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Local Uniqueness for Nash Solutions of
Multiparameter Singularly Perturbed Systems
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Abstract—In this brief, linear quadratic infinite-horizon Nash
games for general multiparameter singularly perturbed systems
are studied. The local uniqueness and the asymptotic structure of
the solutions to the cross-coupled multiparameter algebraic Riccati
equation (CMARE) are newly established. Utilizing the asymptotic
structure of the solutions to the CMARE, the parameter-indepen-
dent Nash strategy is established. A numerical example is given to
demonstrate the efficiency and feasibility of the proposed analysis.

Index Terms—Cross-coupled algebraic Riccati equation
(CARE), general multiparameter singularly perturbed systems
(GMSPS), local uniqueness, Nash games, parameter-independent
Nash strategy.

I. INTRODUCTION

L INEAR quadratic Nash games and their applications have
been studied widely in many literatures (see, e.g., [1]). It is

well known that in order to obtain a Nash equilibrium strategy,
the cross-coupled algebraic Riccati equations (CARE) must be
solved. In [2], the Newton-type algorithm for solving CARE has
been applied. In [3], an algorithm that is called the Lyapunov
iterations for solving CARE has been derived. However, these
researches have concentrated on determining feedback gain ma-
trices for two-player Nash games. When -player Nash games
are solved, it should be noted that it is extremely hard to find the
solution of the -coupled CARE (see, e.g., [4] and reference
therein) because for the required computational workspace, the
same dimension of the full systems is needed and the computa-
tions are highly expensive. Thus, it is very important to inves-
tigate the extension to -player Nash games before applying it
in practical plants.

The control problems for multiparameter singularly per-
turbed systems (MSPS) have been investigated extensively
(see, e.g., [5], [6], and reference therein). Recent advances in
the numerical computation approach for singularly perturbed
systems (SPS) and the MSPS have allowed us to expand the
study on Nash games [7], [9], [10]. The numerical computation
approach seems to be a very powerful and reliable method-
ology. It can be utilized to find the feasible solutions with the
adequately high-order accuracy of the Nash strategy. However,
a limitation of these numerical approaches is that the small
parameters are assumed to be known. Thus, it is not applicable
to a large class of problems where the parameters represent
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small unknown perturbations whose values are not known
exactly. When the perturbation parameters are unknown, the
parameter-independent Nash strategies have been tackled [5],
[6], [11]. However, these studies have also been focused on
the decision of the strategies for two-player Nash games. As
another serious disadvantage, the existence and the uniqueness
for the solutions of the cross-coupled multiparameter algebraic
Riccati equation (CMARE) have not been discussed in detail
so far in these literatures.

In this brief, the linear quadratic infinite-horizon -player
Nash game for the general MSPS (GMSPS) is discussed. The
main contribution is to newly show the local uniqueness for
the solutions of CMARE in the neighborhood of reduced-order
CARE. It may be noted that although the global uniqueness
is not proved, the local uniqueness is useful to choose the
appropriate Nash strategy. After proving the local uniqueness
and the asymptotic structure of the solutions for CMARE, the
reduced-order solutions of the parameter-independent CARE
are formulated. Finally, utilizing the reduced-order solutions
of CMARE, the parameter-independent Nash strategy is con-
structed. It is worth pointing out that the proposed strategies
can be constructed without any information for the small
parameters. Moreover, the required workspace to solve the
reduced-order equations is the same as the reduced-order slow
and fast subsystems that are smaller than the dimension of the
full-order system. A numerical example is given to demonstrate
the efficiency and feasibility of the proposed analysis.

Notation: The notations used in this brief are fairly standard.
denotes the block diagonal matrix. denotes the

Kronecker product. denotes the identity matrix.
denotes the zero matrix.

