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Hierarchical Control of End-Point Impedance and
Joint Impedance for Redundant Manipulators

Toshio Tsuji, Achmad Jazidie, and Makoto Kanektember, IEEE

Abstract—This paper proposes an impedance control method ~ With regard to impedance control, a number of studies
for redundant manipulators, which can control not only the end-  on the utilization of kinematic redundancy has been reported
point impedance using one of the conventional impedance control thus far [17]-[24]. Newman and Dohring [17] proposed the
methods, but the joint impedance which has no effects on the di d | hod based h ded
end-point impedance. First, a sufficient condition for the joint aungnte Impedance contro met_‘? ased on t. e extende
impedance controller is derived. Then, the optimal controller for Jacobian scheme developed by Baillieul [13]. In this scheme,
agiven desired joint impedance is designed using the least squaresa vector of new task variables with its dimension equal
method. Finally, computer simulations and experiments using a to the degrees of freedom of the kinematic redundancy is
planar direct-drive robot are performed in order to confirm the defined and auamented to the end-point position vector to
validity of the proposed method. g . P _p

_ make the Jacobian matrix square. By using the augmented
é“de; Terms—mpedance control, manipulators, redundancy, jacobian matrix, the impedance control law which satisfies
robot dynamics. a constraint expressed by the extended Jacobian matrix is
derived. However, this method does not take inertial effects
|. INTRODUCTION into account, so it reduces to the active stiffness control [25]

MPEDANCE control [1] provides a unified approach fc)'ratherthan the impedance control. Later, Peng and Adachi [18]
position and force control of a manipulator, where a Corilr_1troduced a differentiable scalar objective function of joint

trolled variable is a dynamic relation between motion an@'9/€s. and derived the end-point impedance control law that
force. Using the motion equation of the manipulator an(aotlm_lzes the objective function. Usm_g this control method,
measurements of the manipulator's motion, this method ciIf kinematic redundancy can be utilized to control the arm
regulate the end-point impedance to the desired value whighifiguration while controlling the end-pointimpedance. Also,
is designed depending on a given task. To date, many studid €t @l [19] described the dynamics of the redundant
on impedance control have been conducted. Hogan [2] Hyanipulator in a task space including null space motion, and

proposed a method to implement impedance control withddfgfined the desired inertia and viscosity for the null space
the calculation of an inverse of the Jacobian matrix. TacHynamics as well as the hybrid impedance [26] for position

et al. [3] have developed an impedance control method th%’t‘d force controlled directions. The physical meaning of the

does not require the use of a force sensor. The robustnesdTytedance for the null space dynamics expressed in the task
impedance control for uncertainties such as modeling errGid2ce, however, is not intuitively understood. Therefore, the
and disturbances has been discussed in [4], [5], and @I!anmg of the deswe.d.null space impedance qccordlpg to a
stability of a manipulator performing a contact task has beven task may be a difficult problem. Also the stiffness is not
analyzed in [6], [7]. included in the n_uII space |mpec_iance parameters.

In addition, a redundant manipulator which possesses mordUr approach is significantly different from others. We have
degrees of freedom than the ones required for performing?&gued that the arm redundancy should be directly utilized
task has been considered to be the key to more dextrous #hdems of the arm impedance itself [20], and proposed
versatile robot motions. Many studies on arm redundancy ha®@ impedance control method namkllti-Point Impedance
been performed in terms of the inverse kinematic problefontrol (MPIC) [21]-{23]. The MPIC can control not only the
[8]-[13], where arm redundancy is used in order to Optimiz%nd-point impedance using one of the conventional impedance
criteria such as avoidance of singularity [10], avoidance §Pntrol methods but also impedances of multiple points on
an obstacle [11]-[13], and various measures of dexterity [1(§I]1,e links of the manipulator utilizing arm redundancy. On the
[12]. Also, redundancy in the force/torque transformation h&asis of the same idea, Liao and Donath [24] proposed the

been pointed out by Khatib [14], [15] and Kang and Freemdteneralized impedance control for collision avoidance. Instead
[16]. of the multi-point impedance, this paper proposes a method for
controlling the joint impedance directly which has no effects
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always constant during the task. We need to develop a unified
scheme that can control the joint impedance as well as the
end-point impedance utilizing kinematic redundancy. Also the
same problem may arise for a manipulator bracing against an
object, e.g., a door, at a joint or a link as shown in Fig. 1(b).
In this case, the impedance of the joints located between the
base of the manipulator and the contact point with the object
should be regulated to be as stiff as possible.

