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Abstracts 

Effect of horizontal strong static magnetic field on swimming behavior of Paramecium 

caudatum was studied by using a superconducting magnet.   Around a center of a 

round vessel, random swimming at 0 T and aligned swimming parallel to the magnetic 

field (MF) of 8 T were observed.   Near a wall of the vessel, however, swimming 

round and round along the wall at 0 T and aligned swimming of turning at right angles 

upon collision with the wall, which was remarkable around 1~4 T, were detected.   It 

was experimentally revealed that the former MF-induced parallel swimming at the 

vessel center was caused physicochemically by the parallel magnetic orientation of the 

cell itself.   From magnetic field dependence of the extent of the orientation, the 

magnetic susceptibility anisotropy (χ‖−χ⊥) was first obtained to be 3.4×10−23 emu 

cell−1 at 298 K for Paramecium caudatum.   The orientation of the cell was considered 

to result from the magnetic orientation of the cell membrane.   On the other hand, 

although mechanisms of the latter swimming near the vessel wall regardless of the 

absence and presence of the magnetic field are unclear at present, these experimental 

results indicate that whether the cell exists near the wall alters magnetic field effect on 

the swimming in the horizontal magnetic field. 
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1. Introduction 

Effect of a magnetic field, whether it is constant (DC) or oscillatory (AC) in intensity, in 

biological research fields has long attracted much attention of scientists.   One of the 

reasons might lie in a point of view whether the effect occurs physicochemically or 

biologically.   The studies of the magnetic field effects (MFEs) on organisms carried 

out till the beginning of 1990s had been already reviewed [1], some of which were 

imagined to remain uncertain owing to experimentally and instrumentally yielded 

inaccuracy, and insufficient intensity of the magnetic field used.   However, recently 

developed technique and apparatus enable the scientists to measure even the effect of an 

extremely small geomagnetic field.   Very recently, two groups independently 

demonstrated the appreciable effects of the geomagnetic field on the movement of a 

migratory bird [2], a lobster [3], and a sea-turtle [4].   The spin chemistry is now taken 

notice as a mechanism of the effect on the migratory bird [5, 6].   As the opposite side, 

on the other hand, the effect of strong magnetic fields of several tesla on organisms is an 

important subject to be explored since, for instance, a nuclear magnetic resonance 

imaging (MRI) using such a strong magnetic field is nowadays employed frequently as 

the technique essential for accurate and right medical inspection.   Our group has 

contributed to the construction of a field of studies, the spin chemistry, through 
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numerous studies of the MFEs on photochemical reactions in the strong magnetic fields 

of up to 14 T ([7-9] and references therein).   Regardless of the magnetic field 

intensity, the spin chemistry is now recognized to be one of the core mechanisms for the 

MFEs.   Besides it, the strong magnetic force and the enhanced magnetic orientation 

are important features in the strong magnetic field, and thereby other MFEs not 

explained by the spin chemistry can be expected even in organisms at the strong 

magnetic field.   Thus, we initiated to explore the effects of horizontal strong 

magnetic fields on organisms by using some protists which are well-known to be 

sensitive to some environmental stimuli such as gravity [10, 11].   In order to remove 

the influence of microgravity and hypergravity, which are created by vertical strong 

magnetic force under the gravity, on a protist’s nature of sensing gravity (geotaxis), we 

employed the horizontal magnetic fields and observed protist’s horizontal swimming 

behavior from above a vessel horizontally held.   First of all, our group detected two 

intriguing MFEs in Euglena gracilis (E. gracilis) which contains several tens of 

chloroplasts inside the cell [12].   One of them was that the swimming behavior was 

restricted to move perpendicularly to the magnetic field (the MF-induced perpendicular 

swimming).   This means that a long axis of the cell orients perpendicularly to the 

field (the perpendicular magnetic orientation).   Another MFE was that, although each 
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cell itself kept the perpendicular swimming, the cell distribution in a vessel altered so as 

to become higher at the side closer to the magnet center at about two hours after the 

vessel was set in the magnetic gradient generating the strong magnetic force (the 

positive magnetotaxis).   Compared with Astasia longa not holding the chloroplasts, 

the MF-induced perpendicular swimming was explained by the magnetic orientation of 

the chloroplasts tightly packed inside E. gracilis.   Further, the positive magnetotaxis 

was interpreted by a combination mechanism of the perpendicular magnetic orientation 

of the cell itself and the inhomogeneous distribution of the diamagnetic chloroplasts 

inside the cell.   As a result, the MFEs of E. gracilis were interpreted 

physicochemically.   In this paper, we present the MFE on Paramecium caudatum (P. 