II. PROBLEM FORMULATION

Consider a linear time-invariant GMSPS

(1a)

(1b)

with the quadratic cost functions

(2a)

(2b)

(2c)

where , , , are
the state vectors, , are the control inputs,
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and , are the outputs. It is supposed that
the ratios of the small positive parameter ,
are bounded by some positive constants , (see, e.g., [5])

(3)

Furthermore, it is also assumed that the limit of exists as
and tend to zero, that is,

(4)

Let us introduce the partitioned matrices

Without loss of generality, the following basic assumptions (see,
e.g., [3] and [6]) are made.

Assumption 1:
1) The triples , are stabilizable and

detectable.
2) The triples , are stabilizable

and detectable.
These conditions are quite natural since at least one control

agent has to be able to control and observe unstable modes. Our

purpose is to find a linear feedback strategy set
such that

(5)

The decision makers are required to select the closed-loop
strategy , if they exist, such that (5) holds. Moreover, each
player uses the strategy such that the closed-loop system is
asymptotically stable for sufficiently small . The following
lemma is already known [1], [4], [9].

Lemma 1: There exists an admissible strategy such that the
inequality (5) holds iff the generalized CMAREs (GCMAREs)

(6)
have solutions , where

and is expressed as shown in the equation at the bottom of
the page. Then the closed-loop linear Nash equilibrium solu-
tions to the full-order problem are given by

(7)

It should be noted that it is impossible to solve GCMARE (6)
if the small perturbed parameters are unknown. In fact, it is
well known that the small perturbed parameter are often not
exactly known [5]. Thus, our purpose is to find the parameter-
independent Nash strategies.

III. LOCAL UNIQUENESS OF THE SOLUTION FOR GCMARE

The parameter-independent Nash strategies for the GMSPS
will be studied under the following basic assumption.

...
...

...
. . .

...
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Assumption 2: The Hamiltonian matrices , ,
are nonsingular, where

(8)

Under Assumptions 1 and 2, the following zeroth-order equa-
tions of GCMARE (6) are given as

, where :

(9a)

(9b)

(9c)

(9d)

where

The following theorem shows the relation between the solutions
and the zeroth-order solutions , ,

, .
Theorem 1: Suppose that the condition shown in (10) at the

bottom of the page holds, where

and are stable matrices. Under Assumptions 1 and 2, there is
a neighborhood of such that for all
there exists a solution . These solutions
are unique in the neighborhood of . Then,
GCMARE (6) possess the power series expansion at .
That is, the following form is satisfied:

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

(11)
Proof: First, the zeroth-order solutions for the asymptotic

structure of GCMARE (6) are established. Under Assumption
2, the following equality holds:

(12)
where . Since is nonsingular, is
also nonsingular. This means that can be expressed explic-
itly in terms of . Therefore, using the above result, the for-
mulations (9) are obtained. These transformations can be done
by lengthy but direct algebraic manipulations [10], [11], which
are omitted here.

For the local uniqueness of the solutions
, it is enough to verify that the

corresponding Jacobian is nonsingular at . Formally
calculating the derivative of GCMARE (6) and after some
tedious algebra, the left-hand side of (10) is obtained. Setting

and using (9), the condition (10) is obtained. Finally,
the implicit function theorem implies that there is a unique
solutions map and a neighborhood

of because condition (10) is equivalent to the
corresponding Jacobian at .

It is noteworthy that the local uniqueness is newly shown
compared with the existing results [5], [6], [9]–[11]. Moreover,
it may be noted that the formulas under (9) have been used to
simplify the expressions for the first time.

According to the implicit function theorem, condition (10)
comes into the picture for the existence of the local unique so-
lution. That is, if condition (10) holds, the local uniqueness of
Nash solutions is guaranteed by means of the implicit function
theorem because the corresponding Jacobian is nonsingular at

...
...

. . .
...

