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A New Design Approach for Solving Linear
Quadratic Nash Games of Multiparameter Singularly
Perturbed Systems

Hiroaki Mukaidani, Member, IEEE

Abstract—In this paper, the linear quadratic Nash games for in-
finite horizon nonstandard multiparameter singularly perturbed
systems (MSPS) without the nonsingularity assumption that is
needed for the existing result are discussed. The new strategies are
obtained by solving the generalized cross-coupled multiparameter
algebraic Riccati equations (GCMARE). Firstly, the asymptotic
expansions for the GCMARE are newly established. The main
result in this paper is that the proposed algorithm which is based
on the Newton’s method for solving the GCMARE guarantees the
quadratic convergence. In fact, the simulation results show that
the proposed algorithm succeed in improving the convergence rate
dramatically compared with the previous results. It is also shown
that the resulting controller achieves O(||1||?") approximation of
the optimal cost.

Index Terms—Multiparameter singularly perturbed systems
(MSPS), linear quadratic Nash games, generalized cross-cou-
pled multiparameter algebraic Riccati equations (GCMARE),
Newton’s method.

1. INTRODUCTION

HE linear quadratic Nash games and their applications

have been studied intensively in many papers (see e.g., [1],
[2]). Starr and Ho [1] derived the closed-loop perfect-state linear
Nash equilibrium strategies for a class of analytic differential
games. In [2], a state feedback mixed H>/H, control problem
has been formulated as a dynamic Nash game. It is well-known
that in order to obtain the Nash equilibrium strategies, we must
solve the cross-coupled algebraic Riccati equations (CARE). Li
and Gaji¢ [3] proposed an algorithm called the Lyapunov iter-
ations for solving the CARE. However, there are no results for
the convergence rate of the Lyapunov iterations. It is easy to
verify that the convergence speed is very slow when the simu-
lation is carried out. In order to improve the convergence rate
of the Lyapunov iterations, Mukaidani ef al. [17] proposed the
Riccati iterations which is based on the algebraic Riccati equa-
tion (ARE) for solving the CARE. On the other hand, Freiling
et al. [4] proposed the algorithm which is different from [17] for
solving the CARE. However, the convergence of these Riccati
iterations have not been proved exactly.
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Multimodeling control problems have been investigated ex-
tensively (see e.g., [5], [6], [22]). The multimodeling problems
arise in large scale dynamic systems. For example, these mul-
timodel situations in practice are illustrated by the multiarea
power system [6] and the passenger car model [9]. The linear
quadratic Nash games for the multiparameter singularly per-
turbed systems (MSPS) and the singularly perturbed systems
(SPS) have been studied by using composite controller design
[51-[81, [23]. When the parameters represent small unknown
perturbations whose values are not known exactly, the com-
posite design is very useful. However, the composite Nash equi-
librium solution achieves only a performance which is O(||u||)
(where || || denotes the norm of the vector [e1 £2]) close to the
full-order performance. Moreover, in [5]-[8], the assumptions
that the fast state matrices are nonsingular are needed, while
in [23], the conservative condition for the existence of the re-
duced-order solution is assumed. Therefore, the composite de-
sign cannot be applied for the wider class of the MSPS. As
another important drawback, since the closed-loop solution of
the reduced Nash problem depends on the path along ¢, /&5 as
||| — 0, we cannot conclude that the closed-loop solution of
the full problem converges to the closed-loop solution of the re-
duced problem [8]. Therefore, as long as the small perturbation
parameters e; are known, much effort should be made toward
finding the exact strategies which guarantees the Nash equilib-
rium without the ill-conditioning.

The recursive algorithm for solving the singularly perturbed
Nash games has been attempted in [12] for the first time. In re-
cent years, the recursive algorithm for solving the CARE for
the SPS has been investigated [15], [16]. It has been shown
that the recursive algorithm is very effective to solve the CARE
when the system matrices are functions of a small perturba-
tion parameter €. However, the recursive algorithm converges
only to the approximation solution because the convergence so-
lutions depend on the zeroth-order solutions. In addition, the
recursive algorithm has the property of the linear convergence.
Thus, the convergence speed is very slow. Very recently, the nu-
merical algorithm which is based on the Newton’s method for
solving the CARE for the SPS [20] and the cross-coupled multi-
parameter algebraic Riccati equations (CMARE) [21] has been
proposed. However, the conservative assumption guaranteeing
that the proposed algorithm converge to the required solution
is made. Furthermore, so far, the asymptotic structure for the
CMARE has not been investigated exactly.

In this paper, we study the linear quadratic Nash games for
infinite horizon nonstandard MSPS without the nonsingularity
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assumption of the fast state matrices from a viewpoint of solving
the CMARE. It should be noted that the cost functions are in-
dependent of the other player compared with the previous re-
sults [21]. As a result, although the availability of the result de-
rived here is limited, the presented result has a good feature as
a more complete formulation for the CMARE. After defining
the generalized cross-coupled multiparameter algebraic Riccati
equations (GCMARE), we first investigate the uniqueness and
boundedness of the solution to the GCMARE and newly estab-
lish its asymptotic structure without nonsingularity assumption
that the fast state matrices are invertiable. The proof of the ex-
istence of the solution to the GCMARE with asymptotic ex-
pansion is obtained by an implicit function theorem [10]. The
main result of this paper is to propose a new iterative algorithm
for solving the GCMARE. Since the new algorithm is based on
the Newton’s method, it is shown that the new algorithm has
a quadratic convergence property. The quadratic convergence
of the resulting algorithm is proved by using the Newton-Kan-
torovich theorem [24]. In particular, it is worth pointing out that
the convergence rate of the proposed algorithm and its exact
proof are first given in this paper. As a result, using the new al-
gorithm, we will improve the convergence speed compared with
the previous results [3], [4], [15]-[17]. Finally, for the practical
power systems [6] the simulation results show that the proposed
algorithm succeed in improving the convergence rate dramati-
cally.

Notation: The notations used in this paper are fairly stan-
dard. The superscript 7' denotes matrix transpose. I,, denotes
the n x n identity matrix. || - || denotes its Euclidean norm for a
matrix. det M denotes the determinant of M. vec M denotes an
ordered stack of the columns of M [14]. ® denotes Kronecker
product. Uj,, denotes a permutation matrix in Kronecker ma-
trix sense [14] such that Up,,,vec M = vec MT, M € R*™,
Re()) denotes areal part of A € C. EJ-] denotes the expection
operator.

II. PROBLEM FORMULATION

Consider a linear time-invariant MSPS [5]

To(t) = Z Agiwi(t) + Z Boju;(t)
k=0 k=1

20(0) = (1a)
et (t) = Ajozo(t) + Aiizi(t) + Biiui(t)
zi(0) =af,  i=1,2 (1b)

with quadratic cost functions

2
yz(t) = Cioili()(t) + CMZEZ(t) = Cﬂ]‘(t)

By [ 0w+ ORa] a2
0

(t)
:v(t) = :vl(t) s R;; >0, 1=1,2 (2b)
(t)

where z; € R™, 1 = 0,1,2 are the state vectors and u; €
R™i ¢ = 1,2 are the control inputs. All the matrices are con-
stant matrices of appropriate dimensions.

€1 and €9 are two small positive singular perturbation param-
eters of the same order of magnitude such that
€
0<k1§a5—1§k’2<oc. 3)
€2
It is assumed that the limit of « exists as €1 and e, tend to zero
(see, e.g., [5], [6]), that is

a= lim a. @)
El—>+0
eo—+0
It is worth pointing out that the matrices A;;, ¢ = 1,2 may

be singular. In fact such systems arise in some real physical
applications like a flexible space structure [11]. In this case, it
should be noted that the composite design [5S]-[8] cannot be
applied.