In this paper, a new impedance control method for redundant
manipulators is developed, which can realize the closest joint
impedance to the desired one in the least squares sense
while still satisfying the desired end-point impedance. Under
this impedance control, the desired joint impedance and the
desired joint angle, that is, the equilibrium arm posture,
can be specified, and the end-point impedance and the joint
impedance are hierarchically controlled. Control of the joint
impedance enables us to regulate the dynamic response of the
joints for the unknown external forces beforehand.

This paper is organized as follows: in Section ll, a
joint impedance controller is incorporated into the end-
point impedance controller in parallel, and a sufficient
condition of the joint impedance controller so as not to
affect the end-point impedance is derived. In Section I,
the joint impedance controller corresponding to the desired
joint impedance is derived using the least squares method.
Computer simulations and experiments using a planar direct-
drive robot are performed in Section IV in order to show the
effectiveness of the proposed method.

Il. IMPEDANCE CONTROL UTILIZING
KINEMATIC REDUNDANCY

In general, the motion equation of an-joint manipulator

(b) can be expressed as
Fig. 1. Examples of tasks requiring impedance control of joints as well as . .
the end-point. M)+ h(8,0) =7+ JT(Q)Fext (1)
drag and lift forces and buoyancy forces are exerted on tHg€re
manipulator in underwater environments [27]. Although the Fex € R external force exerted on the end-point;
previously proposed end-point impedance control methods? € ™ joint angle vector,
can regulate the dynamic responses of the end-point motionV/(#) € R™*™ nonsingular inertia matrix (hereafter de-
for unknown external disturbances applied to the end-point, ) noted by M);
they are incompetent for disturbances applied to the links2(6,0) € ®™  nonlinear term including the joint torque
or the joints of the manipulators. In the presence of such due to the centrifugal, Coriolis, gravita-
disturbances, the joint configuration of the manipulator may tional, and frictional forces;
change even if the end-point impedance is properly controlled,” € £™ joint torque vector;
and it may result in serious accidents such as a collision with/(8) € R>*™  Jacobian matrix (hereafter denoted by
an obstacle or a singular joint configuration. l dimension of the task space.

One possible solution to this problem is to set the impedanEer a redundant manipulatan is larger than.
of specific joints under the water to be as large as possible inThe desired impedance of the end-point is generally ex-
order to lock out the corresponding joints while controllingressed as
the end-point impedance to the given desired value. It could ) )
be possible to lock the underwater joints mechanically and M X + B dX + K. dX = Foyg (2)
use the conventional nonredundant impedance control for the
rest of the joints. However, since both the kinematics and there M., B., K. € R*! are the desired inertia, viscosity,
dynamics of the manipulator are affected by locking the jointand stiffness matrices of the end-point, respectively;&Xd=
the impedance control law should be modified depending dh— X, € R is the deviation vector of the end-point position
the number of locked joints and the arm posture which are n&t from its equilibrium X.
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In this paper, we adopt the impedance control law not using X

. . . Coordinate transformation Je———————
the inverse of the Jacobian matrix [2]: % e
- effector
T = Teffector T Tcomp (3) >
— y A ha . .
Teffector = —JT[A{Me 1(K€ dX + B, dX) + J9} Py Joint impedance gy Noninear
1 d & comyy |COTPENSALION
+ I =AM Hrex] (4) Feomy
— + T3 )
Teomp = (JM—IJ) h(9, 9) () Fig. 2. Hierarchical impedance control for redundant manipulators.

