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Hierarchical Control of End-Point Impedance and
Joint Impedance for Redundant Manipulators

Toshio Tsuji, Achmad Jazidie, and Makoto Kaneko,Member, IEEE

Abstract—This paper proposes an impedance control method
for redundant manipulators, which can control not only the end-
point impedance using one of the conventional impedance control
methods, but the joint impedance which has no effects on the
end-point impedance. First, a sufficient condition for the joint
impedance controller is derived. Then, the optimal controller for
a given desired joint impedance is designed using the least squares
method. Finally, computer simulations and experiments using a
planar direct-drive robot are performed in order to confirm the
validity of the proposed method.

Index Terms—Impedance control, manipulators, redundancy,
robot dynamics.

I. INTRODUCTION

I MPEDANCE control [1] provides a unified approach for
position and force control of a manipulator, where a con-

trolled variable is a dynamic relation between motion and
force. Using the motion equation of the manipulator and
measurements of the manipulator’s motion, this method can
regulate the end-point impedance to the desired value which
is designed depending on a given task. To date, many studies
on impedance control have been conducted. Hogan [2] has
proposed a method to implement impedance control without
the calculation of an inverse of the Jacobian matrix. Tachi
et al. [3] have developed an impedance control method that
does not require the use of a force sensor. The robustness of
impedance control for uncertainties such as modeling errors
and disturbances has been discussed in [4], [5], and the
stability of a manipulator performing a contact task has been
analyzed in [6], [7].

In addition, a redundant manipulator which possesses more
degrees of freedom than the ones required for performing a
task has been considered to be the key to more dextrous and
versatile robot motions. Many studies on arm redundancy have
been performed in terms of the inverse kinematic problem
[8]–[13], where arm redundancy is used in order to optimize
criteria such as avoidance of singularity [10], avoidance of
an obstacle [11]–[13], and various measures of dexterity [10],
[12]. Also, redundancy in the force/torque transformation has
been pointed out by Khatib [14], [15] and Kang and Freeman
[16].
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With regard to impedance control, a number of studies
on the utilization of kinematic redundancy has been reported
thus far [17]–[24]. Newman and Dohring [17] proposed the
augmented impedance control method based on the extended
Jacobian scheme developed by Baillieul [13]. In this scheme,
a vector of new task variables with its dimension equal
to the degrees of freedom of the kinematic redundancy is
defined and augmented to the end-point position vector to
make the Jacobian matrix square. By using the augmented
Jacobian matrix, the impedance control law which satisfies
a constraint expressed by the extended Jacobian matrix is
derived. However, this method does not take inertial effects
into account, so it reduces to the active stiffness control [25]
rather than the impedance control. Later, Peng and Adachi [18]
introduced a differentiable scalar objective function of joint
angles, and derived the end-point impedance control law that
optimizes the objective function. Using this control method,
the kinematic redundancy can be utilized to control the arm
configuration while controlling the end-point impedance. Also,
Oh et al. [19] described the dynamics of the redundant
manipulator in a task space including null space motion, and
defined the desired inertia and viscosity for the null space
dynamics as well as the hybrid impedance [26] for position
and force controlled directions. The physical meaning of the
impedance for the null space dynamics expressed in the task
space, however, is not intuitively understood. Therefore, the
planning of the desired null space impedance according to a
given task may be a difficult problem. Also the stiffness is not
included in the null space impedance parameters.

Our approach is significantly different from others. We have
argued that the arm redundancy should be directly utilized
in terms of the arm impedance itself [20], and proposed
an impedance control method namedMulti-Point Impedance
Control (MPIC) [21]–[23]. The MPIC can control not only the
end-point impedance using one of the conventional impedance
control methods but also impedances of multiple points on
the links of the manipulator utilizing arm redundancy. On the
basis of the same idea, Liao and Donath [24] proposed the
generalized impedance control for collision avoidance. Instead
of the multi-point impedance, this paper proposes a method for
controlling the joint impedance directly which has no effects
on the end-point impedance.