Let us introduce the partitioned matrices

A.:=A*A, B;.:=A'B;

Sic := Bie R;*BE = AZ'S;AT, i=1,2
[T, O 0
AR = 0 €1In1 0
0 0 e,
[Ago  Ao1 Aoz
AZ: AlO All 0
| A0 0 Ap
Bo:
Bl = Bll
0
Bo2
B2 = 0
By»
[ So01 So11 0]
Sy :=BR;BI = |85, S O
0 0 0]
[ So02 0 Spao |
Sy:=BRy'BI =1 0 0 0
| S 0 Sogo |
. Qoo1 Qo110
Qr:=C{Ci=|Qf; Qi 0
L0 0 0]
[Qoo2 0 Qo2 |
Q::=C7Cy=| 0 0 0
| Qa2 0 Qa2 |

We now consider the linear quadratic Nash games for infi-
nite horizon nonstandard MSPS (1) under the following basic
assumptions (see, e.g., [3], [5]).

Assumption 1: There exists a u* > 0 such that the triplet
(Ac, Bie,C;),i = 1,2 are stabilizable and detectable for all
p € (0, u*], where pu := /e1€5.

Assumption 2: The triplet (A;;, Bi;, Ci;), i = 1,2 are stabi-
lizable and detectable.

These conditions are quite natural since at least one control
agent has to be able to control and observe unstable modes. Our
purpose is to find a linear feedback controller (uj, u%) such that
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The Nash inequality shows that u] regulates the state to zero The GCARE equation (8) can be partitioned as
with minimum output energy. The following lemma is already T T T
known [1]. Jz1 = AgoXoo + XooAoo + A19X10 + XipA10
Lemma 1: Under Assymptiop 1, there exis.ts an admissiple + AL X0 4+ X T Az — X00S001X00 — X00S002Y00
controller such that the inequality (5) holds iff the following T or T
— X105011X00 — X00S011X10 — X719S111X10

full-order CMARE:
ATX, 4+ X, A+ O — X305322Y00 — X00S022Y20 — X305222Y20

—X.S51. X, — XoS0.Y. — VoSou X. = 0 (6a) — Y00S002X00 — Y205822X00 — Yo0S022X 20
AlY. + Y. A + Qo — Y305222X20 + Qoo1 = 0 (102)
—YeS2eYe — YeS1eXe — XeS1eYe =0 (6b)  f0 = Xoodor + XA + e, AL XT + AT X
have stabilizing solutions X, > 0 and Y, > 0, where + VaA3 X1 — e1 (XooSoo1 X1 + X{05011 X1o)
[ Xoo e XL 2 X% — (XooSo11X11 + X{5S111X11) — €1 (Xo0S002Y1h
Ne=[aXo  adn - V/ESXy, + X305022Y10) — V@ (Xo0S022Ya1 + X505222Ya1)
_52X20 \/61—62X21 €2X22
" Yoo VT Vi — e1 (YooSo02X 10 + Y205022 X 10)
Yo=leaYio  aYu  VEa&Ya . — Va (Yoo So22X21 + Y508202X01) + Qo11 =0 (10b)

_62Y20 NG €2Y22

Then, the closed-loop linear Nash equilibrium solutions to the

frs = XooAo2 + Xog Aoz + €2 Afg X5 + A3y Xoo

1
full-order problem are given by + ﬁf‘hToX% — &2 (X005001X2T0 + XlTOSOTuX2T0)
ui(t) = —Ry{ Bf. Xex(t) (7a) RS

Xo0S011 X591 + X{55111X37) — €2 (Xo00S002Y20

wi(t) = — Ry, BLY,x(t). (7b) NG ( AT z1) ~e2 ( 20
T oT 7T T

It should be noted that it is difficult to solve the CMARE (6) + X305022Y20) — (Xo00S022Y22 + X30S222Y20)

because of the different magnitude of their coefficient caused — 2 (Yo0S002X 20 + Y205022 X30)

by the small perturbed parameter ¢; and high dimensions.

— (Y00S020 X2 + Y3 S222X02) = 0 (10c)
III. ASYMPTOTIC STRUCTURE foa = AT X110 + X1 A1 + e (Af XT) + X104m)
In order to obtain the solutions of the CMARE (6), we intro- — 1 (e1.X108001 X1 + X115011 X 10 + X105011 X11)
duce the following useful lemma [20], [21]. — X11S111X11 — e1 (21 X10S002Y1h

Lemma 2: The CMARE (6) is equivalent to the following

T T T T
GCMARE (8), respectively: + VaX5; 8050 Y10 + VaX10S022Y21) — aX3;5222Y21

. . . . , — 1 (£1Y105002 X 1o + VY3 Sia0 X1y
A X + X A + Ql - X SlX — X SQY — Y SQX =0 + \/aYIOSOQZXZI) _ aY;{SQZQXQl _|_ Qlll — 0 (10d)

(8a) 1

ATY YT A+ Qo —VTS,Y — VT8 X - XTg,y =0 Jrs = @1iodm + e2A0, X 50 + VX5 Any + \/aAlTleTl

(8b) - 61€2X105001X2T0 - €2X1150T11X2To
€ 1
where - \/—1&X105011X§q - EX115111X2Tl
r T T
v Xoo e1X7y 52_)520T - €1€2X105002Y2T0 - EzﬂXleSérzzszo
- ?10 \/‘X}é \/aX X21 — 61X105022Y22 — \/&XZTISQQQYQQ
«
L 20 T 21 22 T — €1€2Y105002X,21;) — 82\/5Y27£S(¥;2X27;]
Xs = AEX = X Ae, X” = XZ'L T
Yoo eV epVT — e1Y10S022 X 22 — VY51 8222 X990 = 0 (10e)
10 20
Y= v Yn Javg fe6 = Ao X2 + X22Agy + &3 (AT X35 + X20Ao2)
1
_Y20 \/?YQl Y22 - ) — &9 (62X205001Xg;) + —X21S(?11X’21—(']
Y.=AY =YTA., Yu=YT, =012 va
1 T 1 T
Moreover, we can change the form of the strategies (7) as fol- + EX205011X21> - EXm S111X5;
lows: — €2 (£2X205002 Y50 + X22S035Ysh + X20S022Y22)
ul(t) = —R' BT Xx(t) (9a) — X22522:Y20 — €3 (£2Y205002 X3 + Y2250 X 50

U;(t) = —R;;B;Y.’If(t) (9b) + Y205022X22) — Y225222X22 =0 (IOf)
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fy1 = AgoYoo + Yoo Ao + ALpY10 + YihA10
+ A30Ya20 + Y50 A20 — Y00S002Yo0 — Yo0S001 Xoo
— Y505022Y00 — Y00S022Y20 — Y05222Y20
— Y705011X00 — Yo0S011 X10 — Y155111X10
— X00S001 Yoo — X105511 Yoo — Xo0S011Y10
- X19S111Y10 + Qoo2 = 0
fy2 = YooAor + YE Ay + e ALYE + AL v,
+ VaA3,Yar — 1 (Yo0S002Y10 + Y205022Y10)
— Va (YooSo22Y21 + Y05222Ya1) — €1 (Yoo So01 X1
+ Y155811 X10) — (YooSo11X11 + Y1pS111X11)
— &1 (Xo0S001 Y10 + X105011Y70)
— (Xo00S011Y11 + X{pS111Y11) =0
fys = Yoo Aoz + Yob Ao + €9 A Yan + Al Voo

(10g)

(10h)

1
+ ﬁAfOY;; — &2 (Yo0S002Ys0 + Ya05020Yo0)
— (Yo0S022Y22 + Y3S220Y25) — €2 (Yo0.S001X3,
1

Va

— &2 (X005001Y27[; + X%S£1Y2€)

1 .

