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Abstract

The second order perturbation theory based on the locally projected molecular orbitals is devel-

oped. A few test calculations with cc-pVDZ and aug-cc-pVDZ basis sets are carried out for the

dimers, (H2O)2 and (HF)2. The charge transfer terms remove the de�ciency of the locally projected

self-consistent �eld method for molecular interaction (LP SCF MO MI), and the potential energy

curves calculated with aug-cc-pVDZ are very close to the corresponding curves of the counterpoise

corrected SCF energy. Only after adding the spin-exchanged dispersion type to the dispersion

and intra-molecular pair correlation terms, the calculated potential energy curves become close to

those of the couterpoise corrected second order Møller-Plesset (MP2). Pragmatic approaches for

reducing the in�uence of the basis set superposition error are proposed.

� The present address: Department of Chemistry, Iowa State University
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I. INTRODUCTION

Molecular clusters bounded with the van der Waals forces and hydrogen bonds are ex-

tensively studied both experimentally and theoretically. Every six year Chemical Review

publishes a thematic issue on van der Waals molecules[1];[2]. The review articles in these

issues report great progress both in experimental and theoretical studies. In particular, the

contribution from the theoretical and computational works becomes more important in the

last decade. Now, most of the experimental papers on the molecular clusters cite the the-

oretical counter parts or include some computational studies carried out along with their

experiments. In these practical computational studies of the weak bonding, the supermole-

cule method is mostly used with the self-consistent �eld molecular orbital (SCF MO), the

second order Møller-Plesset method (MP2) or the density functional theory(DFT). Unfor-

tunately it has been known that with the supermolecule method the basis set superposition

error (BSSE) has to be removed to properly estimate the binding energy and even to opti-

mize the geometry of the clusters, as was compactly reviewed by van Duijneveldt et al[3].

To remove the BSSE, the counterpoise method by Boys and Bernardi[4] and by Jansen and

Ross[5] is widely used. In their review, van Duijneveldt et al concluded that CP correction

is a proper procedure despite numerous criticism[3]. Since this review, there are a few works

which support this conclusion (see the review by Chalansiński and Szcz¾ésniak[6]). The cal-

culations for the BSSE correction become a routine job after the last revision of Gaussian 98,

although the job requires the extensive cpu, particularly when the number of the constituent

molecules is larger than 2. Besides, there is some ambiguity in de�ning the molecular units

for the counterpoise procedure, when the intra-cluster reaction or the charge separation is

involved[7].

To avoid the BSSE a priori, several methods are developed. The symmetry-adapted

perturbation theory (SAPT) has been applied mostly for simpler systems, and recently the

applications become much broader[8]. Another approach is Chemical Hamiltonian Approach

(CHA) by Mayer and his collaborators in the second order Møller-Plesset theory[9]. The

calculated binding energy of both methods are in good agreement with the CP corrected

energy, when properly compared. In the CHA, the agreement persists regardless of the

choice of the basis set. Another possible approach is the use of the local Møller-Plesset

perturbation[10],[11], which is a more general method applicable to the large covalent bonded
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molecules[12].

A decade ago, Gianinnetti et al[13] proposed a method, which they claimed that it is

BSSE free. They called their method "Self-Consistent Field molecular orbitals for Molec-

ular Interaction (SCF MI)". The molecular orbitals are expanded strictly in terms of the

local basis sets (Strictly Monomer Basis Set). Famulari et al [14] reported extensive test

calculations with large basis sets. One of the advantages of SCF MI is that it has a simple

form of wave function, and the disadvantage is the non-orthogonality among the occupied

orbitals. Using the valence bond approach, Calderoni et al extended the method to take

into account the dispersion term, and calculated the binding energies for a few basic sys-

tems to compare them with those of the other approaches[15]. The SCF MI has received a

strong criticism from Hamza et al [16];they argue that the method excludes the physically

important, true charge-transfer e¤ects.