Let us consider, as an example, a redundant manipulator
performing a task that requires a compliant end-point motion
as shown in Fig. 1(a), where the end-effector and a part of the
arm are below the surface of the water. Various hydrodynamic
forces caused by fluid such as the effects of added mass,
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(a)

(b)

Fig. 1. Examples of tasks requiring impedance control of joints as well as
the end-point.

drag and lift forces and buoyancy forces are exerted on the
manipulator in underwater environments [27]. Although the
previously proposed end-point impedance control methods
can regulate the dynamic responses of the end-point motion
for unknown external disturbances applied to the end-point,
they are incompetent for disturbances applied to the links
or the joints of the manipulators. In the presence of such
disturbances, the joint configuration of the manipulator may
change even if the end-point impedance is properly controlled,
and it may result in serious accidents such as a collision with
an obstacle or a singular joint configuration.

One possible solution to this problem is to set the impedance
of specific joints under the water to be as large as possible in
order to lock out the corresponding joints while controlling
the end-point impedance to the given desired value. It could
be possible to lock the underwater joints mechanically and
use the conventional nonredundant impedance control for the
rest of the joints. However, since both the kinematics and the
dynamics of the manipulator are affected by locking the joints,
the impedance control law should be modified depending on
the number of locked joints and the arm posture which are not

always constant during the task. We need to develop a unified
scheme that can control the joint impedance as well as the
end-point impedance utilizing kinematic redundancy. Also the
same problem may arise for a manipulator bracing against an
object, e.g., a door, at a joint or a link as shown in Fig. 1(b).
In this case, the impedance of the joints located between the
base of the manipulator and the contact point with the object
should be regulated to be as stiff as possible.

In this paper, a new impedance control method for redundant
manipulators is developed, which can realize the closest joint
impedance to the desired one in the least squares sense
while still satisfying the desired end-point impedance. Under
this impedance control, the desired joint impedance and the
desired joint angle, that is, the equilibrium arm posture,
can be specified, and the end-point impedance and the joint
impedance are hierarchically controlled. Control of the joint
impedance enables us to regulate the dynamic response of the
joints for the unknown external forces beforehand.

This paper is organized as follows: in Section II, a
joint impedance controller is incorporated into the end-
point impedance controller in parallel, and a sufficient
condition of the joint impedance controller so as not to
affect the end-point impedance is derived. In Section III,
the joint impedance controller corresponding to the desired
joint impedance is derived using the least squares method.
Computer simulations and experiments using a planar direct-
drive robot are performed in Section IV in order to show the
effectiveness of the proposed method.

II. I MPEDANCE CONTROL UTILIZING

KINEMATIC REDUNDANCY

In general, the motion equation of an-joint manipulator
can be expressed as

(1)

where

external force exerted on the end-point;
joint angle vector;
nonsingular inertia matrix (hereafter de-
noted by );
nonlinear term including the joint torque
due to the centrifugal, Coriolis, gravita-
tional, and frictional forces;
joint torque vector;
Jacobian matrix (hereafter denoted by);
dimension of the task space.

For a redundant manipulator, is larger than
The desired impedance of the end-point is generally ex-

pressed as

(2)

where , , are the desired inertia, viscosity,
and stiffness matrices of the end-point, respectively; and

is the deviation vector of the end-point position
from its equilibrium
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In this paper, we adopt the impedance control law not using
the inverse of the Jacobian matrix [2]:

(3)

(4)

(5)

where is the operational space
kinetic energy matrix [14], [15];
the generalized inverse ofweighted by ;
the joint torque vector needed to produce the desired end-point
impedance; the unit matrix; and the joint
torque vector for nonlinear compensation. Also, and

are the estimated values of and It is
assumed in this paper that the joint configurationis not in
a singular posture, and and
are held.