" Ja (X005011Y2T1 + XlT(;)5111Y2T1) + Qo22 =0 (101
Jya = AT Y1+ Y14 + e (AolelTo + Y10A01)

— €1 (e1Y105002 Y715 + VaYs; SgaaYag

+ VaYi0So22Y21) — aY5] S220Ya1

—€1 (€1Y105001X1T0 + Y1501 X1 + YlOSOMXll)

= Y1151 X1 — e (61X105001Y1€ + X1150T11Y1€

+ X105011Y11) — X115111Y11 = 0

fys = €1Y10A02 + 2 AL Vs + V/aYsi Ags +

+ Y105011 X50) — (YooSo11 X5, + Y15 S111X7))

(10)
1
ALY
— €1€2Y1()S(]02Y27(; — €2\/&Y271155122Y2€
—£1Y105022Y22 — \/aY27;52221/22 - €1€2Y105001X%

1
—e2Y11881 X5 — Y10S011 X357 — EY11S111X2Tl

€1
Ja

T T T
—€1€2X105001 Y59 — €2X115011 Y30

€1 1
- ﬁXIOSOIIYQ’{ - ﬁXnSlnYzq; =0
fyo = AL Yoo + Yoo Ay + 5 (A, Yah + Yag Ago)
— €2 (€2Y205002Y21(; + Y225£2Y27(; + Y205022Y22)

(10k)

— Y225222Y22 — €2 <€2Y205001X2To
1
Va
— &9 <€2X205001Y2T0 +

1
Va
1
Va

1 1
+ —aX205011Y2T1> - EX215111Y2T1 + Q222 = 0.

NG

1
+ Yo1 S, X4 + Y205011Xgl> - EY215111X;1

T T
X215011 Y5

(101)

963

~ Thefefore, we obtain the (11) as e; — 40,72 = 1,2, where
Xim, Yim,Im = 00,10,20,11, 21, 22 are the zeroth-order so-
lutions

Ao Xo0 + XooAoo + ATp X10 + X A10

+ A30X20 + X35 A20 — X00S001 Xoo — X00S002Y00

— X100 %00 — XooSo11 X10 — X581 X0

— X305022Y00 — X00S022Y20 — X305222Y20

— Y00S002X00 — Y505022 X00 — Y00S022 X 20

— Y305222 X0 4+ Qoo1 = 0
XooAor + XiyAn + AT X110 + VaAl X

— (Xo0So11X11 + X{pS111.X11)

—Va (X005022Y21 + X;;)S222Yz1)

— V@ (Yo0S022X21 + V305220 X01) + Qo11 = 0
L
Va
(XOOSOHXgl + XlTOSangl)

(11a)

(11b)

XooAoz2 + XQIE)AQQ + AzToXn + A1T0Xgl

-
- (X005022Yz2 + XQT(]5222Y22)
— (Yo0S020X22 + V305200 X02) =0
AT X1 + X114 — X11S111X11 — aX5; S202Ya1
- @1@€5222le + Q111 =0
_ 1 _ 1
—VaX] 52220 — VaYy; S22 X002 =0
_ _ 1 _ _ _ _
A3, X9 4+ Xop Ay — EX21S111X2Tl — X225922Y22
— Y225222 X922 = 0 (111)
AdoYoo + YooAoo + AlYi0 + YigA1o + Adg Yoo + Vs Asg
— Y00S002Y00 — Y00S001X00 — YanSaes Yoo
— Y00S022Y20 — Vb S22 Y20 — Yi5SE1 Xoo
— Yo0So11X10 — Y1111 X10 — X00S001 Yoo
— X{5811 Y00 — X00S011Y10 — X19S111Y10 + Qoo2 = 0
(11g)

(11c)

(11d)
o ST
X118111X5;

(11e)

YooAor + Yh A1 + AT Vi + VaAl Vs
—Va (Y005022Y21 + Y2T05222Y21)
- (YOOSOHXH + Y1T05111X11)
— (Xo00So011 Y11 + X{pS111Y11) =0
1
Va
- (}70050221722 + Y2€5222Y22)

(11h)

YooAo2 + YQ,Z(;AZQ + AzToY22 + A1T0Y2T1

- (YooSo11 X7, + Y S111X7,)
1
Va
A’ﬂYll + Y1141 — @Y2€52221721 - Y1151 X1,
- X115111Y11 =0

(XOOSOMY;; + X%Snleq;) + Qo2 =0 (119

11y
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VaYh Ags + —=ALYE — /aY] Soo0s Yoo

\/_

1 - _ 1 _ _
- —=V115111 X5, — X118111Y5h =0

— 11k
Va Va (1o
_ _ _ _ 1_ _
A3, Y0 + YanAgy — Y22.5220 Y20 — 5Y215111X§1
1 _ _
— —X015111 Y5 4 Qa2 = 0. (11D

Q

If Assumption 2 holds, there exist the matrices X 11 > 0 and
Y5, > 0 such that the matrices A — 5111X11 and App —
So95 Y45 are stable, where A1T1X11 +X11A11 — X115111X11 +
Q11 = 0 and AL, Xpp + XopAgy — X225222X22 + Q22 = 0.
Now we choose X 11 and Yas to be X 11 and Y22, respectively.
Then, there exist A, € C and A, € C such that

(A1 — S111X11)ve = A\pvz, Re(M) <0
(Aaa — S292Ya2)vy = A\yvy, Re(Ay) <0

(12a)
(12b)

where v, € C"* and v, € C"2 are any vectors.
Using (12) we can change (11f) and (11j) as follows:

(11f)
= Ug(An - 52225722)T)_(22Uy + U§X22(A22 - 5222}722)%
1 _ _
— avyTXﬂSlquTlvy =0
1 — _
-~ 2)\ v, X22Uy U5X215111X;1Uy =0

(11j)
vE (A — S111X11) Vv, + 0l Vi (A — S X11) v
— O_é?)ngl SQQQY;;’U_T =0

(13a)

<~ 2)\11)5?11’01 — @UfYéngzgYZq{’Ux =0. (13b)

Taking Re(\.) < 0 and Re()\,) < 0 into account, we have
X9 = Y77 = 0. Then, from (11e) and (11k), we obtain

VaX](Ass — S292Y20)
1 _ _
+ E(An - S X1)"X3, =0 (14a)
VaYy (Asy — Sa22Ya2)
1 _ _
+ —=(An — S X11)'Y5 =0. (14b)

Va
~ Hence, the unique solutions of (11f) and (11j) are given by
Xo1 = Y21 = 0 because of the stability of A11 — S111X11 and
Ags — S999Y55. Thus the parameter & does not appear in (11),
namely, it does not affect the (11) in the limit when 1 and e5
tend to zero. Therefore, we obtain the zeroth-order equations
(15).
AT X oo + XooAgo + ATy X10 + XigA10 + A2y Xao

+ X35 A20 — X00S001X00 — X00S002Yoo

— X10S811X00 — XooSo11 X10 — X15S111 X10

— X30S022Y00 — X00S022Y20 — X30S222Y20

— Y00S002X00 — Y50S522 X00 — Y00S022 X 20

— Y505222X20 + Qoo1 = 0 (15a)
XooAor + X%An + A?OXM - (Xoosou)_(n
+ X181 X11) + Qo1 =0 (15b)

XooAoz + X39 A2z — (Xoo0So22Y22 + X305222Y22) = 0

(15¢)

AT X1+ X11An — XS Xan + Quun =0 (15d)
A Yoo + Yoo Ago + AT Y10 + Yip Ao + Al ¥ao

+ Y0420 — Yo0S002 Yoo — Y00S001 X oo

— Y505022Y00 — Y00S022Y20 — Y30,5222 Y20

— V165011 X00 — Yoo So11 X10 — Y15 S111 X410

— Xo0S001 Yoo — X155011 Yoo — X00S011Y10

— X{55111Y10 + Qoo2 = 0 (15e)

YooAo1 + YihA11 — (Yoo So11 X11 + Yi5S111X11) = 0

(15f)

Yoo Aoz + YanAss + A3 Yoo — (Yo0So22Ya2
+ Y505222Y55) 4+ Qo2 = 0 (15g)
A%;Yzz + Y9 Ass — Y225220 Y25 4+ Q222 = 0 (15h)

The Nash equilibrium strategies for the MSPS will be studied
under the following basic assumption, so that one can apply the
proposed method to the nonstandard MSPS.

