s and the
anisotropy coefficients, in weak coupling regions mainly by perturbative cal-
culations.

In sect. 2 we briefly review the formulation of the anisotropic lattice
with the improved actions and summarize formulae which will be used in
this paper. In sect. 3, we outline the background field method and discuss
the removal of the infrared divergence. In sect. 4 we present results of the
perturbative calculations. The c\ dependence of r] and anisotropy coefficients
are studied in detail. Since the behavior of r\ is very important for practical
use, we will study it by the numerical simulations in sect. 5. Section 6 is
devoted to concluding remarks.

2 Anisotropic lattice with improved gauge ac-
tions

In case of improved actions that consist of plaquette and rectangular loops,
the anisotropic lattice may be formulated in the same way as for the standard
plaquette action[9]. The action takes the form

^=^EE^+^EEAi, (2)
x i>j x 1^4
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where P^ are plaquette and six-link rectangular loop operators in \i-v plane,

Pnu =cqP(1 x 1)^+dP(l x 2)^, (3)

which are constructed of the link variable Untfl and

*-ags^' *- B§j* (4)
.Here ga and gT are the coupling constants in the spatial and temporal direc-
tions, respectively. The action can be also written with the bare anisotropy
parameter £g as

s,=&(^EEp«+&EE^«). (5)
SB x i>j x i^4

wherefc = 2JVc/p| = vW; and£/& = y^/^.
The weak coupling limit of the anisotropic lattice is fully discussed in

Ref. [9]. Therefore, we will summarize only equations which are necessary in
the following studies.

In the continuum limit ac -> 0(# -> 0), the lattice spacing and the
coupling <7f are related with each other by the scale parameter A through the
renormalization group relation,

. aCTA(0 = (ftoflf)-*•E«> exp{-l/(260^2)}, (6)

where bo and b\ are the universal first two coefficients of /^-function,

_ UNC 34 Nc 2
60"48^' 6l=T(16^} - (7)

We calculate the effective action using the background field method [19]
up to one-loop order,

s"> = i(^)-c'(«+0^))s^X
\yc7Vs; / ij ,Q-.

1 / 1 \ 18J

4 VyrlC; / i^4
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Effective actions'with different value of the anisotropy parameter £ corre-
spond to different regularization scheme, but they should have the same con-
tinuum limit and we require A5e// = S^ff - Sljj = 0. Then the relations
are obtained,

/S~H t*\ V~« /-l\\ . J^\/ O.\
+ {Ua{$) - Uff{L)) +U[g~), W

+ (CT(0 - CT(l)) +O(g2). (10)

92A0
1

92 iX)

1
92r(0 92W

In the following, the deviation of the one-loop quantum correction from the
isotropic case is often employed and written as ACa(£) = CCT(£) - CCT(1),

ACT(fl = CT(fl - Cr(l).

  Perturbatively, all fundamental parameters on the anisotropic lattice are

given in terms of Ca(£) and CT(£). The A parameter on the anisotropic

lattice is given by

The quantum correction for the anisotropy parameter 77 = £/£b is written as

  17(6P)=j-

B=[^)2=1+jTi(fl+^(r2), (12)

           %(0 = Ca(O - Cr(O,         (13)

CBla edatf&iK 2^^g?rcq^ cp ef5^ ifaitka]^ghtenTi)yctfcec(flkiiv&tQiiffi tK et bffii ^lp(c^

and CCT(£) with respect to £,

        at   ae '  se   ^ "

They play an important role in QCD thermodynamics [9, 10, 16, 17] as will

be discussed in section 4.3.

3 Perturbative calculation of Ca and CT

3.1 Background field method

We calculate Cc{£) and CT(f) in one-loop order, by apptying the background

field method. The background field method on the lattice is well known
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[18, 19] and therefore here we will only outline the method of the calculation
and stress the points related to the anisotropic lattice. The gauge field is
decomposed into a quantum field a^ and a background one B^ which satisfies
the classical equation of motion,

Un,fi = ei9^a"^Ui0l, Uj® = eia"B"(n). (15)

A gauge fixing term is introduced as,

S9.f. = ~alaT £ Tr^iVn))2. (16)
n n

Here
D^K = MU<»aK{n+Ai)Dg)t _^(n)))

i'
'/«v ~** .i\ "._.