caudatum) in the horizontal strong static magnetic fields.   Since P. caudatum has no 

chloroplasts responsible for the magnetic orientation unlike E. gracilis, the MFE is 

considered to give a chance to understand the magnetic orientation of the protist in 

detail.   On the other hand, two groups independently reported MFEs on the 

swimming of a paramecium at a vertical magnetic field where the MFEs should be 

estimated by taking the influence of gravity into account [13, 14].   However, there 

was inconsistency between their results that the paramecium swam perpendicularly to 

the field of 0.68 T [13] in contrast with parallel to the field of 18 T [14].   Since there 
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might be participation of the vertical strong magnetic force in the gravity in the latter 

case [14], we had the impression of the necessity of avoiding a use of a vertical 

magnetic field for P. caudatum known to have the geotaxis [11].   In this work, it is 

shown that P. caudatum actually orients and swims parallel to the horizontal magnetic 

field of 8 T.   Furthermore, it is revealed that both the position monitoring the 

swimming in a vessel and the vessel shape affects the MFE. 

 

2. Experimental 

A holotrichous ciliate, P. caudatum, whose typical size is 200 μm in length and 60 μm 

in width, consists mainly of a cell membrane and intracellular organs of a macronucleus, 

a micronucleus, a few thousand of cilia and trichocysts.   The trichocyst is docked 

beneath the cell membrane and released as a needle toward a predator and some stimuli 

[11].   P. caudatum used in this study was cultivated by modifying a standard manner 

[15, 16].   The cell in the culture was used for the experiment after removing 

unnecessary precipitates by filtration or after changing the culture into the artificial 

brine adequate for P. caudatum.   The cell in the early stationary phase of the growth 

curve was employed for the experiment. 

   The horizontal strong static magnetic fields of up to 8 T were afforded by a 
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superconducting magnet (Oxford Instruments, SM-1000-11, φ 50 mm bore diameter).   

The horizontal low magnetic fields below 0.8 T were provided by a conventional 

electromagnet (TOKIN, SEE-9).   The vertical strong magnetic fields of 10.7, 12 and 

15 T used for comparison were obtained with a superconducting magnet (Japan 

Superconductor Technology, JASTEC LH15T40, φ 40 mm bore diameter).   A 

geomagnetic field, which was normally about 0.05 mT, was treated as 0 T in this study.   

The inhomogeneity in magnetic field intensity at the each magnetic center, where a 

vessel containing P. caudatum was located, was within 1 % of the field. 

   A round glass vessel (φ = 30 mm) or a rectangular glass vessel (w40 x d10 x h10 

mm) containing P. caudatum was set inside the horizontal magnetic field equipped with 

a thermostat maintained at 298 K.   The swimming behavior of P. caudatum was 

measured from an upside of the vessel with a CCD camera (OLYMPUS, OH-411) – 

light source (OLYMPUS, ILK-5) – light guide (OLYMPUS, R100-095-090-50) – 

display monitor (SONY, EVM-9010R) – digital video cassette recorder (SONY, 

GV-D1000 NTSC) system.   In the case of the vertical magnetic field, the swimming 

was monitored from a side of the vessel.   Every experiment of the measurement was 

initiated at the same early time in the afternoon to avoid the influence of the circadian 

rhythm existing in P. caudatum.   For seeking the magnetic orientation of the cell 
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which is physicochemically explained by the magnetic susceptibility anisotropy, 

immobilized P. caudatum was prepared by adding 

ethylenediamine-N,N,N’,N’-tetraacetic acid, disodium salt (EDTA) (0.003 – 0.02 

mol/dm3) into the solution containing the living cells in advance.   No organic 

disruption of the cell by the EDTA treatment was confirmed by use of an optical 

microscope since the treatment simply prevents the signal transduction essential for the 

swimming by chemically chelating Ca2+ as the signal messenger. 