Assumption 3: The Hamiltonian matrices T;;;,¢ = 1,2 are
nonsingular, where

—Qiii  —Aj; (16)

Under Assumptions 2 and 3, we obtain the following zeroth-
order equations:

T = [ Aji _Siii:| '

ASTXOO + XooAs + Qs1 — XooSs1Xoo

— X00Ss2Y00 — Y90 S52X00 = 0 (17a)
ATV + Yoo As + Qua — Yo0S<2Yoo
— Y0551 X00 — X00Ss1Yo0 = 0 (17b)

Az—‘lel + XllAll - Xllslllel + Qlll =0 (17¢)

A2, Vo0 + Voo Agg — V92892000 + Q222 = 0 (17d)
X1 = =D Do Xoo — D7 Njoy (17¢)
Yio = =D 11 D761 Yoo (170)
Xoo = —D,35DJ0s Xoo (17g)
Yoo = _D;2€D;}FO2YOO - Dy_2TzNyT02 (1'7h)
where
A, = Ago = D01 DY Arg — Dyoa Dy Ang
+ (So11 — Dzo1D;1115111) DNy
+ (So22 — DyOQD;2125222) D;2€Ng%2
Sa = Soo1 — Door D4 S5 — Son1 DL DXy
+ Dyo1 D, S111 D, i DYy,
Se2 = Sonz — Dyo2D 355055 — So22Dy5 D,
+ DyozD;2125222D;2€DyToz
Qs1 = Qoo1 — A1T0D.;17;NzT()1 - NwOlD.;lllAlO
— Noon D S DN,
= AJD 5Ny — Nyo2 Doy A
s2 — T 4120 y224Yy02 T Yy y22
Qs2 = Qooz y22 Ny 02Dy39 420

-1 —T ArT
— INyo2 Dy22 5222Dy22 Ny02
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Doy = Aoy — So11 X711
Dg1y = Ay — S111 X1y
Dyo2 = Aoz — So22Ya2
Dyss = Ay — S225Ya0
Nao1 = AfgX11 + Qont
Nyoz = A3gYa2 + Qoaa.

Lemma 3: The matrices Ay, Ss1,Ss2, Qs1, and Q42 do not
depend on the matrices X 11, X 21, Y1, and Yas. Therefore, their
matrices can be calculated by using the following Hamiltonian
matrices:

As * i _ AOO *
« —AT| 7|« —A],

—1 —1
— To11 1111101 — To22T595T202

(182)
[_5 T = Ty — Ton T Lo (18b)
sl ]
[_ (’; ‘fsz = Too2 — Toz2TozsTo02 (18¢)
52 |
Toot = [ Ao —5021
| —Qoo1  —App |
Aot —Sout
Tou = Qo1 —Afy
Tio1 = - Alqg _531%1-
| —Qonn —Ap
Ay =S
Tin = Qi1 —Af |
Too2 = [ Ao _SO¥2-
| —Qoo2  —App |
To22 = [ Ao _50%2-
| Qo2 —A
Tro2 = - A2:1Q _53;2*2-
| —Qo22  —Ape
Tyny = [ As —52%2
| —Q222 —A,

where * stands for an appropriate matrix. Moreover, we can
change the form of the solutions X1¢, X2g, Y10, and Ya.

_ _ - _ 1, 0

X0 Yiol=[X — 1, ]T3iT o 19a

[X10 Yio] = [X11 VTV AT [Xoo Yoo] (19a)

_ _ _ _ 0o I,

[X20 Yool = [Yar = Ln,]T555 00 { I YO} - (19b)
00 00

Proof: Note the relation

Ty = |:In1 0 ] |:D.rll —5111] [ I, 0 ]
X In, 0 =Dpn|—-Xu In

Since 7711 is nonsingular under Assumption 3 and the ARE
(17¢) has a stabilizing solution under Assumption 2, D, 11 is

also nonsingular. This means that 7] can be expressed explic-

itly in terms of D7}}. Using the similar manner, we have the

following relations:

-1 — [ I 0 ][ Dz —D;111511%D;1T1
11 | X111, 0 -D_ i
I, 0
: [_ L, } (200)
ny
[T 0 ] [Dy5 —Dy3sS22:D 55,
T2_2§ — Tng :| |: y22 y22 T y22:|
| Yoo I, 0 =D 5
. [_@;22 A } . (20b)

Therefore, it suffices the Proof of Lemma 3 to show that
the relations (18) hold. These formulations can be proved after
direct algebraic manipulations, which are omitted here for
brevity. [ |

The following theorem will establish the relation between
the solutions X and Y and the zeroth-order solutions X;,,, and
Yim,Im = 00,10,20,11,21,22 for the reduced-order equa-
tions (17).

Theorem 1: Suppose that

AT @Iy + Iy, @ Ay
—[(861Y00)T & Ly + Iny ® (Ss1Y00)T]
—[(S52X00)" ® Ing + Iny ® (Ss2X00)"]
AT R I, + I, ® A

det
#0 (21)

where /AIS = As—Ss1 X0 — Ss2 Yoo and the matrix 1215 is stable.

Under Assumptions 1-3, the GCMARE (8) admits the sta-
bilizing solutions X and Y such that these matrices possess a
power series expansion at ||u|| = 0. That is

-XOO 0 0
Xio Xu1 0| +O([lull) = X + O(||ul)
_X20 0 0
[Yoo 0 0
Yo O 0
| Yoo 0 Yy

X = (22a)

+O0(lul) =Y +O([lull)-  (22b)

Proof: We apply the implicit function theorem [10] to the
partitioned GCMARE (10). To do so, it is enough to show that
the corresponding Jacobian is nonsingular at ||x4|| = 0. It can be
shown, after some algebra, that the Jacobian of (10) in the limit
as 4 — po is given by (23), shown at the bottom of the next
page, where

Joo = In, @ Dy + D&y @ 1,,,

Jo1 = Ing @ D10 + (D310 ® Ing) Unyng
Jo2 = Ing ® Do + (D20 ® Ing ) Uniyng
Jio =Dl @ Iny, oo = D§02 ® In,
= (D11 ® Ing) Unyng

J22 = (Dyaz ® Ing) Unzng

Jis = I, ® D}

Juu=Va (ln1 ® D§20)
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Jog = Va ' (In, ® D2yg) Unyn,
Jos = I, ® Dygo

Js3 = In, ® D3yy + D11y @ I,

Ju =Va (D522 ® I, ) Unyny + \/5_

J55 = Iny @ Dy + Dyog @ I,

Jos = —Ing ® Elyg — Ego ® In,

Jos = =TI, ® ELyy — (Efyo @ L) Unang
Jiio = —Va(l,, ® E.a)

Jo11 = —In, ® Egao

Joo = —In, ® EJoo — Eoo ® In,

Jo1 = =T, ® ELo = (Ef10 ® Ing) Uniing

Jrs = —1I, ® E] g

Jsa = _\/5—1 (Inz ® EyTlo) Uniyny

Doy = Aoo — So01X00 — So02Yoo — So11X10 — S022Y20
D10 = Ao — Sg11X00 — S111 X710
Dy = Asg — Sgas Yoo — S222Y20

E100 = So02Xo00 + S22 X20
Ey20 = Sépszoo + S22 X520
Ey00 = So01 Yoo + So11Y10

Ey10 = Sg11Yo0 + S111Yio.