where A = (JM~JT)"1 ¢ R'*! is the operational space

kinetic energy matrix [14], [15];];(4,1 = M~1JTA € Rmxt joint torqueT,qq in (8) always satisfies the sufficient condition
the genera"zed inverse dfwe|ghted byM—1, Teffoctor € N (7) The vectorz; is then chosen in such a way that the
the joint torque vector needed to produce the desired end-pdpitowing cost function(z; (z1) is minimized:

impedance] thel x [ U!’lit matrix; andTmI‘np € §R’"Athe joint Gi(z1) = Wik — maaa(ZO}] @)
torque vector for nonlinear compensation. Als#,(#) and

h(6,6) are the estimated values a@f(6) and h(6,6). It is wherel¥ € R™*™ is a diagonal positive definite matrix, each
assumed in this paper that the joint configuratiois not in diagonal element of which is a weight to the corresponding
a singular posture, andi/(¢) = M(6) andh(6,0) = h(6,§) element of the joint torque error vectof,, — 7aad, and ||a|

are held. stands for the Euclidian norm of the vecter

Although the control law (3)-(5) and other impedance m 1/2
control methods such as [1], [3] can be applied to redundant lla|l = (aTa)l/2 — <Z ag) (10)
manipulators, arm redundancy cannot be effectively utilized. im1

In this paper, an additional controller is incorporated into ”Wherew
end-point impedance control law in order to exploit the ar :
redundancy

is theith element of vectos € R™. Using the least
r:Qquares method, we can find the optimal solution given as

Tadd = FT:(I(I (11)
T = Tadd t Teffector T Tcomp (6)
' : U =1, — {Qw:(J}_)"} (12)
where 7,q9 € R™ is the joint control torque vector for an 2t i ot AT -1 i
additional purpose. It can be easily shown that if the addition\c‘%(r]ereg_zw_2 o W JM*.I{JM*IW (Jj\}*l)T} € R
joint control torquer,q, satisfies the equation IS the right-side generalized inverse (of;, _, )* weighted by
W2 =W-1w~1 As a result, using (4)—(6), (11), and (12),
(J;}_I)Tfadd =0 (7) we can control not only the end-point impedance but the joint

) ) ~ torque which is the closest to the given desired one without
thent,yq has no dynamical effects on the end-point motion %fn¥ effects on the end-point's motion.

the manipulator, so that the end-point impedance remains equa

to the desired one given by (2). This force redundancy was jgint Impedance Control

found by Khatib [14], [15], after which Kang and Freeman [16] L o

used the force redundancy to assure stability in a joint torque't IS then assumed that the desired joint impedance is given

optimization for the redundant manipulator by introducing th@ccording to the task. The desired joint torque for the joint

null-space damping technique. In the following sections, wPedance regulation can be defined as

present a method to utilize the force redundancy in terms of T = _M;,«g‘ - B! do — K:de (13)

the joint impedance control.

where M7, B}, K; € ®™*™ are the desired joint inertia,

viscosity, and stiffness matrices, respectively, afd= 6 —

64 € W™ is the deviation vector between the joint andle

and its equilibrium on&,;. Using (11)-(13), we can control

the joint impedance as a subtask which has no effects on the
Equation (7) gives the sufficient condition for the additionqénd_poim’s motion (see Fig. 2).

joint torqueT,qq to have no effect on the end-point’s motion. The joint impedance realized by this control scheme, how-

In this subsection, we assume that the desired value of @%r, may differ from the desired one, since the proposed

additional torquer;y, is given, which does not always satisfyimpedance control does not always achieve the desired joint

(7). We then need to derive,a that satisfies (7) and is thetorque. The property of the realized joint impedance is ana-

I1l. JOINT IMPEDANCE REGULATION

A. Optimal Additional Controller

closest to the desired joint torqug,. lyzed in the rest of this section.
The general solution of (7) is given by First, the realized joint impedance related with the additional
faa = (I — QT )T )2 (8) loint torque is expressed“as |
Tadd = —Mj9 — Bj d9 — Kj d9 (14)

where I,,, is them X m unit matrix; z; € R™ an arbitrary
constant vector; an® = J3,_ {(J},_)TJy, .}t € R™X! where M;, B;, K; € ®™*™ are the realized joint inertia,

the right-side generalized inverse (oﬁ\},1 ). The additional viscosity and stiffness matrices, respectively. It is easily seen
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that the sufficient condition (7) is always satisfied if the
following conditions are given: EANCER BV SN