 

3. Results 

3.1. Effect of horizontal strong magnetic field on swimming and its magnetic field 

dependence 

 

[Insert figure 1 about here] 

 

Figure 1 shows snapshots of videos recording the behavior of P. caudatum swimming 

around a center of the vessel in the absence and presence of the horizontal strong 

magnetic field of 8 T.   A dark gray ellipse and a white arrow in front of it show a 

single cell of P. caudatum and its swimming direction, respectively.   It is clear that 
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the arrows are in disorder at 0 T (figure 1a) whereas they are almost restricted to orient 

parallel to the magnetic field of 8 T (figure 1b).   We call this effect the magnetic-field 

(MF)-induced parallel swimming.   This parallel swimming direction was independent 

of the plus/minus sense of the applied magnetic field.   Further this swimming 

appeared immediately after being exposed to the magnetic field, and disappeared 

without delay when removed from the field.   From these results, we recognized that P. 

caudatum was definitely affected by the strong magnetic field so as to swim parallel to 

the strong magnetic field.   In other words, the cell of P. caudatum can be said to show 

the magnetic orientation parallel to the field (the parallel magnetic orientation).   

Furthermore, it was revealed that the MF-induced parallel swimming speed reduced 

when the exposure to the strong magnetic field lasted during more than several ten 

minutes.   However, no recovery in the speed was detected even if the cell was 

removed from the field while the direction of the swimming became in disorder 

promptly. 

 

[Insert figure 2 about here] 

 

   When the horizontal magnetic field increased up to 8 T, the number of the cells 
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showing the MF-induced parallel swimming increased.   Plots of closed circles in 

figure 2 display magnetic field dependence (MFD) of a percentage of the cells showing 

the MF-induced parallel swimming.   The percentage was calculated in terms of 

dividing the number of cells keeping the parallel swimming under the field of view of 

the microscope by the whole number of cells.   After this calculation was repeated by 

changing the field of view, the percentage was obtained by the average.   In the graph, 

the percentage definitely increases together with increasing the magnetic field.   The 

percentage at 8 T was approximately seven times larger than that at 0 T.   Incidentally, 

whereas the positive magnetotaxis was detected in the case of E. gracilis [12] at the 

bore position (the magnetic field gradient = 380 T2/m) apart from the magnet center, 

neither positive nor negative magnetotaxis was observed in P. caudatum under the same 

magnetic field gradient.   Furthermore, the pre-treatment of exchanging the culture 

with the artificial brine afforded no appreciable influence toward the MF-induced 

parallel swimming and the MFD. 

 

[Insert figure 3 about here] 

 

   For comparison, the swimming behaviors of the cell in the vertical strong magnetic 
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fields of 10.7, 12, and 15 T besides 0 T were shown in figure 3 as well as figure 1 in 

which the field was horizontal.   The apparent MF-induced parallel swimming was 

confirmed even in the three vertical strong magnetic fields.   This result was 

consistent with that of 18 T by Valles’s group [14].   The decrease in the swimming 

speed was also detected during and after the exposure to the vertical magnetic field as 

well as the horizontal magnetic field. 

 

3.2. Magnetic orientation of immobilized cells 

In order to elucidate a mechanism of the MF-induced parallel swimming, we 

investigated the magnetic orientation of the cell immobilized with EDTA.   This is an 

important experiment because the result leads to reply a question that the MF-induced 

parallel swimming occurs physicochemically or biologically.   Figure 1c exhibits a 

snapshot obtained from the video recording the orientation of the immobilized P. 

caudatum at 8 T.   After the solution containing the immobilized cells was stirred by 

inclining the vessel compulsorily, the video was recorded continuously until the cells 

came to a standstill and oriented in the presence of the field of 8 T.   Figure 1c is the 

snapshot being at the standstill, demonstrating that the immobilized cell is arranged 

parallel to the field.   In figure 1c it is found that most of the cells align their long axes 
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of the ellipse body parallel to the magnetic field. 

 

3.3. Swims at an edge of a round vessel and in a rectangular vessel 

 

[Insert figure 4 about here] 

 

The disordered swimming at 0 T and MF-induced parallel swimming described above 

were monitored around a center of the round vessel, as shown in figures 4a and 4b.   