The Jacobian (23) can be expressed as

5
detJ = H(detJjj)2

(ITLQ ® Dzll) UnQ'nl
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5

= [ [I(det;;)”
=1
Jo Joe — J08J2_21J20
det |:<]60 - J61J1_11J10 Jo o

where Js = Jo() — J01J1_11J10 — J02J2_21J20.
After some straightforward but tedious algebra, it is easy to
show that the following relations hold:

Jo=AT @ I, + I, ® AT (25a)

Jos — Jos T35 Joo = —[(Ss2X00)T @ In,
+ I, © (S2X00)']  (25b)

Jeo — Je1J11 J10 = —[(Ss1Y00)" © In,
+ I, ® (Ss1Y00)"] (25¢)

where
; —1 —1
As = Doo — Dz01D 11 D210 — Dyo2 D, 55 Dy20
o —1
Ss1Y00 = Fyoo — Dgo1 D11 Ey10
o —1
Ss2X00 = Ez00 — Dyo2 D95 Ex20-

Hence, we have

5

det J = H(det Jjj)2

j=1
Obviously, J;;,7 = 1,2, ..., 5 are nonsingular because the ma-
trices Dmu = A11 — 5111X11 and Dy22 = A22 — SQQQYQZ are
stable under Assumption 2. By the nonsingularity assumption
of the matrix I',det J # 0, i.e., J is nonsingular at (u, P) =

~detT. (26)

j=3 (120, Pg). The conclusion of Theorem 1 is obtained directly by
Joo Jo1 Joo Jog 0 Jos using the implicit function theorem. [ |
Jo Jii 0 0 0 0 It is worth pointing out that the asymptotic structures of the
Jy 0 Jyy O 0 0 solutions X and Y are established without the assumption that
- det Joo Je1 0 Joo Jor1 Joo the matrices A;;,7 = 1,2 are nonsingular compared with the
0 0 0 Jo Jii 0 existing result in [5]. Moreover, for the existence of these so-
0 0 0 Jog 0 Joo lutions the conservative condition which is made in [21] is not
J= avec(fzh sz7 fm37 f$47 f157 f1067 fy17 fy27 fy37 fy47 fy57 fyﬁ)
aVGC(XOO, X10, X20, X11, X21, X22, Y00, Y10, Y20, Y11, Ya1, Yz2)T p=j10,P=P,
FrJoo Jo1 Joo 0 0 0 Joe 0 Jos 0 0 0
Jl(] J11 0 J13 J14 0 0 0 0 0 J11[) 0 -‘
J20 0 J22 0 J24 J25 0 0 0 0 0 J211
0 0 0 Jsz3 O 0 0 0 0 0 0 0
0 0 0 0 Jy O 0 0 0 0 0 0
|10 0 0 0 0 Jss O 0 0 0 0 0
- JG() J61 0 0 0 0 Joo J()l J()z 0 0 0
0 0 0 J73 0 0 J10 J11 0 J13 J14 0
0 0 0 0 Jg4 0 J20 0 J22 0 J24 J25
0 0 0 0 0 0 0 0 0 Jsz3 O 0
0 0 0 0 0 0 0 0 0 0 Jy 0
L O 0 0 0 0 0 0 0 0 0 0 JIs5 J
n=le1 62]T
=[0 07

P (X007X107X207X117X21>X227Y00 Y10, Y20, Y11, Y21, Ya2)
( 107X207X1170 0 YOO Y107Y2070 0 Y22)

(23)
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needed. That is, the existence condition is newly derived in de-
tail compared with [5], [21]. As a result, we succeed in finding
the asymptotic structures of the solutions X and Y in same di-
mension of the reduced-order subsystems even if the matrices
Ayt = 1,2 are singular.

IV. NEWTON’S METHOD

In order to improve the convergence rate of the Lyapunov
iterations [3], we propose the following new algorithm which
is based on the Newton’s method:

(I)(n)TfP(n-l-l) + rP(n-I-l)T(I)(n) _ @(n)TrP(n-i-l)j
— JgPpHtUTeM L =) =0 p=0,1,...
(I)g”)TX(nJrl) + X(n+1)T(I)§")
_eoMTy (nd1) _ yv(nt+)T M) | =) _
(@)ZT Y Y 0, +5; 0 @7)
(I)Zn y (n+1) + Y(n+1)T(bg")
_®§n)TX(n+1) _ X(n+1)T®§") 4 Eg") -0

" o]
0o o

where

oM = A - 5PM — 75pM T =

(n)
o .= S’ﬂﬂn):{ 0 6 }
o 0
2 = Q4 TSPt 4 7ptIT G 7pM)
- :‘(")
+PMT TSP T = {“1 ~?">}
0 =2
Do, Bh1) Do,
o= o) o) o)
o) @5 @)
O O O,
o/ = ey e ey
o ©5) e
g g g
—(n) T S A S | -
=0T Boug S1150 212 i=1,2
=()T ()T =(n)
S02i D20 S22i
N xXm
P =170y
X axfp" ey
xo e | X
x5 vaxy) o xgy
YI]((?) Elyl(O")T 62Y2(81)T
Y(”) = Yl((?) Yl(ln) \/a_1Y2(1n)T
v vavy? vy
s[4 0
i=15 4]
~_ (@ 0]
O=10 Q
- [S 0
=15 &
o Iy]
T =1 o

967
and the initial condition P(%) has the following form:
X 0
0) —
PO = [ 0 v
):(00 612211;) €2X21;) 0 0 0
X0 Xu 0 0 0 0
pe: 0 0 0 0 0
- 0 0 0 }fgo Elqu(; 62Y2’1[; (28)
0 0 0 Yio 0 0
0 0 0 Y20 0 Y22
Note that the considered algorithm (27) is original.

The new algorithm (27) can be constructed by setting
P+ = P 4+ AP™ and neglecting O(APMTAP™)
term. Newton’s method is well known and is widely used to find
a solution of the algebraic equations, and its local convergence
properties are well understood.

First we show that the algorithm (27) is equivalent to the
Newton’s method. Now, let us define the following matrix func-
tion:

F(P):=ATP+PTA+Q-PTSP
—JIPTSTP —PTTISPT (29)

where

P[5 3]

Taking the partial derivative of the function F(P) with respect
to P yields

__ OvecF(P)
VF(P) = A(vecP)T | »_p

=(A-SP-TSPI)* @ Iy
+ Ly ® (A= SP — JSPI) T |Usnon
—(SIP)Y' @ T - [T @ (STP)|"Usnan. (30)

Taking the vec-operator transformation on both sides of (27)
and (29), we obtain

[(q’(n)T ® IzN) Usnon + Ian ® (I)(n)Tj| vee PHD)
~[(6™7 © 7) Uswo + 7 © O] vec P+

+vecE™ =0 (3la)

vec]-'(P(n))
= |:(<I)(W)T ® IQN) Usyon + Iy ® (D(n)T:| vee P

— [(6("’)T ® J) Usnon + T ® 9(")T} vecP (™)

+ vec 2™, (31b)

Subtracting (31b) from (31a) and noting that

VF(PM) = [(‘I’(")T ® IQN) Uanon + Ion © (p(n)T}

- [(9(”)T ® J) Usnen +J ® @("’)T]
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we have
-1
vee PO = veeP™) — [VF(PU)| vecF (P

which is the desired result.

We are concerned with good choices of the starting points
which guarantee to find a required solution of a given GCMARE
(8). Our new idea is to set the initial conditions to the matrix
(28). The fundamental idea is based on |P — PO || = O(||u||)
which is derived from (22). Consequently, we will get the re-
quired solution with rate of the quadratic convergence via the
Newton’s method. Moreover, using the Newton-Kantorovich
theorem [24], we will also prove the existence of the unique
solution for the GCMARE (8). The main result of this section
is as follows.