Recently we studied the SCF MI and obtained a set of equations for multi-fragment

systems using the projection operators[17]. The equations are equivalent to those derived

by Gianinetti et al[13] for the closed shell dimer, although it is not apparent at the �rst

sight. Our equations are more clear in their meanings, and we call the method "locally-

projected SCF MO (LP MO) for Molecular Interaction" in place of SCF MI, because "SCF

for Molecular Interaction" is too general and does not specify the characteristics of the

method and the molecular orbitals obtained. Besides we demonstrated that at the large

basis set limit the LP SCF MI binding energies of water clusters converge to the incorrect

values as Hamza et al [16] argue. We succeeded in analytically proving that the charge-

transfer is indeed zero in LP SCF MI under Mulliken population analysis. To remove

this di¢ culty, we examined the contribution from the charge-transfer terms to the binding

energy, using the second order perturbation expansion[18]. For the perturbation expansion

we need a proper set of excited orbitals localized on each unit in the cluster, consistent with

the locally projected occupied orbitals. Utilizing the projection operator technique again,

we de�ned the locally projected excited orbitals. A few test calculations for the potential

energy curves of water dimer, HF dimer and M+Ar2 (M=Na, and K) demonstrated that

the charge-transfer terms indeed mend the ill-behavior of LP SCF MI curves; the curves

become close to the corresponding counterpoise corrected SCF curves[18]. Recently using

the projection operators, we derived the equations for the high-spin open shell restricted

LP MO, applicable to a cluster having one open shell molecule (atom) surrounded by many
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closed shell[19]. The resulting equations have di¤erent forms from those derived earlier by

Gianinetti et al[20].

In the present work we extend the previous work of the closed shell clusters by adding

the double excitations both of the dispersion type and intramolecular pair correlation type.

The other types are also examined numerically.

II. METHODS

A. Locally projected molecular orbitals

We assume that a cluster consists of closed shell molecules; the interaction is not so strong.

More correctly speaking, the electron delocalization among the constituent molecules is not

signi�cant. To describe the electronic wave function in the locally projected molecular orbital

(LP MO) method, the MOs of a molecule in the cluster are expanded in terms of the basis

set located on the molecule; the occupied molecular orbital coe¢ cient matrix is blocked as

T =

26664
TA 0 0

0 TB 0

0 0 TC

37775 (1)

for instance, for a trimer. The stationary condition for the matrix TA can be written [19]�
1� bP� bF �1� bP=2A��AT A = 0 (2)

where bF is the Fock operator of the full cluster and �A is a set of basis functions located on
molecule A. The projection operators bP and bP=2A are those de�ned for all of the occupied
MOs and for the occupied orbitals of the molecules other than molecule A, respectively.

The MO matrix T A can be obtained either by transforming (2) to a matrix general eigen-

value problem[18] or by de�ning a single Fock operator[19], which includes the stationary

condition(2). The full MO coe¢ cient matrix T is solved self-consistently. One of the char-

acteristics of the LP MO is the non-orthogonality among the occupied orbitals; it is inherent

to the local expansion of MOs.

As is mentioned in Introduction, the single determinant description with the LP MO

underestimates the binding energy. To go beyond the simplest description of the wave

function, the excited (external) orbitals have to be properly determined; they should also
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be de�ned locally. In the previous paper [18], a procedure to determine the local excited

orbitals is described; the eigenvalue problem,�
1� bP��AtexAk = �AtexAk�k � 'exAk�k , (3)

is solved. If �k = 1; the excited orbital 'exAk satis�es the orthogonality to all of the occupied

orbitals under the restriction of the local expansion. But, to have (N basis
A �M occ

A ) excited

orbitals (N basis
A and M occ

A being the total numbers of the basis set and the occupied orbitals

of molecule A, respectively), all of which are orthogonal to all of the occupied orbitals, a few

of them with �k < 1 have to be delocalized over the other molecules.[18] Thus, the excited

orbitals are grouped to purely local (le) and partially delocalized (pd) excited orbitals. In

the present numerical study, a threshold T �h = 0:99999 is chosen; if the eigenvalue �k is

smaller than T �h , the orbital '
ex
Ak is delocalized as

�pd�exAk = NAk

�
1� bP�'exAk (4)

where NAk is a normalization constant.

