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A Recurrent Log-Linearized
Gaussian Mixture Network
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Abstract—Context in time series is one of the most useful and
interesting characteristics for machine learning. In some cases, the
dynamic characteristic would be the only basis for achieving a pos-
sible classification. A novel neural network, which is named “a re-
current log-linearized Gaussian mixture network (R-LLGMN),” is
proposed in this paper for classification of time series. The struc-
ture of this network is based on a hidden Markov model (HMM),
which has been well developed in the area of speech recognition.
R-LLGMN can as well be interpreted as an extension of a prob-
abilistic neural network using a log-linearized Gaussian mixture
model, in which recurrent connections have been incorporated to
make temporal information in use. Some simulation experiments
are carried out to compare R-LLGMN with the traditional esti-
mator of HMM as classifiers, and finally, pattern classification ex-
periments for EEG signals are conducted. It is indicated from these
experiments that R-LLGMN can successfully classify not only ar-
tificial data but real biological data such as EEG signals.

Index Terms—EEG, Gaussian mixture model, hidden Markov
model (HMM), log-linearized model, neural networks (NNs), pat-
tern classification, recurrent neural networks (RNNs).

I. INTRODUCTION

A LTHOUGH pattern classification has been one of the most
actively researched fields for some years, even now var-

ious investigations are carried out to attain higher classification
performance. The pattern classification problem is a kind of de-
cision-making problem that can be described as follows: Given
an input vector (or input series [ ]) and several output
classes which are knowna priori, decide to which class the input
belongs. In other words, it is a problem of a mapping input vec-
tors into output classes. Therefore, the essential point to con-
sider in order to achieve high classification performance is how
to estimate the mapping for classification from given data.

The 1980s witnessed the resurgence of neural networks
(NNs), and the so-called backpropagation NNs [1] were shown
to be capable of representing any nonlinear mapping using
nonlinear transducers and layers with variable sizes. Inspired
by this, the backpropagation NN was recognized as one of the
most attractive principles for learning classifiers. In principle,
NN can solve the classification problem by determining weights
even in an extremely high-dimensional space, so it was con-
sidered that all the characteristics werelearnedautomatically

Manuscript received March 21, 2001; revised November 9, 2001 and August
6, 2002. This work was supported in part by the New Energy and Industrial
Technology Development Organization (NEDO) of Japan.

T. Tsuji, N. Bu, and M. Kaneko are with the Department of Artificial
Complex Systems Engineering, Hiroshima University, Higashi-Hiroshima
739-8527, Japan (e-mail: tsuji@bsys.hiroshima-u.ac.jp).

O. Fukuda is with the National Institute of Advanced Industrial Science and
Technology, Tsukuba 305-8564, Japan.

Digital Object Identifier 10.1109/TNN.2003.809403

through minimization, or search for the global minimum, of
the output error (cost) function [2]. Some drawbacks, however,
have been pointed out, which can be summarized as follows.

1) NN needs a large amount of training data.
2) A large-scale network structure is necessary.
3) To achieve good convergence, it takes too many learning

iterations.
4) There are likely to be many local minima for the learning

of NNs.
In order to deal with these problems, a number of observa-

tions have been made following investigation into integrating
domain/task specific knowledge into the architecture of NN,
since the generic NN does not have any mechanisms for incor-
porating any additional knowledge which can place constraints
on NN. This kind of NN can be named as model-based neural
networks (MNNs) [2]. It extends NN functionality to include
more explicit constraints on network geometry and connection
weights. Therefore, it is possible to construct networks that
respond to intrinsic features of the input data that are known
a priori. Consequently, the problem becomes much easier, and
this may allow the reduction of the network dimensionality and
the learning difficulties.

In the meantime, many researchers have studied Bayesian
classifiers, which can deal with pattern classification by the
estimation of probability density function (pdf). The pioneering
work by Richard and Lippman [3] demonstrated that outputs
of NNs, if estimated accurately, could estimate Bayesian
a posterioriprobabilities. Then, by replacing the sigmoid acti-
vation function often used in NNs with an exponential function,
the probabilistic neural network (PNN) was developed [4]. For
realization of PNN, the following three approaches have been
suggested: parametric, nonparametric, and semiparametric. For
parametric approaches, a specific type of pdf is assumed for
each event. The neural network is constructed by transforming
this statistical model, and each component of the NN has
specific interpretation [5]. As for nonparametric techniques,
such as those described in published material, the pdf can be ap-
proximated by simply summing up small multivariate Gaussian
distributions centered at each training sample point [4].

