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A Numerical Analysis of the Nash Strategy for Weakly
Coupled Large-Scale Systems

Hiroaki Mukaidani

Abstract—This note discusses the feedback Nash equilibrium of linear
quadratic -player Nash games for infinite-horizon large-scale intercon-
nected systems. The asymptotic structure along with the uniqueness and
positive semidefiniteness of the solutions of the cross-coupled algebraic Ric-
cati equations (CAREs) is newly established via the Newton-Kantorovich
theorem. The main contribution of this study is the proposal of a new al-
gorithm for solving the CAREs. In order to improve the convergence rate
of the algorithm, Newton’s method is combined with a new decoupling al-
gorithm; it is shown that the proposed algorithm attains quadratic conver-
gence. Moreover, it is shown for the first time that solutions to the CAREs
can be obtained by solving the independent algebraic Lyapunov equation
(ALE) by using the reduced-order calculation.

Index Terms—Cross-coupled algebraic Riccati equations (CARE), fixed-
point algorithm, Nash games, Newton’s method, weakly coupled large-scale
systems.

I. INTRODUCTION

The stability analysis and control of large-scale systems has been ex-
tensively investigated (see, e.g., [1]). For example, these control prob-
lems can be illustrated by multiarea power systems [2], [3]. The control
problems of large-scale interconnected systems is parameterized by a
small weak coupling parameter ". This has been extensively studied in
[2], [3], [5].

The linear quadratic Nash games and their applications have been
widely investigated in many literatures (see, e.g., [9], [24] and the refer-
ences therein). In particular, the definition and standard results given in
[24] will be used for reference. There exist two different types of Nash
equilibria: a) open-loop equilibria and b) closed-loop no-memory and
feedback equilibria. The existence of open-loop Nash equilibria has
been studied in [16], [19], and [20] for both continuous and discrete
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time systems. Further, in the case of memoryless perfect-state infor-
mation structure, the asymptotic analysis of the linear feedback Nash
equilibria has also been investigated [21]–[23]. These researches have
focused on the analysis of the existence of Nash equilibria. Although
a numerical algorithm for solving the feedback Nash algebraic Riccati
equations has been presented, only a scalar feedback has been consid-
ered [23].

It is well known that in order to obtain Nash strategies, the cross-
coupled algebraic Riccati equations (CARE) must be solved. In [10],
a Newton-type algorithm for solving the CARE has been applied. A
variant of the classical eigenvector approach for solving the CARE of
the open-loop Nash games has also been studied in [16]. However, the
computing workspace for these techniques requires very large matrix
dimensions. Therefore, the reduction in the matrix dimensions poses
a crucial problem because the weakly coupled systems include nu-
merous subsystems. In contrast, in [4], the recursive algorithms have
been developed for solving the CARE of the weakly coupled systems.
Recently, an algorithm that is based on the Lyapunov iterations for
solving the CARE has been introduced [6], [7]. Although such algo-
rithms can be computed by using the dimension of each subsystem, the
convergence rate is given by the linear convergence. Moreover, there is
no proof of whether the abovementioned algorithms fail to converge in
the case of strongly coupled systems.

This note investigates the feedback Nash equilibrium of linear
quadratic N -player Nash games for infinite-horizon large-scale
interconnected systems by using Newton’s method. It should be
noted that this study considers the linear feedback strategy [18] with
memoryless perfect-state information structure [21]–[24]. This note
is an extension of [8] in the sense that the convergence criteria for "
is derived for the first time. Such a condition is derived by applying
the Newton–Kantorovich theorem. The Newton–Kantorovich theorem
plays an important role in showing that the uniqueness and positive
semidefiniteness of the convergence solutions are guaranteed in the
neighborhood of the initial conditions. Moreover, the asymptotic
structure of the solutions of the CARE is established without the
implicit function theorem. This note also proposes a new decoupling
algorithm for computing Newton’s iterations as another important
feature. As a result, a reduction in the computation is attained by using
the existing fixed-point algorithm [6], [7].

