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Online Learning of Virtual Impedance Parameters in
Non-Contact Impedance Control Using Neural Networks

Toshio Tsuji, Mutsuhiro Terauchi, and Yoshiyuki Tanaka

Abstract—Impedance control is one of the most effective methods for
controlling the interaction between a manipulator and a task environment.
In conventional impedance control methods, however, the manipulator
cannot be controlled until the end-effector contacts task environments. A
noncontact impedance control method has been proposed to resolve such a
problem. This method on only can regulate the end-point impedance, but
also the virtual impedance that works between the manipulator and the
environment by using visual information. This paper proposes a learning
method using neural networks to regulate the virtual impedance param-
eters according to a given task. The validity of the proposed method was
verified through computer simulations and experiments with a multijoint
robotic manipulator.

Index Terms—Impact control, impedance control, noncontact
impedance, neural networks (NN), robot manipulator.

I. INTRODUCTION

Ahumancanperformavariety ofcontact tasks indailyactivitieswhile
regulating his/her own dynamic properties according to time-varying
environmental conditions. In the ball-catching task, for example, a
player should take action for catching the ball before contacting with the
approaching ball. If action is not taken, it would be too late to prepare for
the task and the player would fail to catch the ball. Besides, the human
player has to regulate dynamic properties of his arm according to ball
velocity as well as its physical properties, i.e., the player should make
his arm compliant before catching a ball and move his hand to a suitable
catching point as smooth as possible. He should also stiffen his arm to
cope with the impact force in the moment of catching.

To realize such human skillful strategies for dynamic tasks by a
robot, it is naturally required to change dynamic characteristics of the
robot according to time-varying circumstances during a target task. The
main purpose of this paper is to bring such human skillful strategies
for dynamic tasks into robot motion control in the framework of the
impedance control.

Impedance control [1], [2] is one of the most important methods of
controlling the interaction between a manipulator and an environment.
This method can regulate response properties of the manipulator to ex-
ternal disturbances by modifying the mechanical impedance parame-
ters; i.e., inertia, viscosity, and stiffness. However, since no external
force is exerted until the end-effector contacts task environments, the
conventional method is not applicable in situations where the manipu-
lator must reduce the end-effector velocity before it contacts the object.

To cope with such problems of the conventional method, some
studies have employed visual information of the task space in
impedance control of robot manipulators [3]–[5]. Castano and
Hutchinson [3] proposed a concept of visual compliance using vi-
sion-based control. However, their proposal does not discuss regulating
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the value of visual compliance of the end-effector. Tsuji et al. [4]
and Nakabo et al. [5] proposed a virtual impedance concept using
visual information. In particular, Tsuji et al. have developed a non-
contact impedance control method [4], where the virtual impedance
is defined between the end-effector and the object when the object
enters a virtual sphere established around the tip of the manipulator.
Therefore, a virtual force for controlling the end-effector motion can
be generated before the end-effector contacts the object by using
local visual information inside the virtual sphere. This method can
also regulate dynamic properties of the end-effector by the virtual
impedance parameters according to tasks in the same way as the
conventional impedance method. In these methods based on visual
information, however, it is extremely difficult to regulate the virtual
impedance parameters according to the time-varying characteristics of
moving objects and task environments. For such an awkward problem,
the learning technique using a neural network (NN) is applied in this
study to design the desired impedance parameters.

There have been numerous studies on force and hybrid control
and impedance control using NNs [6]–[17]. However, most of these
methods aim to realize the desired impedance parameters, given in
advance, through learning of NNs in consideration of the model
uncertainties of manipulator dynamics and task environments, and
the external disturbances. In contrast, some methods using NNs try
to find the desired impedance according to tasks and environmental
conditions [18]–[23]. For example, Yang and Asada [20] proposed
a progressive learning method using NNs that can obtain the target
impedance parameters by modifying the desired velocity trajectory.
However, it does not clearly discuss how to regulate the operational ve-
locity during learning of the NNs. Also, many iterative trials (200–300
times) are required to complete the learning. Tsuji et al. [21]–[23]
thus proposed iterative learning methods using NNs that can regulate
all impedance parameters as well as a desired end-point trajectory at
the same time. These methods by Tsuji et al. can provide a smooth
transition of the end-effector from free to contact movements, but
cannot be applied to noncontact tasks in which the manipulator may
not touch its environment. In addition, its application is limited to only
cyclical tasks because the learning is performed in offline.