The semiparametric estimation of the pdf, having a flexible
structure that can represent any distribution and include a set
of parameters for particular distributions, is considered as one
of the most successful classifiers. The unknown distribution is
defined as a weighted sum of a number of component distri-
butions (e.g., Gaussian distribution). The pdf of input patterns
can be calculated from this mixture model. The development of
NNs based on the Gaussian mixture model (GMM) that uses
Gaussian component densities has been carried out in tandem:
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Tråvén [6], Perlovsky and McManus [7], Tsujiet al. [8], [9],
Lee and Shimoji [10], Streit and Luginbuhl [11] and Bishop
[12]. Particularly, Tsujiet al.proposed an NN, a log-linearized
Gaussian mixture network (LLGMN), which estimates the pdf
based on the GMM and a log-linear model [9]. The weight coef-
ficients of LLGMN include the parameters of the log-linearized
GMM that are the nonlinear combination of the GMM param-
eters, such as the mixture coefficients, mean values, and stan-
dard deviations of each component. In addition, these weights
are trained in the same manner as the error backpropagation rule.
LLGMN is successfully applied to the EMG pattern classifica-
tion [13], where six motions of forearm and hand were classified
using EMG signal measured from several pairs of electrodes.
However, because this NN is based on astaticmodel, it does not
take context of time into consideration. In dealing with signals
of dynamic characteristics, the classification results of LLGMN
could lack consistency. In order to deal with this problem and
to obtain a higher classification rate, it is necessary to develop
a dynamicNN.

Unfortunately, the structure of such feedforward NNs is
not appropriate for processing temporal sequences in practice.
There are two main reasons, namely, 1) it is difficult to store
past internal states and 2) they treat each input pattern as inde-
pendent events. Addressing these problems, many researchers
introduced recurrent neural networks (RNNs) [1], [14], [15]
into the field of pattern classification.

It was Hopfield who first claimed an NN with feedback
connection in 1982 [16]. Later, he showed the ability of the
Hopfield NN, providing a solution to the “Traveling-Salesman
Problem” (TSP), for which the computational difficulty has
been much studied. The Hopfield NN is a highly connected
network, but it is usually not necessary to feed the overall
network output back into the input layer. In some other cases
where the multilayer perceptron (MLP) [17] is used, recur-
rent connection can be made between the hidden layers to
encapsulate information. Also, Linet al. [18] claimed that by
embedding the delay memory in the RNN architecture, the NN
could use the information at previous steps, and the NN would
be made less prone to the problem of long-term dependency
learning. Recently, there have been many publications showing
that RNN has been successfully used to learn various temporal
sequences and applied to temporal pattern recognition. Pet-
rosianet al. [19] addressed the successful RNN for predicting
the onset of epileptic seizure. In the work of Aussem [20], a
dynamical recurrent neural networks (DRNN) is used for time
series prediction and modeling of small dynamical systems.
Zhanget al. [21] proposed the mixed order locally recurrent
neural networks to build long-term prediction models for
nonlinear processes. In this RNN, the output of a hidden
neuron is fed back to its input through several units with time
delay, and different hidden neurons can have different numbers
of feedbacks. Schittenkopfet al. [22] extended the mixture
density networks (MDNs) [12] in arecurrentway to take into
account the previous conditional variances as in the GARCH
framework.

In this paper, we propose a novel NN, a recurrent log-lin-
earized Gaussian mixture network (R-LLGMN), which is based

Fig. 1. Gaussian mixture model.

on the algorithm of hidden Markov model (HMM). This net-
work can also be regarded as an extension of LLGMN, intro-
ducing recurrent connections into LLGMN. Using GMM, thea
posterioriprobability can be estimated and, simultaneously, the
recurrent connection makes use of available information on the
time context. The weight coefficients of R-LLGMN correspond
to the nonlinear combination of the HMM parameters, such as
the mixing coefficient, mean vector, covariance matrix and tran-
sition probability. The weight coefficients of R-LLGMN, how-
ever, has no constraints as the parameter in the statistical model.
Therefore, the representation ability of R-LLGMN should be
higher than that of HMM, and R-LLGMN is expected to have
better performance in the case of temporal pattern classification.

This paper is organized as follows: Section II gives a brief in-
troduction on LLGMN. HMM as well as the algorithm and ar-
chitecture of R-LLGMN is described in Section III. The results
of computer simulation and pattern classification experiments
of the EEG are presented in Sections IV and V, respectively.
Section VI concludes the paper.

II. LLGMN

A. Log-Linearized Gaussian Mixture Model (LLGMM)

In terms of classifying an observed vectorinto one of the
given classes, thea posterioriprobability is examined,
and the class with the highest one is determined according to the
Bayes’ rule. In the LLGMM, the pdf of class
is approximated with a GMM as shown in Fig. 1 [9], and it can
be described as follows:

(1)

where denotes the number of components
of class , is thea priori probability (or the
mixture coefficient) for each component . is
the probability for to be generated from the component
in class , which is expressed using , the
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-dimensional Gaussian distribution, with mean vector
and covariance matrix of each component.