Although the control law (3)–(5) and other impedance
control methods such as [1], [3] can be applied to redundant
manipulators, arm redundancy cannot be effectively utilized.
In this paper, an additional controller is incorporated into the
end-point impedance control law in order to exploit the arm
redundancy

(6)

where is the joint control torque vector for an
additional purpose. It can be easily shown that if the additional
joint control torque satisfies the equation

(7)

then has no dynamical effects on the end-point motion of
the manipulator, so that the end-point impedance remains equal
to the desired one given by (2). This force redundancy was
found by Khatib [14], [15], after which Kang and Freeman [16]
used the force redundancy to assure stability in a joint torque
optimization for the redundant manipulator by introducing the
null-space damping technique. In the following sections, we
present a method to utilize the force redundancy in terms of
the joint impedance control.

III. JOINT IMPEDANCE REGULATION

A. Optimal Additional Controller

Equation (7) gives the sufficient condition for the additional
joint torque to have no effect on the end-point’s motion.
In this subsection, we assume that the desired value of the
additional torque is given, which does not always satisfy
(7). We then need to derive that satisfies (7) and is the
closest to the desired joint torque

The general solution of (7) is given by

(8)

where is the unit matrix; an arbitrary
constant vector; and
the right-side generalized inverse of The additional

Fig. 2. Hierarchical impedance control for redundant manipulators.

joint torque in (8) always satisfies the sufficient condition
(7). The vector is then chosen in such a way that the
following cost function is minimized:

(9)

where is a diagonal positive definite matrix, each
diagonal element of which is a weight to the corresponding
element of the joint torque error vector and
stands for the Euclidian norm of the vector

(10)

where is the th element of vector Using the least
squares method, we can find the optimal solution given as

(11)

(12)

where
is the right-side generalized inverse of weighted by

As a result, using (4)–(6), (11), and (12),
we can control not only the end-point impedance but the joint
torque which is the closest to the given desired one without
any effects on the end-point’s motion.

B. Joint Impedance Control

It is then assumed that the desired joint impedance is given
according to the task. The desired joint torque for the joint
impedance regulation can be defined as

(13)

where , , are the desired joint inertia,
viscosity, and stiffness matrices, respectively, and

is the deviation vector between the joint angle
and its equilibrium one Using (11)–(13), we can control
the joint impedance as a subtask which has no effects on the
end-point’s motion (see Fig. 2).

The joint impedance realized by this control scheme, how-
ever, may differ from the desired one, since the proposed
impedance control does not always achieve the desired joint
torque. The property of the realized joint impedance is ana-
lyzed in the rest of this section.

First, the realized joint impedance related with the additional
joint torque is expressed as

(14)

where , , are the realized joint inertia,
viscosity and stiffness matrices, respectively. It is easily seen
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that the sufficient condition (7) is always satisfied if the
following conditions are given:

(15)

(16)

(17)

For the joint inertia matrix the general solution of the
matrix (15) is given as

(18)

where is an arbitrary constant matrix. The desired
joint inertia matrix is already given, so the problem is how
to find an arbitrary constant matrix in (18) which results
in close to To solve this problem, the following cost
function is minimized with respect to :

(19)

where is a diagonal positive definite matrix,
each diagonal element of which acts as a weight for the
corresponding row of the error matrix between and
The stands for the matrix norm defined by

(20)

where is an arbitrary matrix; and tr[]
denotes the trace of the matrix. Using the least squares method,
we can find the optimal solution given as (see Appendix A)

(21)

where is given in (12). In the same manner, we can also
derive the optimal solutions for the joint viscosity matrix
and the joint stiffness matrix :

(22)

(23)

Obviously, the additional joint control torque (14) with ,
, defined by (21)–(23) is exactly the same as the control

law (11)–(13). This means that the proposed method always
realizes the optimal joint impedance in a sense that the realized
joint impedance is the closest to the desired joint impedance
while achieving the desired end-point impedance.