The overlap and Fock matrices in terms of these orbitals are diagonal dominant with

non-zero o¤-diagonal elements; they are sparse matrices of the following property, for the

dimer AB,

Mfull =

Aoc Ale Apd Boc Ble Bpd

Aoc 1 0 0 MAB
oc;oc 0 0

Ale 0 1 0 MAB
le;oc MAB

le;le MAB
le;pd

Apd 0 0 1 MAB
pd;oc MAB

pd;le MAB
pd;pd

Boc MBA
oc;oc MBA

oc;le MBA
oc;pd 1 0 0

Ble 0 MBA
le;le MBA

le;pd 0 1 0

Bpd 0 MBA
pd;le MBA

pd;pd 0 0 1

(5)

F =

Aoc Ale Apd Boc Ble Bpd

Aoc �Aocc 0 F A
oc;pd F

AB
oc;oc F

AB
oc;le F

AB
oc;pd

Ale 0 �Ale F A
le;pd F

AB
le;oc F

AB
le;le F

AB
le;pd

Apd F A
pd;oc F

A
pd;le �

A
pd F AB

pd;oc F
AB
pd;le F

AB
pd;pd

Boc FBA
oc;oc F

BA
oc;le F

BA
oc;pd �

B
occ 0 FB

oc;pd

Ble FBA
le;oc F

BA
le;le F

BA
le;pd 0 �Ble FB

le;pd

Bpd FBA
pd;oc F

BA
pd;le F

BA
pd;pd F

B
pd;oc F

B
pd;le �

B
pd

(6)
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where � is a diagonal matrix. Although non-zero parts of both matrices are expected to be

small for most of the clusters targeted for the studies, they have to be taken into account in

the perturbation expansion theory (or the other many-determinant theories).

B. 1st order wave function and 2nd order energy

In this paper we use the Møller-Plesset type of the partition of Hamiltonian bH, although
the LP MOs are not canonical as in (6). The perturbation expansion with non-canonical

MOs has been known with the local MP2 method [10]. The di¤erence from the Local MP2

is that in the present case even the occupied orbitals are neither canonical nor orthogonal.

Therefore, in evaluating the matrix elements, the contribution from the normalization factor

of Slater determinants has to be properly handled. A few examples of the matrix elements

are given in Appendix.

In the previous paper[18], where only the single excitations are taken into account, the

diagonal approximation for �+W de�ned in (A1) of Appendix is used. The approximation

causes a slight numerical di¤erences, but as is shown below, the key conclusion that the

charge-transfer terms remove the de�ciency of the LP SCF MO MI remains correct.

C. The type of single and double excitations (orbital replacements)

The excited orbitals are also localized on each constituent molecule. Although some of

them are slightly delocalized over the basis sets of the other molecules in the cluster, their

belongings are easily identi�ed. Thus, the electron con�gurations formed by the single and

double excitations (orbital replacements) from the reference closed shell determinant are

classi�ed, for instance,for a tetramer ABCD,
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Type of excitations Form abbrev. orbital replacement

Local AS LE aA ! rA

Charge-Transfer (CT) (A+B�)
S CT aA ! rB

Intra-molecular pair A�� Pair(P) (aA; bA ! rA; sA)
�

Dispersion ASBS Disp(D) (aA ! rA)
S &(bB ! sB)

S

Dispersion (triplet) ATBT DispEx(Dex) (aA ! rA)
T &(bB ! sB)

T

CT&Polarization (A+B�)
S
CS CT&P (aA ! rB)

S &(bC ! sC)
S

CT&Polarization (triplet) (A+B�)T CT CT&PEx (aA ! rB)
T &(bC ! sC)

T

CT&anion-reorganization (A+B�)
�
B� CT&AR (aA ! rB)

�&(bB ! sB)
�

CT&cation-reorganization (A+B�)�A� CT&CR (aA ! rB)
�&(bA ! sA)

�

Double CT A2+B2� DCT (aA; bA ! rB; sB)
�

Two-direction CT A+2B�C� TDCT (aA ! rB)
�&(bA ! sC)

�

Two-direction CT A�2B+C+ TDCT (aB ! rA)
�&(bC ! sA)