In this paper, we propose an online learning method using NNs
for regulating the virtual impedance parameters in the noncontact
impedance control by expanding the previous methods [21]–[23].
The present method can design the desired virtual impedance through
learning of NNs with an energy function depending on a given task,
and can also adapt the relative velocity during free movements and the
interaction force during contact movements. This paper is organized as
follows. First, the noncontact impedance control method is explained
in Section II. The proposed online learning method is described in
detail in Section III. In Section IV, validity of the proposed method is
investigated through a series of computer simulation and experiments
with a real robot in a ball-catching task by the proposed online learning
method.

II. NON-CONTACT IMPEDANCE CONTROL

A. Impedance Control

In general, a motion equation of an m-joint manipulator in the l-di-
mensional task space can be written as

M(�)�� + h(�; _�) = � + J
T (�)Fint (1)
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where � 2 <m is the joint angle vector;M(�) 2 <m�m is the nonsin-
gular inertia matrix (hereafter, denoted by M�); h(�; _�) 2 <m is the
nonlinear term including the joint torque due to the centrifugal, Cori-
olis, gravity, and friction forces; � 2 <m is the joint torque vector;
Fint 2 <

l is the external force exerted on the end-effector; and J(�) 2
<l�m is the Jacobian matrix (hereafter, denoted by J ).

The desired impedance properties of the end-effector can be ex-
pressed as

Med �X +Bed _X +KedX = Fint (2)

where Me; Be; Ke 2 <l�l are the desired inertia, viscosity and stiff-
ness matrices of the end-effector, respectively; and dX = Xe �Xd 2
<l is the displacement vector between the current position of the end-
effector Xe and the desired one Xd. The impedance control law does
not use an inverse of the Jacobian matrix and is given [2] as follows:

� = �e�ector + �comp (3)

�e�ector = J
T

Mx(�) M
�1
e (�KedX �Bed _X)

+ �Xd � _J _� � I �Mx(�)M
�1
e Fint (4)

�comp = (M�1
J
T
Mx(�)J)

T
ĥ(�; _�); (5)

where Mx(�) = (JM̂�1JT )�1 2 <l�l indicates the operational
space kinetic energy matrix that is proper as long as the joint configu-
ration � is not singular; �e�ector 2 <m in (4) is the joint torque vector
necessary to realize the desired end-effector impedance; �comp 2 <

m

in (5) is the joint torque vector for nonlinear compensation; ĥ(�; _�) and
M̂ denote the estimated values of h(�; _�) and M� , respectively, and I
is the l � l unit matrix.

Impedance properties of the end-effector can be regulated by the
designed controller in (3).

B. Non-Contact Impedance Control

Fig. 1 schematically represents the noncontact impedance control.
Let us consider the case in which an object approaches a manipulator,
and set a virtual sphere with radius r at the center of the end-effector.
When the object enters the virtual sphere, the normal vector from the
surface of the sphere to the object dXo 2 <

l can be represented as

dXo = Xr � rn (6)

whereXr = Xo�Xe is the displacement vector from the center of the
sphere (namely, the end-point position) Xe = [x1e; x

2
e; . . . ; x

l

e]
T 2 <l

to the object Xo = [x1o; x
2
o; . . . ; x

l

o]
T 2 <l; and the vector n 2 <l is

given by

n =

Xr

jXrj
(jXrj 6= 0)

0 (jXrj = 0)
: (7)

When the object is in the virtual sphere (jXrj < r), the virtual
impedance works between the end-effector and the object so that the
virtual external force Fo 2 <l is exerted on the end-effector by

Fo =
Mod �Xo +Bod _Xo +KodXo (jXrj < r)

0 (jXrj � r)
(8)

where Mo; Bo, and Ko 2 <
l�l represent the virtual inertia, viscosity

and stiffness matrices. It should be noted that Fo becomes zero
when the object is outside the virtual sphere or at the center of the
sphere. Thus, the dynamic equation of the end-effector for noncontact
impedance control can be expressed with (2) as

Med �X +Bed _X +KedX = Fint + Fo: (9)

Fig. 1. Schematic representation of a noncontact impedance control [4], [5].