Extending with the mean vector
and the inverse of the

convariance matrix , the numerator in (1)
is in the form as

(2)

where , is the elements of and is the
Kronecker delta: when and otherwise.

Applying a log-linearizationprocess to (2), we get

(3)

where and are defined as

(4)

(5)

(6)

and the dimension is defined as . Thus,
is expressed as the product of the coefficient vector

and the modified input vector . To remove the effect of ,
which is due to the statistical constrains of GMM, a new variable

and coefficient vector are introduced as

(7)

The coefficient vector is defined as the difference be-
tween and , and . Using the
coefficient vetor as the weight coefficients, the model
described above is transformed to a feedforward NN, that is,
LLGMN.

Fig. 2. Structure of LLGMN.

B. NN Structure

By applying the log-linear model, GMM is incorporated into
the three-layer feedforward NN shown in Fig. 2. Also, a simple
learning algorithm based on the backpropagation is employed
[9].

In the preprocess, the input vectoris converted into the
modified vector , according to (4). The first layer consists of

units corresponding to the dimension ofand the identity
function is used for activation of each unit. denotes the
output of the th unit in the first layer.

In the second layer, each unit receives the output of the
first layer weighted by the coefficient and outputs the
a posterioriprobability of each component. The relationships
between the input of unit in the second layer
and the output are defined as

(8)

(9)

where .
Finally, the third layer consists of units corresponding to

the number of classes and outputs thea posterioriprobability
for class . The unit integrates the outputs of

units in the second layer. The
function between the input and the output is described as

(10)

where the output of the last layer corresponds to the
a posterioriprobability of class .

Although LLGMN is based on a static model in which the
characteristics of the pdf do not alter through time, it achieves
high performance in classification by incorporating the sta-
tistical structure in the network. Since the weight coefficients
have no constraints and are mutually independent, the learning
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process is made flexible and theanswercan be searched within
a much larger space. However, for time series signals, LLGMN
does not achieve a sufficient classification performance. To
overcome this difficulty, it is necessary to develop some tech-
niques to incorporate adynamicstatistical model into the NN.

III. R-LLGMN

A. HMM

As for temporal classification, the HMM [26], [27] is a well-
developed technology, which has been successfully used most
particularly in the domain of speech recognition [27].

A Markov process is a stochastic process for which prob-
ability distribution of the present state in a sequence is a
function of model parameters and the previous state, and is
independent of all history prior to that. The HMM assumes that
a Markov process can only be observed via another stochastic
process which produces a sequence ofobservationsor outputs
resulting from the underlying Markov process. Therefore,
a complete specification of an HMM requires two model
parameters and , which denote the numbers of states and
observations, respectively, and three probability matrices
(state transition probability), (observation probability) and

(initial state probability). As for classification we need one
HMM for each class , then the probability of the particular
stream we observed, ,
is computed using the probability matrices, and ,
finally the most probable one is chosen. The computation of
probability is made by employing a forward-algorithm [27].
The Baum–Welth algorithm [26], [27] or equivalently the EM
(expectation-modification) method [28], provides a way of
estimation of the probabilities of , and from training
data.

On the other hand, a continuous density HMM (CDHMM)
was introduced for continuous signals (or vectors) in many prac-
tical problems. The observation probability matrixis replaced
by continuous probability density function, usually a Gaussian
density is used in CDHMM. Since Gaussian mixture density
can be used to approximate any continuous probability density
function, the modeling ability of the hidden Markov processes
has, thus, been greatly enhanced. Baumet al. [29] extended
the Baum–Welth algorithm to CDHMM, with some limitations.
Juanget al.[30] further expanded the estimation algorithm, and
their group has applied it to speech recognition.

The HMM have been proved to be very effective in prac-
tice, producing high levels of classification accuracy. However,
the structure of HMM is not always knowna priori, which
depends on problems. In the field of acoustic speech recogni-
tion (ASR), for example, thea priori model topology (e.g., a
left-to-right HMM) is chosen to ease the computation. Some-
times there are complex tradeoffs that have to be made between
model complexity and the difficulty of training. Also both the
discrete HMM and the CDHMM consist of many parameters,
so that the estimation process is usually very sensitive to initial-
ization. Rabineret al. [31] combined a segmentalk-means pro-
cedure to initialize estimates of model parameters, and then the
Baum–Welth algorithm is used as a “model refinement tool.”

Furthermore, a large quantity of training data are required to
train HMM, which does not result in good adaptability.