�

A pair of CT A+B�C+D� PCT (aA ! rB)
�&(bC ! sD)

�

where the super script S(T ) stands for the singlet (triplet) coupled excited con�guration, and

if the spin coupling is not speci�ed, the script * is added or no script is given. In the table, aA

and bA stand for the occupied orbitals of molecule A, and rB and sB for the excited orbitals of

molecule B. The list includes all of the possible types of the single and double excitations. It

should, however, be emphasized that only some of the types are retained in the perturbation

expansion. If all terms are included in the calculations a part of the basis set superposition

errors (BSSE) re-emerges. The most illustrated example is the full con�guration interaction

(CI). Suppose we use the full CI in evaluating the binding energy of a dimer AB with a basis

set. Without the counterpoise correction, no matter what kind molecular orbitals are used,

the calculated binding energy contains the BSSE. The LP SCF MO energy is BSSE-free,

but once the other electron con�gurations are added to the ground state wave function by

means of MP2, CI, or other many-determinant methods, the possibility to induce the BSSE

arises. In particular, the terms involving the charge-transfer (or electron delocalization) may

contribute to "improving" the molecular orbitals by borrowing the basis set on the other

molecules, and thus the BSSE may arise. Therefore, care should be taken to select the types

of the excitations in the calculations, both theoretically and numerically.

In the present study, from the above list, the �rst �ve types (LE, CT, Pair, Disp and
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DispEx) are examined. To demonstrate the e¤ects from the other types, the CT&AR and

CT&CR) types are also examined. The pair type terms (Pair) are essential in correlating the

energy with the sum of the MP2 energy of the isolated molecules. The dispersion term (Disp),

resulting from the simultaneous singlet excitations (aA ! rA)
S &(bB ! sB)

S, is essential to

obtain the van der Waals interaction. It is worth examining the contribution from the triplet-

triplet excitation (aA ! rA)
T &(bB ! sB)

T . The contribution from these terms is almost

equivalent to the dispersion-exchange term of SAPT.[8] To separate the dispersion and

dispersion-exchange terms, the CSF form of the many-electron basis is suitable. In the LP

MO theory, the classic electrostatic and polarization interaction are within the SCF theory.

Except for the CT terms no electron delocalization between the molecules is apparently

included. Note that through WKL (A2) in Appendix, various types of the excitations are

weakly coupled.

In the matrix elements in Appendix, the sparse nature of MO overlap matrixM in (5)

and Fock matrix in (6) is not used in the present code.

III. TEST CALCULATIONS AND DISCUSSION

The present code is based on the spin-adapted con�guration state function (CSF). To

test the numerical results, the determinant based code was also written. The CSF version is

useful in di¤erentiating the ordinary dispersion term (singlet-singlet simultaneous excitation,

Disp) from the spin-exchanged dispersion (triplet-triplet excitation, DispEx). The numerical

results shown in this paper are all calculated with the CSF-based version.

The potential energy curves of a linear form of water dimer (H2O)2 and HF dimer (HF)2

were calculated; the geometric parameters other than O-O or F-F distance are optimized

with MP2/aug-cc-pDVZ without the CP correction. The reported MP2 binding energy

estimated by the complete basis set limit extrapolation is 20.85 kJ/mol for water dimer and

18.42 kJ/mol for HF dimer[22]. The aug-cc-pVDZ basis set used in the present is poor for

evaluating the binding energy. All calculations in this report were carried out without the

frozen core approximation. The results are shown in Figures 1-4.

Figure 1 compares the potential energy curves of the SCF level of approximations with

the aug-cc-pVDZ basis set. The curve of LP SCF both for (H2O)2 and (HF)2 is very di¤erent

from the others; at the bottom of the curve, the binding energy is by about 2.5 kJ/mol smaller
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than the others, and the shape is also slightly di¤erent. The deepest curve is the one for

the uncorrected SCF. The counterpoise correction (CP) slightly reduces the binding energy

with this basis set for both molecules. By adding the charge-transfer (CT) and the locally

excitation (LE) terms in the second order perturbation (MP2), the curves (S in the �gure)

become very close to the curve of CP SCF; they are almost indistinguishable to each other

(Note that the energy unit is kJ/mol, not kcal/mol). The LE does not contribute much to the

binding energy. It is because the direct matrix element h�(aA ! rA)j bV j�0i = p2 hrj bF jai
in (A10) of Appendix is nearly zero (note that hrAj bF jaAi = 0, but hrAj bF ��aA� is not exactly
zero. See Appendix). The required computation time for calculating the CT MP2 is very

small; less than one cycle of the SCF calculation.