C. Positive Semidefinite Joint Impedance

For a redundant manipulator, even if the stability of the
end-point impedance is guaranteed, it does not mean that the
joint motion is always stable. In this subsection, the joint
impedance controller that assures the stability of the joint
motion is derived on the basis of the positive semidefinitness
of the joint impedance matrices and

In general, the positive semidefinitness of can
be assured if it is expressed in the form

(24)

Fig. 3. Four-joint planar manipulator used in computer simulations.

where is an matrix. Substituting (24) into (15),
we obtain

(25)

Since is not a zero matrix, the following equation must
hold:

(26)

The desired joint inertia matrix is naturally assumed
to be given as a positive semidefinite matrix, so it is also
expressed as Using the weighting matrix

and replacing with we can derive the optimal
solution of the matrix equation (26) in the same way as
described in the previous subsection:

(27)

Then, substituting (27) into (24) and using
we can obtain the following optimal joint inertia matrix:

(28)

which is the closest to the desired inertia in the class of
positive semidefinite matrices satisfying (15).

Also the joint viscosity matrix and the joint stiffness
matrix can be derived as

(29)

(30)

Consequently, the additional joint controller (14) with the
inertia, viscosity and stiffness matrices given in (28)–(30)
guarantees the stability of the joint motion of the manipulator.

IV. COMPUTER SIMULATIONS AND EXPERIMENTS

A. Numerical Examples

The realized joint stiffness matrix was computed using
the proposed method for a four-joint planar manipulator of
Fig. 3, where the link parameters of the manipulator are shown
in Table I.

Table II shows the computed joint stiffness matrices and the
index which is defined in order to measure how close
the realized joint stiffness approaches the desired one

tr (31)

From Table II, it can be seen that the realized joint stiffness
matrices reflect the corresponding desired ones. Also for
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TABLE I
LINK PARAMETERS OF THEFOUR-JOINT PLANAR MANIPULATOR OF FIG. 2

TABLE II
JOINT STIFFNESSMATRICES REALIZED BY THE PROPOSEDMETHOD

the large diagonal elements of the weighting matrix the
elements in the corresponding row of approach closer to
the desired values than the ones in other rows. It should be
noted that in Table II(a) is not symmetric. On the other
hand, as seen in Table II(b), is always symmetric and
positive semidefinite, although the discrepancy between
and increases as indicated by the value of the index

B. Computer Simulations

In the next step, computer simulations were performed using
the four-joint planar manipulator shown in Fig. 3, where the
desired end-point impedance matrices were diag.[1, 1]
(kg), diag.[20, 10] (Ns/m), diag.[100, 400] (N/m).
The damping ratios of the desired dynamic response for the
end-point in the direction of and axes were 1.0 and 0.25,
respectively, and the settling times of the end-point in the
direction of and axes were 0.4 (s) and 0.8 (s), respectively.
Also, in the proposed method, the desired joint impedance
matrices were set as diag. [0.1, 0.1, 0.1, 0.1] (kgm),

diag. [80, 8, 80, 8] (Nms/rad) and diag. [4000,
40, 4000, 40] (Nm/rad); and the weighting matrix was
diag. [50, 1, 50, 1]. Moreover the desired end-point position

and the equilibrium joint angle were chosen as
and respectively. The computations of the

manipulator dynamics were performed using Appel’s method
[28].

Figs. 4 and 5 show the simulation results of the manipulator
under the conventional impedance control method (3)–(5) and
the proposed method (4)–(6), (14), (28)–(30), respectively,
where the external torque disturbance, [40, 40, 40,
40] (Nm), is exerted to the joints of the manipulator.