I 5JX = £(CTiV«(» - /*)&& - aK(n)). (17)

The Faddeev-Popov term resulting from the gauge fixing is

SF.P.= -2a3aTE E Tr[(^°V(n))t(40^(n))]. (18)
n fi

The total action becomes

Static, 4>, Bp) = Sgia^ BJ + Sg.f.{a^ BJ + SF.P.{4>, B^)t (19)

awfeHtar-S'gidpsthe gauge action constructed from plaquette and six-link rect-
It is invariant under the following gauge transformation,

Mn) -» V{n)ail{n)V^n) (20)
<^(n) -> V(n)^(n)Vt(n),

/ D^in) ->V(n)D^(n)Vt(n) f .
{ D^{n) ->F(n)D^(n)yt(n), ^

where V is an element of SU(NC). For the calculation of the effective action
in one-loop order we expand the total action up to second order in a^ and
Bp, which we denote as S^. With the help of Campbell-Hausdorff's formula
and a relation Vexp(ia) = exp(iVaV~l)V, we split the total action into a
classical action and a bilinear term of o;^ and <f>,

S tot = S(Bll) + SSl(all, <f>, Bli). (22)
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The term linear in Bp, is missing because of the equation of motion for the
background field.

Thanks to the gauge invariance of the background field, it is sufficient
to calculate the coefficients of pfipvBfJ.Bl/ to obtain the effective action. For
the calculation of this term, we have applied the method explained in the
appendix of Ref.[20] , which makes the calculation much simpler.

It is convenient to separate the action S^J into several parts, i.e., S^t =
Sq + S'o -\ + S'6+ Sf.p.- So,S'q,•E•E•E and S'6 are symbolically expressed as

follows [20]
S Q : p
s ' (A a f

S i f [B ,  a ]
S [ : A a [B ,  a ]

S 2 : [a ,  a ]W

S z : [B ,  a ][B ,  a ]

S 4 : f [B ,  [B ,  * ]]

S 5 : [[B , a ],  a ]W

S 6 : p w *

s 'R a W [a ,  W ]t

(23)

where B and a represent B^ and a^, respectively and W and / are the
field strength tensors of background and quantum fields, respectively. A is
a lattice derivative when we set U^ = 1 in Eq.(17). So and S'o are the free
part of the action, which defines gluon propagators. Si, Sl and £2 terms
correspond to three-point diagram from which we construct the one-loop
self-energy. S3 to S'6 contribute to the tadpole self-energy. Here S'Q and S[
result from gauge fixing terms. The Faddeev-Popov term is the same as
the previous calculations except that the anisotropy parameter £ is included
[18 ,19] .

3.2 Effects of anisotropy parameters
By the integration over the quantum fields, we obtain the effective action
in one-loop order. We carry out the integration in the momentumspace.
Fourier transform of the gauge and Faddeev-Popov fields are defined as

dya^n+ 1/2) = / a^a^ka)exp(z(n+ \/2)ka)\\
J-n v

d{kvav)
(24)
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aCT^»(n) = / aa(p(ka) exp(inka) JJ . (25)

Wealso define Fourier transformation of the classical field in a similar man-
ner.

By this Fourier transformation, the anisotropy parameters are factorized
in the action Sititot

7(2)

?(2) (2)
"tot,/u/(sj - å ^å ^^tot,iiv \^) (26)

Stoliivil) are already given by Iwasaki and Sakai[20] on the isotropic lattice
and Xnvare defined as

å X-jiv

r I I I c
i TFi
fill (27)

In this way the perturbative calculation of the anisotropic lattice becomes
very systematic and transparent.

For example the free part of the anisotropic improved action So is given
by

S° = -o f UMkalG^avi-ka), (28)

w
Gu = -z{qukf+kf}+ZquH

Gu = ^Aikf+eH
Gij = j{l-gij}kkj

Gv = f{!-q*j}hkj
[Gj4 = Gy,

kfj. = 2sin|A;Ma

qvv = 0,

(29)

(30)

where the £3 term in G44 results from the gauge fixing term and fk stands
for FL=i /-7r dknCLn/2-K. Note that off-diagonal elements of G^v vanish for the
Wilson action.