Substituting (8) into (9), the motion equation of the end-effector for
the external forces depending on the object positionXo and the desired
end-effector position Xd yields

M �Xe +B _Xe +KXe = �F (10)
�F = Fint +Me

�Xd +Be
_Xd +KeXd

+Mo
��Xo +Bo

_�Xo +Ko
�Xo (11)

where M = Mo +Me; B = Bo + Be; K = Ko + Ke, and �Xo =
Xo � rn. For simplicity, we argue the stability of the proposed linear
time-invariant system given by (10) under �F = 0. The candidate of a
Lyapunov function for the proposed control system can be designed as

Ve =
1

2
X

T

e (M�1
K)Xe + _XT

e
_Xe (12)

assuming that the matrix M�1K is a positive definite one.
Time-derivation of the Lyapunov function is then derived by using
(10) as follows:

_Ve = � �XT

e (M�1
B) �Xe < 0: (13)

Therefore, the proposed control system is stable as far as M�1K and
M�1B are positive definite, and this condition is equivalent to that
M;B;K are positive definite matrices. It should be noted that the vir-
tual impedance parameters can take negative values within the derived
stable condition.

Fig. 2 depicts a block diagram of the noncontact impedance control.
In the noncontact impedance control, the relative motion between the
end-effector and the object can be regulated by the virtual impedance
parameters during noncontact movements. In addition, the end-effector
impedance can be modified according to the target task in the same way
as in the conventional method. The main purpose of this paper is to
develop an online learning method using NNs for regulating the virtual
impedance parametersMo; Bo;Ko according to a target task including
contacts with environments under the stable conditions.

III. LEARNING OF VIRTUAL IMPEDANCE BY NNS

A. Structure of Control System

In the proposed control system, the virtual impedance part in Fig. 2
is composed of three multilayered NNs as shown in Fig. 3: a virtual
stiffness network (VSN) at Ko, a virtual viscosity network (VVN) at
Bo, and a virtual inertia network (VIN) at Mo. The detailed structure
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Fig. 2. Block diagram of the noncontact impedance control.

Fig. 3. Virtual impedance composed of three components.

Fig. 4. Virtual stiffness realized by a neural network.

of the VSN is shown in Fig. 4, and VVN and VIN have the same struc-
ture; an input layer, a set of hidden layers, and an output layer. The
number of hidden layers and units are determined according to target
tasks. The NNs input the relative motion between end-effector and ob-
ject (Xr; _Xr , and �Xr) and the interaction force Fint, while each NN
outputs the corresponding impedance parameter: Ko from the VSN,
Bo from the VVN, and Mo from the VIN.

The NNs utilize a linear function in the input units and a sigmoid
function in the hidden and output units. Therefore, the input and output
of each unit in the i-th layer, xi and yi, can be derived as

xi =
Ii (input layer)
wijyi (middle and output layers);

(14)

yi =

xi (input layer)
1

1+e
(middle layer);

U

2
1�e

1+e
(output layer)

(15)

where wij indicates the weight coefficient from the unit j to i; and U
and  are positive constants for the maximum output and the threshold
of NN, respectively. The outputs of NNs are represented by the fol-
lowing vectors:

OS = oTS1; o
T
S2; . . . ; o

T
Sl

T

2 <l (16)

OV = oTV 1; o
T
V 2; . . . ; o

T
V l

T

2 <l (17)

OI = oTI1; o
T
I2; . . . ; o

T
Il

T

2 <l (18)

where oSi; oV i, and oIi 2 <l are the vectors which consist of the
output values of the VSN, VVN, and VIN corresponding to the i-th
row of the matrices Ko; Bo, and Mo, respectively.

B. Learning of NN

The learning of NNs is performed by modifying synaptic weights
in the NNs so as to minimize an energy function E(t) depending on
tasks under the stable conditions derived in Section III-B. The synaptic
weights in the VSN, w(S)

ij , the VVN, w(V )
ij , and the VIN, w(I)

ij , are
modified in the direction of the gradient descent to reduce the energy
function E(t) as

�w
(S)
ij = ��S

@E(t)

@w
(S)
ij

(19)

�w
(V )
ij = ��V

@E(t)

@w
(V )
ij

(20)

�w
(I)
ij = ��I

@E(t)

@w
(I)
ij

(21)

@E(t)

@w
(S)
ij

=
@E(t)

@Fact(t)

@Fact(t)

@OS(t)

@OS(t)

@w
(S)
ij

(22)

@E(t)

@w
(V )
ij

=
@E(t)

@Fact(t)

@Fact(t)

@OV (t)

@OV (t)

@w
(V )
ij

(23)

@E(t)

@w
(I)
ij

=
@E(t)

@Fact(t)

@Fact(t)

@OI(t)

@OI(t)

@w
(I)
ij

(24)

where �C (C = S; V; I) is the learning rate of each NN, Fact(t) is the
control input, and OC(t) 2 R

l�l is the NN output; i.e., Ko; Bo;Mo.
The term (@Fact(t))=(@OC(t)) can be computed from Fig. 2 and

(8), and (@OC(t))=(@w
(C)
ij ) can be obtained by the error back-prop-

agation learning method. However, the term (@E(t))=(@Fact(t))
cannot be computed directly because of the nonlinear dynamics of the
manipulator. In the online method, the term (@E(t))=(@Fact(t)) is
approximated in the discrete-time system so that �w(C)

ij can be cal-
culated in real time by using the change of E(t) for a slight variation
of Fact(t).