For the small basis set cc-pVDZ without di¤use functions, the CT contribution overshoots

the CP corrected value as shown in Fig.2, and the curve (LP SCF + S) both for (H2O)2 and

(HF)2 are close to the uncorrected SCF curve, indicating that the CT terms almost "recover"

the BSSE. As described in Subsection IIA, there are two types of the local excited orbitals,

purely local (le) and partially delocalized (pd). The curve (LP SCF + S in the �gure) is

calculated using both of the excited orbitals. By removing the partially delocalized orbitals

from the single excitations, the curve, LP SCF + S[Deloc excld], is obtained. The curve lies

between the CP SCF and LP SCF curves in both dimers. Thus, it is the partially delocalized

orbitals which induce the BSSE. The number of purely local orbitals, M le
A , is varied with

the bond lengths O-O and F-F. For (H2O)2 the total number of exited orbitals for each

monomer is 20. For RO�O = 6�A; all of them are purely local, and M le
A eventually becomes

16 for 3:4 = RO�O = 2:5�A. For (HF)2; for RF�F = 5�A, M le
A = 15, which implies that all

of the excited orbitals can be de�ned locally. It is reduced to 11 for RF�F 5 2:9�A. The

comparison of the two curves (LP SCF +S and LP SCF + S[Deloc excld]) demonstrates

that the small number of partially delocalized orbitals is responsible to inducing the BSSE.

In the present test calculations, the threshold value T �h for de�ning the purely local excited

orbitals is 0:99999, which might be so severe.

In the enlarged plots of Fig. 1(b), the curve, LP SCF + S[Deloc excld], is added for

comparison. In these bond lengths, M le
A = 24~25 (the total number of the excited orbitals

is 29). As is seen in the �gure, by excluding the partially delocalized orbitals (pd) for aug-

cc-pVDZ, the curve does shift upward, but only by 0.5kJ/mol, which is compared with the

large change seen in Fig. 2(b). The contribution from the pd orbitals is much smaller in the
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basis set with the di¤use functions than without them. If the basis set is su¢ ciently large to

describe a molecule, the use of the basis set on the other molecule is less necessary. In the

other word, this di¤erence indicates that for smaller basis sets, the electron delocalization

over molecules is over-emphasized in the super molecule calculations and induces the BSSE.

Figure 3 compares the potential energy curves of the MP2 level of approximations with

the aug-cc-pVDZ. As is known, the counterpoise correction for MP2 is large even for aug-

cc-pVDZ, as is seen in Fig. 3. The curve obtained by adding the intra-molecular pair type

(Pair) and dispersion type (Disp) is far less stable than the curve of the CP corrected MP2.

By further adding the dispersion-exchange (triplet-triplet excitation, Dex) terms, the curve

becomes closer to that of CP MP2. In particular, at the longer O-O and F-F distance,

the two curves (CP MP2 and LP MO MP2 with DispEx) practically coincide to each other

in both dimers. The contribution from the dispersion-exchange term has been discussed

in the SAPT[8]. Figure 3 also demonstrates the importance of exchange type dispersion

term, which is rather discouraging in practical purposes. It implies that the applicability

of the dispersion energy evaluated by the frequency-dependent polarizability is limited only

at the distances far longer than near the bottom of the potential energy curve, unless the

dispersion-exchange terms are included. This is rather obvious since near the bottom of the

potential energy curves for the hydrogen bonding system the orbital overlap are signi�cant

and therefore the spin-coupling within each molecule is meaningless.