Notation: The notations used in this note are fairly standard. block
diag denotes the block diagonal matrix. The superscript T denotes the
matrix transpose. In denotes the n�n identity matrix. k�k denotes the
Euclidean norm for a matrix. vecM denotes the column vector of the
matrixM [15]. detM denotes the determinant of the matrixM .
 de-
notes the Kronecker product. �ij denotes the Kronecker delta. Re�M
denotes the real part of the eigenvalue of the matrix M .

II. PROBLEM FORMULATION

Consider weakly coupled large-scale linear systems with N players

_xi(t) = Aiixi(t) +Biiui(t) + "

N

j=1;j 6=i

Aijxj(t)

+"

N

j=1;j 6=i

Bijuj(t) xi(0) = x
0

i ; i = 1; 2; . . . ; N (1)

where xi 2 R
n , i = 1; 2; . . . ; N represent the ith state vectors.

ui 2 R
m , i = 1; 2; . . . ; N represent the ith control inputs. " denotes

a small weak coupling parameter that connects the other subsystems.
Each player attempts to minimize its cost performance subject to (1) by
exploiting the available information in order to take the correct decision
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in accordance with the sought strategy. The cost performance for each
strategy subset is defined by

Ji(u1; . . . ; uN) =

1

0

x
T (t)Qi"x(t) + u

T
i (t)Riiui(t)

+"

N

j=1;j 6=i

u
T
j (t)Rijuj(t) dt (2)

where Rii = RT
ii > 0 2 Rm �m , Rij = RT

ij � 0 2 Rm �m ,
x(t) := [x1(t)

T . . . xN (t)T ]
T 2 R�n,

Qi" =

"1�� Qi1 "Qi12 � � � "Qi1N

"QT
i12 "1�� Qi2 � � � "Qi2N

...
...

. . .
...

"QT
i1N "QT

i2N � � � "1�� QiN

� 0 2 R�n��n �n :=

N

i=1

ni; i; j = 1; 2; . . . ; N:

Let us define the following matrices:

A" :=

A11 "A12 � � � "A1N

"A21 A22 � � � "A2N

...
...

. . .
...

"AN1 "AN2 � � � ANN

Bi" :=

"1�� B1i

"1�� B2i

...
"1�� BNi

:

It should be noted that the delta scaling represents the dominant por-
tion of the matrix Bi" for each subsystem. This assumption is imposed
on the weak coupling structure. In other words, it is assumed that the
influence of the control input of each player on the subsystem is almost
negligible.

Using the abovementioned notations, the weakly coupled large-scale
linear systems (1) can be rewritten as

_x(t) = A"x(t) +

N

j=1

Bj"uj(t) x(0) = x
0
: (3)

The problem considered here requires the strategy space and informa-
tion structure available to the players to be specified. In this note, a full
state information structure is assumed and the number of players that
stabilize the constant linear feedback strategies is restricted. Thus, only
the controls ui(t) of type

ui(t) = Ki"x(t); i = 1; 2; . . . ; N (4)

are considered, where K" = (K1"; . . . ; KN") with Ki" 2 Rm ��n

belongs to the set

K" := (K1"; . . . ; KN")jA" +

N

j=1

Bj"Ki" is stable : (5)

According to the feedback information structure, a set of equilibrium
strategies should be independent of the initial state. Furthermore, the
strategies should satisfy the typical equilibrium inequalities. A formal
definition is given here (see also, e.g., [23]).

Definition 1: The strategy set (u�1; . . . ; u
�
N ) is a Nash equilibrium

strategy set if, for each i = 1; . . . ; N , the following inequality:

Ji (u
�
1; . . . ; u

�
N ) � Ji (u

�
1; . . . ; u

�
i�1; ui; u

�
i+1; . . . ; u

�
N) ;

i = 1; 2; . . . ; N (6)

holds, where u�i (t) = K�i"x(t) for all K" that satisfy

(K�1"; . . . ; K
�
N") ; (K�1"; . . . ; K

�
i�1";Ki"; K

�
i+1"; . . . ; K

�
N") 2 K":