Theorem 2: Under Assumptions 1-3, the new iterative algo-
rithm (27) converges to the exact solution P* of the GCMARE
(8) with the rate of quadratic convergence. Furthermore, the
unique bounded solution P(") of the GCMARE (8) is in the
neighborhood of the exact solution P*. That is, the following
conditions are satisfied:

[P =P <o (), n=01.. G
Hp<n> _p %[1 ~VI—20], =n=0,1,...(32b)
where
)
£:=6|8|, p:= ‘ [VF (P(°)>]_1H
B N
F(P):= (fo1,---, foe: fy1,-- -, fy6)-
PO .= P,

Proof: The proof is given directly by applying the
Newton-Kantorovich theorem [24] for the GCMARE (8). It is
immediately obtained from (30) that

IVF(P1) — VF(P2)|| < L||P1 — P
= [[VF(P1) = VF(Py)[| < L||P1 = Pof|.  (33)
Moreover, using (22), we get
VE(P) = J + O(||ul])- (34)

Hence, it follows that VF(P(®)) is nonsingular under the
condition (21) for sufficiently small ||u||. Therefore, there
exists # such that 3 = ||[[VF(P®)]7!||. On the other
hand, since F(P(®) = O(||u||), there exists 7 such that
n = [[[VE@O)H| - [F@O)| = O(||ul])- Thus, there

exists f such that § = BnL < 27! because n = O(||y]]). Now,
let us define
1
t" = —[1-+V1-260
Zi-vi=
_ L -VI—20. (35
6l[S|I - I [VF (PO)] ]

Using the Newton-Kantorovich theorem, we can show that P*
is the unique solution in the subset S = {P : |P) —P|| < t*}.
Moreover, using the Newton-Kantorovich theorem, the error es-
timate is given by

oo e < 20
= [P~ _(223[)%’ n=12... (36

Substituting 26 = O(||u||) into (36), we have (32a). Further-
more, substituting P* into P of the subset S, we can also get
(32b). Therefore, (32) holds for the small ||z]|. [

Remark 1: Using the Newton—Kantorovich theorem instead
of the implicit function theorem, we can also prove (22). That is,
the structure of the solutions X and Y are established by setting
n = 01n (32a). It should be noted that the asymptotic structure
for the GCMARE (8) is established by using the Newton—Kan-
torovich theorem which is different from implicit function the-
orem. As a result, the condition of the small parameter ||| for
existence of the solutions of the GCMARE (8) would be clear.

Remark 2: In view of [13], we know that the solution of the
GCMARE (8) is not unique and several nonnegative solutions
exist. In this paper, it is very important to note that if the suffi-
cient condition (21) holds, the new algorithm (27) converge to
the desired positive semidefinite solution in the same way as the
Lyapunov iterations [3].

Remark 3: In order to obtain the initial condition (28), we
have to solve the CARE (17a) and (17b) which are independent
of the perturbation parameters ¢;. In this situation, we can also
apply the Newton’s method to these equations (17a) and (17b).
The resulting algorithm is given by

k S\ T o (k1
(A — 5, X 552Y0<0>) XD
k+1 o (k (k
+ Xk (AS ~ 5, XM 5,70 >>

— XS VD vt g, X + Qu
+ X(k)Sle(k) + X8 S0V

+ VP 5,x8 =0 (37a)
(4 - 80X - 2y<k>) AR
+ Yo V(AL = S X(E) - Yy
DS REN RS, 79 4 0,
T ST 4 T X
+XB s, v =0 (37b)

with
ATXG) + Xgg' Ay = Xgg' S X +Qu =0 (38a)
ATY O 4 v D4, v 95,7v P + Q. =0. (38b)

In the rest of this section, we explain the method for
solving the generalized cross-coupled multiparameter alge-
braic Lyapunov equation (GCMALE) (27) with the dimension
2N = 2(ng + n1 + m2). So far, there is no argument as to
the numerical method for solving the considered GCMALE
(27). In order to reduce the dimension of the workspace, a new
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algorithm for solving the GCMALE (27) which is based on the
existing algorithm [19] is established. Firstly, we set

B (Ao Aor Aoz

A=U A10 A11 0
| A20 0 A

B [ Bo1 |

Bl =V Bll
L 0 -

- [ Bos |

By:=V | 0
_B22_

S; := B;R;;' BT, i=1,2
In, 0 0

U:=10 ﬁlnl 0
0 0 Lo,

€2

Using the above relations, we can get the following Newton’s
method:
T pln+l) + P+DTH(n) _ é(n)Tfp(n-l-l)j
_ jzp(n-l-l)T(:)(n) + E(n) — 07 n = 07 17 ...
*(n)TX(n+1) + X(n+1)T§)(n)

@(")Ty(n+1) _ y(n+1)T@(") + (n) _

& L7739
q)gn)Ty(n+1) +y n+1)Tq)gn)
h _@gn)TX(n—l—l) _ X(n—l—l)T(:)g”) + ;én) -0
wnere
O™ .= A — SsPM _ 5P
_[e” o
j_[ 0 (IW}
2 —
0 .= sgpP™ = _0 %
e o
20) = () 4 PITSPM) 4 TPIITS 7P
+PmT 78PM 7
7?) §§(1
3 = | P ¢§ﬂ
—?101‘ Qilli
oo =[5 o)
-®10’L' ®lli
—m _ [ E6) E6 ,
A O aé}: 1=1,2
L—01: —114
o [ x () 0
P =7 y(n)]
o . [0 MXSW}
o
r n n)T
ym) — y%o) y%o) }
-%}10 N2
A 0
=[5 4l
_[S o
5—[0 sJ
3, O, 260, X834 € oo
802, 60 200, 2.9 € RomenxCuen

and the initial condition P(%) has the following form:

Py-1x(0) 0
0 -1y ()

It should be noted that the algorithm (39) has not 3 x 3 blocks
but 2 x 2 blocks because we will use the existing results in [19].
That is, the coefficient matrices of the algorithm (39) can be
changed such thate; = €9 = p.

Secondly, we convert the GCMALE (39) into the following
form:

PO = (40)

X =-Q 41)
where
A =By
s e
x= ;]
Yy
_ |
Q_[QJ

and the set of equations shown at the bottom of the next page,
hold.

A; and B; are the appropriate matrices. In order to show the
form of these matrices, let us consider a simple fourth-order
example with ng = 2,n7 = no = 1. The matrix .A; is given
in (42) at the bottom of the next page, where

a11 012 a13 a14
o, = a221 a%2 azz3 a?4
ay; iy ajz Ay
ay; Gy Gy3 Ay

It should be noted that there exists an algorithm for constructing
the matrices A; and B;. See for example [19] in detail. More-
over, it is well-known that although the matrices .A; and B; con-
tain the small parameters, these matrices are well-conditioned
[18], [19].

Since the Newton—Kantorovich theorem guarantees the in-
vertibility of the matrix 7, there exists the matrix 7 ! for all
n,n=0,1,2,.... Hence we have X = -7 1Q.

Finally, we can §et the desued solution by multiplying the u
on the matrices Xy, ") , X (n) 0 ) and ym> in the matrix P("

As aresult, the f0110w1ng relatlon holds:

[AeX(") 0 ]

0 A Y ()
Mg 0o
nX pxy 0 0
I I N
0 0 oW
X. O
_’[0 Y] (n = o0).

V. HIGH-OREDER APPROXIMATE NASH STRATEGY

In this section, we give the high-order approximate Nash
strategy which is obtained by using the iterative solution (27)

M (1) =—R'BTX™a(t), n=0,1,... (43a)

Uapp
(M (1) = —Rp'BIY™Ma(t), n=0,1,....(43b)

u2app
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Theorem 3: Assume that ReA[ll;'(A — S1X(© —  where J;(u], u}),i = 1,2 are the optimal equilibrium values of
S,Y )] < 0. Under Assumptions 1-3, the use of the high-  the cost functions (2).

order approximate strategy (43) results in Ji(ugzz)p,ug?pp) Proof: We prove only the case ¢ = 1. The proof of the

satisfying case ¢ = 2 is similar. When uﬁ;p is used, the value of the
. performance index is

i (u g ) = it 5)+ O ([l m o YL
7 = 172, n = 0, 1, PN (44) Jl (ulapp7u2app) = 51’(0) Wle 1[7(0) (45)

X = [«’17(1)(1] x93 - x(l]%g ai} - x%?nl—{—ng) x) - xg?m 5 SRR x%?nﬁ—nz)
200, @il gl0 gl gl gl gl gl
x%$1+n2*1)(n1+n2*1) x%$1+n2*1)(n1+n2) x%7111+n2)(n1+n2) ]T € RN(N+1)

yo= 090 990 o ulne iYWl YIS WS s Udnimw)

