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Abstract—A coterie is a set of subsets (called quorums) of the processes in a distributed system such that any two quorums intersect

with each other and is mainly used to solve the mutual exclusion problem in a quorum-based algorithm. The choice of a coterie

sensitively affects the performance of the algorithm and it is known that nondominated (ND) coteries achieve good performance in

terms of criteria such as availability and load. On the other hand, grid coteries have some other attractive features: 1) A quorum size is

small, which implies a low message complexity, and 2) a quorum is constructible on the fly, which benefits a low space complexity.

However, they are not ND coteries unfortunately. To construct ND coteries having the favorite features of grid coteries, we introduce

the transversal merge operation that transforms a dominated coterie into an ND coterie and apply it to grid coteries. We call the

constructed ND coteries ND grid coteries. These ND grid coteries have availability higher than the original ones, inheriting the above

desirable features from them. To demonstrate this fact, we then investigate their quorum size, load, and availability, and propose a

dynamic quorum construction algorithm for an ND grid coterie.

Index Terms—Coteries, distributed systems, grid structures, mutual exclusion algorithms, nondominatedness, quorum consensus,

transversals.

�

1 INTRODUCTION

LET U be the set of processes forming a distributed
system. A coterie is a set of subsets (called quorums) of U

that satisfies Intersection Property—any two quorums inter-
sect with each other, and Minimality—no quorum contains
another quorum as a subset. Coteries are mainly used for
solving the mutual exclusion problem: Let Q be a coterie.
We prepare a single token named permissionv for each
process v 2 U and place it at v initially.

1. (Request for Critical Section) When a process u
wishes to enter the critical section, it selects a
quorum Q 2 Q and requests permissionv to each
process v 2 Q.

2. (Processing Request) Upon receiving the request
from u, v sends permissionv to u, as soon as it
holds it.

3. (Entering Critical Section) Upon receiving
permissionv from every process v 2 Q, it enters
the critical section.

4. (Leaving Critical Section) Upon leaving the critical
section, u returns permissionv to each process
v 2 Q.

Then, Intersection Property guarantees mutual exclusion.
The above description, however, does not include mechan-
isms to avoid deadlocks and starvations. Maekawa, hence,
proposed a complete mutual exclusion algorithm by
exploring this idea in detail [13].1

A coterie P is said to dominate another coterieQ if, for any
Q 2 Q, there is aP 2 P such that P � Q. A coterieP is said to
be nondominated (ND, for short) if there is no coterieQ ð6¼ PÞ
that dominates P. Intuitively, ND coteries can implement
mutual exclusion in a more efficient way than dominated
ones. They are also characterized by theirmaximality; there is
no coterie that includes an ND coterie as a proper subset. By
these properties, Maekawa’s algorithm adopting an ND
coterie shows good performance under such criteria as
availability [18], robustness against network 2-partition [2],
load [16], and communication delay [5].

To make use of these attractive features, many construc-
tion methods have been proposed. They include the
majority coteries [6], [7], [21], the tree coteries [1], the
Lovász coteries [14], and the CWlog [19]. Several coterie
transformation methods have also been proposed 1) to
construct a large ND coterie from simple ones, 2) to
enumerate ND coteries, and 3) to obtain a new ND coterie
with better performance (e.g., [3], [7], [8], [9], [15]).

The selection of a coterie is an important implementation
issue concerning Maekawa’s algorithm. Another important
implementation issue is the way of storing the coterie.
When we choose an ND coterie, the problem becomes more
serious since its size is usually larger than a dominated one
because of its maximality. If processes can construct a
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quorum on the fly whenever it is necessary, instead of
maintaining the coterie, then it definitely contributes to the
reduction of space complexity. Grid coteries are proposed
to this end based on logical grid structures of processes [4],
[10], [11], [12], [13], [16], [17]. Grid coteries discussed in [4],
which we will call C-Grid coteries in this paper, virtually
align the processes in a two-dimensional array. Then, a
quorum consists of a one full row and an element from each
row. A quorum is dynamically constructible, provided that
processes know the logical grid structure.

Another advantage of the grid coteries is their quorum
size. The number of messages necessary to enter the critical
section is roughly proportional to the size of a quorum in
Maekawa’s algorithm. For most of the grid coteries, their
quorum sizes are bounded by Oð

ffiffiffiffiffi

N
p

Þ, where N ¼ jU j is the
number of processes. Since

ffiffiffiffiffi

N
p

approximately meets a
lower bound on the quorum size under the fully distributed
condition [13], they are nearly optimal.

However, the grid coteries also have some drawbacks.
To the best of our knowledge, all of the grid coteries are
dominated except some very special cases. Moreover, the
availability of any C-Grid coterie approaches 0 as N

increases [10].
Peleg and Wool [19] proposed a coterie construction

method in order to overcome these drawbacks. By general-
izing the grid structure, they introduced a logical structure
called a Crumbling Wall (CW, for short), in which processes
are arranged into rows like grid coteries, but each row may
contain a different number of processes, unlike the grid
coteries. On the CW, a quorum is defined by a one full row
and an element from each row below the full row. The set of
all quorums is called a CW coterie. A CW coterie is called a
CWlog coterie if it has only one process in the top row and
the number of processes in each row increases logarith-
mically from top to bottom. They showed that every CWlog
coterie is ND and has optimal load. They also showed that
its availability approaches asymptotically to 1 as N grows.

The purpose of this paper is the same as [19]; relaxing the
disadvantages of the grid coteries without losing their
advantages. We take a more general approach than theirs.2

Our method is based on the following facts: A transversal of
a coterie P under U is a subset T � U that intersects with all
quorums in P. Assume that P is dominated. Then, P [ fTg
is a coterie that dominates P if a transversal T of P is not a
superset of any quorum in P. Hence, an ND coterie seems
to be constructible simply by adding all such transversals.
However, this is not the case since two transversals need
not intersect each other and the Intersection Property may
be violated. Hence, given the set T of all transversals of P,
we need to select appropriate transversals from T to
construct an ND coterie.