In Fig. 4, all joints rotated and oscillated according to the
torque disturbance, since no viscous friction was assumed for
the rotation of all joints. It can be seen that the conventional

(a)

(b)

(c)

Fig. 4. Motion profile of the four-joint manipulator for the external torque
exerted to the joints of the manipulator under the conventional impedance
control: (a) stick pictures, (b) end-point displacements, and (c) joint angles.

end-point impedance controller used in this paper cannot resist
the external joint torque disturbance. On the other hand, the
first and third joints did not rotate in Fig. 5, since the desired
impedance of the corresponding joints were set to be large.
The proposed method is effective in resisting the unknown
external joint torque disturbance.

Next, the proposed method was applied to a crank rotation
task by a four-joint planar manipulator of Fig. 6. The link
parameters of the manipulator are shown in Table III. Two
kinds of coordinate systems were chosen:

1) world coordinate system ;
2) polar coordinate system with its origin at the

center of the crank, where is the rotational angle of
the crank and is the distance from the center of the
crank to the end-point, i.e., the radius of the crank.

In Fig. 6, 0.15 m was used. Also, the viscous friction of
each joint was set to 10.0 Nms/rad in order to avoid unstable
results of the conventional impedance control.

The desired end-point impedance was expressed in the polar
coordinate system, where the inertia, viscosity and stiffness
matrices were chosen as diag. [2.25 10 (kgm ),
0.1 (kg)]; diag. [0.45 (Nms/rad), 2 (Ns/m)]; and
diag. [22.5 (Nm/rad), 10 (N/m)]. Also, the desired end-point
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(a)

(b)

(c)

Fig. 5. Motion profile of the four-joint manipulator for the external torque
exerted to the joints of the manipulator under the proposed method: (a) stick
pictures, (b) end-point displacements, and (c) joint angles.

Fig. 6. The four-joint planar manipulator performing a crank rotation task.

trajectory, that is, the equilibrium trajectory, was defined as

(32)

where the time duration was set to 2.0 s.
Figs. 7 and 8 show simulation results under the conventional

impedance control method and the proposed method, respec-
tively. The desired joint impedance matrices in (13) were set
as diag. [0.001, 0.0001, 0.0001, 0.001] (kgm);

TABLE III
LINK PARAMETERS OF THEFOUR-JOINT PLANAR MANIPULATOR OF FIG. 5

(a)

(b)

Fig. 7. Motion profile of the four-joint manipulator during the crank rotation
task under the conventional impedance control: (a) stick pictures and (b) joint
angles.

diag. [2, 0.2, 0.2, 2] (Nms/rad); and diag. [1000,
100, 100, 1000] (Nm/rad) with the equilibrium joint trajectory

The weighting matrix was set as diag.
[50, 1, 1, 50] in order to assign high priority to the impedance
of the first and fourth joints.

Although the manipulator can rotate the crank properly
in both the cases, the effectiveness of the proposed method
appears clearly in the joint motion. The first and fourth joints
did not move during the crank rotation under the proposed
method, since their impedances were set to be larger than the
ones of other joints. As a result, the initial and final joint
configurations were exactly the same, and the end-point motion
was realized by using only the second and third joints.

C. Experiments

Finally, experiments using a three-joint direct-drive manip-
ulator of Fig. 9 were performed, where the link parameters
are shown in Table IV. The joint angles were measured by
means of optical encoders (resolution: 1.74510 rad)
and the control law was implemented by using four CPU’s
(Transputer, T800, 25 MHz).
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(a)

(b)

Fig. 8. Motion profile of the four-joint manipulator during the crank rotation
task under the proposed method. The impedances of the first and fourth joints
are set considerably larger than the ones of other joints: (a) stick pictures and
(b) joint angles.

Fig. 9. Direct-drive robot used in the experiments.