However, when the monitoring position was shifted to an edge of the vessel where the 

cells collided with a wall, different swimming behavior and its MFE were observed in 

the absence and presence of the horizontal magnetic field.   At 0 T, it was observed 

that the cells near the vessel wall swam round and round along the wall, as illustrated in 

figure 4c.   By contrast, in the presence of the field, it was detected that most of the 

cells turned at right angles when they collided with the vessel wall.   Concretely 

speaking, when the cells swimming parallel to the horizontal magnetic field conflicted 

with the wall, they turned to the direction perpendicular to the magnetic field, as shown 

in figure 4d.   On the contrary, when they first swam perpendicularly to the field, they 

turned to the direction parallel to the field.   The percentage of this MF-induced 
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perpendicular swimming, which happened after colliding with the wall of the vessel 

edge, was plotted against the horizontal magnetic field (see open circles in figure 2).   

Figure 2 also represented that (i) this MF-induced perpendicular swimming was 

conspicuous around 1~4 T; (ii) as increasing the field, the MF-induced parallel 

swimming around the vessel center became predominant at the expense of this 

MF-induced perpendicular swimming near the wall. 

   Thus, based on two kinds of swimming behaviors and MFEs depending on the 

monitoring position in the round vessel, we examined the swimming behavior in a 

different vessel in shape, a rectangular glass vessel (w40 x d10 x h10 mm) which is very 

often used in experiments of visible absorption spectroscopy and resembles the vessel 

(w46 x d10 x h10 mm) of Nakaoka’s experiment in size [13].   We monitored the 

swimming from an upside of the vessel as well as the experiment of the horizontal 

strong magnetic field already mentioned above.   Surprisingly, as a result, it was found 

that most of the cells anywhere swam parallel to a long axis (40 mm in length) of the 

rectangular vessel even at 0 T, as illustrated in figure 4e.   Moreover, when the vessel 

containing the cell was set in the conventional electromagnet (~ 0.8 T) in such a way 

that the long axis of the vessel was parallel or perpendicular to the horizontal magnetic 

field, neither case showed a change in the swimming behavior, namely, the cell kept the 
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parallel swimming along the long axis of the vessel regardless of the magnetic field 

direction (see figure 4f).   The cells in the vessel, whose long axis was set to be 

parallel to the horizontal magnetic field (figure 4f, left), would have swum in a direction 

perpendicular to the field (the long axis) if the MFE of P. caudatum were the same as 

that observed by Nakaoka et al. [13], who used a similarly sized rectangular vessel 

(figure 4g). 

 

4. Discussion 

4.1. MF-induced parallel swimming as a consequence of parallel magnetic 

orientation of P. caudatum 

The experiment of the immobilized P. caudatum indicates that the MF-induced parallel 

swimming (figure 1b) observed around a center of the vessel is simply attributed to the 

physicochemical magnetic orientation of the cell itself as well as the assignment of 

Nakaoka’s and Valles’s groups [13, 14].   If this assignment is right, the orientation 

should be explained by the magnetic susceptibility anisotropy of the cell. 

   Assuming that the P. caudatum is magnetically symmetric along its long axis like a 

cylinder and possess susceptibilities parallel (χ‖) and perpendicular (χ⊥) to the axis, the 

magnetic energy E(θ, H) per cell at a magnetic field H is expressed as 
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where θ is an angle between the long axis and the magnetic field H [17].   In the case 
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the magnetic orientation of the cell holding the magnetic energy E(θ, H) at temperature 
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where k is the Boltzmann constant [18].   Here, since the denominator in equation (2) 

is considered common to all the magnetic fields used, a ratio R(θ = 0) at θ = 0 of the 

probability at a magnetic field H toward that at 0 T is simplified as 
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Thus, the logarithmic transformation of both hand sides in equation (3) gives 
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with Δχ = (χ‖−χ⊥).   If the experimental result in this work obeys this relation, it 

reveals that the MF-induced parallel swimming is ascribed to physicochemical 
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phenomenon of the parallel magnetic orientation due to the magnetic susceptibility 

anisotropy of the cell. 

 

[Insert figure 5 about here] 

 

   Figure 5 is a graph plotted according to equation (4).   The plots satisfy the 

relation within an experimental error, which verifies the parallel magnetic orientation of 

the cell induced physicochemically , as described above.   A straight line 

superimposed on the plots is the best fitted line acquired by the least-squares method.   