(J3-0) T M; =0, (15)
(J-)fB; =0 (16)
(JH_)TK; =0. (17)

For the joint inertia matrix}{;, the general solution of the
matrix (15) is given as

M; = {Im - ( M- 1) }ZQ (18)
Fig. 3. Four-joint planar manipulator used in computer simulations.
whereZ, € 3#™*™ s an arbitrary constant matrix. The desired

jointinertia matrixM is already given, so the problem is ho
to find an arbitrary constant matriX, in (18) which results

TN
_Z) (rad)

Wyhere D; is anm x m matrix. Substituting (24) into (15),

. . X we obtain
in M; close toM;. To solve this problem, the following cost . .
function G(Z,) is minimized with respect t&,: (Ji;-)"'D;D} =o0. (25)
_ * Since D, is not a zero matrix, the following equation must
Ga(Z2) = WM — M;(Z)}| () >neel 9 €9
WhereW e X7 s a diagopal positive definit_e matrix, (]Xr{ )ED; =o. (26)
each diagonal element of which acts as a weight for the . o _ _
corresponding row of the error matrix betwefy” and A;. The desired joint inertia matri¥/; is naturally assumed
The || A|| stands for the matrix norm defined by to be given as a positive semidefinite matrix, so it is also
expressed ad/* = (D*) (D*)*. Using the weighting matrix
1/2 J LN . .
m W and replacingM; with D;, we can derive the optimal
JA]| = (AT ADY2 = [ D Za“ (20) solution D; of the matrix equation (26) in the same way as
i=1 j=1 described in the previous subsection:
where A = [a;;] € R™*™ is an arbitrary matrix; and tf D; =T'Dj. (27)

denotes the trace of the matrix. Using the least squares methfigen substituting (27) into (24) and using; = (D7) (D5)",
we can find the optimal solution given as (see Appendix A)ye can obtain the following optimal joint inertia’ matrix:

M; =TM; (21) M; =TM;T" (28)

whereI is given in (12). In the same manner, we can alsghich is the closest to the desired inerfié’ in the class of
derive the optimal solutions for the joint viscosity matdi ~ POSitive semidefinite matrices satisfying (15).

and the joint stiffness matrix;: Aleo the joint visco_sity matrixB; and the joint stiffness
matrix K; can be derived as
B; =I'B; 22
J 37 ( ) Bj — ]-—\B;k]-‘\T7 (29)
K; =TK]. (23) -
K; =TK;I". (30)

Obviousfly, the additional joint conltrolhtorque (14) vr;/iM, Consequently, the additional joint controller (14) with the
B;, K; defined by (21)~(23) is exactly the same as the conty "Pertia, viscosity and stiffness matrices given in (28)—(30)

law (11)_(13)' This means that the proposed method alw?%arantees the stability of the joint motion of the manipulator.
realizes the optimal jointimpedance in a sense that the reali

joint impedance is the closest to the desired joint impedance

. . . o IV. COMPUTER SIMULATIONS AND EXPERIMENTS
while achieving the desired end-point impedance.

A. Numerical Examples

C. Positive Semidefinite Joint Impedance The realized joint stiffness matrik’; was computed using

For a redundant manipulator, even if the stability of thgIe proposed method for a four-joint planar manipulator of

end-point impedance is guaranteed, it does not mean that
joint motion is always stable. In this subsection, the j0|
impedance controller that assures the stability of the joint
motion is derived on the basis of the positive semidefinitne
of the joint impedance matricel/;, B;, and K.

In general, the positive semidefinitnessidf € &™>*™ can E(K;) = (r[(K} — K; De (K! - K; DY (31)
be assured if it is expressed in the form

3 Where the link parameters of the manipulator are shown

Table II shows the computed joint stiffness matrices and the
ex E(K;) which is defined in order to measure how close
the realized joint stiffnes#’; approaches the desired ofig

From Table I, it can be seen that the realized joint stiffness
M; :DijT (24) matrices reflect the corresponding desired ones. Also for
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TABLE |
LINK PARAMETERS OF THE FOUR-JOINT PLANAR MANIPULATOR OF FiG. 2