Defining the energy function E(t) depending on end-point position
and velocity, Xe(t) and _Xe(t), the term (@E(t))=(@Fact(t)) can be
expanded from Fig. 2 as

@E(t)

@Fact(t)
=

@E(t)

@Xe(t)

@Xe(t)

@Fact(t)
+

@E(t)

@ _Xe(t)

@ _Xe(t)

@Fact(t)
: (25)

Applying the nonlinear compensation technique with

� = fM̂�1JTMxJg
T ĥ(�; _�)

�JTFint + JTMxfFact � _J _�g (26)

to the nonlinear equation of motion given in (1), the following linear
dynamics in the operational task space can be derived as

�X = Fact: (27)

The slight change of control input �Fact(t) within short time yields
the following approximations:

�Xe(t) � �Fact(t)�t
2
s (28)

� _Xe(t) � �Fact(t)�ts (29)

so that (@X(t))=(@Fact(t)) and (@ _X(t))=(@Fact(t)) can be ex-
pressed [23] as follows:

@Xe(t)

@Fact(t)
�

�Xe(t)

�Fact(t)
= �t2sI (30)

@ _Xe(t)

@Fact(t)
�

� _Xe(t)

�Fact(t)
= �tsI (31)
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where �ts is a sampling interval. Consequently the term
(@E(t))=(@Fact(t)) can be approximately computed by

@E(t)

@Fact(t)
=

@E(t)

@Xe(t)
�t2s +

@E(t)

@ _Xe(t)
�ts: (32)

With the designed learning rules in (19)–(32), an online learning can
be performed so that the output of NNs,OC(t), will be regulated to the
optimal virtual impedance parameters for tasks.

IV. APPLICATION TO CONTACT TASKS

Many researchers have discussed and analyzed theoretical condi-
tions for the control parameters and stabilities in contact tasks by the
manipulator [24], [25]. In contrast, this paper investigates the effective-
ness of the proposed online learning method using NNs for regulating
the virtual impedance according to contact tasks of the manipulator.

An example of contact tasks is a catching task in which a manipulator
contacts an approaching object by the end-effector and tries to make the
relative movements as smooth as possible. Computer simulations and
experiments with a real robot were conducted by means of the proposed
online learning method.

A. Energy Function for Catching Task

In contact tasks by a robotic manipulator, the interaction force be-
tween the end-effector and its environment should converge to the de-
sired value without overshooting to avoid exerting a large interaction
force on the manipulator and the environment. To this end, the rela-
tive velocity between the end-effector and the environment should be
reduced before contact, and the end-point force after contact with the
environment should be controlled. Accordingly, an energy function for
the learning of NNs can be defined as

E(t) = Ev(t) + �Ef (t) (33)

Ev(t) =
1

2
(�(Xr) _Xr(ti)� _Xr(t))

2 (34)

Ef(t) =
1

2

t

0

(Fd(u)� Fint(u))
2 du (35)

where ti is the time when the virtual sphere just contacts the environ-
ment; and �(Xr) is the time-varying gain function that should be de-
signed according to contact tasks so as to avoid generating an excessive
interaction force while performing the stable learning of NNs immedi-
ately after the environment enters the virtual sphere. The terms Ev(t)
and Ef(t) in (33) evaluate the relative velocity and the force error.

B. Computer Simulations

Fig. 5 illustrates a catching task by a manipulator with one degree-of-
freedom (l = 1). A ball is represented by a viscoelastic model as
shown in Fig. 5(b) and hung from the ceiling by a pendulum with
length L = 2:1 [m], where the base of the pendulum is located at
Xf = [0:15; 2:1]T [m] in the operational task coordinate system which
origin is set at the initial hand position. The virtual impedance works
between the end-effector and the ball when the ball is in the virtual
sphere with radius r = 0:2 [m]. Both the initial and target positions
of the end-effector are established at the origin of the task space, and
the initial angle of the pendulum at �0 = ��=18 [rad]. Also, the
impedance parameters of the end-effector are set as Me = 25 [kg],
Be = 200 [Ns/m], Ke = 400 [N/m], and those of the ball as Bb = 40
[Ns/m], Kb = 500 [N/m] with weight Mb = 0:5 [kg] and radius
Rb = 0:03 [m].