Figure 3 shows the curve calculated including the terms CT&AR and CT&CR. It is ap-

parent that the inclusion of these terms causes the large error. In the local MP2 methods, the

similar terms are also excluded [10], [11]. A kind of the basis set superposition error cannot

be avoided once the orbital relaxation of the occupied orbitals through the charge-transfer

terms is included. More careful analyses are needed, in particular, on the contribution from

the o¤-diagonal matrix elements (A2) and on the basis set dependence.

Figure 4 is a comparison among the methods used with the cc-pVDZ basis set. The

substantially large CP correction is found both for (H2O)2 and (HF)2; nearly a half of the

binding energy at the bottom of the curves. The curves of the LP MO MP2 of both levels

of approximation without and with the dispersion-exchange (DispEx) terms are closer to

the CP corrected MP2 than to the uncorrected MP2. But because of the over-correction

in the single excitation terms, the curves lie below the CP MP2 curve. By removing the

contribution from the partially delocalized excited orbitals in the single excitations, the
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curves move to the upper than the CP corrected curve as in Fig.2. The corresponding

curves with and without the partially delocalize excited orbitals bracket the CP MP2 curve.

If one or two delocalized excited orbitals are included by relaxing the threshold value T �h ,

the curve (S[deloc excld]+P+D+Dex) becomes closer to the CP MP2 for both dimers.

IV. CONCLUSION

More careful examination for restricting the types of the excitations and for removing

some of the partially delocalized excited orbitals is required both numerically and theoreti-

cally. The present test calculations suggest some promising pragmatic procedures to reduce

the BSSE. For instance, with the basis set having the di¤use functions (aug sets or ++ sets),

the LP MO + S calculations can be used without the CP correction. This approach is useful

for clusters consisting of a large number of molecules. The test calculations for Mg(H2O)6,

which are recently found in the molecular beam experiments by Fuke�s group[23], proved that

the LP MO + S calculation required less cpu time that the supermolecule calculation, and

its binding energy is practically equal to the CP corrected energy; the CP correction required

a large cpu time by more than one order of magnitude than the LP MO +S calculation[7].

For smaller basis sets, with an appropriate threshold value T �h , the LP MO +S[deloc excld]

or LP MO +S[deloc excld]+P+D+Dex calculations can replace the CP correction proce-

dure. These procedures are useful in the ab initio Monte Carlo simulations of the molecular

cluster.

It is worth examining a part of the higher order perturbation expansion, because in the

LP MO MP2 the molecular orbitals are not canonical.

Acknowledgements

The work is partially supported by the Grants-in-Aid for Science Research (No. 1454079

and 17550012) of Japan Society for Promotion of Science. TN thanks Prof. Aoyagi of

Kyusyu University and the late Prof. K. Saito of Hiroshima University for continuous

encouragement. SI is appointed as a special professor under the Special Coordination Funds

for Promoting Science and Technology from MEXT, Japan. He thanks Prof. M. Aida of

Hiroshima University for giving him an opportunity to return to the research. A part of

11



computations was carried out at the Research Center for Computational Science(RCCS),

Okazaki Research Facilities, National Institutes of Natural Sciences(NINS).

Appendix

The Møller-Plesset type of the partition of Hamiltonian bH is used

bH = bH0 + bV
bH0 � occX

b;c

bayb hbj bF jcibac + exX
r;s

bayr hrj bF jsibas
although the LP MOs are not canonical as in (6). Here, bayb and bac are the creation and
annihilation operators for the occupied orbitals, and bayr and bas are the corresponding oper-
ators of the excited orbitals. This choice is ensure h�0j bH0 j�Ki = 0 [21]. For the �rst order
coe¢ cient vector A(1), the equation to be solved is

(�+W )A(1) = �v ,

where � is a diagonal matrix,

[�]K;L = �K;L

n
h�K j bH0 j�Ki � E00 h�K j �Kio , (A1)

which is not a simple di¤erence of the "orbital energy" because of the non-orthogonality and

of the non-canonical nature of the orbitals. The many-electron basis functions �K require a

proper normalization factor. The o¤-diagonal matrix elements are de�ned as

[W ]K;L = (1� �K;L)
n
h�K j bH0 j�Li � E00 h�K j �Lio ; (A2)

in which the term E00 h�K j �Li is proved to be canceled out with a part of the �rst term
h�K j bH0 j�Li : The inhomogeneity term v is de�ned as