Linki ((=1234)
Length (m) 0.20
Mass (kg) 1.57 ’,"—— Initial posture
Center of mass (m) 0.10 ?' === };'l",‘l:’:’i)“:?)
Moment of inertia (kgm?) 0.80 ) e 190,400,407 ()
Y
TABLE 1l

JOINT STIFFNESS MATRICES REALIZED BY THE PROPOSEDMETHOD

sired joint stiffness matrix, ‘Weighting matrix, Realized joint stiffness matrix,
Types De 4
P X, (Nm/rad) W Ki (Nm/rad)
1000 00 00 007 | [10 00 00 00] 8003 27 4 _
00 100 00 00 00 10 00 00 71 A6 66 132 g
(a) Hierarchical 00 00 100 00 00 00 10 00 Loy 25 -13 487] =2
impedance | | 00 00 001000 | [00 00 00 10 EK) =971 (Nmiead) 2
trol, = T —F - =
Eq (2% 1000 00 00 00 10 00 00 00 37 o4 e z§-
00 100 00 00 00 100 00 00 36 .197 05 728 de
00 00 100 00 00 00 10 00 L 14 03 01 972J 4
L 00 00 ooteo] | [00 00 00 100] (K = 1986 (Newlead) 0 05 7o
by Hierarchicat | 1000 00 00 001 [ [10 00 00 o007 [[ 313 113 11 4367 Time (s) .
impedance 00 100 00 00 00 L0 00 00 19 .58 148 29
control 00 00 100 00 00 00 10 00 | 436 148 29 415]
;‘)ls)i]uve L 00 00 001000] | [00 00 00 10| EK;) = 1034 (Nmirad) (b)
semidefinic | 1000 00 00 007 | [10 00 00 oo | [0S 52 1271 13837
T dance 00 100 00 00 00 100 00 00 271 162 922 702
Eqp?SO) ' 0.0 00 100 00 00 00 10 00 11383 36 702 946} | | Ist joint, 61 —— 3rdjoint, 83
L 00 00 001000 | 106 00 00 100 F(K;) = 318.6 (Nm/rad) ——=2nd joint, §p - 4th joint, 64

3

[S]

the large diagonal elements of the weighting maftfiX the
elements in the corresponding row ff; approach closer to
the desired values than the ones in other rows. It should be
noted thatk; in Table ll(a) is not symmetric. On the other
hand, as seen in Table II(b){; is always symmetric and
positive semidefinite, although the discrepancy betwé&gn ©

andKj increases as indicated by the value of the inEéKj). Fig. 4. Motion profile of the four-joint manipulator for the external torque
exerted to the joints of the manipulator under the conventional impedance

control: (a) stick pictures, (b) end-point displacements, and (c) joint angles.

Joint angles {rad)

oo
SR -

0 0.5 1.0

Tim‘c (s)

B. Computer Simulations

In the next step, computer simulations were performed usiagd-point impedance controller used in this paper cannot resist
the four-joint planar manipulator shown in Fig. 3, where thghe external joint torque disturbance. On the other hand, the
desired end-point impedance matrices wafe = diag.[1, 1] first and third joints did not rotate in Fig. 5, since the desired
(kg), B. = diag.[20, 10] (Ns/m) /. = diag.[100, 400] (N/m). impedance of the corresponding joints were set to be large.

The da_mp_ing rati(_)s OT the desired dynamic response for tlﬁﬁe proposed method is effective in resisting the unknown
end-point in the direction of andy axes were 1.0 and 0.25,external joint torque disturbance

respectively, and the settling times of the end-point in the . .
direction ofx andy axes were 0.4 (s) and 0.8 (s), respectively. Next, the propqsed method W"f‘s applied to-a crank “’t?‘“on
k by a four-joint planar manipulator of Fig. 6. The link

Also, in the proposed method, the desired joint impedan : '
matrices were set ad/* = diag. [0.1, 0.1, 0.1, 0.1] (kgR) parameters of the manipulator are shown in Table Ill. Two
] 1 - L) . ) - L)

B = diag. [80, 8, 80, 8] (Nms/rad) andl; = diag. [4000, kinds of coordinate systems were chosen:

40, 4000, 40] (Nm/rad); and the weighting matrix wias — 1) world coordinate systernX (z, y);
diag. [50, 1, 50, 1]. Moreover the desired end-point position 2) polar coordinate systen®(¢,r) with its origin at the
X and the equilibrium joint anglé; were chosen aXy(t) = center of the crank, wherg is the rotational angle of

X(0) andf(t) = 6(0), respectively. The computations of the  the crank and- is the distance from the center of the
manipulator dynamics were performed using Appel's method  crank to the end-point, i.e., the radius of the crank.