To thisend,wefirst introduce the transversalmergeoperation
(TMoperation, forshort),whichusesanotherNDcoterieQ for
choosing appropriate transversals. TheTMoperation enables
us to construct an ND coterie from a dominated coterie,
provided that all of the transversals are given.We thenderive
a necessary and sufficient condition for a subsetT � U to be a

transversal for each of the following four grid coteries and

construct ND grid coteries by using the TM operation:3

C-Grid coterie [4]: The processes in one full row and a

process from each row form a quorum.

C*-Grid coterie: In addition to the quorums of the C-Grid

coterie, the processes in one full column and a process

from each column also form a quorum.

M-Grid coterie [13]: The processes in one full row and one

full column form a quorum.

T-Grid coterie [17]: The processes in one full row and a

process from each row below the full row form a

quorum.

We next investigate advantages of the constructed ND

grid coteries. Although our investigations will be done only

for ND C-Grid coteries, i.e., the ND coteries constructed

from C-Grid coteries, the other ND grid coteries have

similar properties.
First, we show that the quorum size of NDC-Grid coteries

is bounded by Oð
ffiffiffiffiffi

N
p

þKÞ, where K is the maximum

quorum size of the ND coterie Q used in the TM operation.

We can thus keep the quorum size as small as C-Grid coteries

by choosing aQ that satisfiesK �
ffiffiffiffiffi

N
p

.We then show that the

availability of an NDC-Grid coterie converges to that ofQ as

N grows.Recall that themajority coterie is optimal in terms of

the availability, provided that all processes have the same

failure probability less than 0:5 (and links never fail) [18].

Thus, what we called a C-Majority coterie constructed from a

C-Grid coterie and a majority coterie under the set of

processes in a row enjoys both small quorum sizes and good

availability. We also present a quorum construction algo-

rithm for C-Majority coteries which constructs a quorum on

the fly. We finally apply our method to the CW coterie. Our

method can be regarded as a generalization of an ND coterie

construction method in [19].
We would like to make a remark for fairness. The time

complexity of the ND-ness test for a given coterie is likely to

be co-NP-complete (see, e.g., [3], [9]), although it is still

open. On the other hand, determining all minimal traversals

of a coterie is equivalent to the ND-ness test [9]. Hence, our

method is applicable only when the calculation of all

minimal transversals is tractable, like the grid coteries.
The rest of this paper is organized as follows: After

giving basic definitions, Section 2 shows some properties on

transversals of dominated coteries. In Section 3, we

introduce the TM operation. In Section 4, we characterize

the transversals of C-Grid coteries and then construct ND

C-Grid coteries. In Section 5, we analyze the performance of

ND C-Grid coteries. Section 6 presents dynamic quorum

construction algorithms for ND C-Grid coteries. We then

discuss Crumbling Wall coteries in Section 7. Section 8

concludes the paper with discussions about the possibility

of applying our method to other quorum systems.
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2. We will make the relation between their and our approaches clear
when we discuss CW coteries in Section 7.

3. We will present the results with proofs only for C-Grid coteries and
just summarize the counterparts for the other grid coteries in the Appendix
without proofs since they are obviously obtainable by similar arguments.



2 PRELIMINARIES

2.1 ND Coteries

We start this section with defining coteries. Let U be the set
of all processes in a distributed system. A coterie under U is
a set Q of nonempty subsets of U satisfying the following
properties:

Intersection Property: 8P;Q 2 Q½P \Q 6¼ ;�.
Minimality: 8P;Q 2 Q½P 6� Q�.
An element of a coterie is called a quorum.

Example 1. Let U ¼ f1; 2; 3g. Then, P ¼ ff1; 2g; f1; 3gg is a
coterie under U . A singleton Q ¼ ff1gg is also a coterie
known as a singleton coterie. Another well-known coterie,
3-majority coterie, is R ¼ ff1; 2g; f1; 3g; f2; 3gg.

Garcia-Molina and Barbara [7] introduced the concept of
nondominatedness: Let P and Q be coteries under U . P is said
to dominate Q if P 6¼ Q and, for each quorum Q 2 Q, there is
a quorum P 2 P such that P � Q. If there is no coterie that
dominates P, then P is said to be nondominated (ND, for
short).

Example 2. Consider the three coteries in Example 1. Both
of Q and R dominate P. But, Q and R do not dominate
each other. They are well-known ND coteries.

In the rest of this paper, we use the following notations:
For a subset S of U , let S ¼ U n S, which is the complement
of S. Let S be a set of nonempty subsets of U . We denote, by
MinSetðSÞ, the subset of S obtained from S by removing
each element if its proper subset is in S. Hence, Minimality
holds for MinSetðSÞ.
Theorem 1 [7]. Let Q be a coterie under U . Q is ND if and only

if, for all S � U , exactly one of S or S contains some quorum

of Q as a subset.

2.2 Transversals of Coteries

Definition 1. LetQ be a coterie under U . A transversal ofQ is a

set T � U such that T \Q 6¼ ; for all Q 2 Q. A minimal
transversal is a transversal T such that T 0 6� T for any

transversal T 0 of Q. We denote the set of all minimal

transversals of Q by TrðQÞ.

Ibaraki and Kameda [9] characterized ND coteries in
terms of Boolean functions. We rephrase it in our notations.

Theorem 2 [9]. Let Q be a coterie under U . Then, Q is ND if and

only if Q ¼ TrðQÞ.
Proposition 1. Let Q be a dominated coterie under U . Then,

there is a transversal T � U of Q such that Q 6� T for all

Q 2 Q.