[v]L = h�Lj bV j�0i . (A3)

In evaluating the matrix elements, the required MO integrals involving the occupied MOs

jci are calculated using the biorthogonal transformed MO jai,

jai = 1p
Raa

occX
c

jciRca; (A4)

where R is the inverse of MO overlap matrixM within the occupied orbitals. Only some

of the representatives are given below.
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A. The diagonal matrix

�(a� r) � h�a;rj bH0 j�a;ri � E00 h�a;rj �a:ri = Frr � haj bF jai (A5)

For a < b; r < s

�((a! r)S(b� s)S) = R(ab! rs;S)2 (A6)

�

24 (Fss + Frr)
�
1� 1

2
R2
ab

�
+ 2MsrFrs

�
R2
ab � 1

2

�
� (hajh jai+ hbj f jbi)

�
1� 1

2
M2

rs

�
+ 2 hbj f jaiRab

�
1
2
�M2

rs

�
35

�((a! r)T (b� s)T ) = R(ab! rs;T )2 (A7)

�

24 (Fss + Frr)
�
1 + 1

2
R2
ab

	
+ 2FrsMsr

�
1
2
1 +R2

ab

	
�
�
(hajh jai+ hbjh jbi)

�
1 + 1

2
M2

sr

�
+ 2 hbjh jaiRab

�
1
2
+M2

sr

�	
35

where

R(ab! rs;S) =

�
(1� M

2
rs

2
) +R2

ab(M2
rs �

1

2
)

�� 1
2

R(ab! rs;T ) =

�
(1 +

M2
rs

2
) +R2

ab(M2
rs +

1

2
)

�� 1
2

B. The o¤-diagonal matrix elements of the homogeneous term

[W ]K;L � W [KjL]
W [a� rjb� s] =Mrs hbjF jai (A8)

For c < b; t < u

W [(a! r)S(b� s)Sj(c! t)S(d� u)S] (A9)

=
1

2
R(ab! rs;S)R(cd! tu;S)2666664
RdbRca f2FsuMrt + 2FrtMsu � FruMst � FstMrug
+RcbRda f2FruMst + 2FstMru � FsuMrt � FrtMsug
�
�
RcaF bd +RdbF ac

	
(2MrtMsu �MruMst)

�
�
RcbFad +RdaF bc

	
(MrtMsu � 2MruMst)

3777775
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C. The coupling terms of the closed shell reference function �0 with the excited

CSFs.

h�(a! r)j bV j�0i = p2 hrj bF jai (A10)

For a < b; r < s



(a! r)S(b� s)S

�� bV j�0i = R(ab; rs)S(f2 hrsj g jabi � hsrj g jabig (A11)



(a! r)T (b� s)T

�� bV j�0i = p3R(ab; rs)T hsrj g jabi (A12)
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Figure Caption

Figure 1. Comparison of the potential energy curves of water dimer and HF dimer in the

SCF levels of approximation. The basis set used is aug-cc-pVDZ. The curves of {LP SCF

+S}and {LP SCF +S[deloc excld]} are those of the single excitations from LP SCF wave

function with and without the partially delocalized excited orbitals. a) (H2O)2 b) (HF)2.

Figure 2. Same with Figure 1 except that the basis set is cc-p-VDZ.. a) (H2O)2 b) (HF)2.

Figure 3. Comparison of the potential energy curves of water dimer and HF dimer in

the MP2 levels of approximation. The basis set used is aug-cc-pVDZ. The curves of {S,

P, D}, {S, P, D, Dex}, and {S, P, D, Dex, CT&AR, CT&CR} are compared with those of

the MP2 and CP corrected MP2. Here, S, P, D, Dex, CT&AR and CT&CR are the sin-

gle, pair(PAIR), dispersion(Disp), dispersion-exchange(DispEx), anion reorganization, and

cation reorganization types of the excitations de�ned in the table of text. a) (H2O)2 b)

(HF)2.

Figure 4. Same with Figure3 except that the basis set is cc-p-VDZ.
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