Because of the desirable properties of NNs, the combined ar-
chitecture of HMM and NNs (a so called hybrid HMM/NN) has
widely spread in the field of ASR. The hybrid HMM/NN can
be divided into two types. In the first type, the standard frame-
work of HMM is kept intact, but the observation probabilities
are computed by an NN. Bourlard and Wellekens [32] as well
as Cohenet al. [33] provided such methods using MLPs, while
Robinson [34], Mitchellet al. [35], and Ström [36] developed
this kind of architectures with the RNNs. It is easy to imagine
that if NN just plays a part in the work of HMM, then the system
consequently gets to be complex, as does the training algorithm
as well. Some of the weaknesses of HMM still remain. Al-
ternatively, Bridle [37] proposed a “Alpha-Net” that treats the
forward-algorithmcomputation as a recurrent network. In his
study, the Alpha computation of HMM is considered as a net-
work, so all the parameters in HMM are transformed into the pa-
rameters in the network, and they can be modified with the NNs
training method. However, the Alpha-Net just develops HMM
formally to a NN architecture, namely it is just acopyof HMM.
In the rest of this section, we will give the description of the
R-LLGMN, and it can be regarded as an NN which introduces
a log-linear Gaussian mixture model into CDHMM.

B. Log-Linearized CDHMM

Let us consider a kind of CDHMM, which is shown in Fig. 3,
where there are classes in this model and the class

is composed of states. The observation proba-
bility of state in class is approximated with Gaussian mixture
model. The system undergoes a change of state (possibly back
to the same state) in each class. Suppose that, for a time series

, at any time must occur from
one state of class in the model, where .

According to this model, given a time series, the
a posterioriprobability for class , , is derived as

(11)

viz. summation of thea posterioriprobabilities for all the state
in class . Here, is the forward variable, which is defined
as the probability for partial time series
to be generated from classand input vector occurs from
state in class . According to the forward algorithm,
can be computed as follows:

(12)

(13)

where is the probability for state changing fromto in
class , and is defined as thea posterioriprobability
for state in class corresponding to . In addition, (12)
illustrates the initial phase, where thea priori probability
equals to , although in most practical problems



308 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 2, MARCH 2003

Fig. 3. CDHMM withC classes andK states in classc.

is unknown. With GMM, in the right side of (13)
can be derived with the form

(14)

where ,
, and stands for the mixing

proportion, the mean vector, the covariance matrix of each
component , element of the inverse of covariance
matrix and element of , respectively.

Taking thelog-linearization(see II-A) of ;
, we get

(15)

where and are defined similarly
as those in LLGMN (4)(5)(6). We can see that can be
expressed as the product of the coefficient vector and
the modified input vector , where the element of the
vector consists of the parameters of the statistic model,
and the modified input vector includes the product of the
elements of the input vector .

Hence, the model can be developed as the network structure,
using as the weight coefficients. However, most ele-
ments of are constrained by the statistical properties of
the parameters in the model. This constraint may cause a diffi-
cult problem in the learning procedure: how to satisfy the con-

straints during the learning of the weight coefficients. There-
fore, the new variable and the new coefficient vector

are introduced as follows, similarly to LLGMN:

(16)

The weight coefficient is defined as the difference be-
tween and , so .
Because of this transformation, the new parameter has
no constraints as the statistical parameter, and the constraints
in and such as the positive definiteness of
the covariance matrices are ignored. Therefore, the parameter
space of becomes larger than that of , and the
weight coefficient can have any real number. Note that
this transformation does not result any loss of information in
spite of , since the variable

in (15) is redundant because of .
Subsequently, (13) can be rewritten in the form

(17)

On the other hand, when in (12), employing GMM as
well as the log-linear model, we can derive , ,

and similarly. It is the same as the case ,
by replacing in (14) (15) with . Then (12) would be
expressed as

(18)

In this paper, we regard , because both of
and have no constraints and include many un-

known statistical parameters. Consequently, many parameters
of the probabilistic model such as the mixing coefficient ,
the mean vector , the covariance matrix and
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Fig. 4. NN structure.

the transition probability are replaced by arbitrary param-
eters . In Section III-C, we transform this model to the
network structure, in which the coefficient vector is
used as the weight vector.

C. NN Structure

The structure of the proposed NN is shown in Fig. 4. It is a
five-layer recurrent NN with a feedback connection between the
fourth layer and the third layer. First of all, we define the number
of units in each layer. The fifth layer containsunits, and for
each unit there are branchconnections.
Then, units corresponding to thesebranchesform the
fourth layer. The unit in the fourth
layer connects with units in the third layer which consists of

units. There are components set for the units
in the third layer, so the total units

in the second layer are units. Mean-
while, the input vector series is mod-
ified in the same way as LLGMN, then the vector
acts as the input of the first layer. Therefore, the first layer con-
sists of units, and the identity function is used for activation
of each unit as well. and denote the input and the
output, respectively, of theth unit in the first layer.