Proof. Suppose that each transversal T of Q contains a
quorum Q 2 Q as a subset and derive a contradiction.
Every quorumQ 2 Q is a transversal ofQ by definition. If
there is a T 2 TrðQÞ n Q, a contradiction since there is a
transversal Q 2 Q such that Q � T . If there is a
Q 2 Q n TrðQÞ, again a contradiction since there is a
transversal T � Q, which contains a quorum Q0 2 Q as a
subset.Hence,Q ¼ TrðQÞ, which contradicts Theorem2.tu

Proposition 2. Let Q be a dominated coterie under U . If T is a
transversal of Q such that Q 6� T for all Q 2 Q, so is T .

Proof. If there is a quorum Q 2 Q such that Q \ T ¼ ;, then
Q � T , a contradiction. Hence, T is a transversal. If there
is a quorum Q 2 Q such that Q � T , then Q \ T ¼ ;, a
contradiction. tu

Proposition 3. Let Q be a dominated coterie under U . If T is a
transversal of Q such that Q 6� T holds for all Q 2 Q, then
MinSetðQ [ fTgÞ is a coterie that dominates Q.

Proof. Clear by definition. tu
Example 3. Consider again a dominated coterie P in

Example 1. The set of transversals of P is ff1g; f1; 2g;
f1; 3g; f2; 3g; f1; 2; 3gg. There are transversals f1g and
f2; 3g that contain no quorum of P as a subset, as
Proposition 1 guarantees. Observe that MinSetðP[ff1ggÞ
¼ff1gg and MinSetðP[ff2; 3ggÞ¼ff1; 2g; f1; 3g; f2; 3gg.
They both dominate P.

Proposition 3 suggests a procedure for constructing an
ND coterie from a given dominated coterie P. Find a
transversal T of P such that P 6� T holds for all P 2 P, and
construct Q ¼ P [ fTg. Then, Q dominates P. If Q is still
dominated, we repeat this procedure. Let S be the set of
transversals that are added to construct an ND coterie from
P. Although a characterization of S seems to be difficult, we
present a sufficient condition in the next section.

3 TRANSVERSAL MERGE OPERATION

Inspired by Ibaraki and Kameda [9, Formula (10)], this
section introduces the transversal merge operation. Theorem 3
is a restatement of Formula (10) of [9] using our notation.

Theorem 3 [9]. Let R be an ND coterie under U . Then, there are
a coterie P and an ND coterie Q such that

R ¼ MinSetðP [ fQ [ T jQ 2 Q and T 2 TrðPÞgÞ:

Definition 2. Let P and Q be coteries under U and T be a set of
transversals of P. The transversal merge operation (TM
operation, for short), TMðP;Q; T Þ, is defined as

TMðP;Q; T Þ ¼ MinSetðP [ fQ [ T jQ 2 Q and T 2 T gÞ:

Theorem 4. TMðP;Q; T Þ is a coterie under U . Moreover, if Q
is ND and MinSetðT Þ ¼ TrðPÞ, then TMðP;Q; T Þ is an
ND coterie under U .

Proof. We first show that TMðP;Q; T Þ is a coterie. Since
Minimality holds by definition, we concentrate on show-
ing Intersection Property. For any R;R0 2 TMðP;Q; T Þ,
we show R \R0 6¼ ;. Without loss of generality, we can
assumeR 62 P sinceP is a coterie andby the symmetry. Let
R¼Q[T , whereQ2Q and T 2T . IfR0 2 P, thenR \R0 6¼
; since T is a transversal of P. Otherwise, if R0 ¼ Q0 [ T 0,
where Q0 2 Q and T 0 2 T , then R \R0 6¼ ; since Q and Q0

are quorums ofQ.
We now go on the second claim. To derive a contra-

diction, suppose that TMðP;Q; T Þ is dominated, despite
the facts that Q is ND and MinSetðT Þ ¼ TrðPÞ. Since
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TMðP;Q; T Þ is a dominated coterie, byTheorem1, there is
anS � U such that for anyquorumR 2 TMðP;Q; T Þ, both
of R 6� S and R 6� S hold. It is because there is no S � U
such that, for some quorumR 2 TMðP;Q; T Þ, bothR � S
and R � S hold.

We first show thatS andS are transversals ofP. LetP be
any quorum of P. If P is a quorum of TMðP;Q; T Þ, then
P 6� S and P 6� S hold. Otherwise, if P 62 TMðP;Q; T Þ,
then there is a quorum R 2 TMðP;Q; T Þ such that R � P
by definition. Since R 6� S and R 6� S, P 6� S and P 6� S
also hold.

SinceQ is ND, there is a quorumQ 2 Q such that either
Q � S orQ � S holds. Suppose first thatQ � S. SinceS is a
transversal of P andMinSetðT Þ ¼ TrðPÞ, T � S for some
T 2 T . Then, there is an R 2 TMðP;Q; T Þ such that
R � Q [ T , a contradiction since R � S. By the same
argument, we can derive a contradiction when Q � S. tu

Observe that TMðP;Q; TrðPÞÞ ¼ P if P is an ND coterie,
since TrðPÞ ¼ P. If P is dominated, as the above theorem
guarantees and as in Example 4, we can construct a new
ND coterie TMðP;Q; TrðPÞÞ, given an ND coterie Q.

Example 4. Consider a coterie P ¼ ff1; 2g; f1; 3; 4gg under
f1; 2; 3; 4g. Then, TrðPÞ ¼ ff1g; f2; 3g, f2; 4gg. We first
select a singleton coterie ff3gg as Q. Then,

TMðP;Q; TrðPÞÞ ¼ ff1; 2g; f1; 3g; f2; 3gg;

which is an ND coterie. We next select another ND
coterie ff2; 3g; f2; 4g; f3; 4gg as Q0. Then,

TMðP;Q0; TrðPÞÞ ¼ ff1; 2g; f2; 3g; f2; 4g; f1; 3; 4gg;

which is also ND.