[28]. . o : L
Figs. 4 and 5 show the simulation results of the manipulatlonr Fig. 6, = 0.15 m was used. Also, the viscous friction of

under the conventional impedance control method (3)—(5) aﬁﬂCh joint was set to %O'O Nms/rad in order to avoid unstable

the proposed method (4)(6), (14), (28)~(30), respectiveﬁ?suns of Fhe convent.|on_al impedance control. _

where the external torque disturbanee,, = [40, 40, 40, The desired end-point impedance was expressed in the polar

4017 (Nm), is exerted to the joints of the manipulator. coordinate system, where the inertia, viscosity and stiffness
In Fig. 4, all joints rotated and oscillated according to th@atrices were chosen dg. = diag. [2.25x 1072 (kgnv),

torque disturbance, since no viscous friction was assumed @t (kg)]; B. = diag. [0.45 (Nms/rad), 2 (Ns/m)]; ani, =

the rotation of all joints. It can be seen that the conventiondlag. [22.5 (Nm/rad), 10 (N/m)]. Also, the desired end-point
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TABLE 1l
LINK PARAMETERS OF THE FOUR-JOINT PLANAR MANIPULATOR OF FIiG. 5
W Link 1,2 Link 3 Link 4
= Length (m) 0.28 0.25 0.11
. Mass (kg) 3.392 1.92 1.152
Center of mass () 0.128 0.1025 0.055
Tey = [40, 40, 40, 4017 (Nm) Moment of inertia (kgm?) 0.29312 { 0.011017 0.00123
(@)
0.05
g 0.04
E% 0.03
25 002
HE 001

— Initial posture
b - Transient postures
( ) Final posture

------ Ist joint, &) —— 3djoint, &y
—-—=2nd joint, 8  -------- 4th joint, 64
X (@)
3
£ I T B vy 1s joint, 8] 3rd joint, 63 I
3 ——= 2nd joint, 8 - 4th joint, fig
ol
g 0 25
- R T e 2 '__—-"'-~ o
B B asp--—-° < Treameaa-
o 05 1.0 E
Time (s) E O L T
o
g 0
(c) S e —
Fig. 5. Motion profile of the four-joint manipulator for the external torque B 7 S Y S T R TR T
exerted to the joints of the manipulator under the proposed method: (a) stick Time (s)

pictures, (b) end-point displacements, and (c) joint angles.

(b)

Fig. 7. Motion profile of the four-joint manipulator during the crank rotation
task under the conventional impedance control: (a) stick pictures and (b) joint
angles.

Polar = diag. [2, 0.2, 0.2, 2] (Nms/rad); and; = diag. [1000,
100, 100, 1000] (Nm/rad) with the equilibrium joint trajectory
64(t) = 6(0). The weighting matrix was set &8 = diag.
[50, 1, 1, 50] in order to assign high priority to the impedance
of the first and fourth joints.

coordinate

9=(Z-Z “_”, —2—75)T(rad)
2761879 1 Although the manipulator can rotate the crank properly
World in both the cases, the effectiveness of the proposed method
oo . appears clearly in the joint motion. The first and fourth joints
0.1 (m) did not move during the crank rotation under the proposed

method, since their impedances were set to be larger than the
_ o ' _ _ ones of other joints. As a result, the initial and final joint
Fig. 6. The four-joint planar manipulator performing a crank rotation taSkconfigurations were exactly the same, and the end-point motion
was realized by using only the second and third joints.