The optimal linear feedback strategies for the Nash games are given
by

u
�
i (t) = �R�1ii BT

i"Pi"x(t); i = 1; 2; . . . ; N (7)

where Pi" are the positive–semidefinite solutions of the following
N -CAREs:

Fi(P1"; . . . ; PN")

:= Pi" A" �
N

j=1

Sj"Pj" + A" �
N

j=1

Sj"Pj"

T

Pi"

+ Pi"Si"Pi" + "

N

j=1;j 6=i

Pj"Gij"Pj" +Qi" = 0 (8)

with Si" := Bi"R
�1
ii B

T
i" , Gij" := Bj"R

�1
jj RijR

�1
jj B

T
j".

It is well known that even if the problem is linear and quadratic, the
linearity of the closed-loop Nash solutions is not guaranteed [18]. It
should be noted that in this study, the strategies u�i (t) are restricted as
the linear feedback strategies.

It should be noted that for the special problem that is considered
here, the specific strategy that relaxes the Nash strategy, which has been
studied in the previous few decades, is introduced by scaling the diag-
onal elements of the matrix Qi".

Since A" and Si" include ", the solution Pi" of the CARE (8), if
it exists, must contain terms of the order ". By taking this fact into
account, the solution Pi" of the CARE (8) with the following structure
is considered [7], [11]:

Pi" :=

"1�� Pi1 "Pi12 � � � "Pi1N

"PT
i12 "1�� Pi2 � � � "Pi2N
...

...
. . .

...
"PT

i1N "PT
i2N � � � "1�� PiN

2 R�n��n
:

Although the structure of Pi" appears to be an assumption, it can be
easily proved by directly applying the implicit function theorem to (8).
The detailed proof is omitted here due to the limitation on the number
of pages. The following analysis requires a basic assumption.

Assumption 1: The triples (Aii; Bii;
p
Qii), i = 1; 2; . . . ; N are

stabilizable and detectable.
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III. EXISTENCE OF A UNIQUE SOLUTION

First, in order to obtain Nash strategies, the asymptotic structure of
CARE (8) is established. By substituting matrices A", Si", Gij", Qi" ,
and Pi" into CARE (8), setting " = 0, and partitioning CARE (8), the
following reduced-order algebraic Riccati equations (AREs) are ob-
tained; here, �Pii , i = 1; . . . ; N are the limiting solutions of the CARE
(8) as " ! +0

�PiiAii + AT
ii
�Pii � �PiiSii �Pii +Qii = 0 (9)

where Sii := BiiR
�1
ii B

T
ii .

The limiting behavior of Pi" when " ! +0 is described by the
following lemma.

Lemma 1: [6], [7] Under Assumption 1, there exists a small �� such
that for all " 2 (0; ��), CARE (8) allows for a positive–semidefinite
solution P �

i", which can be written as

Pi" :=P �
i" = �Pi +O(")

=block diag(0 � � � �Pii � � � 0) +O("): (10)

Moreover, there exists a unique solution P �
i" of the CARE (8) in the

neighborhood of the solution �Pi.
Using the Newton–Kantorovich theorem [13], [14], which will be

presented later in this note, it is clear that there exists a small �� such
that for all " 2 (0; ��), the CARE (8) has positive semidefinite solu-
tions within the limits of the sufficiency condition. Moreover, it should
be noted that the asymptotic structure of (10) can also be obtained by
applying the Newton–Kantorovich theorem.

Although it has been generally shown that there exist several solu-
tions to the CARE [16], it should be noted that for the weakly coupled
systems, both positive semidefiniteness and uniqueness of the solutions
are guaranteed as long as " is small.