Propagators D^ are defined by

< ^(ka)c4(k'a) >= S^TryS^ika + k'^D^ika),

34
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and they are obtained by solving the equations,

<W =V (32)

The Faddeev-Popov propagator is given by

DF.P.{ka)= ,2 ^ ,2. (33)

The explicit forms of the S\ to S'6 terms in Eq.(23) are obtained by setting
c-2=C3= 0 in formulae of Ref.[20] and by introducing the anisotropy factors
as shown in Eqs. (26) and (27).

The effective action is obtained by integrating S^^a^ ^^ B^) over a^a^

and Faddeev-Popov fields aa(j),

e-5(aMS^) />p(a/ia/j)p(a£r0)e-^t)(^^-^^M-BM) = e-5c//(aMBp)# (34)

Then CCT(£) and CT(£) in Eq.(8) are obtained as coefficients of Fh and F?4 in
/Se//. , respectively.

3.3 Infrared divergence

Wewill discuss here a subtle point concerning the cancellation of the infrared
divergence. The contributions for Ca and CT from the self-energy type dia-
gram of the term < (Si + S2)2 > have the infrared divergence. However in
the difference given by Eqs. (9) and (10) they are canceled. But numerically
the calculation of the divergent integral is very delicate problem. In the nu-
merical evaluation, we discretize the momentum integration f d*h, and the
divergence comes from the segment including k = 0. We should not take
the difference of integration with different £ directly, because their measures
of segment are different for isotropic and anisotropic lattices. We use the
following method for the calculation of the Eqs. (9) and (10),

+ (cf-d-(0 - cf-<*-(i)) (,5)
+ (CfanA(l) - C^-(l)). [6i))

where CImp- and CStand' are the coefficients with improved and standard
actions, respectively.
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In the first term of r.h.s of Eq.(35), C^mp-(£) and Cfond(|) have the
same infrared divergence and they are canceled exactly by each other. The
second term of Eq.(35) can be calculated by the analytic integration of the
4th component of the loop momentum[9]. The results do not include the
infrared divergence and the numerical integration is stable. The divergence
in the last term has been already calculated in Ref.[20]. We have checked
that our calculations for the second and the third terms of Eq.(35) coincide
with those for Wilson and Symanzik case respectively given in Ref.[9] and
Ref.[20] 1.

In this way the difference C^.mp-(0 - C^mp(l) is calculated in numerically
stable manner. Similar calculation has been done for C'mp-(f) - C/mp (l).

4 Results of one-loop calculation
Values of Cff(0 - Ca(1) and Cr(f) -CT(1) are given in Table 1 for Symanzik,
Iwasaki and DBW2. £ is varied from 1 to 6, since these anisotropy parameters
are often used in Monte Carlo simulations on anisotropic lattices.

4.1 TheAratio

When we calculate physical quantities, we must take into account the vari-
ation of the scale aCTdue to A(£). In weak coupling regions it is given by
Eq.(ll). The A ratio is calculated as a product of three factors,

A/mp.(£) _ A/mp.(Q x Astand.(£) x AstandX1) /gg-v
Ajmp.(l) Astand.(O ^Stand.{1) Ajmp.(l) '

The numerical results are given in the Table 2 for Symanzik, Iwasaki and
DBW2 and are shown in Fig. 1.

4.2 The 77 parameter

The r\ parameter is given by Eqs. (12) and (13). Because of the gauge
invariance we can see Ca(l) = CT(1) at the isotropic case, and therefore these

1Although the values of Csw-(£) - CStand-(l) were not given in Ref.[9], we have
calculated them from Table and formulae in Ref.[9]
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S y m a n zik ac tio n Iw a sa ki a ction D B W 2 a ction

｣ A O , A C T A C a A C V A C o A C T

S U (2 )

1 .0 0 .00 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 00 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

1.1 0 .00 5 4 1 -0 .0 0 0 92 -0 .0 0 2 0 1 0 .0 06 14 -0 .0 1 12 4 0 .0 14 6 4

1 .5 0 .0 2 0 7 2 -0 .0 0 17 3 -0 .0 0 90 8 0 .0 23 2 7 -0 .0 4 8 7 5 0 .0 5 1 5 0

2 .0 0 .0 3 1 8 0 -0 .0 00 8 5 -0 .0 1 5 64 0 .0 36 12 -0 .0 8 4 0 0 0 .0 7 5 1 0