The anisotropy Δχ of the susceptibility per cell was obtained from the slope to be 

3.4×10−23 emu cell−1 at the experimental temperature of 298 K.   To the best of our 

knowledge, this is the first evaluation of the anisotropic value per cell of the living P. 

caudatum.    This value was smaller than values of some substances (benzophenone: 

3.0×10−20 emu crystal−1; single multiwall carbon nanotube: 6.5×10−22 emu nanotube−1; 

erythrocyte: 8.2×10−22 emu cell−1; blood platelet 1.2×10−21 emu cell−1) experimentally 

so far obtained [17-19]. 

 

4.2. Origin of parallel magnetic orientation of P. caudatum 
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We sought an origin of the magnetic orientation of P. caudatum.   We observed the 

swimming of P. caudatum parallel to the horizontal magnetic field of 8 T from an 

upside of the round vessel (figure 4b), while Nakaoka et al. observed the horizontal 

swimming of P. multimicronucleatum perpendicular to the vertical and horizontal 

magnetic fields of 0.68 T from a side and an upside of the rectangular vessel, 

respectively [13] (figure 4g).   The definite and important distinction was a direction 

of the magnetic orientation, namely, the parallel and perpendicular swimmings to the 

field in our and Nakaoka’s results, respectively.   Further, Nakaoka et al. also 

measured parallel magnetic orientations of two principal organs of cilia and trichocysts, 

of which respective long axes were both parallel to the low field used.   Since the cilia 

grow perpendicularly from the cell surface and the trichocysts are buried maintaining 

the long axis at right angles to the surface, they led to the conclusion that the 

perpendicular magnetic orientation of the cell results from the magnetic orientation of 

the two organs.   Since a side of the cell surface is by far wide in area, the magnetic 

orientation caused by the two organs at the side is more remarkable than in the head and 

tail.   However, this interpretation is inapplicable to our case of the parallel magnetic 

orientation of P. caudatum.   Thus, we examined a cell membrane as a candidate of the 

origin.   It is well-known that the membrane consists of a bi-layer of upright 
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phospholipids which have long chains of hydrocarbons.   Since such a long 

hydrocarbonaceous chain is found to have a certain magnitude of magnetic 

susceptibility anisotropy [20], the membrane as an assembly of the upright 

hydrocarbons should be aligned to the magnetic field.   For instance, stearic acid 

(CH3(CH2)16COOH) possesses χ‖ = − 235.7×10−6 emu mol−1 and χ⊥ = − 208.2×

10−6 emu mol−1) [20].   The relationship of χ‖ < χ⊥ indicates that the membrane 

comprising many upright stearic acids is arranged parallel to the magnetic field.   

Therefore, this arrangement of the membrane is proper to explain our observed 

magnetic orientation of the cell itself parallel to the magnetic field since a side of the 

non-spherical cell is wider in area than a head and a tail.   If we roughly calculate the 

magnetic susceptibility anisotropy of the membrane based on assumptions that (i) the 

membrane consists of only stearic acid which has a cylindrical structure and (ii) the cell 

is also symmetric like a cylinder of 200 μm in length and 60 μm in diameter, then it is 

approximately estimated to be Δχ = 1.5×10−17 emu cell−1 by taking account of a 

diameter of cylindrical stearic acid.   This value is considerably larger than that (Δχ = 

3.4×10−23 emu cell−1) obtained for the cell in this study.   However, the difference in 

the two values seems to be compensated with the anisotropy of cilia and trichocysts.   

Judging from the direction of the magnetic orientation of cilia and trichocysts measured 
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by Nakaoka et al., the relationship between χ‖ and χ⊥ of the two organs is certainly χ

‖ > χ⊥ as opposed to χ‖ < χ⊥ of stearic acid.   Therefore, adding the magnetic 

orientation of the two organs leads to reduce a value of the susceptibility anisotropy 

(Δχ), that is, the obtained small value (Δχ = 3.4×10−23 emu cell−1) means an apparent 

value which results from a total effect due to several substances having independently 

different susceptibility anisotropies.   The smallness of the apparent Δχ value of P. 

caudatum might imply that Δχ for the membrane is merely different in the absolute 

value from a total Δχ for the two organs, though the sign is opposite to each other.   In 

other words, the smallness might suggest that P. caudatum has a tendency of easy 

alteration of the magnetic orientation (the MF-induced swimming) of the cell by the 

scanty difference and sign in Δχ of the cell membrane and the combination of cilia and 

trichocysts.   Hence, it might first be said that the difference in the magnetic 

orientations between us and Nakaoka et al. arises from a difference in a species of 

paramecium though we refer to an effect of a vessel shape, as mentioned hereafter. 