In order to obtain the optimal strategies, a useful algorithm that is
based on Newton’s method is given as follows:

P
(k+1)
i" A" �

N

j=1

Sj"P
(k)
j"

+ A" �
N

j=1

Sj"P
(k)
j"

T

P
(k+1)
i" �

N

j=1;j 6=i

P
(k+1)
j" Sj"P

(k)
i"

�
N

j=1;j 6=i

P
(k)
i" Sj"P

(k+1)
j" + "

N

j=1;j 6=i

P
(k+1)
j" Gij"P

(k)
j"

+ "

N

j=1;j 6=i

P
(k)
j" Gij"P

(k+1)
j" +

N

j=1;j 6=i

P
(k)
i" Sj"P

(k)
j"

+

N

j=1;j 6=i

P
(k)
j" Sj"P

(k)
i" + P

(k)
i" Si"P

(k)
i"

� "

N

j=1;j 6=i

P
(k)
j" Gij"P

(k)
j" +Qi" = 0 (11a)

P
(k)
i" :=

"1�� P
(k)
i1 "P

(k)
i12 � � � "P

(k)
i1N

"P
(k)T
i12 "1�� P

(k)
i2 � � � "P

(k)
i2N

...
...

. . .
...

"P
(k)T
i1N "P

(k)T
i2N � � � "1�� P

(k)
iN

(11b)

�A" :=A" �
N

j=1

Sj"P
(k)
j" ; k = 0; 1; . . . (11c)

with the initial conditions P
(0)
i" = �Pi =

block diag (0 � � � �Pii � � � 0).
The new algorithm (11) can be constructed by setting P

(k+1)
i" =

P
(k)
i" + �P

(k)
i" and ignoring the quadratic O(�P

(k)T
i" �P

(k)
i" ) term

(see, e.g., [17] in detail). Newton’s method is well known and it is
widely used to obtain solutions to algebraic equations; moreover, its
local convergence properties are well understood.

In order to establish the main result, the following fact must be con-
sidered.

Newton–Kantorovich Theorem [13], [14]: Assume that
F : Rn ! Rn is differentiable on a convex set D. Suppose
that the inverse of map F exists and moreover it is differentiable on
set D and that kF 0(x) � F 0(y)k � kx � yk for all x; y 2 D.
Suppose that there is an x0 2 D such that kF 0(x0)

�1k � �,
kF 0(x0)

�1
F (x0)k � � and � := �� < 1=2. Assume that

S := fx : kx � x0k � t�g � D, t� = (1 � p
1� 2�)=�. Then,

Newton iterations xk+1 = xk � F 0(xk)
�1
F (xk), k = 0; 1; . . .,

are well defined and converge to a solution x� of F (x) = 0
in S. Moreover, the solution x� is unique in ~S \ D, where
~S := fx : kx � x0k � ~tg � D, ~t = (1 +

p
1� 2�)=� and error

estimate is given by kx��xkk � ((2�)2 =2k�) = 21�k(2�)2 �1�,
k = 0; 1; . . ..

The main result for algorithm (11) is stated as follows.
Theorem 1: Under Assumption 1, there exists a small �� such that

for all " 2 (0; ��), Newton’s method (11) converges to the exact so-
lution of Pi" at the same rate as that of the quadratic convergence;
here, P (k)

i" is positive semidefinite and A" � N

j=1 Sj"P
(k)
j" is stable.

Moreover, the convergence solutions attain a unique solution P �
i" of the

CARE (8) in the neighborhood of the initial condition P (0)
i" = �Pi. In

other words, the following conditions are satisfied:

P
(k)
i" �Pi" �

O "2

2k ���
; k=0; 1; . . . (12a)

Re� A"�
N

j=1

Sj"P
(k)
j" =Re� �A"<0 (12b)

where

� := 2(2N � 1)

N

i=1

kSi"k+ 2"

N

i=1

N

j=1;j 6=i

kGij"k

�� := rF P
(0)
1" ; . . . ; P

(0)
N"

�1

rF(P1"; . . . ; PN") :=

@vecF
@(vecP )

� � � @vecF
@(vecP )

...
. . .

...
@vecF

@(vecP )
� � � @vecF

@(vecP )

:

Proof: Now, let us define a matrix function as follows:

Z(P) :=P A�
N

j=2

T (j�1)TSPT (j�1)

+ A�
N

j=2

T (j�1)TSPT (j�1)

T

P � PSP

+ "

N

j=2

T (j�1)TPGjPT (j�1) +Q

=0 (13)
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where

T :=

0 0 � � � 0 In
In 0 � � � 0 0

0 In � � � 0 0
...

...
. . .