Figs. 10–12 show the experimental results, where the de-
sired end-point impedance matrices were diag.[25, 25]
(kg), diag.[80, 80] (Ns/m), and diag.[400, 400]
(N/m). The damping ratio of the desired dynamic response
of the end-point in each direction was 0.4. In Figs. 10 and
11, only the end-point impedance was controlled under the

TABLE IV
LINK PARAMETERS OF THE DIRECT-DRIVE ROBOT

(a)

(b)

(c)

Fig. 10. Step response of the direct-drive robot under the conventional
impedance control: (a) stick pictures, (b) end-point displacements, and (c)
joint angles.

conventional impedance control (3)–(5), while the proposed
method (4)–(6), (14), (28)–(30) was used in Fig. 12. For the
proposed method, the desired joint impedance matrices were
set as diag. [0.1, 0, 0] (kgm), diag. [20, 0, 0]
(Nms/rad), and diag. [1000, 0, 0] (Nm/rad). The unit
matrix was used as the weight matrix for simplicity. Also
the desired end-point position was 0.1 m in the direction
of axis from its initial position, while the equilibrium joint
angle was fixed at the initial angle The sampling
interval of the controller was 1.4 ms for both the conventional
impedance control and the proposed method.

Both methods realized almost the same end-point tra-
jectories as the one prespecified by the desired end-point
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(a)

(b)

(c)

Fig. 11. Step response of the direct-drive robot under the proposed method,
where the stiffness of the first joint is regulated considerably larger than the
ones of other joints: (a) stick pictures, (b) end-point displacements, and (c)
joint angles.

impedance. However, one of the joints was almost fixed
in Figs. 11 and 12, which cannot be realized using any
conventional impedance control method.

V. CONCLUSIONS

In this paper, we have proposed a new impedance control
method that can effectively utilize arm redundancy in terms of
the arm impedance by incorporating an additional controller
to the end-point impedance controller. The distinctive feature
of the proposed method is the ability to control not only the
end-point impedance but also the joint impedance in such a
way that it has no effects on the end-point motion of the
manipulator. When the desired joint impedance is chosen
adequately according to the task, the proposed method can
realize the closest joint impedance in the least squares sense
while still satisfying the desired end-point impedance.

Experimental verification of the proposed method has been
done by using the direct-drive robot with sufficient accuracy.
In order to reduce the control error, future research will be
directed to develop a robust impedance control that can realize
the desired arm impedance when the model of the manipulator
is not precisely given.

(a)

(b)

(c)

Fig. 12. Step response of the direct-drive robot under the proposed method,
where the stiffness of the second joint is set considerably larger than the ones
of other joints: (a) stick pictures, (b) end-point displacements, and (c) joint
angles.

APPENDIX

Let us consider the case of as the first step. In this
case, the objective function (19) reduces to

(33)

Substituting (18) into (33), we find

tr

(34)

The problem is how to find the matrix that minimizes
the objective function The necessary condition with
regard to the optimal solution of the above problem is given by

(35)

Substituting (34) into (35) and expanding it, we have

(36)
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Note that the partial differential formulas for the trace of
matrices [29]

tr
(37)

tr
(38)

and the property of that is,
is used in the derivation of (36). Here, and

are matrices with appropriate dimensions. Then, substituting
(36) into (18), we obtain

(39)

The above equation gives the least squares solution of the
matrix equation (15) with the objective function (33).

Next, we will derive the optimal solution for the general
case, where the weighting matrix is not the unit matrix. In
this case, we rewrite the matrix equation (15) as follows:

(40)

Comparing (40) with (15), we can see that (40) has the same
form as (15), in which and are correspond-
ing to and in (15), respectively. Therefore, the
general solution of (40) for can be easily derived as

(41)

where
is the

right-side generalized inverse of and
is an arbitrary constant matrix.

Substituting (41) into (19) and finding the matrix that
minimizes the cost function, we have

(42)

Finally, substituting (42) into (41) and expanding it, we can get

(43)

where
is the right-side generalized inverse of weighted by

Consequently, the objective function (19)
is minimized by the optimal joint inertia matrix of (21)
as derived above.
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