The NNs utilized in the computer experiments were four-layered net-
works with four input units, two hidden layers with ten units, and one

Fig. 5. Example of a catching task.

Fig. 6. Gain function used in an energy function.

output unit; the initial values of the synaptic weights wij were ran-
domly chosen under jwij j < 0:05; the learning rates of NNs were
�S = 0:04 for VSN, �V = 0:08 for VVN, and �I = 1:0 � 10�4 for
VIN; the sigmoid functions in the output units were adjusted so that
the output values of NNs were within�1000–1000, that is, U = 2000
in (12); the synaptic weights were modified five times in every sam-
pling interval; and the constant parameter � of E(t) in (33) was set to
� = 5:0 � 10�3.

The term (@E(t))=(@Fact(t)) in (22), (23), and (24) was calculated
online by using the energy functions in (33)–(35) based on the approx-
imation techniques given in (30), (31) as follows:

@E(t)

@Fact(t)
=

@Ev(t)

@Fact(t)
+ �

@Ef(t)

@Fact(t)
(36)

@Ev(t)

@Fact(t)
= �ts

@Ev(t)

@ _Xr(t)
(37)

@Ef(t)

@Fact(t)
= �t2s

@Ef(t)

@Xr(t)
+ �ts

@Ef(t)

@ _Xr(t)
: (38)

In the ball-catching task, the end-effector should move with the same
direction as the approaching direction of the ball at the first phase and
then slow down gradually in order to catch the ball. Consequently the
gain function �(Xr) in (34) was designed as shown in Fig. 6 by

�(Xr) =
sin

(jXrj �Rb)�

2(r�Rb)
(jXrj � Rb)

0 (jXrj < Rb)
: (39)

In the simulation experiments, the virtual force exerted on the end-
effector is invalidated (Fo = 0 [N]) after the end-effector contacts
with the ball, and the learning of NNs is terminated when the relative
velocity between the end-effector and the ball becomes under _Xr <
5:0 � 10�3 [m/s] in contact movements.

Figs. 7 and 8 present the simulation results with and without the
proposed real-time learning under the desired interaction force Fd =
2 [N], where the figure (a) depicts the trajectories of the end-effector
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Fig. 7. Simulation results of the catching-a-ball task without learning. (a)
Hand and ball motions. (b) Interaction force.

Fig. 8. Simulation results of the catching-a-ball task with real-time learning.
(a) Hand and ball motions. (b) Interaction force.

(solid line) and the ball (broken line) while the figure (b) describes
the time history of the interaction force. Fig. 8 shows that the end-
effector takes avoidance actions before contacting with the approaching
ball. Consequently, the manipulator catches the ball smoothly, and it’s
end-effector force after catching the ball is almost equal to the desired
interaction force.

Fig. 9 shows the time histories of the virtual impedance parameters
Ko; Bo, and Mo during the catching-a-ball task. Both of Ko and Bo

increase just after the ball enters the virtual sphere, so that the manip-
ulator can reduce the impact force by shifting the end-effector in the
opposite direction of the approaching ball. On the other hand, Mo in-
creases during free movements to control the end-effector with stable
movements, and then reduces after contacting with the ball to reduce
the interaction force. It can be seen that the proposed learning method
can regulate the virtual impedance parameters effectively according to
situations in the target task. It should be noted that the stable conditions
are fulfilled in all cases: both M�1K andM�1B are positive definite.

C. Experiments With the Robotic Manipulator

To show the effectiveness of the proposed method, we performed
catching-task experiments with a six-DOF multijoint robotic manipu-
lator (MoveMaster RM-501: Mitsubishi Electric, Corp.) as shown in
Fig. 10. A load cell (Kyowa Co., Ltd.) is attached at the end-effector of
the manipulator to measure the contact force (see Fig. 11), where the
object is a wooden cubic with 0.1 [m] each side. The object is hung
from the ceiling by an aluminum stick with 1.7 [m] and swung like a
pendulum, while its position is measured by a three-dimensional (3-D)
position sensor (ISOTRACKII: POLHEMUS, Ltd.). Note that motions

Fig. 9. Change of the virtual impedance parameters during the catching-a-ball
task. (a) Virtual stiffnessK . (b) Virtual viscosity B . (c) Virtual inertiaM .