...
...

0 0 � � � In 0

P :=block diag(P1" � � � PN")

A :=block diag(A" � � � A")

S :=block diag(S1" � � � SN")

Q :=block diag(Q1" � � � QN")

G2 :=block diag (GN1" G12" G23" G34" G45" � � �

G(N�1)N"

G3 :=block diag G(N�1)1" GN2" G13" G24" � � �

G(N�3)(N�1)" G(N�2)N"

...

GN :=block diag (G21" G32" G43" G54" � � �

GN(N�1)" G1N" :

Since the function Z(P) is continuous at any P , taking the partial
derivative of the function Z(P) with respect to P yields

rZ(P) :=
@vecZ(P)

@(vecP)T

= A� SP �

N

j=2

T (j�1)TSPT (j�1)

T


 I�n

+ I�n 
 A� SP �

N

j=2

T (j�1)TSPT (j�1)

T

�

N

j=2

T (j�1)T 
 PT (j�1)TS

�

N

j=2

PT (j�1)TS 
 T (j�1)T

+ "

N

j=2

GjPT
(j�1)

T


 T (j�1)T

+ "

N

j=2

T (j�1)T 
 GjPT
(j�1)

T

: (14)

Thus, for any matrices X and Y that belong to P , it is immediately
obtained from (14) that

krZ(X )�rZ(Y)k � �kX � Yk: (15)

Moreover, using (14), it is easy to derive that

rF P
(0)
1" ; . . . ; P

(0)
N" =

J0 � � � 0
...

. . .
...

0 � � � J0

+O(") (16)

where

J0 =block diag(D11 � � � DNN)

Dii := (Aii�Sii �Pii)
T 
 In +In 
(Aii � Sii �Pii)

T : (17)

Evidently, Dii := Aii � Sii �Pii is nonsingular because the ARE
(9) has a positive semidefinite stabilizing solution under Assump-
tion 1. Therefore, the matrix in (16) is invertible for sufficiently
small ". Consequently, �� = k[rF(P

(0)
1" ; . . . ; P

(0)
N" )]

�1
k ex-

ists as a finite number that is independent of ". On the other
hand, since Fi(P

(0)
1" ; . . . ; P

(0)
N" ) = O("), there exists �� such that

�� = k[rF(P
(0)
1" ; . . . ; P

(0)
N" )]

�1
k � kF(P

(0)
1" ; . . . ; P

(0)
N" )k= O("),

where

F(P1"; . . . ; PN") := [F1(P1"; . . . ; PN"); . . . ;FN(P1"; . . . ; PN")] :

Thus, for a sufficiently small ", there exists �� such that �� = ����� <
2�1 because of �� = O("), lim

"!+0
kGij"k < 1, and

lim
"!+0

� = lim
"!+0

2(2N � 1)

N

i=1

kSi"k

+2"

N

i=1

N

j=1;j 6=i

kGij"k <1:

Using the Newton–Kantorovich theorem, the error estimate is given by

P
(k)
i" � Pi" �

(2��)2

2k ���
; k = 0; 1; . . . : (18)

Substituting 2�� = O(") into (18), (12a) holds.
Second, the uniqueness of the solution is discussed. Now, let us de-

fine �t� � (1=� ��)[1� 1� 2��]. Clearly, S � fPi" : kPi"�P
(0)
i" k �

�t�g is in the convex set D. In the sequel, since kPi" � P
(0)
i" k = O(")

holds for a small ", the uniqueness of P �i" is guaranteed for a subset S
by applying the Newton–Kantorovich theorem.

Since the remainder of the proofs for positive semidefiniteness and
stability are similar to the proof given in [6] and [7], they have been
omitted.

The subject of this note is closely related to the result of [25]. From
this result, it is clear that for a small ", the considered game will have a
unique feedback Nash equilibrium. However, it will not be possible to
obtain a supremum �� such that the game has a unique feedback Nash
equilibrium for all " 2 (0; ��).