Unit in the second
layer receives the output of the first layer weighted by the
coefficient . The input and the output

are defined as

(19)

(20)

The output of the second layer is added up and input into the
third layer. Also, the output of the fourth layer is fed back to the
third layer. These are expressed as follows:

(21)

(22)

where for the initial phase.
The activation functions in the fourth layer are described in

the form

(23)

(24)

At last, the unit in the fifth layer integrates the outputs of
units in the fourth layer. The rela-

tionship in the fifth layer is defined as

(25)

(26)

Let us consider the case where the length of time series
is one, and for each unit in the fifth layer. As
for all the time, the recurrent connection in (22) does not work
any more. In this case, using , the relationship from the
second layer to the fifth layer [(19)–(26)] can be reorganized as
follows:

(27)

(28)

which is exactly the same relationship as the one between the
second and third layers in LLGMN (see (9) and (10)). As is to
say, when it is not necessary to consider the dynamic properties
in the data sequence or the recurrent connections in the
proposed NN are not significant, it reduces to LLGMN. In other
words, LLGMN has been extended and affixed with recurrent
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TABLE I
FORWARD ALGORITHM OF R-LLGMN AND THE CORRESPONDING

COMPUTATION OF CDHMM. R-LLGMN I NCLUDES THE FORWARD

COMPUTATION OF CDHMM AS A SPECIAL CASE

connections, so we named the NN presented in this paper the
R-LLGMN.

Table I shows the correspondence of R-LLGMN to CDHMM.
The input vector series, which is transferred into the first layer
of R-LLGMN, is exactly the same observation sequence in the
model of CDHMM. The units in the second layer act alike as the
mixture components of the continuous observation probability
density function in CDHMM [see (14)]. The calculation in the
third and fourth layers, associated with the feedback connec-
tions, represents the forward algorithm (or Alpha computation)
[27]. Finally, units in the fifth layer output thea posterioriprob-
ability of class for . On the other hand, the weight co-
efficients , between the first layer and the second layer,
correspond to the transferred parameters used in the forward
computation, such as the mixing coefficient , the mean
vector , the covariance matrix and the transi-
tion probability . With respect to these, R-LLGMN can be
interpreted as a hidden Markov neural network (HMN), based
on CDHMM, and can model the observation sequence through
learning only the weight coefficients .

However, R-LLGMN is not just acopyof CDHMM: it is su-
perior because of a better parameterization. An essential point
is that R-LLGMN replaces all of the parameters in CDHMM
with the weight coefficients , and this replacement
removes restrictions of the statistical parameters in CDHMM,
e.g., , standard deviations of GMMs 0,
and so on. Therefore, the learning algorithm of R-LLGMN
is simplified and is expected of higher generalization ability
than that of CDHMM. Another important distinction between
R-LLGMN and CDHMM is the number of parameters used
in these methods. The number of parameters of R-LLGMN

and that of CDHMM , which is the sum of element
numbers of , , and , are given as
follows:

(29)

(30)

Fig. 5. Examples of the ratio ofN toN with d = 2.

Under and
,

(29) and (30) result in

(31)

(32)

Fig. 5 shows the ratio of to with . It should
be noted that in the experiments in Section V, the dimension of
input is two. It is obvious that is larger than in most
cases. This may indicate that R-LLGMN has a better represen-
tation ability. Although R-LLGMN has more parameters, we
can train it with only one sample (time series) using a gra-
dient learning method, while for CDHMM, at least two sam-
ples are needed to calculate mean and standard deviation for
each Gaussian component. It could be expected that even if the
training date in the learning process is of small size, R-LLGMN
achieves a better estimation than CDHMM.

D. Learning Algorithm

A set of vector streams
are given for training R-LLGMN with teacher

vector
for the th input stream . Then, these vector streams
are divided into subsets, while each set consists ofstream
classes . If the vector stream is set for
the class in subset , then , and

for all the other classes in this subset. It is supposed
that the network catches the character of the data set, if for all
the streams the last output of stream , namely, ,
is close enough to the teacher signal . In this paper an
energy function for the network is defined as

(33)

The learning process is to minimize, that is, to maximize the
likelihood that each teacher vector is obtained for the input
stream .