(10)
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. On the other hand, it is well known that CMARE (9a)
could have several positive definite solutions and even some in-
definite solutions [8]. However, the implicit function theorem
admits the local uniqueness for each several solutions at
the neighborhood of . It should be noted that this result
has novelty compared with the existing results [5], [6], [9]–[11].
As another important feature, although the closed-loop solution
of the reduced Nash problem depends on the path along which

as , , generally, it can be concluded
that the closed-loop solution of the full problem converges to
the closed-loop solution of the reduced problem as the special
case that is considered in this brief [5].

IV. PARAMETER-INDEPENDENT STRATEGY

Using the result (11), the parameter-independent Nash
strategy is given as

(13)

Theorem 2: Under Assumptions 1 and 2, the use of
the parameter-independent Nash strategy (13) results in

satisfying

(14)

where are the exact equilibrium values of the
cost functions (2a).

Proof: When is used, the equilibrium value of the
cost performances is

(15)

where is the positive semidefinite solution of the multipa-
rameter algebraic Lyapunov equation (MALE)

(16)

with , , and .
Subtracting (6) from (16), it is easy to verify that
, satisfies the MALE

(17)

Using the relation , the following MALE
holds:

(18)
Thus, it is easy to verify that because

is stable by using the standard Lyapunov theorem
[12]. Consequently, the equality (14) holds.

Although is unknown, it is possible to design the param-
eter-independent strategy that achieves the approxima-
tion for the equilibrium value of the cost functional.

Using the same technique as the proof of Theorem 2, the fol-
lowing conditions are satisfied.

Theorem 3: Under Assumptions 1 and 2, the following result
holds:

(19)
Proof: Since the proof can be done by using the above

technique, it is omitted.
Finally, by using the same manner that has been established

in [6], the main result is easily derived.
Theorem 4: Under Assumptions 1 and 2, the use of the pa-

rameter-independent strategy (13) results in

(20)
Proof: Using (14), (5), and (19), the proof of (20) com-

pletes. The other cases are similar.
It should be noted that our results include the existing strate-

gies that have been introduced in [6] as a special case.

V. NUMERICAL EXAMPLE

In order to demonstrate the efficiency of our proposed algo-
rithm, a numerical example is given. The systems matrices are
given by

It is easy to verify that for this example, Assumptions 1 and 2
and condition (10) are satisfied. Using the proposed technique,
the parameter-independent strategies are given by (21), shown



MUKAIDANI: LOCAL UNIQUENESS FOR NASH SOLUTIONS OF MULTIPARAMETER SINGULARLY PERTURBED SYSTEMS 1107

(21a)

(21b)

(21c)

(22a)

(22b)

(22c)

TABLE I
COST FUNCTIONAL-TO-PERTURBATION RATIO FOR VARIOUS "

at the top of the page. On the other hand, when the small param-
eters are chosen as , , 2, 3, the exact Nash
strategies are also given by (22) at the top of the page. After
comparing these strategies, since the proposed parameter-inde-
pendent strategies (21) are very close to the exact one (22) under
the small parameters , the proposed approach is very reliable.

Next, the costs of using the approximate strategies (13) are
evaluated. It is assumed that the initial conditions are zero
mean independent random vector with the covariance matrix

. The values of the cost functionals for
various are given in Table I, where

. It is easy to
verify that
because is of the same order.

It is worth pointing out that the proposed strategy can be con-
structed without any information of the small parameters. As
another important feature, the required workspace dimension to
compute the strategy is small compared with the dimension of
the full-order system. In this example, the dimension for the cal-
culation is seven smaller than 13. Therefore, it is very useful for
the construction of the strategy of the practical system.

VI. CONCLUSION

In thisbrief, the linearquadratic infinite-horizonNashgamefor
GMSPS has been investigated. The main contribution is that the

local uniqueness and the boundedness of the solutions for GC-
MARE have been established for the first time. As another im-
portant feature, the sufficient conditions for the validity of the
GMSPS of the approximate Nash strategies have been derived.
The numerical examples have shown the validity of the proposed
strategies for the unknown sufficiently small parameter.
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