3 .0 0 . 0 4 30 4 0 .0 0 10 3 -0 .0 24 0 6 0 .0 5 0 16 -0 .13 38 4 0 .0 9 5 3 7

4 .0 0 .0 4 8 62 0 .0 0 15 9 -0 .0 29 3 4 0 .0 5 6 13 -0 .16 93 2 0 .0 9 76 6

5 .0 0 .0 5 16 8 0 .0 00 5 9 -0 .03 3 4 0 0 .0 5 6 92 -0 .1 9 69 5 0 .0 9 0 55

6 .0 0 .0 53 14 -0 .0 0 1 6 2 -0 .03 7 2 5 0 .0 54 4 4 -0 .2 19 7 0 0 .0 80 0 0

S U (3 )

1 .0 0 .0 00 0 0 0 .00 0 0 0 0 .00 0 0 0 o .c 0 .0 0 0 0 0 0 .0 0 0 0 0

1.1 0 .0 0 93 0 -0 .0 0 2 5 3 -0 .00 4 2 7 0 .0 10 4 5 -0 .0 2 0 8 7 0 .0 25 8 4

1.5 0 .03 6 0 2 -0 .0 0 7 0 1 -0 .0 18 5 2 0 .0 39 6 7 -0 .0 8 9 8 3 0 .0 9 2 0 6

2 .0 0 .0 55 7 1 -0 .0 0 8 29 -0 .0 3 11 9 0 .0 6 18 4 -0 .15 3 8 9 0 .13 6 0 9

3 .0 0 .0 75 9 6 -0 .0 0 8 56 -0 .0 4 6 9 3 0 .0 86 7 9 -0 .2 4 34 8 0 .17 7 2 9

4 .0 0 .0 8 6 1 4 -0 .0 0 9 5 1 -0 .0 5 64 4 0 .0 98 4 3 -0 .3 0 6 5 8 0 .1 8 7 76

5 .0 0 .0 9 18 2 -0 .0 1 2 16 -0 .0 6 3 5 0 0 .10 16 3 -0 .3 5 5 33 0 .18 2 2 1

6 .0 0 .0 9 4 6 2 -0 .0 16 2 5 -0 .0 7 0 12 0 .0 9 9 5 3 -0 .3 9 53 2 0 .1 70 3 4

Table 1: Cc and CT for Symanzik, Iwasaki and DBW2 actions. Here ACa =
Ca(0 -Ca{l) and ACT = CT(0 - CT(1).

coefficients do not appear in the definition of 77. But to cancel the infrared
divergence we calculate Eq.(13) as t?i(£) = (Co($) - Ca(l)) - (CT(0 - CT(1)).

Weplot 771 as a function of Ci in Fig. 2.

The parameter 771 changes sign around Ci = -0.18 ~ -0.19. This means
that in weak coupling regions, there is no renormalization for the anisotropy
parameter £ for this action. The interesting point is that the 0 dependence
of the 77 with Iwasaki and DBW2 actions is opposite to those with standard
and Symanzik actions; As /? decreases 77 decreases for Iwasaki and DBW2
action, while it increases for standard and Symanzik actions. This is a new
feature and we shall confirm it non-perturbatively in the next section.
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A /m p.(O / A /m p. (l ) A /m p. (O /A /m pA l )

｣ S y m a n zik Iw a sa k i D B W 2 !蝣 蝣 !S y m an zik Iw a s ak i D B W 2

S U (2 )

1 .0 1 .0 0 0 0 0 1 .0 0 0 0 0 1 .0 0 0 0 0

S U (3 )