Usually, the weight modification for
is defined as

(34)
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in a collective learning scheme with a fixed as the learning
rate. Because of the recurrent connection in R-LLGMN, the
backpropagation-through-time (BPTT) algorithm [1], [23] is
used. It is supposed that the error gradient within a stream
(block) is accumulated and weight modifications are only
computed at the end of each block; the error is then propagated
backward to the beginning of the block. So, using the chain rule
for the stream , in (34) can be expanded
in the following way:

(35)

where is defined as the partial differentiation of
to

(36)

and is defined as

(otherwise).
(37)

(36) can be derived as follows:

(38)

(39)

In this paper, the dynamics of the terminal attractor (TA) [24]
is incorporated in the learning rule in order to regulate the con-
vergence time of the learning. The differential equation of TA
is defined as

(40)

When the parameteris determined as , is a mono-
tonically nonincreasing function, and always converges stably
to the equilibrium point in a finite time, since the Lipschitz con-
ditions are violated at

(41)

where determines how the dynamics converges, such as
smooth or sharp, although the convergence time is fixed
depending on the initial condition

(42)

If TA, which is defined above, is incorporated into the energy
function (33) of R-LLGMN, the convergence time of the
learning can be regulated [25].

Let us consider the incorporation of TA into R-LLGMN,
in the proposed learning method, the weight coefficients of
R-LLGMN are considered as the time dependent continuous
variables and the time derivative of is defined as

(43)

(44)

where is positive, and is calculated using constant.
The time derivative of the energy functioncan be calculated
as

(45)

Thus, the convergence time can be given as

(46)

where is an initial value of the energy functioncalculated
using initial weights, and is the final value of at the equilib-
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TABLE II
PARAMETERS OF THEHMMs USED IN THE EXPERIMENTS

Fig. 6. Examples of the data used. (a) Class I. (b) Class II.

rium point. In the case of , the equal sign of (46) is held.
Thus the convergence time can be specified by learning rate.
On the other hand, in the case of , the convergence time
is always less than the upper limit of (46).

The learning is carried out by a discrete form, derived from
(43)

(47)

where denotes the sampling time. The total number of
learning iterations becomes , and the computation time
depends on this number. If is determined as a small value,
the energy function decreases accurately according to (45).

IV. SIMULATION EXPERIMENTS

Simulation experiments were performed to explore the ability
of R-LLGMN, comparing the classification performance of
R-LLGMN with the one of HMM for experimental data
generated with HMMs. It should be noted that the computer
program of a Baum–Welth algorithm for comparison, “Myers’s
hidden Markov model software,” was downloaded from the
internet website.1

The time series were generated for two classes
using two different HMMs set for each class (see

Table II). The input series are one-dimensional and are encoded
to four symbols, A, B, C, D, which correspond to 0, 1/3, 2/3, and
1, respectively. These real numbers are used for the numerical
calculation. The HMMs used are full connective, and there are
three states for each model and four distinct observation sym-
bols (output of the model). Fig. 6 shows examples of the gener-
ated data with a length of 50.

The R-LLGMN was set as follows: ,
, , and (see III-C). The Baum-Welth al-

gorithm was prepared to estimate models of the same size as
those defined in Table III. Classification experiments carried

1ftp://svr-ftp.eng.cam.ac.uk/pub/comp.speech/recognition/

TABLE III
CLASSIFICATION RESULTS OFEYE STATE USING LLGMN,
LLGMN WITH RNF, HMM, CDHMM, AND R-LLGMN

Fig. 7. Classification rates of the R-LLGMN for different data size.

Fig. 8. Classification rates of the HMM for different data size.

out using various sizes of training data. The training data in-
cludes vector streams which are further divided intosub-
sets, where each set consists ofstream classes .
The number of subsets and the length of the time series

changed from 1 to 10 and from 20
to 100, respectively. The R-LLGMN and the Baum–Welth algo-
rithm were trained five times with different data of the same size,
then the five sets of coefficients were examined. The R-LLGMN
learned according to the dynamics of the terminal attractor in-
corporated s and s, that is, 4000 itera-
tions), and the learning of Baum-Welth algorithm would termi-
nate when the change of the parameters per iteration becomes
less than a threshold of 0.000 01.

As to the recognition process, each set of coefficients was
used to recognize five sets of data, which comprises 400 se-
ries (200 for each class) with the same data length as the cor-
responding training data. Then the rates of classification were
calculated over 10 000 results (55 400) for each size of the
training data. The mean values and the standard deviations of
the classification rates for each size are shown in Figs. 7 and 8.
Please note that the directions of axes ofand are reversed
to make the figures shown clearly. For cases of large data size,
the classification rates of the R-LLGMN are almost the same
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as the HMM, indicating that R-LLGMN can work as an esti-
mator of HMM. Alternatively, given training data of small size,
the Baum–Welth algorithm results in a worse classification rate
than the R-LLGMN. R-LLGMN can achieve high classification
performance for the small size of data because of the inheritance
of the NNs.