It should be noted that no proof exists of whether the proposed algo-
rithm fails to converge for strongly coupled systems. In this note, the
convergence criteria for " is established for the first time. Such a con-
dition is derived from the Newton–Kantorovich theorem.

Corrollary 1: If the following inequality holds for any small param-
eter: " = "0

��(") = �����

:= rF P
(0)
1" ; . . . ; P

(0)
N"

�1 2

� F P
(0)
1" ; . . . ; P

(0)
N"

� 2(2N � 1)

N

i=1

kSi"k+ 2"

N

i=1

N

j=1;j 6=i

kGij"k

< 2�1 (19)

algorithm (11) guarantees quadratic convergence.
Proof: Since it is clear that this proof can be derived by applying

the Newton–Kantorovich theorem, it has been omitted.
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IV. A NUMERICAL ALGORITHM FOR SOLVING THE CARE

When the cross-coupled algebraic Lyapunov equation (CALE) (11a)
is solved, the existence of the cross-coupled term

�

N

j=1;j 6=i

P
(k+1)
j" Sj"P

(k)
i" �

N

j=1;j 6=i

P
(k)
i" Sj"P

(k+1)
j"

+"

N

j=1;j 6=i

P
(k+1)
j" Gij"P

(k)
j" + "

N

j=1;j 6=i

P
(k)
j" Gij"P

(k+1)
j"

in CALE (11a) makes it difficult to solve this equation directly. Thus,
in order to avoid the cross-coupled term, a new decoupling algorithm
that is based on the fixed-point algorithm is established. Taking into
account the fact that Sj"P

(k)
i" = O("), i 6= j, let us consider CALE

(20) in its general form

Xi"�" +�T
" Xi" + "

N

j=1;j 6=i

Xj"�j" +�T
j"Xj" + Ui" = 0;

i = 1; . . . ; N (20)

where

Xi" :=

"1�� Xi1 "Xi12 � � � "Xi1N

"XT
i12 "1�� Xi2 � � � "Xi2N

...
...

. . .
...

"XT
i1N "XT

i2N � � � "1�� XiN

�" :=

�11 "�12 � � � "�1N

"�21 �22 � � � "�2N

...
...

. . .
...

"�N1 "�N2 � � � �NN

�i" :=

�i1 "�i12 � � � "�i1N

"�i21 �i2 � � � "�i2N

...
...

. . .
...

"�iN1 "�iN2 � � � �iN

Ui" :=

"1�� Ui1 "Ui12 � � � "Ui1N

"UT
i12 "1�� Ui2 � � � "Ui2N

...
...

. . .
...

"UT
i1N "UT

i2N � � � "1�� UiN

:

It should be noted that

P
(k+1)
i" ) Xi" P

(k+1)
j" ) Xj"

A" �

N

j=1

Sj"P
(k)
j" ) �" � Sj"P

(k)
i" + "Gij"P

(k)
j" ) "�j"

N

j=1;j 6=i

P
(k)
i" Sj"P

(k)
j" +

N

j=1;j 6=i

P
(k)
j" Sj"P

(k)
i" + P

(k)
i" Si"P

(k)
i"

� "

N

j=1;j 6=i

P
(k)
j" Gij"P

(k)
j" +Qi" ) Ui"

where ) represents the replacement.
Without loss of generality, the following condition is assumed for

CALE (20).
Asumption 2: �11; . . . ;�NN are stable.

Algorithm (21) for solving CALE (20) is given as follows:

X
(n+1)
i" �" + �T

"X
(n+1)
i"

+ "

N

j=1;j 6=i

X
(n)
j" �j" +�T

j"X
(n)
j" + Ui" = 0;

i = 1; . . . ; N; n = 0; 1; . . . (21)

where X(0)
i" = 0, i = 1; . . . ; N .

It should be noted that since (20) is modified as (21), the numerical
computation can be carried out independently for each solution. The
following theorem indicates the convergence of algorithm (21).