Fig. 10. Six-DOF multijoint manipulator.

of the robotic arm and the object are restricted on the vertical two–di-
mensional (2-D) plane in the experiments.

The experiments were performed by changing the weight of ob-
ject Mb, where the initial distance between the object and the end-ef-
fector was set as D = 0:25 [m]. The desired hand impedance of
the end-effector was set at Ke = diag:[400; 400;400] [N/m], Be =
diag:[200; 200;200] [Ns/m],Me = diag:[10; 10; 10] [kg]; and the ra-
dius of a virtual sphere was at r = 0:2 [m]. The sampling time for con-
trolling the robotic manipulator was set at 1 [ms] that is short enough to
catch the impact force at the time of the collision between the end-ef-
fector and the object.

The NNs utilized were of four-layered networks with four input
units, two hidden layers with twenty units, and one output unit. The
initial values of the synaptic weights wij were randomly chosen under
jwij j < 0:05; and the learning rates were �S = 0:01 for VSN, �V =
0:015 for VVN, and �I = 1:0�10�5 for VIN; and the output of NNs,
Mo; Bo; Ko, were limited within �1000–1000. The constant param-
eter � in the defined energy function E(t) was set at � = 1:0� 10�3;
and the desired interaction force was at Fint = diag:[0:0;�2:0; 0:0]
[N]. Note that the learning of NNs were terminated after contacting the
object with the end-effector by setting the virtual force Fo = 0 [N].

Fig. 12 shows typical experimental results with and without online
learning under Mb = 0:2 [kg] and D = 0:25 [m], respectively. The
figure (a) illustrates the time histories of the end-effector position along
the x-axis (solid line) and the object (broken line), while the figures (b)
and (c) show the time histories of the interaction force with and without
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Fig. 11. Object and a load cell used in the experiments.

Fig. 12. Experimental results of the multi-joint manipulator (M = 0:20 [kg],
D = 0:25 [m]). (a) Position before and after leranimg. (b) Interaction before
after leranimg. (c) Interaction force after leranimg.

real-time learning. tc indicates the time when the object comes into the
virtual sphere. It can be seen that the manipulator moves its end-effector
according to the ball movements after the learning of NNs, so that the
robot cathes the ball smoothly by reducing the impact force between
the hand and the ball.

The time course of the virtual impedance parameters along thex-axis
during the online learning is displayed in Fig. 13. Since the manipulator
had to avoid generating a large impact force by shifting the end-effector
toward the opposite direction of the approaching ball, all of virtual
impedance parameters, Kx

o
; Bx

o
;Mx

o
, were increased by the learning

of NNs. Here the learning rate for virtual inertia Mx

o
was set at a small

value because the object were swung with large acceleration in the ex-
periment, and thus Mx

o
was not dynamically changed compared with

Kx

o
; Bx

o
. The experimental result shows that the robot did perform a

ball-catching task by regulating virtual viscosity Bx

o
actively on the

basis of the energy function Ev(t).

Fig. 13. Time history of the virtual impedance parameters during the
catching-a-ball task by the real robot (M = 0:20 [kg], D = 0:25 [m]).

V. CONCLUSION

The present paper has proposed an online learning method using
NNs to regulate the virtual impedance parameters in the noncontact
impedance control of manipulators. The proposed method can obtain
the desired virtual impedance by minimizing an energy function ac-
cording to the given task through the learning of NNs. Experimental re-
sults with the multi-joint robotic manipulator have proven that the pro-
posed method can design the desired virtual impedance for the end-ef-
fector to realize the target end-point force without exerting an excessive
interaction force on its environment.

Because the proposed learning method adopts a back propagation
learning approach, it can obtain the desired virtual impedance param-
eters that may minimize the energy function even if some impedance
parameters are fixed in the learning. In other words, it does not always
need to optimize all virtual impedance parameters to perform the given
task. For instance, the stiffness and viscosity can be regulated under the
fixed inertia parameter by the learning.

Although the present paper has focused on regulating virtual
impedance parameters, the end-effector should be controlled by
the conventional impedance method that regulates the end-point
impedance during contact movements. Future research will be directed
to analyze the stability and convergence of the proposed control
system during the learning, and to develop more appropriate structure
of NNs for improving learning efficiency. We also plan to develop an
online learning method of the virtual impedance in parallel with the
end-effector impedance at the same time.
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