V. EEG PATTERN CLASSIFICATION

Bioelectric signals such as EEG and EMG are typical time
series with dynamic characteristic, which are expected to be
control signal for a new type of a man–machine interface. The
bioelectric signal ranges widely in frequency-domain and con-
tains high frequency components, so adequate signal processing
is necessary. In particular, it should be filtered through a well-de-
signed low-pass filter to remove the high frequency components,
while the pattern classification of the signal must be done to
reveal the operator’s intention. However, it is very difficult to
perform the filtering and the classification simultaneously. The
authors had tried to classify EEG signals with recurrent neural
networks such as Jordan’s and Ellman’s networks [38], [39]. It
was, however, too difficult for only use of them to achieve high
classification accuracy because of the considerable time-varying
characteristics of EEG signals. To overcome this difficulty, Tsuji
et al. [8], [9], [13], [25] investigated the pattern classification
problem of EEG (EMG) signals using a static probabilistic
NN, LLGMN, and a recurrent neural filter (RNF). Although
this method attained relatively high classification rates, it is
necessary to train two different types of NNs, that is, LLGMN
and RNF, therefore the learning procedure becomes quite
complicated and general optimization is almost impossible.
Alternatively, R-LLGMN ensures that the filtering process and
the pattern classification can be achieved at the same time.

In this section, as an application of R-LLGMN, the EEG
signal classification has been done using the same data in [9] for
comparison. R-LLGMN is based on CDHMM, and inherits lots
of advantages from it. It can be expected R-LLGMN realizes
higher learning/classification performance using a one-network
structure and a simple learning algorithm.

A. Experimental Apparatus and Conditions

Fig. 9 shows the experimental apparatus. A simple and handy
electroencephalograph (IBVA, Random ELECTRONICES DE-
SIGN) was used to measure EEG signals. The experimental
system consists of the headband, transmitter and receiver. The
transmitter was attached to the headband. The EEG signals mea-
sured from the electrodes were digitized by an A/D converter
after they were amplified and filtered through low-cut (3 Hz)
and high-cut (40 Hz) analogue filters. The noise in the EEG sig-
nals can be reduced significantly by the bipolar derivation be-
tween the two electrodes located at Fp1 and Fp2.

The EEG signals were measured in the following conditions:

1) Photic stimulation by opening and closing eyes.
Subjects were seated in a well-lighted room. First,

EEG signals were measured with both eyes opened and
closed (60 s for each). The measured signals were used as
learning data. Next, subjects were asked to switch their
eye states alternatively according to a pseudorandom
series for 450 s.

Fig. 9. Structure of EEG determination system.

2) Photic stimulation by opening, closing eyes and an artifi-
cial light (opening).

Subjects were seated in a dark room. There is an ad-
ditional state in this condition, an artificial light is used
while the subjects open their eyes. A flash light (xenon,
illuminating power: 0.176 J) was set at a distance of 50 cm
from the subject’s eyes. Learning data and classification
data are recorded for three states of EEG signals in the
same manner as the condition 1.

Although the input length of the time series is fixed in the ex-
periment, the duration of meaningful and effective EEG signal is
not always fixed indeed, but changes depending on classes and
subjects. It is considered that if the length of the input signal is
long enough, the learning itself can select an appropriate length
for the discrimination automatically. The fixed duration used in
the experiments is just a length of the input signal, which means
the upper limit of the EEG duration.

B. Feature Extraction of EEG Signals

The electroencephalograph used in the experiments has one
pair of electrodes, so that the spatial information of the EEG
signals on the location of the electrodes cannot be utilized. The
frequency characteristics of EEG signals, however, significantly
changes depending on the eye states. Therefore, the spectral
information of the measured EEG signals were used as follows.
The power spectral density function of the measured EEG
signal was estimated using fast Fourier transform (FFT) for
every 128 sampled data. The function was divided into several
ranges (from 0 to 35 Hz). The frequency bands of this range
were determined based on the clinical use of the brain wave
(delta, theta, alpha, beta). Time series of the mean values of the
power spectral density function within each frequency ranges
were calculated and normalized between [0, 1] in each range.
Thus, the two-dimensional data (corresponding to frequency
range [0 8], [9 35] [Hz]) were obtained and used as the input
vector to the networks.

C. Classification Result for Opening/Closing EEG Signals

The classification experiments were performed using five
methods: R-LLGMN, LLGMN (II-B), LLGMN with RNF
[9], Baum–Welth algorithm (HMM and CDHMM).2 In
R-LLGMN, parameters of the network architecture are set as:

, , , and component for each unit in
the third layer is one. The parameters used are chosen to make

2The CDHMM computer program is based on “Speech recognition system
(SRS-V1.1)” (Electrical Engineering and Computer Engineering Department,
University of Newcastle, Australia).
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Fig. 10. Example of the classification result of eye states.

experimental conditions as equal as possible. In LLGMN,
and in the first and third layer, and the second

layer consists of six units. As to LLGMN with RNF, there are
eight units in RNF, which is connected to the same LLGMN
explained above. In the RNF, fully interconnected units in the
second layer keep the internal representation, so that the time
history of the input data can be considered. Therefore it shows
an effect as a filter and makes thea posterioriprobability from
the LLGMN smoother. For HMM, it is used to estimate models
with one state . The structure of CDHMM used in the
experiments is settled with the same condition as the one of
R-LLGMN.