Theorem 2: Under Assumption 2, the fixed-point algorithm (21)
converges to an exact solution Xi" with a rate of

X
(n)
i" �Xi" = O("n); n = 1; 2; . . . : (22)

Proof: The proof of Theorem 2 can be derived by using mathe-
matical induction. When n = 0 for algorithm (21), it is easy to verify
that the first-order approximations Xi" corresponding to " are X(1)

i" .
When n = h, h � 2, it is assumed that

X
(h)
i" �Xi" = O("h): (23)

By subtracting (20) from (21) and substituting h into n, the following
equations hold:

X
(h+1)
i" �Xi" �" + �T

" X
(h+1)
i" �Xi"

= �"

N

j=1;j 6=i

X
(h)
j" �Xj" �j" + �T

j" X
(h)
j" �Xj" :

(24)

Using assumption (23), the following equations are satisfied:

X
(h+1)
i" �Xi" �" +�T

" X
(h+1)
i" �Xi" = O("h+1): (25)

Since from Assumption 2, �ii, i = 1; 2; . . . ; N are stable, �" is stable.
Using the standard properties of the algebraic Lyapunov equation
(ALE) [12], it is easy to verify that

X
(h+1)
i" �Xi" = O("h+1): (26)

Consequently, error (22) hold for all n 2 N. This completes the proof
of Theorem 2.

When ALE (21) is solved, a large computational dimension �n :=
N

i=1 ni is required to be compared with the small computational di-
mensions ni, i = 1; . . . ; N . Thus, in order to reduce the computational
dimension, a fixed-point algorithm can be applied (see, e.g., [6], [7]).

It is well known that it is very difficult to solve the CARE. For
example, in the case of Newton’s method, it is necessary to solve the
large linear equations that depend on the other iterative solutions. In
this study, the decoupling algorithm that combines Newton’s method
with the fixed-point algorithm has been provided for the first time in
order to avoid such a dependence. This novel idea is based on the
property of P (k+1)

j" Si"P
(k)
i" = O("), where " is a weakly coupled

perturbation parameter. As a result, since the iterative solutions
P
(k+1)
1" ; P

(k+1)
2" ; . . . do not depend on other equations, each solution

can be solved independently.
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TABLE I
CONVERGENCE CRITERIA FOR VARIOUS PARAMETERS

TABLE II
ERROR PER ITERATIONS

V. NUMERICAL EXAMPLE

In order to demonstrate the efficiency of the proposed algorithm,
an illustrative example is provided. The system matrices are given as
follows:

A11 =

0 1 �0:2 0

�0:7 �1:7 �1:3 �0:3

0 0 0 1

�1:9 0 �0:5 �0:3

A12 =

0:2 0 �0:8 0:2

�0:1 0 1:1 �0:1

0 0 0 0

0:2 0 1:1 0:4

A13 =

0:7 0 �0:2 0:3

�0:4 0 2:8 �0:2

0 0 0 0

0:9 0 1:7 0:2

A21 =

0:2 0 0:1 0:3

�1:1 0 �1:6 �0:1

0 0 0 0

�1:4 0 1:3 �0:3

A22 =

�0:2 1 �1:6 �0:5

�1:9 �1:8 1:3 �0:1

0 0 0 1

�3:1 0 �0:5 0:3

A23 =

0:6 0 0:4 0:2

�1 0 1:4 �0:4

0 0 0 0

0:1 0 0:2 �0:2

A31 =

�0:2 0 0:8 0

�0:6 0 �1:0 0:9

0 0 0 0

�1:2 0 0:4 �0:1

A32 =

0:1 0 0:2 0

�1:1 0 1:7 �0:1

0 0 0 0

�0:7 0 0:6 �0:1

A33 =

�0:1 1 �1:2 �0:3

�0:5 �0:2 0:7 �1:3

0 0 0 1

�0:3 0 �0:2 �0:7

TABLE III
NUMBER OF ITERATIONS

B11 =

0

0:5

0

0

B22 =

0

0:7

0

0

B33 =

0

1:0

0

0

Q11 =Q22 = Q33 = 0:1� I4

R11 =R22 = R33 = 0:1 R12 = R13 = 0:2

R23 =R21 = 0:3 R31 = R32 = 0:1:

Table I shows the values of �� for various values of ". Since the con-
vergence criteria (19) of Newton’s method is satisfied for " = 1:0e �
07, the asymptotic structure of the solutions with uniqueness, positive
semidefiniteness and quadratic convergence is attained for any " value
that is smaller than " = 1:0e�07. It should be noted that convergence
criteria (19) is a conservative condition. Hence, even if such a condition
is not satisfied, a required solution that attains quadratic convergence
might exist. In fact, the existence of a unique convergence solution for
some parameter will be verified later.