1 .0 0 0 0 0 1 .0 00 0 0 1 .00 00 0

1.1 0 .9 7 6 14 0 .9 7 80 3 0 .9 8 18 7 0 .9 7 5 9 9 0 .9 78 0 9 0 .98 23 4

1 .5 0 .9 0 2 8 2 0 .9 2 64 1 0 .9 8 52 9 0 .9 0 11 1 0 .9 26 9 1 0 .99 20 4

2 .0 0 .8 4 6 5 3 0 .8 9 56 2 1 .0 4 90 7 0 .8 4 3 5 0 0 .89 5 8 3 1 .06 59 7

3 .0 0 .7 8 8 7 3 0 .8 6 89 0 1 .2 3 0 13 0 .7 8 5 1 2 0 .8 6 6 7 0 1.2 6 8 12

4 .0 0 .7 6 3 0 9 0 .8 6 56 6 1 .4 7 07 1 0 .7 5 9 5 5 0 .86 0 1 0 1 .53 17 7

5 .0 0 .7 5 4 7 1 0 .8 8 10 7 1 .7 7 32 0 0 .7 5 1 3 3 0 .8 7 2 0 9 1.8 6 13 8

6 .0 0 .7 5 7 7 8 0 .9 1 15 9 2 .12 14 0 0 .7 5 4 83 0 .8 9 9 8 1 2 .2 42 1 1

Table 2: A parameter ratio for improved actions.
t S y m a n z ik Iw a s a k i D B W 2 S y m a n z ik I w a s a k i D B W 2

S U (2 )

1 .0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

S U (3 )

0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

1 .1 0 .0 0 6 3 3 - 0 .0 0 8 1 6 -0 .0 2 5 8 8 0 .0 1 1 8 3 - 0 .0 1 4 7 2 -0 .0 4 6 7 1

1 .5 0 .0 2 2 4 6 - 0 .0 3 2 3 5 -0 .1 0 0 2 5 0 .0 4 3 0 3 -0 .0 5 8 2 0 -0 .1 8 1 9 C

2 .0 0 .0 3 2 6 6 - 0 .0 5 1 7 7 -0 .1 5 9 1 1 0 .0 6 4 0 0 -0 .0 9 3 0 4 -0 .2 8 9 9 8

3 .0 0 .0 4 2 0 1 - 0 .0 7 4 2 3 -0 .2 2 9 2 1 0 .0 8 4 5 2 -0 .1 3 3 7 2 -0 .4 2 0 7 7

4 .0 0 .0 4 7 0 2 - 0 .0 8 5 4 8 -0 .2 6 6 9 8 0 .0 9 5 6 5 -0 .1 5 4 8 7 - 0 .4 9 4 3 4

5 .0 0 .0 5 1 0 9 - 0 .0 9 0 3 2 -0 .2 8 7 5 1 0 .1 0 3 9 8 -0 .1 6 5 1 3 - 0 .5 3 7 5 5

6 .0 0 .0 5 4 7 6 - 0 .0 9 1 7 0 -0 .2 9 9 7 1 0 .1 1 0 8 8 -0 .1 6 9 6 6 - 0 .5 6 5 6 7

Table 3: The 771 for improved actions.

4.3 Anisotropy coefficients

The anisotropy coefficients, which are the derivatives of spatial and temporal
gauge couplings with respect to the anisotropy £, are calculated as,

O9cr & rs~tlmp.(c\ y^iStand./t\\ i f/~iStand.(c\ /~<Stand./-\\\ (n^

In this manner, we are free from the infrared divergence, and the numerical
evaluation is stable as in Sect. 3.3.

From the invariance of the string tension on the isotropic and anisotropic
lattice, Karsch has derived the following sum rule[9],

A^-2 %n-2
'Vo

fin-'1
a 'Zt

<9£ OS

llNe

48tt2
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Figure 1: The ratio of A parameter for SU(3).

The same arguments are applied to improved actions. We show results in
Table 4 and Fig. 3. This sum rule is satisfied quite well.

An interesting point is that individual terms dg~2/d£ and. dg~2/d£ also
change sign as -c\ increases. For Iwasaki and DBW2 actions, dg~2/d£ be-
comes positive while it is negative for standard and Symanzik actions. These
anisotropy coefficients have a contribution to QCD thermodynamics. For
example, Okamoto et al.[22] used our perturbation results to study the en-
ergy and pressure with Iwasaki action and had no negative pressure problem,
contrary to Wilson action case[23].