There are, however, two difficult issues to overcome to
apply the TM operation. First, the problem of determining
TrðPÞ is likely to be co-NP-complete and, hence, we need to
find a class of dominated coteries for which this problem
becomes tractable. In the following sections, we discuss the
class of grid coteries as it is a typical and practical class of
coteries for which determination of TrðPÞ is tractable.

Second, the above example shows that the output ND
coterie TMðP;Q; TrðPÞÞ sharply depends on Q. We will
hence discuss, in Section 5, for a class of grid coteries what
choice of Q creates an ND coterie that shows good
performance when it is adopted in Maekawa’s algorithm.

4 ND C-GRID COTERIES

This section characterizes the minimal transversals of
C-Grid coteries and then constructs ND C-Grid coteries.
For C�-Grid, M-Grid, and T -Grid coteries, we can apply the
same method to construct ND grid coteries. See the
Appendix for the results.

We assume that, in this section, the processes in a
distributed systemare logically organized into anm� n grid,
where m ð� 2Þ and n ð� 2Þ are the numbers of rows and
columns, respectively. The rows and the columns, respec-
tively, are labeled as 1; 2; . . . ;m from bottom to top and
1; 2; . . . ; n from left to right. The process at row i and column j
is denoted by ði; jÞ, where 1 � i � m and 1 � i � n. Fig. 1
shows a 3� 4 grid. Let Um;n ¼ fði; jÞj1 � i � m and 1 �
j � ng, which is the set of all processes on anm� n grid.

Let S be a subset of Um;n and i be an integer such that
1 � i � m. We frequently argue how completely the ith row
belongs to S in the following. For compactness of descrip-
tion, we make use of the following predicates:

Ri-fullðSÞ ¼ 8‘ð1 � ‘ � nÞ½ði; ‘Þ 2 S�;
Ri-existðSÞ ¼ 9‘ð1 � ‘ � nÞ½ði; ‘Þ 2 S�;

Ri-partialðSÞ ¼ :Ri-fullðSÞ; and
Ri-nullðSÞ ¼ :Ri-existðSÞ:

Predicate Ri-fullðSÞ (respectively, Ri-existðSÞ) is true if all
(respectively, some) elements in row i belong to S.

If a set S includes all elements in some row i and another
set T includes at least one element ej from each row j, then S
and T share element ei. Proposition 4 claims this trivial fact.

Proposition 4. Let S and T be subsets of Um;n. Then, we have

9ið1 � i � mÞRi-fullðSÞ ^ 8ið1 � i � mÞRi-existðT Þ
) S \ T 6¼ ;:

Definition 3 [4]. Let S be a subset of Um;n and define the
following predicate:

C1ðSÞ ¼
9ið1 � i � mÞRi-fullðSÞ ^ 8ið1 � i � mÞRi-existðSÞ:

A C-Grid coterie CGðm;nÞ under Um;n is defined by

CGðm;nÞ ¼ MinSetðfP � Um;njC1ðP ÞgÞ:

A quorum P 2 CGðm;nÞ is said to be Type C1 since C1ðP Þ
holds.

Now, we give a necessary and sufficient condition for a
subset of Um;n to be a transversal of CGðm;nÞ. Define two
predicates:

C2ðSÞ ¼ 9ið1 � i � mÞRi-fullðSÞ
C3ðSÞ ¼ 8ið1 � i � mÞRi-existðSÞ:

Proposition 5. S is a transversal of CGðm;nÞ if and only if
C2ðSÞ _ C3ðSÞ holds.

Proof. If part: Suppose that an S satisfies C2ðSÞ _ C3ðSÞ.
Let P 2 CGðm;nÞ be any quorum. If S satisfies C2ðSÞ,
then P \ S 6¼ ; by Proposition 4. If S satisfies C3ðSÞ, then
again P \ S 6¼ ; by Proposition 4. Hence, S is a
transversal of CGðm;nÞ.

Only if part: Assuming :C2ðSÞ ^ :C3ðSÞ, we show
thatS is not a transversal. Since 8ið1� i � mÞRi-partialðSÞ
and 9ið1 � i � mÞRi-nullðSÞ, without loss of generality,
we assume that R1-nullðSÞ and, for 2 � i � m; ði; jiÞ 62 S.

186 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 2, FEBRUARY 2005

Fig. 1. A 3� 4 grid.



Clearly, P ¼ fð1; jÞj1 � j � ng [ fði; jiÞj2 � i � mg is in
CGðm;nÞ and P \ S ¼ ;. tu

By Proposition 5, a minimal transversal of CGðm;nÞ is a
subset S (� Um;n) that consists of a process in each row or S
that consists of all processes in some row. Then, we may
define the following ND coterie: Let Q be an ND coterie
under Um;n. Then,

ND-CGðm;n;QÞ ¼ TMðCGðm;nÞ;Q; CT ðm;nÞÞ

is an ND coterie under Um;n, where

CT ðm;nÞ ¼ MinSetðfS � Um;njC2ðSÞ _ C3ðSÞgÞ:

We call ND-CGðm;n;QÞ an ND C-Grid coterie. A quorum P
of ND-CGðm;n;QÞ is said to be Type Ci (i ¼ 2; 3) if CiðP Þ
and Q � P for some Q 2 Q.