In order to verify the exactitude of the solution, the remainder per it-
eration is computed for several values of " by substituting P

(k)
i"

into
CARE (8). Table II shows the errors E(") per iteration for various
values of ", where E(") := 3

i=1 kFi(P
(k)
1" ; P

(k)
2" ; P

(k)
3" )k. It should

be noted that when " = 1:0e � 01, algorithm (11a) converges to the
exact solution with an accuracy of E(") < 1:0e � 10 after four iter-
ations. Hence, it can be observed from Table II that algorithm (11a)
attains quadratic convergence.

The required iterations of the proposed algorithm (11a) versus the
Lyapunov iterations [6], [7] are presented in Table III. It can be ob-
served from Table III that as compared with the Lyapunov iterations,
the proposed algorithm (11a) succeeds in reducing the number of it-
erations for different values of ". In particular, for a large " value, the
required iterations are small. Hence, the resulting algorithm in this note
is very attractive for a sufficiently small ".

Table IV presents the results of the CPU time with regard to the com-
parison between the new method and Lyapunov iterations [6], [7]. The
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TABLE IV
CPU TIME [SEC]

CPU time represents the average based on the computations of ten runs.
The CPU time is the total time that has been used for all the iterations.
In other words, it should be noted that the CPU time used for the de-
coupling algorithm is included in the total CPU time used in Newton’s
method. It can be observed from Table IV that as compared to the Lya-
punov iterations [6], [7], the iterative algorithm (11) requires consid-
erably more CPU time. This is because the computation of algorithm
(21) involves many procedures. However, it should be noted that the
proposed algorithm is useful because the positive semidefiniteness and
uniqueness of the proposed algorithm can be guaranteed, whereas those
of the Lyapunov iterations cannot be guaranteed.

From the viewpoint of this example, it should be noted that when the
fixed-point algorithm is applied, even if the number of subsystems is
greater than four, the computing workspace required for the strategies
is the same as the dimension of the subsystems. In other words, even if
the large-scale systems (1) are composed of N four-dimensional sub-
systems, the required workspace is four.

VI. CONCLUSION

In this note, Nash games for large-scale systems that are connected
by " have been studied. A new algorithm that combines Newton’s
method and fixed point iterations for solving the large-scale CAREs
has been proposed. It should be noted that the proposed design method
is rather different from the existing methods such as the recursive
approach [11] and the Lyapunov iterations [6], [7]. As a result, the
convergence rate has been dramatically improved because the pro-
posed algorithm attains quadratic convergence. Another important
feature is that the asymptotic structure with uniqueness and positive
semidefiniteness has been proved by using the Newton–Kantorovich
theorem. Moreover, the convergence criteria of Newton’s method has
been derived for the first time.

Finally, by using the new decoupling algorithm, a solution can be
obtained by solving the independent ALE. Moreover, when the fixed-
point algorithm [6], [7] is applied, the required workspace is the same
as the dimension of each subsystem. Thus, the proposed algorithm is
expected to be very useful and reliable for a sufficiently small ".

It should be noted that there are no results for a large ". In partic-
ular, for a large ", a unique equilibrium will not exist. Therefore, it is
impossible to verify that even if the proposed algorithm converges to
a solution, more than one solution exists. The principal result of this
note is that for a given a priori number ��, the game will have a unique
equilibrium for all " values smaller than this number. These problems
and their extensions will be addressed in future investigations.

The author would like to thank the anonymous reviewers for their
constructive and insightful comments, which greatly improved this
note.
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