^ M S U (2 ) S U (3 )

3 ｣ T 7 % = i d 9 r  2 d ^ = 1 d g ? M  ¥e = i d 9 r  2 m ^

S y m a n z ik 0 .0 5 8 4 0 6 -0 .0 1 1 9 6 0 .1 0 0 2 5 - 0 .0 3 0 3 6 5

I w a s  a k i -0 .0 2 0 5 6 9 0 .0 6 7 0 0 9 - 0 .0 4 4 3 0 5 0 .1 1 3 9 6 5

D B W 2 -0 .1 1 7 1 0 3 0 .1 6 3 5 4 3 -0 .2 1 7 9 3 0 .2 8 7 5 9 2

Table 4: The anisotropy coefficients for improved actions. The results are
checked by estimating the derivative numerically by using the results with
£= 1.05,1.1.
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Figure 2: The t?i as a function of Ci for SU(3).

5 Numerical results in weak coupling regions
In the previous section we have found by the perturbative calculation that
the ratio of the renormalized and bare anisotropy, 77, becomes less than one
for Iwasaki and DBW2 actions.

Since the 77 is important in QCD simulations on the anisotropic lattice,
wewill study its behavior further by numerical simulations.

Numerically the 77 parameter is calculated from the relation [10, 24],

»? = £/&. (39)

The anisotropy £b appears in the action given by Eq.(5) while the renormal-
ized anisotropy £ is defined by

£ = aa/aT. (40)
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Figure 3: Anisotropy coefficients with the standard and improved actions for
SU(3). Dotted line represents the r.h.s of Eq.(38), which is about 0.0697 for
SU(3) case. The cross symbol stands for the l.h.s of Eq.(38).

For the probe of the scale in the space and temperature direction, we use the
lattice potential in these directions, which is defined by

V CT(^,i,t) =H
Wcr(lt t)

W CT(l+ l,t)
), (41)

where WaT(l,t) is the Wilson loop of the size I x t in the temporal plane.
Similar formula holds for the potential in space direction. We fix £ = 2, and
calculate the ratio at a few £b points,

*(&,l,r) =
VarfoMt) '

(42)

Then we search for the point R = 1 by interpolating £b[10, 24]. In Ref.[25],
an extensive study is done for the determination of £5.

The simulations are done on the 123 x 24 lattice. Numerical results with
large /? region( /? > 10) together with perturbative ones are shown in Fig.
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4. They agree with each other at large (5 region. The rj parameter decreases
as 0 decreases for Iwasaki and DBW2 while it increases for standard and
Symanzik actions.

1.3

0.8

æfWilson
å  Symanzik
•EIwasaki
A DBW2

Figure 4: Perturbative and non-perturbative results of 77 as a function of /?.
Data for Wilson actions are taken from Ref.[24]

6 Concluding remarks
Wehave calculated the QCD scale parameter A, which is shown in Table 2
and Fig. 1. Ratios A(£)/A(l) for standard, Symanzik and Iwasaki actions
have very similar behavior; they are slightly less than one, but the behavior
of A ratio of the DBW2 is quite different from those of other actions. DBW2
action is expected to be very near to the renormalized trajectory[15], and
may have a special feature. It may be interesting to study the c\ dependence
of the A parameters between Iwasaki and DBW2 actions in more detail.

The T) parameters and anisotropy coefficients, the derivatives of the cou-
pling constants with respect to the anisotropy parameter £ are calculated
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in one-loop order for improved actions. We have found that the t?i in the
Eq.(13) changes sign for cy c± -0.18 ~ -0.19 as shown in Fig. 2. The 771(f)
is positive for the standard plaquette and Symanzik actions while it be-
comes negative for Iwasaki and DBW2 actions. This behavior is confirmed
non-perturbatively by the numerical simulations in weak coupling regions as
shown in Fig. 4.

Wehave also found that the anisotropy coefficients change sign as -C\
increases. For Iwasaki and DBW2 actions, dg~2/d£ is positive while for
standard and Symanzik actions it is negative. These may be good properties
for the thermodynamics using those improved actions[22].

Wehave found that 77 obtained by the perturbation calculations is close
to one in the region Cj ~ -0.18 ~ -0.19 for £ = 1 ~ 6 2. A natural ques-
tion is whether this is true also at intermediate and strong coupling regions.
Parts of the results on the 77 parameter are reported at lattice '99 at Pisa[21].
The study of the lattice spacing a on the anisotropic lattice in intermediate
coupling regions has been started. Detailed results will be reported in the
forthcoming paper. Moreover, with these fundamental properties of the im-
proved actions on anisotropic lattices, we are going to start simulations of
heavy quark spectroscopy, transport coefficients of quark gluon plasma etc.
on these lattices.
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Appendix

In this appendix we show all the data used in Eq.(35). In Table 5 the data of
the first term in Eq.(35) are summarized, and in Table 6 we report the data
for the standard action. The values of the third terms in Eq.(35) are given
by isotropy cases in Table 5.