Example 5. Consider a C-Grid coterie CGð3; 3Þ on a 3� 3
grid shown in Fig. 2. We have

CT ð3; 3Þ
¼ ff1; 2; 3g; f4; 5; 6g; f7; 8; 9g; f1; 4; 7g; f1; 4; 8g; f1; 4; 9g;

f1; 5; 7g; f1; 5; 8g; f1; 5; 9g; f1; 6; 7g; f1; 6; 8g; f1; 6; 9g;
f2; 4; 7g; f2; 4; 8g; f2; 4; 9g; f2; 5; 7g; f2; 5; 8g; f2; 5; 9g;
f2; 6; 7g; f2; 6; 8g; f2; 6; 9g; f3; 4; 7g; f3; 4; 8g; f3; 4; 9g;
f3; 5; 7g; f3; 5; 8g; f3; 5; 9g; f3; 6; 7g; f3; 6; 8g; f3; 6; 9gg:

Clearly, CGð3; 3Þ 6¼ CT ð3; 3Þ and, hence, CGð3; 3Þ is
dominated, by Theorem 2. Let us select a singleton
coterie ff1gg as Q. Then, we have an ND C-Grid coterie

ND-CGð3; 3;QÞ
¼ ff1; 2; 3g; f1; 4; 7g; f1; 4; 8g; f1; 4; 9g; f1; 5; 7g; f1; 5; 8g;

f1; 5; 9g; f1; 6; 7g; f1; 6; 8g; f1; 6; 9g; f1; 4; 5; 6g;
f1; 7; 8; 9g; f2; 4; 5; 6; 7g; f2; 4; 5; 6; 8g; f2; 4; 5; 6; 9g;
f2; 4; 7; 8; 9g; f2; 5; 7; 8; 9g; f2; 6; 7; 8; 9g; f3; 4; 5; 6; 7g;
f3; 4; 5; 6; 8g; f3; 4; 5; 6; 9g; f3; 4; 7; 8; 9g; f3; 5; 7; 8; 9g;
f3; 6; 7; 8; 9gg:

In the above quorum set, f1; 2; 3g, f1; 4; 5; 6g, and
f1; 7; 8; 9g are Type C2, f1; 4; 7g, f1; 4; 8g, f1; 4; 9g,
f1; 5; 7g, f1; 5; 8g, f1; 5; 9g, f1; 6; 7g, f1; 6; 8g, and f1; 6; 9g
are Type C3, and the other quorums are Type C1.
Observe that ND-CGð3; 3;QÞ dominates CGð3; 3;QÞ and
that ND-CGð3; 3;QÞ is indeed ND.

5 PERFORMANCE OF ND C-GRID COTERIES

This section investigates the performance of ND C-Grid
coteries in terms of the quorum size, the load, and the

availability. We then introduce a class of ND C-Grid
coteries, called C-Majority coteries, and show that they are
optimal both in quorum size and in availability.

5.1 Quorum Size

Assume that the grid is square for simplicity. As earlier, N

denotes the number of the processes in the grid, and Q is an

ND coterie under the grid. Let K be the maximum quorum

size of Q, i.e., K ¼ maxQ2QfjQjg. The ND C-Grid Coterie

constructed is P ¼ ND-CGð
ffiffiffiffiffi

N
p

;
ffiffiffiffiffi

N
p

;QÞ.
The size of a Type C1 quorum of P is independent of Q

and is 2
ffiffiffiffiffi

N
p

� 1. The size s of a Type C2 or C3 quorum P ,
however, depends on Q and satisfies

ffiffiffiffiffi

N
p

� s �
ffiffiffiffiffi

N
p

þK
since the size of a minimal traversal of CGð

ffiffiffiffiffi

N
p

;
ffiffiffiffiffi

N
p

Þ is
ffiffiffiffiffi

N
p

.
Hence, the quorum size is Oð

ffiffiffiffiffi

N
p

þKÞ.
We therefore can keep the maximum quorum size of ND

C-Grid coteries as small as C-Grid coteries, i.e., Oð
ffiffiffiffiffi

N
p

Þ, by
choosing a coterie Q such that K �

ffiffiffiffiffi

N
p

.

5.2 Load

The load of a coterie is introduced for evaluating load
sharing ability in [16]. A strategy is a list of probabilities that
represents the frequencies of quorums being selected by the
mutual exclusion algorithm. The strategy induces a load on
each process u which is obtained by summing the
probabilities of all quorums that include u. For example,
consider a coterie P in Example 1 and assume that the
algorithm selects two quorums in P with the same
probability 0.5. Then, the load of a process 1 is 1 and those
of both processes 2 and 3 are 0.5. The load LðPÞ of a
coterie P is defined as the minimum load of the busiest
process among all strategies. Although LðPÞ represents the
potential of P with respect to load sharing, the practical
load depends also on the algorithm that uses P. Hence, the
practical load can be bad even if P has good load.

It is known that, if a coterie P dominates a coterieQ, then
LðPÞ � LðQÞ [16]. The load of ND C-Grid coteries is thus
lower than or equal to those of C-Grid coteries.

5.3 Availability

Given the probabilities that processes are operational, the
availability AðPÞ of a coterie P is the probability that all
processes in some quorum are operational. By the defini-
tions of dominatedness and availability, the availability of
an ND C-Grid coterie is superior to that of the correspond-
ing C-Grid coterie. In this section, we investigate an
asymptotic behavior of the availability.

Assuming that all processes are operational with the
same probability p, this section considers ND C-Grid
coteries on an m� n grid.4 Let q ¼ 1� p, which is the
probability that a process is faulty. Due to [4], the
availability of CGðm;nÞ is shown to be:

AðCGðm;nÞÞ ¼ ð1� qnÞm � ð1� pn � qnÞm:

Notice that AðCGðm;nÞÞ converges to 0 as m and n
approach 1 and it is equivalent to the probability that a
Type C1 quorum of an ND C-Grid coterie on the grid is
available.
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4. For a generality, we investigate this case, although our main concern in
this section is the case of m ¼ n ¼

ffiffiffiffiffi

N
p

.

Fig. 2. A 3� 3 grid.