Yoo Umet T Umetmigms) T Y Y1 Uitwiime) U35 Ylas i

11 11 11 T N(N+1
y(n1+ng—l)(n1+n2—l) y(n1+n2—l)(n1+n2) y(n1+ng)(n1+ng)] €R ( )

. . . . . . . T
qi=[d di2  Gin G2 GBs o Gy Un-n-1) YN-pN Inn] € RN(NHD
raf) @9 oo aly, prid opEy o il ]
T O A
' ' 00 10 10 10
X(") — Xég) MXl(g)T _ ] ] T Tagne Hng1 Hlnga - P (n14n2)
x| T . . . 211 ST T
10 11 11 12 1(n14n2)
11 11
T2 T $2(n1+n2)
11
00,00 00 10 10 Fntna)(nactna) -
(Y1 Yi2 0 Yin, Y11 MYz e PYi(ny4nz) ]
Yo Yoy T S SR 1) v
" " O 000 10
y(n) |: ((]0) 1(0)T:| B Yngno HYng1  HYng2 H’yno(nl-i—ng)
- (n) ) -
Yiow it Yit Y2 Yl
11 11
Y22 T Y2(n1+n2)
11
- . . . Y(n1+n2)(n1+ns) 4
i1 iz diz o N
=(n) =(n) %2 qZZ3 T qZZN
=(n) =000 <016 | — | - . 33 Q4
E; |:.:(n)zT ?(”3} = 433 43N
S0 Sl
INN
-2‘{31 ) 2a} . 2@%1 2“?11 0 0 0 0 0 0 7
ai2 a1y + a5y azy o as; az; ay 0 0 0
a3 a3 paiy + ass ahy 0 pasy 0 az; ayy 0
ai4 Ay asy pay +ay, 0 0 pasy 0 az aj
A= 2a35 0 0 2a3 2a3; 23, v v 0 (42)
! 0 al a’ 0 al aly + ak a’ al al 0
13 Haya ) 23  Hazp T 433 O43 32 42 .
0 aly 0 pats iy sy pasy +ayy 0 a3y afy
0 0 2paiz 0 0 2pay3 0 2a33  2aj3 0
0 0 pad 4 pais 0 sy pass a3y G33+ay, a3
L O 0 0 2pual, 0 0 2uah, 0 2a5, 2a}, |
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where Wl(:) is the positive semidefinite solution of the fol-
lowing multiparameter algebraic Lyapunov equation (MALE):

(4~ 51X — $o,x,) W
+wi (Ae — S XM — SZeYe(n))

+Q1+XMs XM =0, (46)

Subtracting (6a) from (46) we find that V") = W™ — X,

satisfies the following MALE:

(Ae — 81X - SZEYE(”))T v
+ VI (A = S1. X - S5 7,)
+ (X0 - X S1.(x0) - Xe)
Yo So (X0 = X ) + (X0 - X) 85X = 0. @7)

Using the relations X{™ — X, = O(||u|?") and Y™ - Y, =
O(||p||*") from (32a), we can change the form of (47) into (48)

(4~ 51X — $2,7,0) V)

+ Vi (A = 81X = 80 ) 40 (Jluf*) =0 (48)

It is easy to verify that V") = O(||u||*") because A, —
S1e X = S, V™ = M1 A - 5, X© — S,V © 4 O(||ul])]
is stable by using the standard Lyapunov theorem [25] for
sufficiently small ||z||. Consequently, the equality (44) holds.m

Consequently, when ¢; is known, we can design the
high-order O(||||?") approximate strategy which achieves the
O(||p||*") approximation for the equilibrium value of the cost
functional.

In addition, we will present an important implication. If the
parameter €; are unknown, then the following corollary is easily
seen in view of Theorem 3.

Corollary 1: Under Assumptions 1-3, the use of the param-
eter-independent strategies

alapp(t) = _RflleXw(t)

[Xoo 0 0
=—-R'B] | X0 Xu1 0|=x(t) (49)
[ X0 0 0
Uapp(t) = _R272lB;FYx7(t)
—5_/00 0 0
=—RyB] [Yio 0 0 |=(t) (49b)
| Y20 0 Yoo
results in J; (T; app, Ujapp) satisfying
Ji(tiapp, Ujapp) = Ji(ui, uj) + O(||l])- (50)

Proof: Since the result of Corollary 1 can be proved by
using the similar technique in Theorem 3 under the fact that

1P = P*[l = O(llull) (51)

where

hv]l

I
o
<o

the proof is omitted. ]
It is worth noting that the proposed approximate strategies
(49) can be implemented with the feature of (50) even if the
perturbation parameters ¢; are unknown.
Remark 4: 1In [5], the following theorem has been derived:

Ji (Ui apps Uj app) < Ji(Ui, Ujapp) + O([|pl])- (52)

By using the similar manner which has been established in [5],
if the condition (21) holds under Assumptions 1-3, then the in-
equality (52) is also satisfied without the nonsingularity assump-
tion of the fast state matrices. Since the proof can be done by
using the similar step in [5], it is omitted.

VI. NUMERICAL EXAMPLE

In order to demonstrate the efficiency of our proposed algo-
rithm, we have run a numerical example. The system matrix is
given as Appendix A in [6].

[0 0 45 0 1

00 0 45 -1
Ap=|0 0 —005 0 —0.1

00 0 —005 0.1

L0 0 327 327 0

-0 0

0 0
Agi= |01 0

0 0

L0 o0l

-0 01

0 0
Apz=1]0 0

01 0

Lo 0l

00 0 00
Am—[o 0 —04 0 0}

000 0 0
AQO_[O 0 0 -04 0}
A11:A22:[ o 8(?5;}

Byy=Bga=[0 0 0 0 0T
0
Bll — B?Z — |:0'1:|
Ri1 = Rap =20
Qi=diag(1 1 1 1 1 1 1 0 0)
Qy=diag(l 1 1 1 1 0 0 1 1).
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The small parameters are chosen as e; = €5 = 0.01. We give an
initial condition and a solution of the GCMARE (8) as follows:

_ -):(00 512_(1T() €2X2T0
X=X Xu 0
(X0 0 0
_ [ 1:/00 61?17(; 62?2’1(;
Y=Y 0 0
| Y20 O Yoo

and in the sets of equations shown at the bottom of this page
and at the bottom of the next page. Table I shows the results
of the error || F(P(™)]|| per iterations, where “ec — 2 stands
for “x10~*. We find that the solutions of the GCMARE (8)
converge to the exact solution with accuracy of || F(P()| <
10~10 after 5 iterative iterations. Moreover, it is interested in
pointing out that the result of Table I shows that the algorithms
(27) are quadratic convergence. Table II shows the necessary
number of iterations for the convergence of the Lyapunov iter-
ations [3] versus the new algorithm under the same accuracy
of ||F(P™)|| < 10~'°. It can be seen that the convergence
rate of the resulting algorithm is stable for all ; since the initial
conditions P(?) is quite good. On the other hand, the Lyapunoy
iterations converge to the exact solutions very slowly.
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TABLE 1
REMAINDER PER ITERATION

[F7(P™)]
1.18679% + 1
2.71255¢ + 0
1.81162¢ + 0
1.07481e — 2
1.19273¢ — 7
4.52670e — 11

T W N = O

TABLE 1I
ERROR || F(P )|

g1 = &9 Newton’s Method | Lyapunov Iteration
1.0e — 2 5 19
1.0e — 3 3 17
1.0e — 4 3 15
1.0e — 5 2 13
1.0e — 6 2 12
1.0e =7 2 10
1.0e — 8 1 8