2The value is sligtly shifted from that in Ref.[21]. After lattice'99, we have done an
extensive study of the numerical calculation of the loop integral, so that we can safely
extrapolate to the continuum integral.
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S y m an zik a ctio n Iw asa k i a ctio n D B W 2 actio n

｣ 8 C & ) S C r ( 6 C J E ) 5C A S ) * c m SC A

S U (2 )

1 .0 -0 .1 3 1 73 -0 .13 1 73 -0 .3 26 6 8 -0 .3 26 6 8 -0 .5 7 50 5 -0 .5 7 50 5

1 .1 -0 .1 3 6 90 -0 .12 6 7 2 -0 .3 39 2 8 -0 .3 14 6 1 -0 .5 9 6 8 7 -0 .5 54 4 7

1 .5 -0 .1 5 14 9 -0 .1 13 5 5 -0 .37 6 2 5 -0 .2 8 3 4 9 -0 .6 64 2 9 -0 . 50 3 6 2

2 .0 -0 .1 6 13 0 -0 .10 3 9 3 -0 .4 0 3 7 1 -0 .2 6 1 9 0 -0 .7 20 4 2 -0 .4 7 1 2 8

3 .0 -0 .1 69 0 8 -0 .0 9 2 6 1 -0 .4 3 1 1 5 -0 .2 3 8 4 4 -0 .7 89 2 9 -0 .4 4 1 6 0

4 .0 -0 .1 7 13 5 -0 .0 8 6 4 3 -0 .4 4 4 2 7 -0 .2 2 6 8 5 -0 .8 3 2 6 2 -0 .4 3 3 6 8

5 .0 -0 .1 72 1 8 -0 .0 8 3 5 9 -0 .4 5 2 2 3 -0 .2 2 2 2 1 -0 .8 6 4 1 4 -0 .4 3 6 9 4

6 .0 -0 .17 2 9 2 -0 .0 8 3 0 0 -0 .4 5 8 2 8 -0 .2 2 18 8 -0 .8 8 9 0 9 -0 .4 4 4 6 8

S U (3 )

1.0 -0 .2 3 2 1 1 -0 .2 3 2 1 1 -0 .5 73 4 9 -0 .5 73 4 9 -0 .9 9 9 8 7 -O .｣

1 .1 -0 .2 4 15 6 -0 .2 2 2 93 -0 .5 96 5 2 -0 .5 5 13 2 -1 .0 3 9 5 0 -0 .9 62 3 2

1 .5 -0 .2 6 8 3 6 -0 .1 9 83 2 -0 .66 4 2 9 -0 .4 93 0 2 -1 .1 6 19 8 -0 .8 6 70 1

2 .0 -0 .2 8 64 9 -0 . 1 79 8 8 -0 .7 14 7 7 -0 .4 5 1 12 -1 .2 63 8 6 -0 .8 0 3 2 6

3 .0 -0 .3 0 0 99 -0 .15 7 7 1 -0 .76 5 2 7 -0 .4 0 3 7 3 -1 .3 88 2 0 -0 .7 3 9 6 2

4 .0 -0 .3 0 52 4 -0 . 14 5 0 9 -0 .78 9 2 1 -0 .3 7 8 5 2 -1 .4 65 7 3 -0 .7 1 5 5 8

5 .0 -0 . 3 0 67 4 -0 .13 8 4 8 -0 .8 0 3 4 4 -0 .3 6 6 0 6 -1 .5 2 16 6 -0 .7 1 1 8 7

6 .0 -0 .3 0 79 9 -0 .13 5 8 6 -0 .8 1 4 1 2 -0 .3 6 14 4 -1.5 6 5 7 0 -0 .7 1 7 02

Table 5: Co- and CT for Symanzik, Iwasaki and DBW2 actions. Here 5CC{£) =
Cimp'(O - CfQnd(0 and 5CT(0 = C^mp-(f) - CTsw-(£).
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