As in Section 4, let

C2ðSÞ ¼ 9ið1 � i � mÞRi-fullðSÞ and
C3ðSÞ ¼ 8ið1 � i � mÞRi-existðSÞ;

and let Q an ND coterie under Um;n. Then, T � U is a
transversal of CGðm;nÞ if and only if C2ðT Þ or C3ðT Þ holds
by Proposition 5 and Q [ T is a superset of a quorum of
ND-CGðm;n;QÞ for any transversal T and quorum Q 2 Q
by definition. Let � be the probability that all processes in
one of such sets Q [ T are operational. Clearly, � � A

ðND-CGðm;n;QÞÞ. We evaluate �. Since

Prð8ið1 � i � mÞRi-existðSÞÞ ¼ ð1� qnÞm

and

Prð9ið1 � i � mÞRi-fullðSÞÞ ¼ 1� ð1� pnÞm;

the probability � that all processes in some traversal T are
operational is

� ¼ ð1� qnÞm þ ð1� ð1� pnÞmÞ �AðCGðm;nÞÞ
¼ 1� ð1� pnÞm þ ð1� pn � qnÞm:

Since � � � �AðQÞ and � converges to 1, when m and n
approach 1, � converges to AðQÞ. Consequently, we have
the following theorem.

Theorem 5. Let Q be an ND coterie under Um;n. The availability
of ND-CGðm;n;QÞ converges to that of Q when m and n
approach 1.

Let P be a coterie under an ‘-set U . Provided that
1=2 < p < 1, a desirable asymptotic behavior of AðPÞ, when
‘ approaches 1, is that AðPÞ converges to 1. Such an AðPÞ
is said to be Condorcet [18]. By Theorem 5, we have the
following proposition.

Proposition 6. IfAðQÞ is Condorcet, so isAðND-CGðm;n;QÞÞ.

5.4 C-Majority Coteries

Based on the characterizations shown in the above, this

section presents an ND C-Grid coterie that achieves both

small quorum size and good availability. We again consider

the case where m ¼ n ¼
ffiffiffiffiffi

N
p

for simplicity. The analysis of

quorumsize given above shows thatQmust be chosen so that

its maximum quorum size K is at most
ffiffiffiffiffi

N
p

to utilize the

advantage in quorum size. Perhaps the easiest way is to

choose one that is defined under the set of all processes in a

single row. LetMAJi be the majority coterie under the set of

processes in some row i.5 For example, MAJ1 ¼ ff1; 2g;
f1; 3g; f2; 3gg is the majority coterie under the set of all

processes in the bottom row of the 3� 3 grid of Fig. 2. Then,

we define an ND C-Grid coterie ND-CGð
ffiffiffiffiffi

N
p

;
ffiffiffiffiffi

N
p

;MAJiÞ,
whichwe call theC-Majority coterie. Asmajority coteries have

Condorcet availabilities [18], so have C-Majority coteries by

Proposition 6. Furthermore, theminimumquorumsize is
ffiffiffiffiffi

N
p

and the maximum quorum size is 2
ffiffiffiffiffi

N
p

� 1, which are the

same order as C-Grid coteries.

To demonstrate the difference between C-Majority and
C-Grid coteries, in Fig. 3 we show the availabilities of
ND-CGð

ffiffiffiffiffi

N
p

;
ffiffiffiffiffi

N
p

;MAJiÞ and CGð
ffiffiffiffiffi

N
p

;
ffiffiffiffiffi

N
p

Þ when p ¼ 0:7
and 2 �

ffiffiffiffiffi

N
p

� 50.

6 QUORUM CONSTRUCTION ALGORITHMS FOR

ND C-GRID COTERIES

In the introduction, we mentioned, as an advantage of grid
coteries, the fact that a quorum is constructible on the fly
when it is necessary for a process. In this section, we present
an online algorithm to construct a quorum for ND C-Grid
coteries to demonstrate that ND C-Grid coteries preserve
this merit of grid coteries.

Let Um;n and Q, respectively, be the set of processes
under consideration and an ND coterie under Um;n. Then,
an algorithm, GetQuorum, given in Fig. 4 decides an order
to collect token permissionv from all processes v in some
quorum of ND-CGðm;n;QÞ. The quorums of Q are stored
in an array Qwith h elements Q½1�; Q½2�; . . . ; Q½h�, where h is
the number of quorums. Variable S records the processes
from which permissions have been collected. GetQuorum
returns “success” if the permissions have been collected
from all members of a quorum. It returns “fail” if it has
decided to abandon this quorum. In this case, the permis-
sions that have been collected are returned, to avoid
deadlock.

GetQuorum makes use of three functions R-Coverðk; ‘Þ,
R-Lineðk; ‘Þ, and Q-UnionðQÞ. R-Coverðk; ‘Þ (respectively,
R-Lineðk; ‘Þ, Q-UnionðQÞ) tries to collect permissions from
processes in such a way that 8iðk � i � ‘ÞRi-existðSÞ (re-
spectively, 9iðk � i � ‘ÞRi-fullðSÞ, 9wð1 � w � jQjÞ½Q½w�
� S�) holds. These functions return “true” if the permissions
have been successfully collected and, otherwise, return
“false.”6 By definition, the permission is collected from every
member of a Type C1 (respectively, C2, C3) quorum when
both ofR-Coverð1;mÞ andR-Lineð1;mÞ (respectively, both of
R-Lineð1;mÞ and Q-UnionðQÞ, both of R-Coverð1;mÞ and
Q-UnionðQÞ) return true. That is, GetQuorum forms a
quorum if at least two out of R-Coverð1;mÞ, R-Lineð1;mÞ,
and Q-UnionðQÞ return true.

Although GetQuorum dynamically constructs a quorum
for a general ND-CGðm;n;QÞ, it still needs space to store Q
in Q. By adopting a coterie Q whose quorums are
dynamically constructible, we can even cut the space for
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Fig. 3. Availabilities of C-Majority coterie and C-Grid coterie when

p ¼ 0:7.