 

4.3. Dependence of swimming behavior on vessel position and shape for observation 

In the case of our experiment using P. caudatum in a round vessel, we observed two 

kinds of swimming even at 0T, namely, the random swimming at the vessel center and 
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the swimming around and around along the vessel wall.   Further, when a rectangular 

vessel was used, we detected the aligned swimming along the long axis even at 0 T.   

These results may indicate that P. caudatum has properties to recognize a wall of the 

vessel and thereafter swim along it.   In other words, those strongly suggest that one 

needs to pay attention to such monitoring position and vessel shape as seeing influence 

of a magnetic field.   In actual fact, we recorded the different MF-induced swimming 

behavior and the MFD between the center and edge of one round vessel.   We 

explained the mechanism of the MF-induced parallel swimming monitored at the center 

of the vessel, as already mentioned above.   At this stage, however, we can offer no 

good idea in explanation of mechanisms for both behaviors of swimming along the 

vessel wall at 0 T and of changing from the swimming at 0 T to turning at right angles 

upon collision with the wall in the presence of a magnetic field.   Nevertheless, it 

might not be denied that this influence of the vessel besides a species of a paramecium 

mentioned above is also concerned with the inconsistency between our and Nakaoka’s 

MFEs.   Furthermore, the observation of the decrease in the swimming speed during 

and after the exposure of horizontal or vertical magnetic fields might be concerned with 

the discrepancy existing between us and Nakaoka et al.   M. S. Rosen and A. D. Rosen 

explained the decrease in the speed of motility may arise from alteration in function of 
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Ca2+ channels induced by the magnetic orientation of the cell membrane [21].   If this 

is the case, the pre-treatment and cultivation using specifically prepared ionic solution, 

which were actually carried out in the experiment of Nakaoka et al., are sufficiently 

predicted to cause the different MFE on the swimming behavior.   Experiments for 

elucidating the mechanism are now under consideration. 

 

5. Conclusion 

In this study we revealed the MF-induced parallel swimming of P. caudatum around the 

center of a round vessel results from the magnetic orientation of the cell due to the 

magnetic susceptibility anisotropy.   We proposed the possibility of the cell membrane 

as the origin of the magnetic orientation by evaluating the susceptibility anisotropy 

value Δχ of the cell.   Furthermore, we measured another swimming behavior and the 

MFD near the edge of the same round vessel, by which we presented the necessity of 

strict control over the experimental conditions to compare MFEs. 
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Figure Captions 

Figure 1 

Snapshots of videos recording the behavior of P. caudatum around a center of the round 

vessel in the case of (a) living cells at 0 T; (b) living cells at 8 T; and (c) immobilized 

cells at 8 T, respectively.   All snapshots are taken from an upside of the round vessel 

(i.e. top view).   Original magnification is ×20 in all cases.   One dark gray spot 

corresponds to one single cell.   Arrows drawn in (a) and (b) indicate the swimming 

direction of each living cell. 

 

Figure 2 

MFDs of the percentages of P. caudatum showing the MF-induced parallel swimming 

around a center of the round vessel (━━●━━) and the MF-induced perpendicular 

swimming at an edge of the round vessel (╍╍╍○╍╍╍).   The horizontal magnetic field 

is employed.   For the value at 0 T, the cells were counted up, which swam to the same 

direction with that of the magnetic field when the field was applied. 

 

Figure 3 

Snapshots of videos recording the swimming behavior of P. caudatum in the vertical 
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magnetic fields of 10.7, 12, and 15 T besides 0 T.   All snapshots are taken from a side 

of the vessel (i.e. side view).   Original magnification is ×10 in all cases.   One 

gray spot corresponds to one single cell.   Arrows indicate the swimming direction of 

each living cell. 

 

Figure 4 

Illustrations of swimming behaviors in two kinds of vessels and their MFEs.   (a)-(f): 

this study; (g): Nakaoka’s study. 

 

Figure 5 

A ratio of ln(R(θ = 0)) against a square of the horizontal magnetic field of H plotted 

according to equation (4).   The straight line superimposed is the best fitted line 

toward the observed plots estimated by a least squares method. 
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