Experiments were performed for three subjects (A, B, C:
males). First, Fig. 10 shows an example of the classification re-
sults of LLGMN, LLGMN with RNF and R-LLGMN (subject
A). In this figure, the timing of the switching eye states, the
input EEG signals, the outputs of LLGMN, LLGMN with RNF
and R-LLGMN, and the classification results of R-LLGMN are
plotted. As can be seen, the R-LLGMN performs at a very high
classification rate of 97.6%.

Table III shows classification results for all subjects. The
mean values and the standard deviations of the classification
rate are computed for ten kinds of initial weights, which
are randomly chosen. According to the results for the three
subjects, except for LLGMN, all the other methods attained
high classification rates. Generally, LLGMN based on a static
Gaussian mixture model is not suitable for classification of
dynamic signals like EEG, while the other methods contain
the dynamic statistical model. It should be noted that LLGMN
with RNF has a rather complicated construction, so that the
difficulty of learning this method may be a critical problem.
In addition, although training for HMM and CDHMM can be
carried out easily, a large amount of training data is needed.
On the other hand, R-LLGMN can train the static (a Gaussian
mixture model) and dynamic (recurrent connections) parts at
the same time even with a small amount of data (see III-C).
Because the task of discriminating two eye states (open and
close) is relatively easy for HMM, CDHMM, and R-LLGMN,

Fig. 11. Example of the classification result for three types of the photic
stimulation.

through learning states of open and close can be easily divided
into two regions, thus all the three methods achieve results with
S.D. equal to zero.

D. Classification Results for Three States of EEG Signals

Fig. 11 shows an example of the classification result of sub-
ject A. In this experiment, the TA learning was repeated five
times to gain a better convergence. Although it can be seen that
the classification became difficult to classify compared to the
results in Section V-C, a classification rate of 87.4% was still
achieved.

Table IV shows the classification results for all subjects. Al-
though the results were worse than those of the classification for
opening/closing the eyes, R-LLGMN realized almost the best
classification performance.

As a real biological data, EEG signals are very complicated
because no one can simply give the exact number of states and
components of them. This motivated the experiments examining
changes of the classification rates of R-LLGMN depending on
the number of states and components. In the experiments, the
number of subsets and the length of time series
were used, and the number of statesvaries from one to five,
the number of components from one to ten. The results of
subject B are plotted in Fig. 12. It indicates that the classifica-
tion rates can be improved by increasing the number of compo-
nents and states. A further investigation is worthy to study how
R-LLGMN can cope with a more complicated model, which
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TABLE IV
CLASSIFICATION RESULTS FOR THEPHOTIC STIMULATION USING LLGMN,

LLGMN WITH RNF, HMM, CDHMM, AND R-LLGMN

Fig. 12. Change of the classification rates depending on the numbers of the
states and the components of R-LLGMN (subject B).

contains more states and stronger connection. We will make an
additional report on this in the future.

VI. CONCLUSION

In this paper, a new model-based NN, R-LLGMN, has been
proposed to deal with time series classification. R-LLGMN is
derived through the modification of HMM, and includes HMM
in its structure, so R-LLGMN can be considered as an HMN.
Furthermore, R-LLGMN can be interpreted as an extension of
LLGMN, where recurrent connections are embedded to approx-
imate the inherent dynamic characteristics in the time series sig-
nals, and the LLGMM successfully used in LLGMN is also uti-
lized to compute the pdf of input pattern. Simulations and ex-
periments have been carried out to examine the classification
capability of the proposed network.

In this paper, as the first stage of our research, the compar-
ison experiments between R-LLGMN and other classification
methods were carried out, and high learning/classification per-
formances of R-LLGMN were confirmed. The results of the
EEG pattern classification experiments showed that R-LLGMN
can realize a relatively high classification rate, and differences
among subjects are not significant because of NNs incorporated.

It has been shown that R-LLGMN is suitable for the classifi-
cation of bioelectric signals such as EEG, since the filtering
process as well as the discrimination have been merged together
in the same network architecture.

In our future research, we would like to conduct a theoretical
analyzes on the recurrent capabilities of R-LLGMN. The
connections between the third and the fourth layers represent
Alpha computation in CDHMM, and it can be expected that
R-LLGMN can acquire any structures of a Markov model
through learning, such as the ergotic model, the left-right
model and so on. Also, our future research will be directed
toward revealing potential ability of R-LLGMN comparing
with CDHMM and improving the learning algorithm.
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