trajectory, that is, the equilibrium trajectory, was defined as

[@(t)} _ FOﬂP’/tfc — 30t/ + 12mt /85 32) C. Experiments

r4(t) 7 . . . o . .
Finally, experiments using a three-joint direct-drive manip-
where the time duration; was set to 2.0 s. ulator of Fig. 9 were performed, where the link parameters
Figs. 7 and 8 show simulation results under the conventioraak shown in Table IV. The joint angles were measured by
impedance control method and the proposed method, resp@eans of optical encoders (resolution: 1.745107° rad)
tively. The desired joint impedance matrices in (13) were sehd the control law was implemented by using four CPU’s
as My = diag. [0.001, 0.0001, 0.0001, 0.001] (k@)nB;f (Transputer, T800, 25 MHz).
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TABLE IV
LINK PARAMETERS OF THE DIRECT-DRIVE RoBOT

Link 1 Link 2} Link 3

Length (m) 0.25 025 | 0.125

Mass (kg) 20.8 13.2 8.84

0.1 (m) Center of mass (m) 0.064 | 0.065| 0.031
e Moment of inertia (kgm?) | 0334 | 0.196] 00851
Joint friction (Nms/rad) 2.69 1.88 0.0634

Initial and final
postures
Transient postures

Initial posture

N y TT=== Final posture
...... Ist joint, 81 3rd joint, 83
=== 2nd joint, by - Ath joint, 64
25
2 N,
g 1s d - \ I
: H
£ Se——d
g il
g os =
E o /./ .
[T | BN - ML -
-1
0 04 08 12 16 20
Time (s)
0.14
(b)

o

Fig. 8. Motion profile of the four-joint manipulator during the crank rotation
task under the proposed method. The impedances of the first and fourth joints
are set considerably larger than the ones of other joints: (a) stick pictures and
(b) joint angles.

End-point
displacements (m)
<o
Y

¢
(=1
s}

-0.02

Time (s)
(b)
{ Istjoint 0, ------- i
joint, 6 2ud joint, 6,
R L L S i

Joint angle (rad)

0 1 2 3 4
Time (s}
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(<= x 5 p i Fig. 10. Step response of the direct-drive robot under the conventional
- - impedance control: (a) stick pictures, (b) end-point displacements, and (c)

u u ) joint angles
-
T
//// b“ - conventional impedance control (3)—(5), while the proposed
3 method (4)—(6), (14), (28)—(30) was used in Fig. 12. For the
//// proposed method, the desired joint impedance matrices were
set asM = diag. [0.1, O, 0] (kgrh), B} = diag. [20, 0, 0]
Fig. 9. Direct-drive robot used in the experiments. (Nms/rad), andKJ’.k = diag. [1000, 0, 0] (Nm/rad). The unit
matrix was used as the weight matiik for simplicity. Also
the desired end-point positiaki,(¢) was 0.1 m in the direction
Figs. 10-12 show the experimental results, where the d#-z axis from its initial position, while the equilibrium joint
sired end-point impedance matrices wéde = diag.[25, 25] angle was fixed at the initial angtg(¢) = #(0). The sampling
(kg), B. = diag.[80, 80] (Ns/m), and{. = diag.[400, 400] interval of the controller was 1.4 ms for both the conventional
(N/m). The damping ratio of the desired dynamic respong@pedance control and the proposed method.

of the end-point in each direction was 0.4. In Figs. 10 and Both methods realized almost the same end-point tra-
11, only the end-point impedance was controlled under thectories as the one prespecified by the desired end-point



634 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 29, NO. 6, NOVEMBER 1999

Initial posture e [nitial posture
2 y ===== Final posture vy TTTTT Final posture

IS

<
=)

=g
=
S

End-point
displacements (m)

End-point
displacements (m)
- =3
S

0.02
0 2 3 4 0 1 2 3 4
Time (s) Time (s)
(b) (b)
—Istjoint, §, - ------2nd joint,6. I Istjoint, 6, ------- 2nd joint, b,
Lﬁ—i——r——m‘djoim,(]; : | —-—--3djoing, -

2 b e

15

1F.
05 F Trmeemmmmemm e
0 F
05 |
-1 F
s : s T
0

Joint angle (rad)
Joint angle (rad)

2 3 4 1 .
Time (s) Time (s)