5. A majority coterie under U is defined as follows: Let N ¼ jU j. When N
is odd, every ðN þ 1Þ=2-set of processes forms a quorum. When N is even,
pick up a process u and then the majority coterie is defined to be the one
under the set of processes U n fug.

6. Although we omit the algorithm descriptions for these three functions
because of their simplicity, the reader may obviously construct them.



Q. We give in Fig. 5 a quorum construction algorithm
GetQuorum2 for a C-Majority coterie.7

We would like to make two remarks on GetQuorum2.
First, GetQuorum2 calls the function R-Lineðm;mÞ and
succeeds forming a Type C2 quorum in the absence of
faulty processes. That is, it requests the permissions only to
the processes in row m. In this case, GetQuorum2 achieves
the optimal quorum size n, but the load is worst. However,
we can reduce the load by modifying GetQuorum2 so that it
tries to construct a Type C1 quorum first at the expense of
the quorum size.

Second, the TM operation produces a coterie MinSetðRÞ,
where

R ¼ P [ fQ [ T jQ 2 Q and T 2 T g:

What GetQuorum2 constructs is a member ofR, which may
not be a quorum of MinSetðRÞ. Since any member of R
contains a quorum ofMinSetðRÞ,R satisfies the Intersection

Property and, hence,R is sufficient forMaekawa’s algorithm

to guarantee mutual exclusion. This modification does not

affect the availability. A little worry is the quorum size. We,

however, can show that it is Oð
ffiffiffiffiffi

N
p

Þ.

7 ND CRUMBLING WALL COTERIES

As a generalization of rectangular grid structure, Peleg and

Wool [19] introduced a new grid structure, called Crumbling

Wall (CW, for short), and defined a Crumbling Wall coterie

(CW coterie, for short) on it.
A CW is defined as follows: Let m be an integer denoting

the number of rows, where m � 2. We number the rows as

1; 2; . . . ;m from bottom to top. Let ~nn ¼ ðn1; n2; . . . ; nmÞ be a

sequence of m positive integers, where ni denotes the

number of processes in row i. For each row i, the processes

in row i are denoted as ði; 1Þ; ði; 2Þ; . . . ; ði; niÞ from left to

right. Fig. 6 shows a CW with m ¼ 4 and ~nn ¼ ð3; 2; 4; 2Þ. We

denote by Um;~nn the set of processes in the CW, i.e., fði; jÞj1 �
i � m and 1 � j � nig. Let S and i, respectively, be a subset
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Fig. 4. Algorithm GetQuorum.

Fig. 5. Algorithm GetQuorum2.

7. We assume that the majority coterie adopted is under the set of
processes in the mth row.



of Um;~nn and and an integer such that 1 � i � m. Recall the
following two predicates.

Ri-fullðSÞ ¼ 8‘ð1 � ‘ � niÞ½ði; ‘Þ 2 S�
Ri-existðSÞ ¼ 9‘ð1 � ‘ � niÞ½ði; ‘Þ 2 S�:

Definition 4 [19]. Let S be a subset of Um;~nn. A CW coterie

CWðm;~nnÞ under Um;~nn is defined by

CW ðm;~nnÞ ¼ MinSetðfP � Um;~nnjW1ðP ÞgÞ;

where

W1ðSÞ¼9ið1� i�mÞ½Ri-fullðSÞ^ 8kð1 � k < iÞRk-existðSÞ�:

CWðm;~nnÞ is ND if and only if nm ¼ 1 and ni � 2 for all
1 � i < m [19]. For all CWs such that ni � 2 for all
1 � i � m, CWðm;~nnÞ are hence dominated. We construct
ND coteries from those dominated CWs. Define

W2ðSÞ ¼ 8ið1 � i � mÞRi-existðSÞ:

By using an argument similar to that in the proof of
Proposition 5, we can show that a minimal transversal of
CWðm;~nnÞ is either a quorum of CWðm;~nnÞ or a set T � Um;~nn

consisting of a single process from each row, as formally
stated in the following.

Proposition 7. T is a transversal of CWðm;~nnÞ if and only if

W1ðT Þ _W2ðT Þ holds.

Let Q be an ND coterie under Um;~nn. We define an ND

CW coterie under Um;~nn as follows:

ND-CW ðm;~nn;QÞ ¼ TMðCWðm;~nnÞ;Q; CWT ðm;~nnÞÞ;

where

CWT ðm;~nnÞ ¼ MinSetðfS � Um;~nnjW1ðSÞ _W2ðSÞgÞ:

Peleg andWool gave amethod to constructNDcoteries on

CWs [19].Ourmethod canbe regardedas its generalization; if

we restrict ourselves to adopting as Q a singleton coterie

ffugg for a process u in the top row, then our method is the

same as theirs. Consider a CW in Fig. 6 and another CWwith

m ¼ 4 and ~n0n0 ¼ ð3; 2; 4; 1Þ for instance. Let Q be a singleton

coterie ffð4; 1Þgg. Then,ND-CWðm;~nn;QÞ ¼ CWðm; ~n0n0Þ.

8 CONCLUSIONS AND DISCUSSIONS

Grid coteries have many desirable properties, but they are
unfortunately not ND, except some very special cases. This

paper has proposed a method to construct, from grid
coteries, ND coteries that preserve the advantages of grid
coteries. To this end, we have introduced the TM operation
that produces an ND coterie, given a dominated coterie, its
minimal transversals, and another ND coterie. Then, for
each of several well-known grid coteries, we have char-
acterized its transversals and then constructed ND grid
coteries by using the TM operation. Finally, we have
demonstrated that our method improves the disadvantages
of the original grid coteries with preserving their advan-
tages by 1) evaluating the quorum size, the load, and the
availability and 2) presenting a simple dynamic quorum
construction algorithm. During the analyses, we have
introduced C-Majority coteries and showed that they have
almost all good properties. Although those analyses have
been done for simple grid coteries, the same method is
applicable for more general framework of crumbling wall
coteries, as has been demonstrated in the last section.