Finally, we evaluate the costs using the near-optimal strate-
gies (49). We assume that the initial conditions are zero
mean independent random vector with covariance matrix

r 5.5643¢ +0  7.7043¢ —1  4.6904e+1 —2.9538¢ —2  2.4629¢ — 1
7.7043e — 1 3.2860e +0  1.9692¢ — 2  2.3452¢+1 —3.1520e — 1
Xoo= | 4.690de +1  1.9692¢ —2  6.4215e+2 —2.1432¢+2 4.7125¢+ 0
—2.9538¢ —2 2.3452¢ +1 —2.1432¢+2 4.0104e+2 —5.7292¢ + 0
[ 2.4629¢ — 1 —3.1520e — 1 4.7125¢4+0 —5.7292¢ +0 1.2843¢ + 0
T [9.2357¢ +1 3.8775¢ —2 1.2397¢ +3 —4.220le +2 9.2791le+0
107 |4472le+ 1 1.8776e —2 5.7503e +2 —2.0435¢ +2 4.4932¢ + 0
o [—5.8162¢ — 2 4.6178¢ +1 —4.220le +2 7.8967¢+2 —1.1281¢+ 1
07 | -2.8163¢ —2 2.236le+1 —2.0435¢ +2 3.8237e+2 —5.4626¢+0
. [9.9473¢ + 0 3.2453¢ + 0
"7 [3.2453¢ + 0 6.5165¢ + 0
r3.2860e +0 7.7043¢ —1  2.3452¢+1  1.9692¢ —2  3.1520e — 1
7.7043¢ —1  5.5643e+0 —2.9538¢ —2 4.6904e +1 —2.4629¢ — 1
Yoo = |23452¢ +1 —2.9538¢ —2 4.010de+2 —2.1432¢+2 5.7292¢ + 0
1.9692¢ —2  4.690de +1 —2.1432¢+2 6.4215e+2 —4.7125¢+0
[3.1520e — 1 —2.4629¢ —1 5.7292¢ +0 —4.7125¢+0 1.2843¢+0
7o [4.6178¢ +1 —5.8162¢ —2 7.8967¢+2 —4.220le+2 1.128le+1
107 12236le+1 —2.8163¢ —2 3.8237e+2 —2.0435¢+2 5.4626¢ + 0
v [3.8775¢ —2 9.235Te +1 —4.220le+2 1.2397¢ +3 —9.2791e+0
207 | 187766 — 2 4.472le+1 —2.0435e+2 5.7503¢ +2 —4.4932¢ 40
Voo [9.9473¢ + 0 3.2453¢ + 0
?27 | 3.2453e + 0 6.5165¢ + 0
-XOO €1X,11;) €2X21;)
X=X Xu \/5_1X2T1
| X20 VoaXo Xoo
-YOO €1Y1,1(; €2Y21(;
Y=|Y, Yu \/a_lyng
_Y20 \/aY21 Yoo
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TABLE III
THE NASH EQUILIBRIUM VALUES
€1 = &3 | E[Ji(Uiapp, Ujapp)] E[Ji(uf, U;)] P
1.0e — 2 6.8876e + 2 6.6354e + 2 2.5221e+ 3
1.0e — 3 5.3203e + 2 5.3452e + 2 2.4864e + 3
1.0e — 4 5.2712¢ + 2 5.2739%¢ + 2 2.6915e + 3
1.0e — 5 5.2671e + 2 5.2673e + 2 2.7105e + 3
1.0e — 6 5.2666€ + 2 5.2667e + 2 2.7124e + 3
1.0e — 7 5.2666e + 2 5.2666€ + 2 2.7126e + 3
1.0e — 8 5.2666e + 2 5.2666€ + 2 2.7126e + 3

various €1 and e, are given in Table III, where

¢i ==

|E[Ji (T apps Uj app)] — E[Ji(uf, u;‘)”

el

_ |E[Ji(ﬂiapp7ﬂj app)] - E[Jl(u:7u§)]|

and n]i(ﬂlapp7a26PP>
Jé(uivu;)

\/E1€2

= JZ(ﬂlaprn ﬂ2app)7 Ji(uf, u3)

Ig. The values of the cost functionals for

It is easy to verify that E[J;(T;app,Tjapp)] =
E[J;(uf,u})] + O(||p||) because ¢; < oo is the same order.

VII. CONCLUSION

The linear quadratic Nash games for infinite horizon non-
standard MSPS have been studied. Firstly, the uniqueness, the
boundedness and the asymptotic structure of the solution to
the GCMARE have been newly proved without the nonsingu-

= larity assumption. Secondly, in order to solve the GCMARE, we

have proposed the new iterations method which is based on the

Xoo

)(10

Xao

YBO

Yio

Yo

M 5.7625e 4+ 0
6.9645e¢ — 1
5.0815e +1
—1.2583e+0
L 2.2975e — 1

[9.4880¢e + 1
| 4.4721e + 1

[—7.2011e — 1
| 6.0252¢ — 2

[3.5630e + 1
| 1.5095¢ + 1

[1.6960e + 1
| 7.7510e + 0

[—9.1241e 4+ 0
| —4.0697¢ + 0
r 3.4933e¢ 40

6.9645¢ — 1

2.7957¢ + 1

—2.0412¢ + 0
L 3.0351e — 1

[4.9071e + 1

| 2.2361e + 1

[—1.3549¢ + 0
| —4.0168¢ — 2
[1.6960e + 1
| 7.7510e + 0
[3.5630¢ + 1
| 1.5095¢ + 1

[—9.1241e + 0
| —4.0306¢ + 0

6.9645¢ — 1
3.4933e + 0

—2.0412e + 0

2.7957e + 1

—3.0351le — 1

—1.3549¢ + 0
—4.0168e — 2
4.9071le + 1
2.236le +1
1.5095e 4+ 1
1.2160e 4 1
7.7510e + 0
3.6449¢ + 0
—4.0306e + 0
—1.8928e + 0
6.9645e — 1
5.7625e + 0

—1.2583e + 0

5.0815e +1

—2.2975e — 1

—7.2011e — 1
6.0252¢ — 2

9.4880e + 1
4.4721e + 1

7.7510e + 0
3.6449¢ + 0
1.5095¢e 4 1
1.2160e + 1

—4.0697e + 0
—1.8928e + 0

5.0815e+1 —1.2583e+0 2.2975e —1
—2.0412e+0 2.7957e+1 —3.035le —1
7.7279e+2 —3.2044e+2 4.4814e+0
—3.2044e +2 5.4282e+4+2 —5.5643e+0
4.4814e+0 —5.5643e4+0 1.5315e+0
1.3467¢ +3 —4.8954e+4+2 —7.0647e 40
5.8211le +2 —1.9452e +2 —6.3223e + 0]
—4.9963e + 2 9.1055e 42 5.4793e + 0
—2.0063e +2 3.9311le+2 5.9125e + 0}

2.7957e+1 —2.0412e+0 3.035le —1
—1.2583e+0 5.0815e+1 —2.2975e -1
5.4282e +2 —3.2044e+2 5.5643e+0
—3.2044e +2 7.7279e+2 —4.4814e+0
5.5643e +0 —4.4814e+0 1.5315e+0
9.1055e +2 —4.9963e+2 —5.4793e+0
3.9311le+2 —2.0063e +2 —5.9125e + 0]
—4.8954e + 2 1.3467¢ 43 7.0647e + 0
—1.9452e +2 5.8211le+2 6.3223e + 0}

|
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Newton’s method. The proposed algorithm has the property of
the quadratic convergence. It has been shown that the Newton’s
method can be used well to solve the GCMARE under the ap-
propriate initial condition. It may be noted that the convergence
rate of the proposed algorithm and its exact proof have been first
given in this paper.

When the dimension of the MSPS is quite large, the algo-
rithm appearing in Theorem 2 seems to be formidable. However,
this is, in fact, quite numerically tractable for small dimension
of the MSPS. Comparing with Lyapunov iterations [3], even if
the singular perturbation parameter is extremely small, we have
succeeded in improving the convergence rate dramatically. It is
expected that the Newton’s method for solving the GCMARE is
applied to the wider class of the control law synthesis involving
the solution of the CMARE with indefinite sign quadratic term
such as the mixed Hy/H, control problem [2]. This problem
will be addressed in the near future.
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