© ©

Fig. 11. Step response of the direct-drive robot under the proposed methieig, 12. Step response of the direct-drive robot under the proposed method,
where the stiffness of the first joint is regulated considerably larger than timaere the stiffness of the second joint is set considerably larger than the ones
ones of other joints: (a) stick pictures, (b) end-point displacements, and ¢(f)other joints: (a) stick pictures, (b) end-point displacements, and (c) joint
joint angles. angles.

impedance. However, one of the joints was almost fixed APPENDIX
in Figs. 11 and 12, which cannot be realized using any) et ys consider the case 8f = I, as the first step. In this
conventional impedance control method. case, the objective function (19) reduces to

V. CONCLUSIONS G1(Z2) = ||M} — M;(Z)]|- (33)

In this paper, we have proposed a new impedance control = | . )
method that can effectively utilize arm redundancy in terms otPstituting (18) into (33), we find
the arm impedance by incorporating an additional controller
to the end-point impedance controller. The distinctive feature  G3(Z2) = (t[[M] — {I,,, — Q(J{; )"} Z2]"
of the proposed method is the ab|I|_t¥ tolcontrol not .onIy the (MG = (L - Q(JJJ\}A)T}ZQ]DO.O_ (34)
end-point impedance but also the joint impedance in such a
way that it has no effects on the end-point motion of the ) ] ) o
manipulator. When the desired joint impedance is chosen!N€ problem is how to find the matri&, that minimizes
adequately according to the task, the proposed method &8@ objective function7;(Zz). The necessary condition with
realize the closest joint impedance in the least squares sef@gard to the optimal solution of the above problem is given by
while still satisfying the desired end-point impedance.

Experimental verification of the proposed method has been 0G2(Z2) _ (35)
done by using the direct-drive robot with sufficient accuracy. 0Zs '
In order to reduce the control error, future research will be
directed to develop a robust impedance control that can realfzébstituting (34) into (35) and expanding it, we have
the desired arm impedance when the model of the manipulator

is not precisely given. {L — QU )Y 2y = {1, — QI3 ) M. (36)
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Note that the partial differential formulas for the trace of

matrices [29] (4]
IUPZQ] _ 5 1 [5]
OW[PZ; QZR] T T T [6]
o7 — QZ,RP +QTZ,PTRT  (38)
[7]

and the property ofi*, that is, (AT A)T(ATA) = (ATA)T
= (AT A), is used in the derivation of (36). Her®, Q, andR
are matrices with appropriate dimensions. Then, substitutin@]
(36) into (18), we obtain
[9]
M; = {5, — QI )" YM;. (39)
(10]
The above equation gives the least squares solution of the
matrix equation (15) with the objective function (33).

Next, we will derive the optimal solution for the general
case, where the weighting matriX is not the unit matrix. In [12]
this case, we rewrite the matrix equation (15) as follows:

[13]

(T .

YWWM= (W LT _)TWM; =0, (40)
14

Comparing (40) with (15), we can see that (40) has the sar[ne]

form as (15), in whichI/V—le\},1 and W M; are correspond-

ing to Jj\},l and M, in (15), respectively. Therefore, thel*d]

general solution of (40) fob M; can be easily derived as [16]
WM; = L, = {(W )W) 128 (41) g
where {Ww=tgd T =
WAJE_ (L )TW20h 0 e ®ml s the 18
right-side generalized inverse ¢ —'Jf ) and Z; €
XM s an arbitrary constant matrix. [19]
Substituting (41) into (19) and finding the matri% that
minimizes the cost function, we have
[20]
A (U O o S Ul AR 2
—1 T —1 T *
=L —{(W ) VYW ) IW M. (42) 21]

Finally, substituting (42) into (41) and expanding it, we can get

My = W, — {0V TP w2
= {In — Quw=(Jf, )T IM 23]
=I'M;, (43)

[24]

whereQy—. = W27 {JF_ W2(Jf )T}t e pmxt
is the right-side generalized inverse dﬁ,l weighted by
W—2 = W-1W 1. Consequently, the objective function (19)

is minimized by the optimal joint inertia matriX{; of (21) (5]
as derived above. [26]
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