Before concluding the paper, we discuss the possibility
of applying our method to another quorum system. Let U
be the set of processes. A write-read coterie (wr-coterie, for
short) under U is an ordered pair ðQ;PÞ, where Q and P are
sets of nonempty subsets of U satisfying the following
properties [5]:

1. Both Q and P satisfy Minimality,
2. Q satisfies Intersection Property, and
3. 8Q 2 Q8P 2 P½Q \ P 6¼ ;�.
The notion of a wr-coterie is introduced to model write

and read quorums for maintaining consistent access to
replicated data, where an element of Q models a write
quorum and that of P a read quorum. By definition, every
write quorum intersects with any other write and read
quorum, while there is no intersection constraint between
two read quorums. Hence, any read process can access the
latest data, assuming that a process updates replicated data
at every process in a write quorum when to update them.

Let ðQ;PÞ and ðQ0;P0Þ be wr-coteries under U . Then,
ðQ;PÞ is said to dominate ðQ0;P0Þ, if the following conditions
hold:

1. Q 6¼ Q0 and P 6¼ P0,
2. 8Q0 2 Q09Q 2 Q½Q � Q0�, and
3. 8P 0 2 P09P 2 P½P � P 0�.
If there is no wr-coterie that dominates ðQ;PÞ, then

ðQ;PÞ is said to be nondominated (ND, for short). ND wr-
coteries achieve good performance by their maximality.
Since a wr-coterie ðQ;PÞ is ND if and only if P ¼ TrðQÞ [9],
we immediately obtain the following ND wr-coteries:

a. ðCGðm;nÞ; CT ðm;nÞÞ, known as a modified grid wr-
coterie [11].

b. ðC�Gðm;nÞ; C�T ðm;nÞÞ.
c. ðMGðm;nÞ;MT ðm;nÞÞ.
d. ðTGðm;nÞ; TT ðm;nÞÞ.
e. ðCWðm;~nnÞ; CWT ðm;~nnÞÞ.

APPENDIX A

OTHER ND GRID COTERIES

Section 4 presents how to construct ND coteries from C-Grid
coteries. This appendix prepares the cases of the other grid
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Fig. 6. A crumbling wall with m ¼ 4 and ~nn ¼ ð3; 2; 4; 2Þ.



coteries, C*-Grid,M-Grid, andT-Grid coteries, thedefinitions
of which are given in the Introduction. In the following, we
present the results without proofs, but readers can check
them easily by the same arguments in Section 4.

Let j be an integer such that 1 � j � n. We use the
following predicates, where C stands for a column.

Cj-fullðSÞ ¼ 8kð1 � k � mÞ½ðk; jÞ 2 SÞ�;
Cj-existðSÞ ¼ 9kð1 � k � mÞ½ðk; jÞ 2 SÞ�:

A.1 ND C*-Grid Coteries

An C*-Grid coterie C�Gðm;nÞ under Um;n is defined by

C�Gðm;nÞ ¼ MinSetðfSjC1ðSÞ _ C�2ðSÞgÞ;

where

C�2ðSÞ ¼
9 jð1 � j � nÞCj-fullðSÞÞ ^ 8jð1 � j � nÞ Cj-existðSÞ:

The set C�T ðm;nÞ of all the minimal transversals is
given by

C�T ðm;nÞ ¼ MinSetðfSjC�3ðSÞ _ C�4ðSÞ _ C�5ðSÞgÞ;

where C�3ðSÞ ¼ 9ið1 � i � mÞRi-fullðSÞ, C�4ðSÞ ¼ 9jð1 �
j � nÞ Cj-fullðSÞ, and

C�5ðSÞ
¼ 8ið1 � i � mÞRi-existðSÞ ^ 8jð1 � j � nÞCj-existðSÞ:

We then define ND C*-Grid coterie ND-C�Gðm;n;QÞ as
follows:

ND-C�Gðm;n;QÞ ¼ TMðC�Gðm;nÞ;Q; C�T ðm;nÞÞ:

A.2 ND M-Grid Coteries

An M-Grid coterie MGðm;nÞ under Um;n is defined by

MGðm;nÞ ¼ MinSetðfSjM1ðSÞgÞ;

where

M1ðSÞ
¼ 9ið1 � i � mÞRi-fullðSÞ ^ 9jð1 � j � nÞ Cj-fullðSÞ:

The set MT ðm;nÞ of all the minimal transversals is
given by

MT ðm;nÞ ¼ MinSetðfSjM2ðSÞ _M3ðSÞgÞ;

where M2ðSÞ ¼ 8ið1 � i � mÞRi-existðSÞ and M3ðSÞ ¼ 8j
ð1 � j � nÞCj-existðSÞ.

We then define an NDM-Grid coterie ND-MGðm;n;QÞ as
follows:

ND-MGðm;n;QÞ ¼ TMðMGðm;nÞ;Q;MT ðm;nÞÞ:

A.3 ND T-Grid Coteries

Let S be a subset of Um;n and define the following
predicates:

T1ðSÞ ¼ 9ið1� i � mÞ½Ri-fullðSÞ^8kð1 � k < iÞRk-existðSÞ�
T2ðSÞ ¼ 8ið1 � i � mÞRi-existðSÞ:

A T-Grid coterie TGðm;nÞ under Um;n is defined by

TGðm;nÞ ¼ MinSetðfP � Um;njT1ðP ÞgÞ:

The set TT ðm;nÞ of all the minimal transversals is

given by

TT ðm;nÞ ¼ MinSetðfSjT1ðSÞ _ T2ðSÞgÞ:

We then define an ND T-Grid coterie ND-TGðm;n;QÞ as
follows:

ND-TGðm;n;QÞ ¼ TMðTGðm;nÞ;Q; TT ðm;nÞÞ:
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